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1 INTRODUCTION

Expert sysicms are computer programs which contain and are capsble of spplying expert
knowledge of a particular problem domain to solving problems within the domain. Examples of
such systems are Mycin [Shortliffe,1982]), used for medical diagnosis, and Plant/ds [Michalaki,1982a},
used for diagnosing soybean plant discases. Each system identifies & given iaput example as
belonging to ® particulsr cluss within the system's domain of expertise. The Plant/ds system, for
example, amives at the mom plausible diagnosis for an afflicted soybeam plant based on the
symptoms the plspt exhibits. In this case, the domain of soybesa discases has been divided into &
number of categories (clames) each representing s different discase. The task of the expert system

is to identify which class (disease category) a given plant's symptomology represents.

Traditional expert sysiem development techniques require an expent in the domain of interest
to specify the important factors he uses to arrive at expert determinations. In the Mycin system,
the experts were required to formulate a set of rules to apply to test cases to determine 8 plausible
course of treatment for cach case. The experts found that while they were capable of reaching
determinations easily, they were less able to articulate the process they used to arvive at them. This
approsch requires the ¢xpert to analyze his own methodology from a perspective to which he is
unaccustomed. The systems which result are often inefficient because they use unnecessary data in
the process of apalyzing a test case, and unreliable because contingencics not previously -
encountered may result in faulty or indeterminste results [Clancey,1981] [Hayes-Roth,1980]. To
repair these shortcomings, the system designer resorts to iterative development methods in which
the expert is presented with the faulty results and asked to sugment the current system so that

correct results are produced. When further testing uncovers new flaws, the development loop is

repeated.



This psper describes s system which secks to relieve the domain expert of the burdea of
analyzing his own methods. He uses his knowledge to reach expert determinations (clamifications)
for examples from his domain of expertise. Once the cxpert has classified each sample case, the
system uses techmiques paticrmed on a genersl model of the expertise development process to
attempt to discover the rclationships prevalent in each class used by the expert, and formulates
general rules for classifying future examples. This approsch, termed learning from ezamples
minimizes the need for the expert to codify his technical knowledge. The system consists of three
programs which are described in detail later in the paper. The first, CONVART, computes
attributes of the time-varying charactevistics of examplea. The second, VARSEL, selects the *most
relevant” attributes for formulating classification rules from those produced by CONVART and
those initially svailable. The third program, GEM, uscs the attributes identified by VARSEL to
formulate classification rules for each of the clases represented by the st of examples. VARSEL
was devised and written by the author, while CONVART and GEM were written by others {John

Davis, and Robert Stepp, et. al., respectively]

1.1 Current Expert System Development Techniques

1.1.1 Knowledge Encoding

One traditional approach to the creation of expert sysiems is shown in Figure 1. A Rnowledge
engineer works in concert with a domain expert to characterize the process used by the expert to
reach decisions {Hayes-Roth,1980]1 Unfortunately, domain experts are often unable to describe
their own montal procemes clearly cnough io enable the production of etficient, complete and
reliable systems. This problem makes many iterations through the development loop necessary.
The knowledge engineer encodes the expert's knowledge, applies the resulting system to sample
cases, uncovers insufficiencies or inconsistencies, and returns to the expert to overcome these
difficulties. This iterative process sirains the knowlcdge representation scheme and the process

control structure until the system becomes unwieldy and difficult to use and maintain,
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Figure 1. The traditional expert system development loop

