
/

PLANT/ds:

An Expert System for the Diagnosis of Soybean
of the Diseases Common in Illinois

I User's Guide and Program Description

S
by

Robert Reinke

G October 1983

File No. UIUCDCS-F-83-9l2 ISG 83-H"' .
. .
~

'.J,

--;", ..-"'".....

File No. UIUCDCS-F-83-9l2

PLANT/ds:

An Expert System for the Diagnosis of Soybean Diseases Common in Illinois

User's Guide and Program Description

by

Robert Reinke

Department of Computer Science

University of illinois

Urbana, Illinois

October, 1983

ISG 83-12

This work was supported in part by the Office of Naval Research under
Grant No. NOOOl4-82·K-0186 and in part by the United States Depart
ment of Agriculture under Grant No. 321512344.

PLANT/ds

USER'S GUIDE

1. Introduction

PLANTIds is an expert system for diagnosing soybean diseases common in IBinois.
The system makes diagnoses on the basis of the answers to specific questions about the
diseased crop and its environment. Questions are presented to the user in a simple
tabular format designed to increase bandwidth. The system provides easy access to
already answered questions, allowing the user to correct answers and experiment with
the effects of various answers on the diagnosis. Because of this, PLANTIds can also
serve as a tutorial system.

This report describes the latest version of the soybean disease diagnosis system
described in [Michalski and Chilausky 19801 and [Michalski et. al. 1982j. PLAl'iTI <is
was developed in the context of the ADVI~E "meta-expert" system rMichalski et. al.
1983, Michalski and Baskin 1983]. ADVISE runs under UNIX on a VAX mainframe,
and has been used to develop several expert systems [Boulanger 1983, Rodewald 1983].
PLANTIds on the IBM PC is somewhat independent of the ADVISE system due to the
difficulty of implementation on a personal computer, but a version of PLANTIds identi
cal to the one described here does run on the VAX under ADVISE.

The PLANTIds user interlace was carefully designed, as the system is intended for
use by farmers and plant pathologists. Those with little or no experience with comput
ers should be able to use the system effectively after skimming sections 3 and 4 of this
guide. For those who desire more detailed information about PLANTIds, Section 2
contains a discussion, in general terms, of how the knowledge base and inference
mechanism in PLANTIds work. Programmers who wish to modify or extend
PLANTIds should refer to the document "PLANTIds Program Description."

2. The Knowledge Base and Inference Mechanism

The knowledge base in PLANTlds consists of a set of decision rules, one decision
rule for each disease the system knows about. A rule states the symptoms associated
with a disease, and the importance of each symptom in the diagnosis of that disease.
The decision rules were obtained by standard knowledge engineering techniques (i.e. by
questioning plant pathologists about soybean disease diagnosis). Earlier versions of the
program included rules derived through inductive inference [Michalski and Chilausky
1980]. These rules, though excellent at batch diagnosis of large numbers of cases,
proved too unwieldy for use in a small interactive system. \Vork is currently underway
to improve the machine-derived rules. Once this is done, PLAI~TIds will contain two
rule groups for use in diagnosis.

The next three subsections describe in more detail how rules in the knowledge base

are evaluated and how the inference mechanism selects rules and questions.

2.1 Decision Rules

Figure 1 shows the decision rule for Diaporthe Stem Canker. When PLA~TIds
obtains some information (from the user) that applies to Diaporthe Stem Canker
(e.g. the user tells the system that stem cankers are absent), the system evaluates
the rule using the new information. \Vhen a rule is evaluated, a value between 0
and 1 is returned; this value is a confidence in the belief that the given disease is
present. Confidence is a relative measure expressing the degree to which the system
believes a disease is present; it is not a probability. If the degree of belief falls
below 0.55, the disease is rejected.

A decision rule associates a number with each symptom (see Figure 1). This is
the confidence PLANTIds would have in the presence of the given disease if only
that symptom were present. The confidence in a disease is calculated by taking the
probabilistic sum of the weights associated with each symptom. The weight associ
ated with a symptom in this calculation is the number that appears next to that
symptom in the decision rule unless the the symptom i8 not pre8ent. In this case,
~he weight associated with the symptom will be zero.

To clarify these ideas, Figure 2 shows a sample calculation for the rule in Fig
ure 1. Note that if a value is unknown (in the case shown, it is unknown whether
premature defoliation is present), the full weight is used.

