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CHAPTER 1

Introduction

This thesis describes a computer program called QUIN ( QUery and /Merence) which is a

tool for database management and analysis. It represents 2 marriage between reiational database

and inductive inference technologies. Its purpose is the management of data and interaction with

programs that use inductive inference to derive knowledge from examples. [t has potential

applicability in the logic-based analysis of data and in the creation of knowledge bases for expert

systems. It can serve either as an independent data analysis system or as a module of the meta-

expert system ADVISE [1}.

1.1. Motivation

(1)

There are three problems which have motivated the construction of QUIN:

Many scientific fields encounter problems with concepiual data analysis, Snding patterns in
data and providing conceptual or logical descriptions of such patterns. Conceptual data
analysis is particularly applicable when data is discrete, unordered, nominal and incomplete,
or when such data must be analyzed together with ordered continuous data. Although
research data is usually analyzed using statistical techniques, inductive inference using
logic-based formalisms can supplement traditional statistical methods in the analysis of
databases. The field of medicine, for example, is one where there appear to be many

problems that could be investigated with the help of 3 tool like QUIN.

The traditional method of obtaining knowledge bases for expert problem-solving systems has
been the difficult and time-consuming task of interviewing human experts and attempting to
get them to codify their problem-solving knowledge and strategies. Inductive inference from

examples can provide a mechanism for automatic generation of rules for such systems. Such



sufbmated knowledge engineering should make the creation of expert systems faster and

easier. [t should also help to make the knowledge bases more consistent and complete.

(3} Manually maanipulating large files of data aad input parameters for several different
inductive inference programs becomes a timeconsuming and difficult task for users of such
programs, particularly those users without extensive familiarity with computers. A
convenient mechanism for managiag data and for preparing the input to inference programs
is needed. The need is more apparent when it is realized that the oﬁtput of some programs

is used as input to others, eventually leading to a feedback cycle involving several

invocations of different programs.

1.2. Context

Recently, a research effort has begun to create an integrated system of software tools,
kaown as ADVISE, for building and experimenting with expert systems. QUIN is an integral part
of this system, although it may aiso be run independeatly. This section briefly describes ADVISE

and the position of QUIN within it.

ADVISE is an expert system and aiso a tool for building expert systems. It provides expert
problem solving and advice in chosen domains, such as plant pathology [2]. In addition, it creates
a “workbench’ environment for the knowledge engineer. In this environment he can create and

modify the formal knowledge representations necessary to provide mechanized advice.

The {ollowing brief overview of the ADVISE system describes some of its unique features.
Many expert systems have been and are being developed, some of which have succeeded in
performing as well as any experts. Because there are so many expert systems it seems expedient
to try to explain why ADVISE is pot “just another expert system". It differs from most
traditional expert systems in three important functions: koowledge representation, knowledge

acquisition, and reasoning control.
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(1)

(3)

AbWSE provides three different forms of knowledge representation, allowing different
knowledge to take different forms depending on what is most natural to the expert and the
problem ares. Condition-action rules are represented in a variable-valued logic rule
formalism. Examples or tabular data are represented h s form natural to them, the

relational table. Constiraints or structural knowledge can be represented in a semaatic

network.

Knowledge acquisition can take the form of traditional kncwledke engineering practice
which involves encoding and debugging knowiedge formulated by a domain expert. In
addition, ADVISE includes techniques for inductive inference which can be applied to

generate knowiedge from examples.

There are multiple reascning control mechanisms, each separated explicitly from the domain
knowledge such that any available reasoning mechanism may be used to experiment aad

rcason with a given knowledge base.

Figure 1 shows a diagram of the ADVISE program divisions and the position of QUIN

within the system. QUIN provides the system with the means for relational representation of

knowledge and with the mechanisms for invocation of inference programs for knowledge

acquisition. The programs for inductive inference have been developed over the past few years at

the Ugiversity of Illinois under the supervision of professor R. S. Michalski [3}.

1.3. Related Work

Masy computer science researchers have recognized that investigators in many scientific

fields need convenient mechanized tools for the management and analysis of data. The feld of

medicine has prompted many different systems that attempt to give clinicians ready access both

to their data and to programs (usually statistical packages) that analyze the data A few

examples are CLINFO [4], RX [5], and MEDUS/A [6|. Unlike QUIN, these systems do not

attempt to provide tools for the automated generation of rule-bases for expert systems.
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Figure 1. ADVISE Program Divisions

There has been work done to automate the process of rule acquisition from experts. The
approach most often taken is to provide a convenient rule-editing mechanism that can be invoked
at a point in the comsultation where the expert finds the reasoning incorrect or the knowledge

inadequate. One attempt at 3 solution to this problem was TEIRESIAS [7].

The acquisition of rules from an expert may be called ‘'learsing by being told,” while
induction of rules from examples may be called "learning from examples.”” The rules thus
obtained are often called expert rules and machine rules, respectively. The relative performance
of the two kinds of rules has been compared, a.nd‘ machioe rules have been shown to perform as

well or better than expert rules in one study from the field of plant pathology [8].



CHAPTER 2

Query and Inference

QUIN can be thought of as a tool for both the management and analysis of data.
Management here refers to the organization, retrieval and _modiﬁcaxion of the data, while analysis
refers to activities that attempt to discover more about 1) interrelationships within the data and
2) the phenomena that produced those interrelationships. Figure 2 illustrates the concept of
QUIN as a dispatcher of a wide variety of operations that take relational tables as input and may
return tables, rules or networks as output. These operations can be either data management
(relational) operations or machine induction (inferential) operations. The databases that are used
as input to inference programs can be conveaniently handled with database management
techoiques that store, modifly and restructure the data. The relational operations for this purpose
are elaborated in chapter 3. The inference programs with which QUIN interacts form a set of
inferential operatioas that are useful in sequence or in cycles with each other and the human

critic. Details on the use of these operations are provided in chapter 5.

Thus, the tools provided by QUIN are:

(1) a convenient database management tool for reviewing and preparing examples for input to

the inference programs aad
{2} = uniform and user-friendly means for invocation of those programs.

A brief descriptioe of the implementation details of the program QUIN is contained in appendix
A. The remainder of this chapter gives an overview of the concepts of database management

(query} and analysis {inference) which are the fundamentals of the design of the system.



Figure 2. QUIN Operations

2.1. Database Management (QUery)

A database management system car be thought of simply as an electromic record-keeping
system. Some purposes of database management are to {acilitate the storage and retrieval of data
by electronic means, to provide increased reliability, ease of access, decreased maintenance,
reduction of redundancy and inconsistency, and maiatenance of standards and integrity. The
principles of this field are relatively new but have wide applicability. Database query operations
provide decision-makers with coavenient mechanisms to organize, select, format, and modify large

amounts of information.

QUIN uses 1) a relational database mode] for management of data, combined with 2} a

powerful query language based on the system of varigble-valued logic [9).
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2.2.

The relational model of data finds its origins in a paper by Codd [10] in the early 70's and is
now considered one of three standard models for the organization of databases (the other
two being hierarchical and network organization). See Date [11] for further discussion of

these models. The interpretation and use of the relational model in QUIN s discussed in

chapter 3.