A sccond failing of the knowledge encoding spproach arises from the necessity of having a
domain expert in the development process. This requirement precludes the possibility of expent-
system development in domains in which no experts have developed because the area is o0 new of
obscure. The development of domain cxpertise is s alow process because of the tremendous
difficulties inherent in discovering relevant avenues of inquiry into the underlying processes and

structures within the domain,
1.1.2 Automated Inductive Inference

A relatively new approach toward expert system development involves inductive learning
systems which use cmpirical evidence, in the form of cxamples, to derive rules by which
determinations may be made for data presented to the system. Such systems use ausomated inductive
inference, 3 method whereby rules for clamifying events are derived using computer programs
which systematically proccas the data to discover pattems and interelationships which may be useful
for distinguishing each class from the others [Michalski, 1972, 1980, Angluin,1982]. The failing of
these systems srisea from the limitations inhérent in dealing with statistically valid populations of

sample data. For some automated inductive inference methods, an exponential relationship exists



between dsta-set size and processing time required [Rabin,1974]1 This causes & problem termed
combinatorial explosion where the proceming time for a large data st is often far too lengthy to be
of practical value. Modern inductive leaming systems, g, AQll or D3 are able to avoid this
problem by applying ppropriate heuristic methods. However, the task of looking for patterns of
interaction and interdependency within data is so complex, and since the amount of data shouid be
large if the results are to be reliable, the modem systems must use some means of further das-
reduction if the processing time for the lcarning programs is to be acceptable. Traditionally, system
designers rely on domain experts 1o tell them which data are relevant and which should be ignored.
Consequently, expert system development using sutomated methods is alse prope to iterative
development because the domain cxperts frequently misjudge which data are important or reicvant.
This produces systems with the same basic flaws encountered in knowledge engineered systemm:

inefficiency and unreliability.
1.2 Requirements for Better Expert System Development

The major shortcoming of current expert system development techniques is the continued
dependency on domain experts to provide information they are normally unprepared to provide.
System development techmiques requiring the aid of domain experts for initial development are
doomed to inadequate performance unless new insights can be gained ioto the ways in which
domain capertise arises and is implemented. This paper describes a data-driven system which is
largely domain independent and can operate without the explicitly stated a priori knowledge of the
problem domain usually needed by system developers [Buchanan,1979]. Assuming that the
accesmary knowledge is contsined in the pairing of sample events with expert determinations,
sufficiently powerful methods for extracting the knowledge are needed [Tunstall,1974)]
[Shapiro,1981). The ability to do this requires 8 method which can assess the relevance of attributes
reliably while remaining so computationally efficient that exicomive pre-sclection of attributes by a
domain expert is not required [Chen,1974] Hence, the role played by the domain cxpert in

ordinary automated system development paradigms is now also largely automated. The system can




deal with large amounts of dats and indicate promising svenues of exploration for rescarchers in

the problem domain and expert system implementors alike.




2 A MODEL OF THE EXPERTISE DEVELOPMENT PROCESS

The foliowing definitions will be used throughott the discussion which follows:

® An exemplar ot example i an object which exemplifies a given decision clas.

® An agribae is 8 measurable characteristic of an ¢xcmplar within the problem domaia.
Examples are color, height, and annual rainfall. Attributes fall into two categorica:
static atiributes measure charscteristics which bave a constant value while dynamic
sttributes measure characteristics whose values vary relafive to some other variable
such s time, for a given exemplar.

® A selector is 8 relation between a given atiribute and the value of that attribute.
Examples include color# red, height=175m, and weight= 95kg.

® An event is a vestor of atiribute values characterizing a given exemplar. An event may
be represented by a conjunction of sclector.

@ A decision class or clazs représents the membership of one or more exemplars in a8
category characterized by some common denotation.

@ An event fef is a set of eventa which are members of known decision classes.

An example of an cvent set i given in Figure 2. The cvent st is comprised of two classes of
two cvents each snd one class of one cvent. Each cvent is in the form of a conjunction of four
selectors. A Dodge-Dant, for example, weighs 60001b, is twelve feet long, and can carry six -

passengeri.

A model of the expertise development process, patterned after one in [Dietterich,1981], is
presented in Figure 3. The sequential model of expertise development presented here has four
major processing steps and feedback from amy sicp to any previous step [Kanal, 1978}, Each of the
four processing steps— attribute construction, attribute sclection, rule formation, and rule

implementation— are described in detail below.