Decision rules are written in a subset of the variable-valued logic system VL
IMichalski 1974]. Rules may be considerably more complex than the rule shown i&
Figure 1. The parser used to generate the rules can also deal with conjunction and
disjunction. In PLANT/ds, conjunction is evaluated as minimum and disjunction
as maximum.

2.2 Restriction Rules

A second kind of rule used by PLANT/ds is the restriction rule. Restriction
rules (so called because they restrict the number of questions the system will ask)
are rules used to assign answers to questions without having to ask the user. One
such rule in PLANT/ds is:

stem Cankers = Absentl ::>

Canker Lesion Color = Does Not Apply]

Location of Stem Cankers = Does Not Apply]
I

These rules 'are used to make common-sense deductions about the condition of the
crop and avoid asking the user unnecessary questions.

2.3 The Inference Mechanism

PLANT/ds does not use either of the inference mechanisms (forward chaining
or backward chaining) commonly associated with rule-based systems. Instead, the
selection of a question is based on that question's utility. The definition of utility
changes through the consultation, as described below. The selection of a rule to fire

is based on the question seledion (i.e. the only rules fired are those whose :;tatus
may have been affected by the answers just received).

\Vhen the consultation begins, PLANTIds treats all of the diseases it knows
about as working hypotheses. PLANTlds tries to select questions in such a way
that the maximum number of hypotheses will be rejected at each step.

The first few questions asked by the system are "standard" questions sele<:ted
beforehand. These provide inrormation that helps PLANTIds determine, in gen
eral, what kind of disease is present. The questions attempt to eliminate those
diseases that could not possibly be the cause of the problem. For example, one or
the first questions will inform the system whether the leaves are abnormal. If they
are normal, PLANTIds will be able to reject any disease which affects only the
leaves.

Once these standard questions have been answered, a different strategy is
adopted. If there are more than five hypotheses remaining, the system chooses
questions that are relevant to the largest number of remaining diseases. This step
is repeated until there are fewer than five hypotheses remaining (or until all
relevant questions have been answered).

\Vhen fewer than five working hypotheses remain, the control scheme again
changes strategy. It selects the disease with the highest confidence at present and
asks questions pertaining to that disease. This step is repeated until either all
unanswered questions have been answered or until all the remaining hypotheses are
eliminated.

\Vhen all the questions relevant to the remaining hypotheses have been
answered, PLANTlds is ready to give a diagnosis. There may be more than one
disease given in the diagnosis, but this is usually because symptoms for many of the
diseases overlap. There will generally be one disease with a confidence clearly
above the others; this should be regarded as PLAl"1T's primary diagnosis.

3. Starting PLANT/ ds

PLAl"lTIds is available on two 5 1/4" floppy disks for the IBM Personal Computer.
The program needs 128K of RAM on the IBM PC, and will run on a standard 80 x 24
black and white monitor.

To start PLANTIds on the IBM PC, put the diskette labelled "PLANT: #4" in
the left hand drive (with the label up), and the "PLANT : #5" disk in the right hand
drive, then bootstrap the PC. When the IBM logo appears on the screen, type "x".
This will cause the prompt "Execute what file?" to appear on the screen. Type
"#5:plant" and hit RETURN. Nothing will happen for approximately one minute (the
PLAl"1TIds system requires this time to prepare), then the consultation will begin.

To start PLANTIds on the University of Illinois Department of Computer Science
vaxb, execute the following commands:

I) cd Imntb/2/michalski/isg/PLANTds

2) plant

4. Using PLANT/ ds

Much of the material in this section is contained in the help facility built into
PLAJ\;T/ds (see subsection 4.3.1). The material here is slightly more detailed, and
should be referred to if any questions arise.

4.1 General Comments and OvervIew

PLANTIds was designed with ease of use in mind. With one exception (see
section 4.3.4), all commands are executed with a single keystroke. Instructions
always appear on the screen towards the bottom, and information about the user's
location within the system always appears at the top of the screen.

Three keys are very important in operating PLANT/ds. The first is the
RETURN key. RETURN always means the same thing - it tells PLANT/ds that
the user is done looking at the information currently on the screen and wants to
proceed (on the IBM PC, the RETURN key is located on the right edge of the
main keyboard and is labelled with an arrow pointing down and to the left; this key
is called ENTER in the IBM PC user's manuals). The other important keys are
SP ACEBAR and BACKSPACE. These keys are used to move the cursor forward
and backwards in some parts of the system (see seetion 4.2). The BACKSPACE
key is directly above the RETURN key on the keyboard.