Variable-valued logic is a formalism for expressing logical statements. Because of its
similarity to predicate calculus it can be used as a relational calculus for queries. The VL
relational data sublanguage [12] was designed for this purpose and has similarities to Codd’s
ALPHA [13]. The syatax is also similar to the variable-valued logic syatax of the ADVISE
rule base and the variable-valued logic syntax of the inference programs. It provides a
succinct and easily learned language of interaction with QUIN's database. The details of

the language are provided in chapter 4, and a grammar is included in appendix B.

Database Analysls (INference)

As stated previously, QUIN uses inference programs to perform conceptual data analysis,

Describing data in terms of logical, functional and causal relationships is the goal of such analysis.

It is accomplished by automated generalization of many examples to find common features of

similar objects and dietine (eatures of dissimilar objects. Descriptions of groups of objects and

the important differences between them are aiso produced. Other objectives of conceptual data

analysis include:

finding the most efficient means of distinguishing between one group of objects and another,
determining which attributes are most relevant in describing or differeatiating groups,
determining which objects are most representative of a group (typical or classical cases), and

determining how attributes can be combined to provide aew attributes which describe or

differentiate better (such as ratios or differences).
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Operation Abbreviation rogram [nvoked
clustering cluster CLUSTER/paf {14]
differentiation __dif GEM [1§]
variable selection varsel PROMISE (16|
event selection esel ESEL /2 [17]
variable construction varcon NEWVAR (18]
variable construction. time-oriented  varcont CONVART |19
application of rules to test cases apply AQ11 {20|
decision tree construction treecon OPTREE [21]

Table 1. Inferential Operations

Table 1 shows the meanings of the inferential operators and the mames of the programs

which they invoke. The output of one inference program may be used as input to others,

permitting sequences of inferemce instructions to be issued followed by the evaluation of the

results, possibly prompting further inference on the previous results. Cyclic processing of the data

in this manner may eventually result i what may be called knowledge refinement, as illustrated in

figure 3.

raw

data

inference

programs

N

rules &

\
“| descriptions

induced
knowledge

.

human

eritic

Figure 3. Knowledge Refinement Cycle



) CHAPTER 3

The Relational Model

This chapter gives a brief overvi_ew of .tye relation.al m?flel of database organization and
describes the interpretation of the model by QUIN. The concept of a table of data aad the way it
represents the mathematical notion of a relstion is fundamental to the relational model of data
used by QUIN. The model also includes the concepts of keys, normalizstion, and relational

operations, each of which will be discussed in turn. R )

3.1. Relational Tables

A relational table is simply a table that represents a relation. Tables are familiar as a

format for representing data. Coasider table 2, an example of a table of clinical laboratory values

obtained from blood specimens.

labvals
spec# | Hgb | MCV | RBC_morph
1024 10.3 78 microcytosis
8901 13.1 90 normal
555 14.2 88 poikilocy tosis
423 16.5 | 85 anisocytosis
425 |-11.1 78 microcytosis
455 10.4 77 microcvtosis

Table 2. Clinical Laboratory Values

In table 2 each column corresponds to an attribute and each row represents an individual
data object. The values within each row of the table represent the description of an object with
respect to each of the attributes. Thus spec# refers to the specimen number, while Hgb, MCV
and RBC_morph refer to the hemoglobin, mean corpuscular volume and red cell morphology of

the specimen. These four names (spec#, Hgb, MCV and RBC_morph) comprise the attribute list
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of the table. The values obtained from each specimen occupy a single row in the table.

A relatlon is a set of ordered rows each of length n, (called n-tuples), where the value of the
i*™ column in a tuple (V) is drawn from a domain D. The relation has domain sets D, D, e Dy,
where n is the degree of the relation. Table 2 is of degree four. Its domain sets include the set of
all possible specimen numbers, the set of all possible Hgb values, the set of all possible MCV
values and the set of all RBC morphologies. These domain sets need not be explicitly delineated
ia a database, but are important in the mathematical definition of the concept of a relation. For

further reading see [11].

Relations are intuitively well represented as tables, but relational tables in QUIN differ in
some ways from the strict interpretation of 3 mathematical relation. First, the atttibutes
{(columas) are named, and therefore two tables in which the only difference is altered column order
are considered to be equivalent. Second, in relations the rows are not considered to be ordered,
but QUIN allows rows to be ordered according to the valyes of attributes, e.g. in increasing order
by index number (value-controlled ordering). Third, the ‘‘zero™®'’ row of a table in QUIN is

occupied by the attribute list, and data then follows beginning with the next row.

3.2. Keys

A key is an attribute or combination of attributes that have unique values for each tuple in
the relation. In other words, no two tuples in 3 relation may have identical values of the key
attributes. This constraint ensures against duplication of data records. Some examples of keys
include an identification pumber {such as specimen number in table 2}, a unique name, or a
unique combination of two more attributes, such as name and date. To allow purposeful

duplication of data for use in the inference programs, a table may optionally have no key defined.

3.3. Normallzation

A table is said to be normalized {in first normal form)} if each emtry in the table is non.

decomposable, i.e. a table or set of values cannot constitute an entry in a normalized table
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Several levels of normalization bave been defined (1st, 2nod, 3rd, Boyce/Codd, 4th,

Projection/Join - see [11]) but the attainment and management of sormalization beyond first

normal form in QUIN is left entirely to the discretion and eflort of the user.

3.4. Relational Operations

The relational model includes operations that take relations as input operands and give a
relation as output. These operations can be classiied as traditional set operations {uniom,
intersection, difference and cartesian product) and special relational operations {project, sglect and
join). These reiational operations are incorporated within the query language provided in QUIN.

They are briefly introduced here and examples of their implementation are given in the next

chapter.

Union
The union of two relations is the set of all tuples contained ia both relations (without
duplication). To perform the ugion of two relational tables in QUIN, they must be union
compatidle, which means they must have identical attribute lists. The same constraint
applies to the operations of intersectios and difference.

Intersection

Intersection comprises the set of tuples commoan to both relations.
Difference

The difference of two relations is the set of tuples contained in the first relation but not in

thé second.

Product
The cartesian product of two relations is the set made up of the concatenation of each of

the tuples in the first relation with each of the tuples in the second.

Selection

Selection provides a subset of tuples from a relation that meet certain selecting criteria. It
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produces a row-wise or hotizontal subset of the relation. For example, a selection requiring

the specimen number to be less than 300 from table 2 would give the result found in table 3.

l labvals
spec# | Hgb | MCV | RBC_morph
423 16.5 85 anisocytosis

425 1Ll 78 microcytosis
455 10.4 77 microcytosis

Table 3. Results of Selection Operation

Projection .
Projection, on the other hand, provides a columan-wise or vertical subset of the relation.