Class : Car

Examples : (model=Dodge-Dart} A[weight=60001b] A {length=12{t] A [passengers=6]
[modei=Toyowa-Corolla}a [weight=50001bjx [length=11ft}, [passengers=5]

Class : Truck

Bxamples : [model=Mack]a [weight=36000b} A length=35{t}A [passengers=3]
[model=Peterbilt] A[weight=340000Ib] A [length=35{t] A [passengern=3]

Class : Bus

Example: [model =Greyhound] A [weight=21000b}A [length=32ft]A [passengers=30]

Figure 2. A sample event set.

Rute
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Attribute Attribute
1 Constructian jalsctian

Rula
Implemantation

Figure 3. A model of the expertise development proceas



2.1 Attribute Construction

Oance an initial set of attributes have been selected by the expert as potentially relevant, the
first proceszing step involves the construction of derived attributes. Derived attributes are produced
by applying a variety of logical, statistical, or mathematical operations to the initial attributes. For
example, a derived artribute mey be a mathematical product of some numerical attributes or a

logical expression of propositional attributes (properties that are true or false).

Additional attributes may be derived by firt noting that some attributes change over time.
Rainfall would be one example of such an attribute. The rainfall on a given ficld could be given as
a series of values representing "rainfall® on each day for a given time interval. New autributes can
be comstructed from this type of attribute using statistical operations such as averaging (¢g. "the
average rainfall per weck”). Arithmetic operators can be applicd to numeric attributes. For
example, if we have the arributes length, width, and height, we might apply the multiplication
operator to construct the attribute "volume.” Neither mathematical nor gtatistical operators can be

applied to non-numeric (i, symbeolic) attributes such as "blood type” or "eye color”

To perform aftribute construction, operatom arc applied to the attribute valuzs in the hope of
discovering new sttributes which have greater classdifferentiating abilitics than the original

attributes. This process is termed consiructive induction [Michalski,1982b] [Davis, 1981].

2.2 Attribute Selection

After stiribute construction is complcted, the sct of constructed attributes is pined to the set
of imitial attributes and cach attribute is cvaluated in terms of its potential relevance (iz., its
potential utility for differentiating classcs based on its value for a given exemplar) [Kodratoff 1982
This is the process of attribute sclection in which unusable or less informative attributes are

discarded and only those sttributes which best distinguish the classcs are retained.



2.3 Rule Pormation

The third processing step is rule formation, Rule formation entails characterizing the clases
by logic expressions involving sclectors. The most interesting expressions are those which most
compactly capture the knowledge necessary to classify a new cvent reliably. The two basic
conditions that a sct of such expressions (rules) must meet are conrigency and completeness.
Completenesa requires that each exemplar must satisfy some rule from the rule set, and consistency

requires that each excmplar satisfy at mosr one clam from the set of classes.

A set of simple discriminant rules for the event set of Figure 2 is shown in Figure 4. The first
rule reads: "If the length is less than 20 feet, the vehicle is a car” The second rule reads: “If the

length is greater than 20 feet and the vehicle can carry less than four pasengers, then it is a truck.”

Rule 1= (length< 20ft] => car
Rule 2: {length= 20ft} A [passengen= 3] => truck
Rule 3 [length== 20t1] A [pasengers> 3] => bus

Figure 4. A set of discriminant rules desived from the cvent sct in Figure 2.

2.4 Rule Implementation

The final processing step is rule implementation. This is the cncoding of the rules gencrated
in the previous step in such a fashion that they may be applicd to new cvents supplicd by a user.
Although implementing the rules is a simple process, designing the user interface is got. The most
important characteristics of an cxpert system which will be used by people who are not intimately

familiar with the software are: casy data entry, comprehensive prescntation of results including
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measures of how confident the system is in its analysis, and the ability to explain the reasoning

processes which led to the result presented.
2.5 Conventional Methods in Terms of the Model