PLANTIds has two major parts: the question forms (section 4.2) and the
options page (section 4.3). Figure 3 shows how these parts are linked together.

4.2 Question Forms

Question forms are the means through which PLANTIds gets information
about a crop problem. These forms are an electronic version of standard paper and
pencil forms; the user simply puts an "x" in the box next to the appropriate
answer. Figure 4 shows a typical question form (this is the form that appears at
the start of every consultation). The header line at the top of the form gives a
question form number and a label for the form. These are useful if the user decides
he wants to change the answers on the form at a later time (see section 4.3.5).

As soon as one question on the form has been answered, the cursor automati·
cally jumps to the next question. Similarly, when all the questions on one form
have been answered, PLANT/ds automatically proceeds to the next. The user need
not answer every question on a form; if he does not know the answer, the question
can be skipped. If some questions are skipped the user must press RETURN to tell
the system tliat he is done with the form on the screen.

\Vhen a question form is completed, PLANT/ds will clear the screen and begin
testing hypotheses. This means that the system is evaluating rules (see section 2.1)
to see if the answers on the last form changed the status of any hypothesis. Test·
ing hypotheses may take up to a minute; if during this time the user realizes that
he gave an incorrect answer on the previous question form, he can press the ESC
key. This causes PLANTIds to return to the previous form immediately. If
hypothesis testing is not interrupted, the system will proceed to the next question
form automatically.

ICanker Lesion Color = Brown : 0.451
IExternal Stern Di.!lcoloration = Brown: 0.401
!Time of Occurrence >== July: 0.151
IPremature Defoliation = Present: 0.101

::> ISoybean Disease = Diaporthe Stern CankerJ

Decision Rule for Diaporthe Stern Canker. See text and Figure 2 for an expla.nation or
the numbers associated with each symptom.

Figure 1.

Value Gin;n BV Uur Confidence Computation

Canker Lesion Color = Brown 0.45
External Stem Discoloration = Absent 0.00
Time of Occurrence = August 0.15
Premature Defoliation = Unknown 0.10

Value ror Rule (psum) = 0.59

Sample calculation ror the decision rule in Figure 1. See text ror further details.

Figure 2.

help 	 working rejected chan&e decision Quit.

hypotheses hypotheses 8.Dswel'5 ,ules

r r 	 i r r 1

"!'" "w" "," "e" "d" "q"

(f
 I 	 I I

I 	

Options ,,
Page

41"

, 	 ~

QuestionQuestionQuestion -- - - "i FormFormForm

A Diagram or the PLANT/ds system. See section 4 for a detailed discussion of each or
the parts shown.

Figure 3 .

.... '-OLo,

Question Form 1: Dise3.5ed Areas

Fruit Pods () Norma! () Abnormal

Seeds () Norma! () Abnormal

Roots () Normal () Abnormal

Leaves () Norma! () Abnormal

Stem () Norma! () Abnormal

"x" - make an entry RETURN - leave this screen of questions
"e" - erase an entry SPACE - go forward to the next entry
"0" - see other available options BACKSPACE - go back to the previous entry
"1" - get help ror this question

A typical question form. Tbe top line gives a title to the form; forms tbat appear later in
the consultation will also contain inrormation as to tbe number of remaining hypotheses.

Figure 4.

PLANTIds: Options Page

! - get inrormation about using PLANTIds
W - !lee tbe working hypotbeses
r - !lee tbe rejected hypotheses
d - display some deci.sion rules
c - change tbe answers OD an earlier question form
q - quit tbis session (aU inrormation will be lost)
RETURN - return to the consultation

Fig~re S.

Most of the commands available on the question forms have to do with moving
the cursor about and answering questions, but there are two other commands that
are very important. The first, "1", will present a short paragraph explaining the
current question and how it should be answered.

The second important command, "0", allows the user to access the options
page. The options page gives access to a. large amount of information about how
the consultation is going and why PLANT Ids is making the decisions it is. The
options page is discussed in detail in the next section.

4.3 The Options Page

The options page is accessed by typing "0" on any question form. It is also
available, in modified form, at the end of the consultation. Figure 5 shows the
options page as it appears on the screen.

4.3.1 Getting Help

As mentioned earlier, PLANTIds contains an interactive help facility.
This is accessed through the "1" option on the options page. Much of the
information in this manual is duplicated in the help facility. The use of the
help facility should be self·explanatory.