Redundant tuples are eliminated from the resultant relation. For example a projection of

the RBC_morph columa would yield table 4.

microcytosis
normal

poikilocy tosis
anisocytosis

Table 4. Results of Projection Operation

Join
Join is slightly mote complicated than selection and projection. It produces a combination
of two {or more} tables based on all attributes they have in common. There are really
severa] different kinds of join, the one referred to here being the nafural join. The resultant
table will have a tuple for each pair of tuples in the original tables that share identical
attribute-values for every attribute the tables share. If the origiaal tables have no attributes
in common then the resuitant table is the cartesian product of the two tables. If no pairs of

tuples have identical attribute-values (assuming a common attribute) then the join results in
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s null table. For examples, see section 4.2.1. and tables 8 and 9.

The operations above can be incorporated into a powerful retrieval language called 2
telational calculus. The following chapter describes the fundamental constructs of the language

QUIN uses as such a calculus and retrieval !anghage.



CHAPTER 4

Data Language VL

This chapter describes the capabilities and use of the VL data language used by QUIN. VL
instructions provide the capabilities for relational table creation, retrieval and modification. The
language is easily learned and requires a minimum of procedural spéciﬂcstion so that it is

reasonable to expect that users with minimal computer background could quickly learn and use it.

4.1, Table Creation

The instructions for creation of tables are define and add. Define creates an empty table
and sets up the specifications for the attribute list and the key, while add places new tuples into

a table.

4.1.1. Define

This instruction specifies a aew table, its name, the names of the attributes, and (optionally)
the name(s) of the key{(s). The names of tables and attributes must begin with a letter and can
contain any combination of letters, numerals, and the characters “#’ and “_". No two tables
may have the same name, nor can a table-name be the same as any attribute-name or reserved
word. A table may not have two identical attribute-names, but two different tables may (and
often do) share a common attribute<name. Keys are optional but if declared they should be the

first (i.e. leftmost) attribute(s) in the table.

Cousider as an example the definition of a database that keeps track of results of blood tests
on patients, as in the example in the previous chapter, table 2. The table, called “labvals”, stores
the information on specimens and the values measured. The unique attribute (key) of each record

would be the specimen number. The way to create this table using the define instruction would

be:

14
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define labvals (spec#, Hgb, MCV, RBC_morph) key := spec#

We could aiso define a table called “spec” to keep track of the dates of individual blood

specimens:
define spec (spec, [D#, day, month, year) key := spec#

Another table called “ptrc” would store a patient's identification number, his name, and his

admitting diagnosis:

define ptre (ID#, name, dx} key == [D# h

4.1.2. Define Event

An event is a table with only one row. Its purpose is to specily a complete single data
object with attributes that may be found in several different tables, so that adding the event to
each of those tables is easier and more reliable. Events are defined by the define event
instruction foliowed by the event name and then a parenthesized list of attribute-value pairs.
Continuing the previous example, we could define an event that contains all the attributes of the

three tables {ptrc, spec and labvals):

define eveat El
(ID# = 988,
name ;== Joges,
dx ;== iron_deficiency,
spec# == 1024,
day :m== 25,
month ;= 8,
year ;== 1982,
Hgb = 10.3,
MCV ;== 78,
RBC_morph :== microcytosis)

Event “El1” records that a blood test was done on patient number 988 whose name is Jones
and whose diagnosis was iron_deficiency. The blood, specimen number 1024, was drawn on 25

June 1982 and the results showed a hemoglobin of 10.3, a mean corpuscular volume of 78, and red
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cell mewphology was microcytosis. The attribute-value pairs in the event definition can be

arranged in any order.

‘.103. A‘dd

The add instruction places tuples (rows) into a table. There are four forms of the
instruction: one for single row addition, apother for multiple rows, one for adding an event to 2

table, and one for adding an external file of tuples to a table.

{1} A single row may be added as follows:

add (365, Smith, aplastic_anemia) to ptre

{2) Multiple rows are added in similar fashion:

add to ptre

(398, Clark, folate_deficiency) (404, Blake, iron_deficiency)
{425, Smith, hemolytic_anemia ) (241, Jones, iron_deficiency)
end '

(3) Adding an event to several tables is simple:

add El to ptre
add E1 to spec
add E1 to labvals

{(4) Addiog an external file named “vis" to the “labvals” table wouid be done as follows:

add vis to labvals

The exterpal file must be set up in tabular form. For example, the file “vis” might appear

as in figure 4.

891 131 90 Normal
555 14.2 88 Poikilocytosis
423 15,5 B85  Anisocytosis

Figure 4. Format of File “vis”
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Addition of tuples may be done at the beginning of the table, the end, or before or after any
specified row in the table by using a row condition. All four forms of add may be used with a row
condition. If no row condition is specified then the addition is done after the last row of the

table. For example, the following places a new tuple at the first row:
add (425,404,26,6,1982) to specs : [row< 1]

The colon is to be read ‘‘such that” and the row condition is of the same form as retrieval

conditions (see section 4.2.2). The reserved word {sst may be used to insert before the last row:

add datafile to specs : [row <last| -

The condition *'(row>last]"” would be redundant because that is the default. If there are not as

many tows in the table as specified in the row condition, the new tuples will be added at the end

of the table.

4.2. Table Retrleval

The retrieval commands are get and let. Simple retrieval of an entire table requires only
listing the table name after the keyword get. Selected portions of the table can be retrieved and
displayed also {see sections 4.2.1. and 4.2.2.). A new table can be created with the keyword let
followed by the pame of the new table, “:=x" and the description of the new table. For example,

the following command creates a new table called ‘‘tests’” which is the same as the “labvals”

table:
et tests ;== labvals

The new table would be created but not displayed. The command to display the table is:

get tests

Table 5 would then be displayed. It would be identical to the “labvals’’ table except for its
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name.

. tests

e ——
spec# | Hzb | MCV | RBC _morph |
1024 10.3 7 microcytosis

891 13.1 90 normal

555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 1111 78 microcytosis
455 10.4 7 microcytosis

Table 5. Result of Retrieval

The combined eflect of the get and let could have been accomplished by simply saying:

get tests t= labvals

The let command is used to create temporary tables that can be used as working copies or
¢an be saved as new permanent tables. It never displays the resuits of its work. The ict
command always displays its results, and can also be used to create temporary tables. A wide
variety of more complicated retrieval instrﬁctions can be specified by appending the appropriate
modifying expressions to these two commands. These additional expressions are specified by 3

relational table expression {see section 4.2.1.) optionally followed by a VL condition (see section

4.2.2.).

4.2.1. Relational Table Expressions

The table expression specifies the table or tables and the attribute or attributes to be
retrieved. All operations described in section 3.4 except selection can be specified with a table
expression. When more than one table is listed in an expression, tables must be separated by an

operator. The operator symbols and their meanings are given by table 6.
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Symbol Meaning
. Join
v Union
& I[ntersection
- Dilletence
<+ Append

Table 6. Relational Table Expreasion Operators

These operators take precedence over all others in the retrieval instruction. All tables listed
together with the logical operators (union, intersection, diflerence) and the append operator must
be union compatible, which means that they must have identical lists of attributes, in the same
order, and of the same type {e.g. il attribute N is an integer in one table, it must also be an

integer in the other table(s) in the instruction).