Figures 5a-c ahow the model of Figure 2 configured to correspond 1o its application to human
expertise development, the knowledge engineering approach to expent system development, and the
automated induction method respectively. In Figure Sa, human expertise development, we see that
the human expert is responsible for all procemsing, implementation, and spplication of the resuiting
expertise. In Figure 5b, the knowledge engincering approach, the expert is still responsible for all
attribute processing but now the knowledge engineer must share the task of rule gencration snd
becomes responsible for implementing the rules on 2 computer. Figure Sc ahows the automated
inductive inference method in terms of the peneral model. The human expert is now responsible
only for deciding which attributes are refcvant. The dats is then presented to an infercnce program
in terms of the specificd attributes, and the program develops rules which characterize the data.
The software engincer must thea implement the rule set on the computer. Figure 5d shows the

software doscribed below as it relates to the model. .
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3 AN IMPLEMENTATION OF THE MODEL
3.1 Attribute Construction Using the Program CONVART
3.1.1 A Rationale for Attribute Construction

Time-dependent sttributes are those that capture the value of some chamcteristic of an event
as it changes with time. Such attributes are, therefore, useful for describing procedures or
processes. If such attributes could be used by an inference engine, a broader range of problem
domuins would be approachable by expert systems. Current inference engines, however, are only
capable of processing so-called statie attributes which have only a single value for each event. If
inductive inference techniques are w be spplied to these probiem domains, some method for
representing dynamic (time-dependent) attributes by static attributes is necded. Two ways of
describing dynamic attributes statically may be employed. The first involves characterizing the
progression of values for the attribute over time as a polynomial or othes functional entity. This is

the method used in the series of Bacon programs [Langley,1982]

The second method is the computation of fundamental descriptive quantities for the set of
measured valucs. Examples of such quaatitics for numeric attributes (iz, attributes whose possible
values have a natural partial-ordering) are maximum, minimum, sverage, etc. Examples of
quantities for nominal attributes (i£., attributes whose possible values have no inherent partial-
ordering such as color or shape) are mostcommon-value and least-common-value. This is the
method used by CONVART [Davis,1981]. CONVART is compossd of a number of routines which

compuie such measures (or dynamic attributes. It is implemented in Pascal on 2 Vax 11/780.

Another problem found in both dynamic and static attributes is the use of continuous
varisbies which may take on any real value within some range of values. Interpreting the meaning
of a given value for such ag attribute ia often difficult, an& applying inductive inference techniques

to them often produces unwicldy results. The solution CONVART applies to continuous attributes
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is discretizarion. Discretization is the procems of dividing the range of possible vaiues for an attribute
into s mapageable set of discrete values based on the distribution of the abscrved values throughout
the range of possible values. CONVART uses a ticarest-neighbor algorithm to arrive at plausible

.discrete rangea.
3.1.2 Using CONVART in An Expertise Development System

Given that CONVART produces many derived attributes from cach dynamic attribute and
adds them to the original static attributes, the burden falls on the inference engine to weed out the
bad attributes and use only the relevant ones. Although a rudimeatary relevancy cvaiuator was
incorporated in CONVART, the devcloper sdmits that it & far from sufficient for the task
[Davis, 1981} Therefore, the rule constructor is still faced with the task of dealing with many
attributes measured (or computed) for magy cvents. Because of the complexity of the algorithms
on which inductive inference programs are based, the processing required for event sets containing
many attributes is unacceptable. Attribute selection is needed to make the proces of expert system

development practical for “resl” cvent sets,
3.2 The Auribute Selection Program VARSEL

The progem VARSEL performs the task of amtribute selection based on a measure of
attribute relevancy for clams discrimination calculated using the method described below. It is
implemented in Pascal on s Vax 11/780. The program cvaluates cach attribute individually and
then compiles a subset of attributes which completely differentiates each class from the others,
The user may select one of two ways in which the compilation is to proceed. The first method is
an adaptation of a procedure proposcd by [Lbov,1965] in which attributes are chosen randomly
using a weighted selection scheme in which more relevant attributes are more likely to be chosen.
The method described here uses this principle of random adaptive search, modified so that smail
subscts of aftribuies are evaluated and the individusl rclevancy measure of ecach constituent

attribute is improved or degraded based on the performance of the selected subset as a whole
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[Smith,1980] [Bethke, 19811 If the process converges, the most relevant attribites are then indicated

by high relevancy meassure.