4.3.2 Working Hypotheses

Typing "w" on the options page allows the user to see those hypothe~es
(diseases) that the system still considers as candidates for the cause of the crop
problem. Two numbers are associated with each disease; the maximum possible
confidence and the estimated final confidence. The maximum possible
confidence is the number obtained by evaluating the rule using the method dig.
cussed in section 2.1. The estimated final confidence is computed in the same
way, except that if a condition is unknown, only haIr of the associated weight
is used in computing the value of the rule.

4.3.3 Rejected Hypotheses

Typing "rIO on the options page allows the user to see those diseases that
the system has rejected as possible causes of the crop problem. A hypothesis is
rejected when its maximum possible confidence degree falls below 0.55. The
two numbers associated with each disease are computed in the same manner as
for working hypotheses, above.

4.3.4 Displaying Decision Rules

Expert systems are unique in that they allow the user to not only get an
answer, but allow him to see how that answer was arrived at. The "d" option
on the options page allows the user of PLANTIds to see, in understandable
form, the decision rule) PLANTIds uses to make its diagnosis. Decision rules
are displayed in the format shown in Figure 1. Section 2.1 contains a

discussion of how these rules should be interpreted.

4.3.6 Modifying Answers

At any time, it is possible to go back and change the answers on a ques
tion form that was completed some steps earlier. The "e" option on the option
page presents the user with a list of question forms that have been completed,
and allows him to chose one to go back to. The standard forms (section 4.2)
are identified by the labels that appear at the top of them. The remainder are
identified by the questions that appear in them. Choosing an old question
form is the only time the user must use more than one keystroke to execute a
command. Completed question forms are numbered; to see a form, the user
types the number followed by RETURN.

PLANT/ds treats old question forms differently Crom new Corms in two
ways: first, a form being modified always has the label "ModiCying Answers;"
second, the user must always press RETURN to tell the system when she/he is
done making changes.

When the user is done modiCying the old question Corms, PLAAI/ds will
test its hypotheses to see how the changes have affected the state of the consul
tation. Once this is done, the user can select another form to modify, or
RETURN to the options page.

4.3.6 Quit

The user may, at any time, quit the consultation by selecting option "q"
on the options page. If the user quits the consultation, all the inCormation that
was entered will be lost, and cannot be recovered. Because oC this, the user is
warned, once the "q" option has been selected, that this action will irrecover
ably destroy all the answers entered up to this time. The user is then given
the option of going back to the consultation.

4.4 The Diagnosis

Eventually, PLANTIds will run out oC questions about the remaining
hypotheses.. When this point has been reached, the system will test its hypotheses
one more time, then give the diagnosis. Those diseases whose maximum possible
confidences are still over 0.55 will be shown, in order of decreasing confidence, as
the diagnosis.

It is possible that PLANT/ds will reject all the hypotheses. In this case, there
are three possibilities:

1) The problem is caused by a disease PLANT/ds does not know about.

2) The symptoms were not specified correctly by the user.

3) The disease is not advanced enough Cor PLANT/ds to recognize the
symptoms.

IC you are certain that you identified the symptoms correctly, and specified
them correctly to PLANTjds, the only recourse is to consult a human soybean spe
cialist.

4.5 Control information

Once the user is done looking at the diagnosis, PLANTjds presents a Final
Options Page. This options page is identical to the normal options page except for
two things:

1) The user may return to the diagnosis by typing "r"

2) The user may get some simple suggestions Cor controlling the
diagnosed problems by typing "s".

The control inCormation PLANTjds offers is simple and general. In reality,
control is a difficult problem, and methods have to be tailored to the individual
field and farmer. What PLANTjds offers in this area is simply an idea of what
kind of measures might be necessary. The user should consult a soybean expert
before proceeding with control measures.

P~T/d9

PROGRAM DESCRIPTION

Version 3.2ibm

1. Introduction

PLANT{ds on the IBM Personal Computer consists of approximately 5,000 lines of
CCSD Pasca code. The program requires a minimum of 128K of RAM on the PC and
will run on a standard 80 x 24 black and white monitor. The code is divided into seven
different modules (UCSD units) to allow separate compilation. Many of the routines are
"segmented" to allow the UCSD version of page faulting to be used on them. This
results in memory savings at the expense of increased disk access.