To illustrate the use of operators in table expressions, let us assume we bave a table named

“spec’ as shown in table 7.

S ec —
spec# | [D# | day | month | vear
1024 988 25 8 1982
425 404 26 8 1982
850 405 27 6 1982
455 408 27 i 1982

Table 7. The *‘spec”” Table

The following instruction would create a table called “T1" which is a join of the ‘“‘spec’ and

“labvals” tables (the common descriptor being the specimen number):
let T1 ;== spec * labvals

The join of tables ‘‘spec’” and *‘labvals’’ would appear as in table 8.



spec# | ID# | day | month | year | Hgb | MCV | RBC morph
1024 988 25 ] 1982 | 103 78 microcytosis
42% 404 p- 8 1982 | 11.1 78 microcytosis
455 406 27 6 1982 | 10.4 hed microcytosis

Table 8. Join of “spec” and ‘“‘labvals”

Il no attributes are listed in the retrieval commaad (as in the example above) then the (ull
set of attributes for all tables is retrieved. If a subset of attributes is specified then the

projection of those attributes on the table is retrieved. For example:

get spec » labvals (ID#%, Hgb)

will retrieve a table with two columns. [t will be the projection of [D# and Hgb on the join of

spec and labvals. Table 9 shows the result.

D# Hgb
988 103
04 111
406 104

Table 9. Result of Projection and Join

For the purposes of the inference algorithms it is sometimes not desirable to eliminate
redundancy when doing projection, so QUIN provides two other methods of specifying projection,
Oune method, using &, simply does 3 “column selection” and retrieves all rows even if redundant.
The other method, using #, eliminates redundancy but provides an additional column that shows
the number of times that a particular row occurs. All three forms of projection instruction are

itlustrated in figures 5, 6, and 7.
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get labvals(RBC_morph)

microcytosis
normal

poikilocytosis
anisocytosis

Figure 5. Ordinary Projection

get labvals(RBC_morph,#)

labvals

 RBC_morph
microcytosis
normal
poikilocytosis
anisocytosis

g e G2

Figure 6. Projection with Count

get labvals{RBC_morph, &)

labvals

RBC_morph
microcytosis
normal
poikilocytosis
anisocytosis
microcytosis
microcytosis

Figure 7. Projection with Redundancy
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As attribute may be replaced by a function of an sttribute in the retrieval expression.

Available functions include min, max, sum, count and domain. Figure 8 gives an example of

the use of the min function.

get labvals{ mia{Hgb) )

[labvals |
Hgb
10.3

Figure 8. Use of “min"

4.2.2. VL Conditions

A VL condition is the part of a retrieval command which specifies selection. The following

example illustrates the major features of a VL condition. The condition begins with a colon

which should be read “such that.”
get labvals : [Hgb = 14..16] [RBC_morph <> normal| v [Hgb < 14]

The command would retrieve all rows from table “labvals” in which either a) the Hgb is in the

range 14 to 16 and the RBC_smorph is not sormal, or b} the Hgb is less than 14.

A VL condition thus consists of a disjunction of one or more complezes. Complexes counsist
of a conjunction of one or more seleciors. In the instruction above, *“[Hgb = 14 .. 16]" is a
selector. Selectors may be separated by the conjunction operator &, or simply listed one after the
other, as in the complex “[Hgb = 14..16] [RBC_morph <>> normal|” above. Selectors or groups
of selectors {complexes} may be separated by the disjunction operator v. Thus 3 condition is a

‘‘sum of products” of logical (VL) selectors,

V1 selectors are used to specify the body of the condition. They can be of two types, row-
oriented selectors (“tuple calculus”) and set-oriented selectors (“domain calculus”). The example

above uses row-oriented selectors.


http:select.or

3

A row-oriented selector coasists of a left square bracket, an attribute pame (the referee), a
comparison operator (=, <>, <, >, <=, >m ), 3 comparison value (the reference), and 2
right square bracket. The comparison value may be a single value (e.g. “‘normal”), an arithmetic
range of values (e.g. “14 .. 16"), an arithmetic expression (e.g. "‘Hgb + 2.5"), or 2 list of values,
ranges, ot expressions separated by the "‘or"” operator {e.g. ‘3.5 v 7 v Hgb/10").

A domain-calculus selector consists of a referee set, a set comparison operator and a
reference set. The referee set is called an image set of the attributes being retrieved. An image
set is the set of values of the image attribute (or of unique combinations of values of the image
attributes) corresponding to each retrieval value (or unique combination of retrieval values). The
comparison operator is the same as those in the tuple-calculus selector (using =, <>, <, >,
< ==, >== ) byt the meanings are set comparisons instead. Thus ‘“=="" tests set equality and “<”
tests to see il the Brst set is a proper subset of the second. The reference set has the same

attribute list as the referee set but may contain a VL condition withia it, as in this example:
get s (D#): {day.month year} = {day,month.year:[ID# = 365]}

Day, month, and year are the image attributes. {day month year} specifies the referee set. It
may also be written {day,month.year : ID#}, which reads “‘the set of day-moath-year triples
corresponding to each [D#." It is calculated anew for each upique value of [D#, the retrieval
attribute. [[D#==385] is the VL condition within the reference set. The meaning is that the user
wants to retrieve the [D# of all patieats who bad specimens done on precisely the same days as
patieat number 365. The same thing could be accomplished using the tuple-oriented calculus only

by repeatedly doing the following for every value of a:
get spec(day,moath.year):[I[D# = n]
The results would then have to be compared with the result of:

get spec(day, month year):([D#=365]|

»
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and those values of ID# for which the results matched that of 365 would be the final result.

-

4.2.3. Ordering of Rows

All retrievals may optionally have an ordering condition. The phrases *‘order up on" and
“‘order down on'’ are appended to the retrieval instruction, along with the name of the attribute

to be ordered on. For example, the instruction
get ptre order up on ID#
will retrieve the table ‘'ptre” in ascending order of ID oumbers.

4.3. Table Modification

The table modification instryctions are change, delete, and save.

4.3.1. Change

The change instruction is used to assign new values to existing rows in a table or to change

the name or type of an attribute. When the user types:
change tablename

he enters a *sub-instruction’’ mode in which all commands refer to the table being changed. A
working copy of the original table is made for security in case of error, and the user's prompt is
“>>'". To leave the change mode the user types abort or exit, with only the latter exit

resulting in actual modification of the originai table.

There are several commands available in the change mode. The user may use ordinary
assignment statements to change the-values of each attribute. Some examples are given below.
The assignments may be followed by a VL condition that restricts the assignment of values to
specific rows of the table. Attribute names may be changed by ‘.lpe;:i!'ying the condition
“[row==0]". The display sub-instruction displays the working table; the get sub-instruction

displays the original table before any changes. A simple change instruction sequence may be
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entered 28 shown below with table 10:

> change labvals /s enter change sub-mode */ -
ok [* system response s/
>> get /* look a¢ original table s/

I labvals I
spec# | Heb | MCV | RBC_morph

1024 10.3 78 microcytosis
891 13.1 90 normal
55 ] 14.2 88 poikilocy tosis
423 18.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Table 10. Original Table to be Changed

The commands below with table 11 illustrate how the table might be modified within the change

mode.