The sccond method involves what has been termed a greedy scarch scheme in which sttributcs
are added to s subset of attributes ustil & sufficiently discriminatory attribute set has been found.

Both methods are described in detail below.
3.2.1 A Rationale for Attribute Selection

Attributes may be of three types. Numeric attributes have real or integer values which
represent measured quantities directly. Examples of sumeric attributes are "temperature” and
"number of legs” Ordinal attributes have integer values which capture 2 true partial ordering
preseot in the attribute values. An example of much an attribute is “quality” which may have the
values “very bad”, *bad®, "acceptable”, “good®, and “excelient” The third type of attribute is a
symbolic attribute. The values of symbolic sttributes have no inherent partial ordering. Omne
example of such an attribute is "zhape” Another term often applied to symbolic and ordinal

attributes is nominal.

The problem of sclecting the most relevant set of attributes to describe objecta for the purpose
of inductive leaming is traditionally approached using various methods of atitibute sclection such as
factor analysis, multidimensional scaling, and linear trunsformation, developed in the fields of
pattern recognition and etatistical decision theory. These methods involve statistical or
information-theoretic meamres which identify the principal attributes in the event set
[Andrews,1972] [Harmon,1960] [Lawley,1963] These methods are most effective for numecric
attributes when the size of the event set is statistically significant. When attributes are symbolic
(catcgorical or propositional) and the cvent set is small, these methods are not adequate
[Steamns,1976] [Zadeh,1981]. In fact, using the methods mentioned above, "it is almost impossible to
formulate general guidelines regarding the selection of physical [attributes] and structural

[attributes]’ [Tou,1974]. To analyze such nominal attributes mathematically, numeric values must be
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assigned to each possible value of the attribute (¢ g., color might be encoded as: red=1, yellow=2,
blue=3, ¢tc.). When statistical methods are 2pplied to such attributes, the results from the statistical
methods may vary if the ordering of the values changes (¢.g. red=2 and yellow=1). Thus, aithough
the actual values of the attribute have not changed, the measures derived from them have. This is
clearly erroncoms. Therefore, there is & meed for new methods applicable to multivalued or

propesitional symbolic atiributes and for small numbers of cvents.

3.2.2 A Relevancy Measure

The difficulty of performing satisfactory attribute sclection nsing statistically-based methods
may be overcome by analyzing the obscrved values of the stiributes using ® method based on
heuristic knowledge of the properties of attribute values typically found in cvent seis of interest.
Such a system could deal effectively with symbolic and ordinal attributes since these attributes do

not behave statistically in the same way that numeric attributes do.

The computation time necessary to process a set of cvents is large when the event set contains
many attributes. A computationally inexpensive means of rapidly eliminating irrelevant attributes
wotld reduce the computstion time required. The method described below accomplishes all of

these goals.

Classical information theory has been used to attack the problem of attribute relevancy
measurement by modeling decision trees as information sources and attribute values as *messages.”

The information contained in & mesage “M® depends on the probability of the mesage and ia

cxpressed by:
I=log 1 (1)
*LPM)
where: P(M) is the probability of message "M.”