The PC version of PLANTIds was written in the context of the ADVISE meta
expert system being developed by the Intelligent Systems Group at the University of
Illinois. Although in many ways this program is a separate entity from ADVISE (due to
the difficulty of implementation on a personal computer), one very important link with
the larger system is maintained: the ADVISE parser has been modified (by Carl Uhrik)
to produce rules executable by the PC version of PLAl'J'T Ids. In other words, the cod
ing of a new knowledge base for PLA....l\l'TIds on the PC has been automated; once rules
are written in parser input format, a new "rules" unit (see section 4.3) is automatically
produced. This must then be ported (ADVISE runs under UNIX on a VAX 11/780) to
the PC and can be executed immediately. However, changes in descriptors (variables)
used in the rules necessitate manual changes to the PLANTlds code on the personal
computer; this process should also be automated in the future.

This document is intended to be an aid to programmers wishing to modify or
ex tend the PLANTIds code; familiarity with the use of the PLANTIds system and the
UCSD Pascal system on the PC is assumed. Those unfamiliar With PLANTjds are
advised to read the document "PLANTIds User's Guide" before attemptrng the
material in the Program Description.

2. Overview of the System

Figure 1 shows the structure of the PLANTIds software. Each of the modules
shown (except for the parser) corresponds to a UCSD compilation unit. Naturally, the
modules are also divided functionally. The calling hierarchy is as shown; modules
towards the bottom of the diagram use (in the UCSD sense) modules above them. Sec
tion 4 presents a detailed description of each of the modules shown here.

The main program module does very little of the system work, calling initialize and
p/antctrl to handle the initialization and the question-answering phases of the consulta
tion, respectively.

globals
VAX

GVL rules

parser

t

I

1_-I ___ _

intialire

ruleeval

plantrules plantio

planthelp

tblio control

main

A diagram or the PLANT/ds software modules and their relation to the ADVISE parser.

Figure 1.

The init module initializes the global variables and sets up the linked list structure
of the crop descriptors (see next section). This module also reads in data about the
rules produced by the parser.

The p lantctrl module is the heart of the PLANTIds system; the control scheme is
implemented here. Plantctrl decides what questions should be asked, and makes the
appropriate calls to have them presented. It also determines which rules should be fired.

The plant rules module is produced by the ADVISE parser. Rules consist of calls to
the routines in the ru/eeval module.

The tblio module contains routines to perform table-driven interaction with the user
during a consultation. The routines in this module access a set of 10 data files which
contain the text of the questions. The answers received are stored in global data struc
tures (next section).

The planthelp module is also produced by the ADVISE parser. The help module
consists oC one routine which prints the help paragraph Cor the variable passed as a
parameter.

The plantio module contains the routines Cor the options page and the diagnosis.

3. Global Data Structures

There is really only one important global data type in the PLANT/ds system; this
is the varstructure type, declared as follows:

variable = ·varstructure;

varstrl.lcture = record
val hypertype;
proped boolean;
num varnumbers;
possvals superset;
expert rulesetj
machine rulesetj
link variable;
seman tie variable;
lostvars variable;

end;

This type is used to represent crop descriptors. The val field oC this record contains
the current value oC the variable described. The type hypertype used here is a scalar
consisting oC all possible values any crop descriptor could take on. This type is some
what unCortunate; it would be nicer if each descriptor took on only the yalues appropri
ate to it. However, there is no way to declare types oC this sort in Pascal (since sev.eral
descriptor ranges intersect). The pOS8ValS field is a partial attempt to rectify this prob
lem; this field contains the legal values for the descriptor (superset is declared as set of
hypertype). The possvals are assigned in the initialization routines. They are not
rigorously used during program execution, however. This is the only area in which the

-3

program is somewhat brittle; descriptor assignments must be done very carefully in
order to avoid confusing assignments.

The proped field in the varstructure record is set to false unless the variable
described has been propagated through the rules. The num field contains a unique
internal name for the variable; the control scheme and table driver ah...·ays refers to
variables by this integer. The two sets machine and expert are sets of valid rule
numbers. Contained in these sets are the numbers of the rules that this variable appears
in. This information is obtained at initialization time from data files produced by the
parser (see section 4.1). The sets corresspond to two separate rule groups. Elsewhere in
the system, these two sets oC rules are reCered to as rule groups 1 (expert) and 2
(machine).