> > Hgb := high :[Hgb > 16|

>> Hgb := low :[Hgb<14|

> > Hgb := normal :[Hgbm=14:16|

> > display /* look at changed table s/

change$table
spec# Hgb | MCV | RBC_morph
1024 | low 78 microcytosis

891 | normal 90 normal
555 | normal 88 poikilocytosis

423 high 85 apisocytosis

425 | low 78 microcytosis

455 low 77 microcytosis
>> end /* exit, making the changes permaneat ¢/

change completed [+ system response */

Table 11. Table with Modified Hgb Column

4.3.2. Delets

Delete is used to remove rows or columas from 3 table, or to remove a table from the

database. Each of these three functions is accomplished by a different form of the instruction.


http:datab3.Se

26
(1) Deleting rows is accomplished by specifying a VL condition:
delete ptrc : [[D# == 250 .. 500|

This will delete all rows in table “ptrc”” where the ID number is in the range 250 to 500

inclusive.

(2) Deleting columans is accomplished by specifying a projection:
delete spec(day,month)

This will delete the day and month columnas from tabie ‘“‘spec’.

(3) Deleting an eatire table or event is done by simply giving the table name:
delete T1
This will remove the table named “T1" from the database.

4.3.3. Save

Any tables created with the get or let instructions will be given temporary status; save is
the instruction that changes temporary to permanent status. Tables with permanent status will
stay in the database after a session is completed, whereas tables with temporary status will be

deleted at the end of a session.

4.4. Help

The system has on-line help available to describe the use of each command. Help can be
obtained by typing help or by simply typing a question mark at a prompt. If specific information
is desired about a particular command, the command name should be entered following the word

“help," followed by a carriage return.



CHAPTER 6§

Inferential Operations

This chapter describes the inferential operations on an informal conceptual level.
References are provided for more detailed explanations of the afgorithma and the theories
supporting them. In the current implemeatation, only cluster and diff are operational. However,

the same methods of interaction can, in principle, be used with ail the inference programs

mentioned here, -

5.1. Cluster

The purpose of the cluster operation is to divide a collection of objects into smaller groups
of similar objects based upon some criterion or measure of similarity. Clustering is the process of

deveioping a taxonomy or classification scheme for the objects of a study.

The program invoked by the cluster command in QUIN is called CLUSTER/paf [14]. The
reader is urged to consult the references cited for more cqmplete explanations of the details of the
program's operation and tlieoretica! background. Unlike most numerical taxonomic techniques,
this program uses a ‘‘concept-based” method of clustering that produces descriptions of the
clusters {categories) that it derives. It also permits the user to specify the criteria which are to be
used to evaluate clusters. One or several criteria can be maximized simultaneously to produce the
optimal clusters. Some of the criteria available to characterize clusters include:

. the Bt between the clustering and the data (sparseness),

. the total inter-cluster diferences {degree of intersection),

. the number of attributes which singly distinguish between all the clusters (esseatial

dimensionality), and
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o  thesimplicity of cluster descriptions (number of selectors).

The names and oumbers of criteria currently available appear in table 12.

criterion brief

asumber description
1 sparseness
2 degree of intersection
3 number of events occurring in more than one complex
4 share of events (evenness of cluster size)
5 number of selectors (simplicity of cluster descriptions)
8 essential dimensionality (dimensionality of differences)
7 relevant-variable sparseness
8 relevant-variable-set sparseness

Table 12. Clustering Criteria

v

The cluster operation is invoked by the following instruction,
cluster {events, parameters, resuits)

where “events’” and ‘‘parameters’ represent the names of relational tables within QUIN, and
“results’” is the name of a table which may or may not already exist (if oot it will be created).
Any legal table names may be used in the command. The events table must contain the
descriptions of the objects to be clustered with each object occupying one row in the table. Each
column represents an attribute of the objects in the table. The parameters table is used to
indicate K (the number of clusters to be formed), the criteria to be used and other optional
parameters. The optional results table is the table in the database to which the results of the
clustering will be returned. If no results table is specified, the output of cluster can be found in a

file in the user's working directory.

A simple example of clustering follows, using data similar to the previous examples in
chapter four. In addition to the “‘events” table, a ‘‘parameters” table and at least one “criterion”
table must be prepared before issuing the cluster command. Table 13 illustrates 2 parameters

table and table 14 illustrates a criterion table.
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arameters
k  criterion
3 erl

2 erl

Table 13. Parameters Table

crl_criterion I
criterion  tolerance
1 0.0

Table 14. Criterion Table

The parameters table {table 13) has two tuples (rows). The cluster algorithm will therefore
be run twice, once for each row in the parameters table. The first time it will split the events
into' three groups (k==3) and the second time it will create only two groups (k=s2). Criterion
“erl” (found in table 13) is defined in the criterion table called ‘‘crl _criterion” (table 14).
Criterion ‘1" is sparzeness, {see table 12). It is the only criterion which will be used by the

program in this example. The tolerance is a measure of the degree of error allowed in fitting the

clusters to the criterion.

The events table for this example is shown in table 5.

event
mcy  bhgb  mche

e W O
- 0D e bn e W D P
o e D OO

Table 15. E. . s to be Clustered
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The values in the events table must all be integers. Attributes, such as those represented
bere, which ordinarily have continuous linear values must be made discrete before cluster can deal
with them. The meanings of the values in the events table are given in figure 9, with the values

from the events table in the “#” column followed by the range of real values which have been

assigoed to each value.

# mev
0 <60

1 60to 69

2 70t079

3 80to94 (mev normal == 80 to 94 cu microns)
4 95to 104

5 >4

# hgb
<8 =0
9to 10
11 to 12
13 to 14
15 to 16 (bgb normal = 14 to 18)
17 to 18
19 to 20
>20

~A N D O

mche
<27
27 to0 32
33 to 38 (mche normal = 33 to 38 %)
39to 44
>43

»acoa—-o*

Figure 9. Meanings of Values in Events Table

When this sample is run, cluster splits the events into three groups as i figure 10.

Group one events 1,23
Group two : events 4,5
Group three : events 6,7.8

Group one is described as:

mev <80 and hgb=9..12 aad mchc <23
Group two is:

mev==80..94 and hgb==15..16 and mche=33..38
Group three is:

mev >04 and hgb=9..12 and mche=39..44.

Figure 10. Results of Clustering
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This is a particularly simpie example, but it gives the favor of the clustering operation. In
this case, cluster has discovered three groups which can be interpreted as being cases of
mictocytic anemia (group one), normal blood counts (group two), and macrocytic anemia (group

three). For further examples of the use of cluster see [22].

5.2. Difr

Diff (differentiate) takes a number of classes of events that have already been categorized,
and atternpts to find the conceptually simplest rules that yill predict the category of each event,
i.e. discriminate between the categories. The algorithm invoked by the command is called Ag and

is incorporated in the program called GEM [15].