The three pointer fields in this type are used to maintain three separate linked lists
of variables. The first type, link, is used for the list of variables whose values are not
known (in some sense, this is the "main list" oC variables). The variables are initialized
into this list in varnumber order, and the global variable notknown is set to point at the
first variable. Variables are removed from the notknown list when values are entered
for them by the user or by restriction rules. The second pointer field, semantic, is used
to link together variables that will be asked Cor in one question form. The table-driver
routines use this pointer extensively. The last pointer, loslvars, is related to the use oC
restriction rules. When a restriction rule is applied, the variables whose ,-alues become
known are attached through loslvars links to the variable which caused their values to
become known. For example, if the restriction rule:

stem cankers = absent! ::>
cankerJesion_color = aoes_not_apply}
10cat.ion_oC_stem_cankers -:- does_not_apply}

were to be used (Le. stem cankers are known to be absent), then the records
corressponding to canker lesion color and location oC stem cankers would be linked, via.
losivars to the variable corressponding to stem cankers.

4. Modules

This section covers the PLANTIds modules in detail. For each module, the impor
tant variables (if any) will be presented, Collowed by a discussion oC the major pro
cedures and their tasks. Lastly I the files used by the module (if any) will be discussed.

4.1 Unit INITIALIZE

The init module intializes the program variables and reads in data about the
rules the program will be using. There are no variables declared Cor the init
module. .

The init module is accessed by main through the interlace procedure in it. The
first part of this procedure consists ol calls to the Pascal dynamic variable alloca
tion Cunction neur, these calls set up the linked list of domain descriptors. Once
variables are established, procedure read rules is called. This procedure reads the
file ruievars.text, which contains listings of the variables which will be found in each

rule. Once the data in this file has been placed into the varstruc structures, pro-
cedure slink is called to link together those descriptors which will appear in the
same question Corm. Data about these links is in the file slinks. text, which must be
entered by the programmer.

The file rulevars.text has one line for each decision rule the system uses. If
more than one rule group is being used, the Hnes Cor rule group one must precede
the lines for rule group two. The two rule groups are separated by a line with the
single character '0' on it. The system expects numrules (a global constant) rules in
each rule group. The lines are in the following format:

<rule number> <number of variables in this rule> <list oC variable numbers>

The three parts oC each line may be separated by any non-integer character. Simi
larly, the variable list Cor each rule contains the descriptor numbers separated Crom
each other by non-numeric characters. Procedure readrules does not care iC the
variable listings Cor a rule are split over more than one line.

The file slinks.text contains any number of lines in the Collowing Cormat:

<number oC first variable in question Corm> <number oC variables in Corm>
<list oC variable numbers in question Corm>

Again, individual numbers are separated by any non-numeric character.

Neither oC the procedures described above (readrules and slink) has any error
detection or correction Cacilities; the data in rulevars and slink musl in the correct
Cormat or a runtime error will result.

4.2 Unit RULEEVAL

This module contains routines that are accessed only by the rule modules.
Four interCace procedures are provided: addmod, andresult, orresuit and max.

The rule evaluator makes use oC a global stack data structure. There are two
important global variables here: evalslore and evalplr. Evalstore is an array oC
stacks, which hold only real numbers. Evalptr is an array oC indexes into these
stacks. A rule is evaluated selector by selector; the procedure addmod is used to
evaluate a single selector and place its value on a stack. The other evaluator pro-
cedures are used to evaluate (combine) the numbers on a stack in a certain way.
Procedure max, obviously, returns the maximum oC all the numbers on a stack.
Procedure andresult combines the numbers in a manner dependent on the global
variable gland (iC the first rule group is being evaluated) or g2and (if the second rule
group is being evaluated). The variables gland and g2and are set in procedure init;
the rule evaluator knows which rule group is being evaluated by the value oC the
variable groupnum, which is set by the rule modules when they are called. Pro-
cedure orresu/l works in a manner similar to andresult. All of the ruleeval pro-
cedures have a parameter which gives the stack number oC the stack to be operated
on (Le. an index into the array eva/slore). All the routines except addmod clear the
stack they operate on.

The rule evaluation routines use no external files.

4.3 The Rule Units

The rule modules are produced by the ADVISE parser. There is one rule
module Cor each rule group. Each module consists oC one (interrace) procedure;
group one's procedure is called firerule and group two's is /ire2. These procedures
take one argument, the rule number to be fired. The procedures consist of a single,
very large case statement, each rule being one case. Each case consists oC a set of
assignment statements and rule evaluator calls.

4.4 Unit PLANTHELP

This module consists oC a single procedure which is simply a large case state
ment. There is one case Cor each descriptor. A case contains the help paragraph
for the corressponding variable.

4.6 Unit INPUTOUTPUT

Each oC the major PLANTIO procedures provides one oC the options available
Crom the PLANTIds options page. These procedures are: printh, writename,
printvars, listh, listr, prule, helpeontrol, option,JJ and final..,p.

Procedure option-p is the main option-page routine (final..j> controls the final
option page and operates in a similar manner); it prints the option page on the
screen, reads the user input and calls the appropriate procedure as described below.
The only exceptions to this are options "c" (change answers on earlier question
forms) and "q" (quit the consultation). In the case oC option "c", option-p sets the
call-by-reCerence parameter back_up to true and exits. In the case oC option "q'"
the global variable quiCall is set to true and option-p exits.

Procedure printh is used to print out a set oC hypothesis names. Its parameters
are a set oC rule numbers and a real number. The hypotheses are printed with their
current confidences divided by the real number parameter.

Procedure writename is simply a case statement, one case Cor each disease
(decision class). Each case prints the name oC one disease.

Procedure printvars prints variable (descriptor) names. This procedure also
consists of a single case statement.

Procedure listh lists the hypotheses that are currently considered working
hypotheses. It uses procedure printh to print these hypotheses. The working
hypotheses are those whose numbers appear in the global set goodrules.

Procedure listr lists the hypotheses that have been rejected. It also uses pro
cedure printh and global set goodrules.

Procedure helpcontrol controls the system help Cacility. There is one subsidi
ary procedure Cor each page oC help available in the PLANT Ids system.

Procedure prule is used to print a decision rule on the screen. This procedure
first presents the user with a list oC all the decision rules (procedure options), then

allows the user to select a rule (based on the letter printed nex t to the rule). Once
the rule is selected, prule looks the rule up in a data file (below) and prints it on the
screen.

The only files used by module PLAJ."JTIO are those files containing the text of
the decision rules. There are two sets of data files; one set contains the expert rules
(rule group I;, and are named "expert#.text" (where # is a number between 1 and
4). The other set of files contains rule group 2 and are named "mach#.text".

When prule wants a rule printed, it calls procedure openr, which decides what
file the rule is in. It assigns this file to the pascal file variable ruledala. Procedure
findrule is then called to print the rule. The rules are stored in text format in the
data files. Rules are separated by lines containing the single character '#'. The
first line of each data file contains numbers corresponding to the line numbers of
the rules in the file. So, if the first line of the file is "2 15 30 45", then the first rule
in the file starts at line 2, the second at line 15, and so on. Procedure findrule is
passed the number of the rule to be printed in the file. It reads the line number of
the appropriate rule, executes that number of readln calls, then reads and prints
lines until it encounters the character '#'.

4.6 Unit TBLIO

The tblio unit is accessed through the interface procedure doscreen. This pro
cedure controls the table driven user interCace to PLANT/ds.

Unit tblio contains a large number of type declarations. The most important
of these is the record ans/oi, declared as follows:

anslot = record
x : columns; {columns is a subrange of integers O..80}
y : rows; {rows is a subrange O..24} .

ans : answers; {answers is a subrange corresponding to ordinals of

type hypertype}

end;

Each anslot record corresponds to a single position on the screen that will be the
answer to a question. The fields contain the x position, y position and answer
number of that answer (answer number is taken as the ord of the actual value of
the answer). The an slot records are used in an array:

scr = array [locations] of anslot;

This array is the set of all answers on the screen. The variable of this type is
screen. So, to move the cursor to the third answer on the screen, the following
statement is executed:

gotoxy(screen [3].x ,screen [3].y);

Another frequently used array is:

qstart : array[Lmaxques] of ansiot;

-7

where maxques is the maximum number of questions allowed on one screen. This
array contains the reeord corresponding to the first answer to every question.

Procedure doscreen acts as follows:

Call procedure setup to initialize screen variables and arrays.

Call procedure putupscreen to put the questions on the screen. This pro
cedure accesses files screen# and /screen# (where :# is an integer) to retrieve
the text of the questions (see below).

Call procedure xjn_answers to fill in questions the user has already
answered. This procedure accesses the variables' structures to determine if
they have already been answered.

Go to the current screen position and wait for input.