The following is an example of the use of the diff instruction to create rules for
differentiating the groups of objects represented in three tables named grpl, grp2 and grp3.

There are a number of differeaces from the cluster operation:
(1} No criterion tables are needed.

(2) The parameters table, an example of which is shown in table 16, has a different format from

the cluster parameters table which was illustrated in table 13.

params
echo  maxstar
peve 10

Table 16. GEM Parameters Table

{3) The values in the events tables need not be integer only. Discrete nominal values are
allowed in addition to integers. QUIN automatically generates the other input tables
required by GEM. An example of the way an events table might appear is given in table

17.
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I grpi
day rainfall _hours_sunlight
Monday light ¢
Saturday none 12
Wednesday  heavy 2

Table 17. GEM Events Table

Note that there still must not be realvalued attributes ( e.g. 50.2 } but mominal attributes are
allowed. In addition, the type and domain of an attribute can be declared for the use of “diff." In
the table above, the “day” attribute clearly can take on seven values which are ordered and
cyclic. Only three of these appear in the table and they are not in order. To define the domain
of this attribute one must first prepare a relational table with one column containing all possible

values which the attribute may have. The values should be listed in order, as in table 18,

names
Sunday
Mosaday
Tuesday
Wednesday
Thursday
Friday
Saturday

Table 18. Domain Values for Days of the Week

Givea such a table, the following command will set up a permanent domain for the attribute

“day” which will automatically be referred to whenever the system needs to prepare “‘day" as an

attribute for the “'diffi"’ operation:

domain (day) :== weekdays

The ‘diff”” operation recognizes three types of attributes :



¢  sominal (discrete unordered)
o linear (discrete ordered, such as “rainfall” in table 17), and
® cyclic (discrete with cyclical ordering, such as days of the week).

The system assumes that integer values are linear and that alphabetic values are nominal.
When the opposite is true or when the attribute is cyclic, the following instruction can be used to

define the type of the attribute for use by “‘difl:”
type (day) := cye

The abbreviations for nominal, linear and cyclic are nom, lin and ~eyv.:, respectively,

The instruction format for invoking “difl” is as follows:
diff(grpl, grp2, grp3; params, rsits)

The “‘params’’ and ‘‘rslts’ tables are optional. The system provides default parameters to GEM
if a parameters table is omitted. If the ‘‘rsits’’ table is included, the discrimination rules produced
by GEM will be placed in it. A variable number of groups (event tables) may be submitted. A

semicolon indicates the end of the list of event tables, as after grp3 above,

5.3. Esel

The operation esel * invokes Esel {17], a program tbat takes a large number of examples
and selects 3 small subset of examples that is most representative of the larger group. The
smaller sample will require less execution time in inference programs such as CLUSTER/paf or
GEM. Very .large numbers of examples (more than 200) would probably require inordinate

amounts of processing time, making it useful and efficient to choose a representative subset.

5.4. Varsel

The varsel * instruction invokes a program called PROMISE [16] which selects the most

“promising” attributes for differentiating between classes of events. Its output is therefore
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intended for use with GEM. The elimination of irrelevant attributes is a horizontal reduction of
the database somewhat comparable to the vertical reduction accomplished by esel. The reduction

results in reduced execution time in GEM but also results in the elimination of attributes from

consideration by the inference process.

§.5. Varcon and Varcont

The varcon * instruction (variable construction) invokes a program called NEWVAR [18]
which attempts to use mathematical operations {multiplication, addition) to create mew attributes
from combinations of existing attributes. The use of ratios or diflerences of existing attributes

sometimes provides simpler and mote accurate rules for distinguishing one class from another.

The command varcont * is used to access a program named CONVART [19], a system for
inducing time-dependent information from data. Multiple measurements of an attribute over
time can be changed into a single attribute based upon its time-dependent characteristics. The

induced description of the time-dependent attribute can then be used in data for input to other

inference routines.

5.8. Other Operatlons

The apply * operation tests the performance of induced rules on new events. It currently a
part of the AQ11 [20| program. The output is a confusion matrix that gives the percentage of

false positive and false negative decisions for each decision category.

Another inference operation, treecon * uses program OPTREE [21] to produce optimal
decision trees from extended entry decision tables [23]. It performs the conversion of VL rules to

decision trees (branching logic) for the convenience of the user.

There are three low-level inference operations that are used in CLUSTER/paf that also

could be invoked separately.
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Sim ° (similarity) takes any two events and calculates a syatactic similarity measure. The

similarity of two events is the inverse of the syntactic distance measure used in

CLUSTER/pal.

Refun * (reference union) takes the values of attributes and “collapses” several events into
one event with multiple-valued attributes. For example, the events

{12, medium)
(13, large)

could undergo reference union to become

(12 v 13, medium v large).

Gen * (generalize) goes one step further to take the events that result from reference union
and generalizes the results into more intuitively succinct values. Thus
(12 v 13 v 14 v 15, medium v large v verylarge)
would become
{12..15, >small}.
There are other inference programs that may be useful tools for the generation of knowledge

from examples, and they too have the potential to be integrated into the system.

* planned operation not currently implemented
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Conclusion

This cbapter provides a brief subjective evaluation of QUIN as a tool for managemeat and

analysis of data, including some of its strengths, weaknesses, and ideas for further work.

8.1. Strengths

The strengths of a database analysis system have been referred to in previous chapters. The
automated storage and retrieval of data facilitate the researcher’s ability to prepare input to
inference programs; the inference programs provide tools unavailable in standard statistical
packages for the conceptual analysis of data. The integration of several inference operators with

the database appears to offer opportunities for conceptual data analysis not previously {easible.

The VL data language is easily learned and provides a less wordy query language than most
relational aigebras. It compares favorably with many relational calcuius languages, and appears
to provide 3 reasonable means of querying without the need for a complicated patural language
interface. The language is intended to be easy enough to make the inference operations available

to a wider range of people who do not have extensive experience in computer science.

8.2. Weaknesses

QUIN has several weaknesses as a database management system. Some of these weaknesses
stem from the adoption of the relational model of data. For example, medical records are often
very sparse and may not contain recorded values for large numbers of disease attributes. The
recording of some values often depends on the presence of others, resulting in 3 steucture that is
more naturally bierarchical. Other weaknesses stem only from the limited scope of the current

implementation that could easily be extended and revised:

36
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e  QUIN is a program, not a programming product. The goal of its construction to this point
has been to create a research tool that works; the eventual goal is to have a system that is

free of bugs and convenient to use.

. Data entry has not been optimized for naive user input. Any typing mistakes made during

command entry will result in rejection of the command, and there is no facility for

structured or prompted relational table entry or edit.

. The time required for retrieval commands to complete can exceed the acceptable time for
interactive use of the system for large tables { greater than 100 rows ). QUIN‘ was not
written with efliciency as a major design criterion; this means that there are likely several

places in the code in which optimization of the procedures may produce more rapid

execution.

. Many database management systerus have mechanisms for handling backup, security,

variable user access privileges, report generation and other useful facilities which were

beyond the scope of this work.

8.3, Ideas for Future Work

The wide variety of inference programs included as planned operations in QUIN suggests
that there is much yet to be learned about strategies for using these operations and about the
ways in which they interact. It is now possible to begin to explore the application of QUIN to

practical problems.

There are a few descriptive statistical functions in the query language and these could be
extended to include more statistical tests. QUIN could also be integrated with standard
statistical packages that take data input in tabular form. This could be done in 3 maunet similar

to the inference program interface,

As a database QUIN would become more (riendly, usable and sophisticated if the user could

specify semantic constraints on the data and if the system had a convenient method for

-
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interactive data entry, such as a frame-based screen editor.

In summary, QUIN is regarded as a significant first step in providing a convenient interface
to maay inductive inference techniques that operate on large numbers of examples. The use of
this tool is expected to provide useful insights into the process of machine inference and the

evaluation of inferred knowledge.



APPENDIX A

Program Description

QUIN is written in Berkeley PASCAL for the UNIX operating system. The 'qq’ prefix is
attached to every procedute in QUIN to avoid name conflicts with other ADVISE modules. There
are three major files of PASCAL code (named qqmain.p, qqparse.p and qqex.p) and a file of C
code for operating system calls (qqcfunc.c). Qqmain.p contains the initialization routines, the
session bandling routines, and utility routines. Qqparsr.p contains the command parser, and
qgex.p contains the command executor. There are also other small pieces of code (qqprocs.h and
qqconst.b), containing the external declarations of procedures which are accessed by more than
one segment, and the constant, type, and variable declarations as well as the definition of the

qqstatic area (see description of ADVISE [1] for more on static areas).

Flow of control through the code lollows the pattern of
1) start in the session routine and initialize the database,
2) parse 2 command into PT (the parse tabie - see appendix C),
3) go to the executor and execute the command,

4) cycle back to aumber 2.

When inference commands m?given. there are two options for the invocation of the
inference program. If the session is batch mode or if the user specifies 2 ‘‘results” table, then the
inference program is forked and QUIN waits for it to finish before continuing. In other
circumstances, (interactive and no results table specified) QUIN does not wait for the inference
program to compiete. In auny circumstance, the output of the inference programs can be found in

a file in the user's working directory,

39
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Netwoek Data Structures

The relational table data structures are handled by the ADVISE memory management
routines. The following details of the network form of tables are in the ADVISE network text
format [1]. A network stores a tuple with the internal name of every table in the network under a3 :
node called QQDEFAULT with an arcname called QQTABLES. All attributes are also stored in
a tuple under the same node with an arcname called QQDES (for "descrip;ora," another name for
attributes). In the future, other information about the relational tables in a network could also be

stored under the QQDEFAULT sode. An illustration of the format of the node follows:

(QQDEFAULT ( -

(QQDES P# pname color weight S# sname status city qty )
(QQTABLES Parts Suppliers SP ) ) )

Tables in the network are stored under the node corresponding to the name of the table.

The following is an example of a table named '"Parts’’ as it would appear in the network:
{Parts {

{(QQWIDTH 26586)
(QRTYPE3331)
(QQKEY 1)
{QQDES P# pname color weight )
{*EOF's )
(MKVALTUPLE P1 nut red 12)
{(MICVALTUPLE P2 bolt green 17 )
(MKVALTUPLE P3 screen blue 17 )
{(MKVALTUPLE P4 screw red 14 )
(MKVALTUPLE PS5 cam blue 12) ) )

The first four slots under the node contain information about column print widths, attribute
types, keys and descriptors. The arcnames for these tuples are QQWIDTH, QQTYPE, QQKEY
and QQDES respectively. These four tuples may be in any order. They are separated from the
“real” tuples of the table by a tuple with arcname ''sEOFs.” This separation is important
because QUIN calculates row numbers using th‘e slot number of sEOF s as a reference. If the
tabie main node is to have other tupl.es attached to it, they should be added before the *EQF« ;
QUIN can then dynamically adjust its calculation of the correspondence between slot number and

row number. Tuples containing values have arcoame MKVALTUPLE.



APPENDIX B

Grammar for Data Language VL

This is the grammar of the QUIN sublanguage grammar as it currently is defined. The VL
grammar was originally written by Richard Schubert and revised by Albert Cheng. [ have made
further revisions as well, but the nature of the grammar has remained essentially the same. The
parser for the language is a hard-coded deterministic parser. The actual impleme:itztion is
therefore only a subset (nearly complete) of the language specified in this appendix. The
following conventions are used for the specification of the grammar:

{ } means optional

{ }* means zero or more

{ }* means one or more

“ " syrrounds special characters

| separates alternatives

SESSION ::= {COMMAND}* *‘exit"
COMMAND ::m= CREATE | RETRIEVE | MODIFY | SAVE | COMMENT | HELP | INFER
CREATE :== DEFINE | ADD
DEFINE :a= “define” DEF-LIST
DEF-LIST === {"1rt"} RTNAME “(" ATTR-LIST ")" {“key :=" ATTR-LIST}
“event" EVENT

EVENT ::= EVENTNAME *“:=" "(" ATTR ‘=" VALUE {"," ATTR ‘=" VALUE}® )"
ADD = “add to” RTNAME {*:”" ROW-COND} {VALUE-LIST}* “end"

| “add” EVENTNAME “to” RTNAME (" ROW-COND}

| "add” VALUE-LIST “to” RTNAME (":" ROW-COND}

41
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| “add” FILE-NAME “to” RTNAME {":" ROW-COND)}
VALUE-LIST ::= “(" VALUE {*,” VALUE}* “)"
ROW-COND ::== “[row>" ROW-VAL “|”
| “[row<" ROW-VAL “|"
ROW.VAL ::m= VALUE | “last”
RETRIEVE ::m “get” {LABEL “:="} RT-COND {ORDER}
| “let” LABEL *;=" RT-COND {ORDER}
LABEL = RTNAME
RT-COND ::= RT-EXPR {CSYM CONDITION}
| ATTR-LIST {CSYM CONDITION}
CSYM == "' | “where”
RT-EXPR ::= TABLE-EXPR “(" ATTR-LIST “)" | JOIN-EXPR | ATTR-LIST
TABLE-EXPR := RTNAME {TABLE-OP RTNAME}*
TABLE-OP :i== "4 ™" | " | #am | g |y "
JOIN-EXPR ::= (" DOT-EXPR {*," DOT-EXPR}" "'}
| RT-PROJECT {*,” RT-PROJECT}"
DOT-EXPR ::= RTNAME “." ATTR
RT-PROJECT ::= RTNAME {“(" ATTR-LIST *)"}
CONDITION ::= VL-COMPLEX {“ v " VL-COMPLEX}*
VL-COMPLEX ::= SELECTOR {{"&"} SELECTOR}"
SELECTOR ::= TUPLE-SELECTOR | DOMAIN-SELECTOR
TUPLE-SELECTOR ::= “|" ATTR RELOP VALUES {* v " VALUES)* “|"
DOMAIN-SELECTOR = *{" DOMAIN-VAR "} RELOP “{" RT-COND “}"
DOMAIN-VAR ::= ATTR-LIST CSYM ATTR-LIST
VALUES = VALUE {“.” VALUE}