On receipt of user input, call the appropriate procedures. Repeat this step
until the user types a carriage return or all the questions are answered.

The tblio unit uses two types of files. The first type, the screen#.text files,
contain question forms that have been set up beforehand. These files contain
numeric data at the start, indicating the location of each of the answers. This data
is in the following format:

< number of questions on this form>

<question number> <number of answers> <first answer x position>

<first answer y position> <first answer number> <second answer x position>

<second answer y position> <second answer number> •••

•

•

< question number> <number of answers> ...

This data is terminated with a line containing the single character '#'. Following
the numeric data is the actual text of the question form.

The second file type, the /screen#.text files, contain individual questions. Each
question is preceded by numeric data. in a. format identical to that given above
except for two things:

1) There is no line <number of questions on this form>
2) They position is given as an offset from the first line of the question.

Questions are separated by single lines with the character tit. The questions are
stored in a number of different files. The routine open/ determines which file will be
accessed.

4.7 Unit CONTROL

This module is accessed through the interface procedure schema. Procedure
schema contains the main algorithm for the PLANTIds control scheme. Schema

-8

acts as follows:

Call the procedure prepare_table to set up the next question form.
Prepare_table looks through the main list of descriptors; if it finds one that
is the head of a question form (as declared in the slinks.text file), then a
pointer to that variable is returned. Otherwise, prepare_table looks for vari
ables in a manner dependent on the stage of the consultation. If there are
more than five hypotheses in the set goodrules, then prepare_table finds vari
ables that appear in the most rules (up to a maximum of four variables). If
there are less than five hypotheses, prepare_table searches for variables that
appear in the hypothesis with the highest confidence degree.

Unit tblio is called to present these variables to the user. If tblio returns
true to the parameter proceed_ahead, i.e. tblio did not receive the "0" com
mand, then propagate the answers to the questions (fire the rules that the
variables appear in). Otherwise, call procedure option-p in unit plantio.

If procedure option-p returns the variable go_back equal to true, call pro
cedure backup_control to return the user to an already answered question
form.

If proceed_ahead is true, return to the first step. Otherwise, return to the
second step with the same set of variables.

Because of its size, the unit control is divided into two files, plantdrl and ctrl2.
The file ctrl2 is included in plantctrl using a UCSD include statement.

The control scheme procedures do not access any data files directly.

4.8 Main Program

The main program is quite simple. It consists of calls to procedures init and
schema (described above), and a simple loop to ask whether the user wants to start
another session. The main program file also contains routines to dispose of all the
domain descriptors (in order to prepare for a new consultation), and a routine to
print the introductory screen.

Rererences

Bouhnger, A., 1983, "The Expert System PLANT/cd: A case study in applying the
general purpose inference system ADVISE to predicting Black Cutworm
damage to corn", M.S. Thesis, Department of Compu ter Science, University
of lIIinois at Urbana-Champaign.

~fich3lski, R.S., 1974, "Variable-Valued Logic: System VLl", Proc. o/the
197.1 International SlImposium on Multiple- Valued Logics, IEEE Catalog

Number 74CH084~8C, pp. 323-346.

~fichalski, R.S. and Baskin, A.B., 1983, "Integrating Multiple Knowledge
Representations and Learning Capabilities in an Expert System: the
ADVISE System", Proc. 8th JJCAI, pp. 256-258.

f..fichalsld, R.S., Baskin, A.B., Boulanger, A.G. and Seyler, M.R., 1983,
"A Technical Description of the ADVISE Meta-Expert System", Internal Report,
Intelligent Systems Group, Department of Computer Science, University of
minois at Urbana-Champaign.

!-.fichalski, R.S. and Chilausky, R.L., 1980, "Learning by Being Told and
Learning From Examples: An Experimental Comparison of the Two Methods
of Knowledge Acquisition in the Context of Developing an Expert System
for Soybean Disease Diagnosis", International Journal 0/ Policy Analysis
and In/ormation Systems, Vol. 4, No.2, pp. 12~161.

Michalski, R.S., Davis, J.H., Bisht, V.S. and Sinclair, J.B., 1982,
"PLANT/ds: An Expert Consulting system for the Diagnosis of Soybean
Diseases", Proc. 18t European ConI. on Artificial Intelligence,
pp. 133-138.

Rodewald, L.E., 1983, "BABY: An Expert System for interpretive reporting in
a neo-natal intensive care unit", M.S. Thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign.