VALUE = AEXPR | NAME | UNKNOWN
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UNKNOWN ::mm 77 | o™ | 18"
AEXPR = {AEXPR “+"} ATERM | AEXPR “-" ATERM
ATERM ::= {ATERM "+"} AFACTOR | ATERM “/"" AFACTOR
AFACTOR :m CONSTANT | (" AEXPR“‘)" | “" AFACTOR
ORDER ::m “‘oeder up on” ATTR | ‘‘order down on” ATTR
ATTR-LIST = ATTR {*,” ATTR}®
ATTR = ATTRIBUTE-NAME | DOT-EXPR | FUNCNAME “(" A'i;TR “y
FUNCNAME ::== “min’' | “max" | “sum” | “count” | “domain’’ | “ave"
MODIFY ::m= “change” RTNAME “er”” {CHANGE-STMT}* END-CHANGE
CHASVGE-STMT :i== ASSIGNMENT | NEW-ATTR | “get” | ‘‘display”
END-CHANGE ::== “end” | ‘abort”
ASSIGNMENT = ATTR “:=" VALUE {CSY'M CONDITION}
NEW-ATTR ::= ATTRIBUTE-NAME “:=" LABEL ‘‘:[rowms0|"
DELETE ::a== ‘'delete” RTNAME | ‘‘delete” RTNAME (" ATTR-LIST “)"
| “delete” RTNAME CSYM CONDITION
SAVE == “save” RTNAME {",” RTNAME}*
COMMENT ::== "‘comment” {ANYTHING} “‘end”
HELP == “?' | “help” | “help” INSTRUCTION
INSTRUCTION ::mm “define” | *‘add” | “get” | “let” | “change’
| ‘delete” | “‘exit” | “‘comment” | “‘help” | INF-OP
INFER ::= INF-OP “(” EVENTS {“,” EVENTS}* *,”” PARAMETERS {",” RESULTS} "}"
EVENTS = RTNAME
PARAMETERS ::= RTNAME
RESULTS :== LABEL

INF-OP == “cluster'" | “diff” | ‘‘esel" | ‘‘varsel” | *‘varcon”


http:ATTRmUTE-NA.ME

The Parse Table (PT) is an array of integers which is used {or communication between
the VL data language parser and the command executor. The integers-may represent pointers to

an array of character strings (symtable), to an array of real numbers (realn}, to a tuple

of relational table internal

the database {qqsptr”.des). The following describes the semantics of the PT array positions for

APPENDIX C

Parse Table Layout

names (qqsptr’

each of the commands and conditions in the language.

COMMAND ARRAY POSITION

DEFINE

o D D

for each table defined:
x
X +
X 4+
X +
X 4+
X +
X +

X+
X +
X+

X +
for each event defined:

X
X +

[~ XL S

4+ 03
44+ pa+ |
44 pa+ 2

41 + na+ ok

1
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MEANING

Length of PT

1 (DEFINE)
Length of PT used
Number of tables or events defined

Length of PT used for this table
1 (DEFINE TABLE}

Index in symtable of table aame
Number of attributes (na}
Number of keys (ak)

1st attribute

2nd attribute

Last attribute
1st key
2nd key

Last key

Length of PT used for this event
2 (DEFINE EVENT)

tbl) or to a tuple containing all attributes in



X+
X +
X +
X+
X +
X +
X +
X +

€05 =3O DD

;(+ 3(na) + 1
x + 3(na) + 2
x+ 3na)+ 3

o (a3 B e

7

for add types 1 and 3:
8
-9
10
11

9 4+ na

9+ pa+ 1
9+ pa+ 2
9+ na+ 3
9+ na+ 4

§+ na+ 2naj)(ne)}
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Iodex in symtable of event name
Number of attributes (na)

1st attribute

1st value

1st type

2nd attribute

2nd valge

2nd type

Last attribute
Last valye
Last type

Length of PT
2 (ADD}
Length of PT used
Type of add :
1: add to
2. add event
3: add (value, value, ... J to
4: add file to
Table number to be added to
Row condition :
0: none
1: < (before)
2: > (after)
Row number {-1 if none given)

Number of rows to be added (ne}
Number of columas in the rows (5a)
1st column’s type

2nd column’s type

Last column’s type
1st value

1at value's type
2nd value

2nd valye's type

Last value's type
1st column’s maximum print width
2nd columa’s maximum print width



9+ 2(oa)(ne+ 1)
for add type 2 (event add):
8

for add type 4 (Gle add):
8

CHANGE

o W -

while within the change statement:

for assignment:

A B - ]

8 + pt{7]
8+ ptf?7] + 1

for new attribute name:
8
7
8
9
10

DELETE

G 2O »

Table expression (see below)

16

Last column's maximum print width
Event to be added

Index in symtable of file’s name

Length of PT

3 (CHANGE)

Leagth of PT used

Table sumber of table to be changed

Change commands:

: Assignment

: Display {change table}
: Get (original table)

: Eod

: Abort

: New attribute name

[- WL

Descriptor number

Length of PT used for value expression
Value expression

Length of PT used for selection expression
Seiection expression

Descriptor number

3 (length of this expression)
2 {attribute)

0 {no meaning)

New attribute aumber

Length of PT
4 (DELETE)
Leogth of PT used



HELP

GET and LET

[~ N -

(20 N~ - e

Table expression (see below)

SAVE

TABLE EXPRESSION

X

X +

T N A

4+

x +
X +

X+
X +
X +
X+

1

as
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Length of PT
§ {HELP)
Type of help:
1: command
2 : nonterminal
Index in symtable of command or non.terminal

Length of PT

6 (GET) or 7 {LET)
Length of PT used

Index in symtable for label (O if none)
Operation type:

: none (single table)
: join

: union

: intersection

: difference

: append

(<3 NN S SN - ]

Order operator
0 : pone
1:up
2. down
Descriptor number to order on

Leagth of PT

8 (SAVE)

Length of PT used

Number of tables to be saved (n9)
st Table

2nd Table

Last table

Number of tables
1st table
2nd table

Last table

No. attributes (oa)
1st attribute

2nd attribute
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VL Condition {optional)

VL CONDITIONS
parsed as postfix codes, each code taking three places in PT:

X Length of this expression

(30, n == number of codes)
X+ 1 :
x+ 2 First code triple
x4+ 3

Row

. Operator Attribute - Operand
X+ 3r-2 0 2 3
X+ 3r-1 opcode RT# 0
x+ 3r #operands DES# 0
X+ 3n-2
X+ 3n-1 L.ast code triple
x+ 3n

Some examples of parsing of VL conditions:

[row>10] or [P#=P1|;

parsed as:

21 300 4110 022 203 431 052 0112
row 10 > P# Pl = OR

;[status < 2eqty];

parsed as:

15 2090 412 208 092 013
status 2 qty . <

Constant
4
Type
Value



A2

[4]

15]

(9l

(10]

(11]

(12]
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