In cvent sets of interest, a given value (message) may occur in cvents representing more than one
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class. If we can assume that the message is correct for only one of the classes in which it occurs,
then the information provided by the mesage depends not only on the probability of the message,

but on the probability that the message is correct P(cn M):

1
P(cM M) @

I=]log, [
Others have postulated that the information in such a "questionable” memage is [Quinles, 1982f

I=log,

L) g, [ L] 0
where: p+ is the probsbility of the correct occurence of the message.

p is the probability of the incomect occurence of the message.
The derivation of this expression relies on ove fundamental assumption. The correct and incorrect
messages are probabilistically independent. This, however, is incomrect. The fwo messages are, in
fact, mutually exclusive by their very sature. This invalidates the expression. We might then
bypothesize that, given the information measure in cquation 2, that for V" possible values

(messages) for a given attribute:

L= log ,

1 1

bolds if the memages are independent. Unfortunately, the most frequent case is that the different
messages are not necessarily indepesdent and such an sssumption has an essocisted risk. In
addition, these measurcs effectively asmime that we are interested in viewing the messages as
*correct” or "incorrect” While such a binary view is somectimes useful, the multiclass pawure of
event scts of intercst calls for @ more robust measure. Therefore, we require a measure which

retains the multi<class view of the world and is immune to the vagarics of data cellection and

random occurrence of cvents which often produce widely disparate class sizes within an cvent set.
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We spproach this problem by first making a simple asumption: since we wish 10 messure a2
characteristic of the data (which, hopefully, reflects the nature of the domain of interest) we may
take advantage of the fact that for a given attribute, for a given cvent, only one value may be
observed in the data. This assumption allows us to further assume that the possible messages
(values) for a given event are not independent, but mutually exclusive. Unlike the case of equation
3 gbove, we realize that dealing with such mesages by combining their information contents can be
mislcading. Instead, we will manipulate theic probabilities directly. The total probability of all

possible messages given mutual exclusivity is:

Pi=P(M)+P(M)+ -~ +P(M,) &)

If cach of the terms is further divided into probability of correctness P(¢N M) and exror P(eN M),

the total probability is:
-P,o,=P(cr‘|M,)+P(en M)+P(cM MD+P(eN M)+ (6)
ree +P'(cr| M)+P(e M M,)

This equation may be separated into two:

Pc=P(ch1)+P(CnM2)+"'+P(CnM') (7a) *

P,=P(eM)+P(e\ M)+ - +P{e O M,) ()
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capturing the probability of correctness or incorrectncs for all memages (values). Each term in

Equation 7b may be expanded into:

. ®

where: m is the number of classes i the event set.
o, is the number of occourrences of the message in error class *i' of which there are
i
(m-1) since one of the classes is "correct,” not in error.

N ¢ is the total number of events in the cvent set.

to
We see that this value ia sensitive only 1o the relative sizes of the clazs for which the value is correct
and the remaining classes in the cvent sel. Since this is not desirable 23 menticned above, we
introduce normalization factors into each term to remove this size bias, Since this will change our
result into something other than a pure probability, we will designate our new result the likelykood

of ervor for a givern message (vaiue) -le M-

1 fey T e ta-n
lo. = + 4 p—— 'C))
m—1 N?l -N" Nt(.-u
where: Nc. is the total number of events in ervor class 1.7

1
Given the likelyhood that each possible value will be interpreted incorrectly, the total liketyhoad of

eITor i
L‘rd= zl‘vu (10]
M =1

since the number of possible messages equals the number of possible values *v* of the attribute.
The valuye of this mcasure is between 0 and 1 but the range is imverted in meaning (ie., the best
attribute has likelyhood of error of 0). The final step is to invert the range to armrive at a measure

we will call the refevance of an sttribute denoted by p:




p=1-L, , (11

Which has value O for worst<casc sttributes and value 1 for perfectly discrimipant attributes.

The final consideration is the determination of which class is the “correct” ane for a value which
appesrs in more than one clas. We have assumed, for the purposes of this study, that the class for
which the value is most likely is the comrect class. In practice, this is the class for which the value

of the term n_, N is greatest for a given attribute value *m.”

class clasy

An cxample will show the spplication of equation 1L In Figure 6a, a event set of thres
atiributes measured for three clames is given. Figure 6b shows that, for attmbute Xy, the normalized
probabilities of occurrence in each class of the value “1° is 1.0, 0.0, and 0.0 respectively. Since there
are 3 out of 4 events with value 1 in class 1 (0.75), 0 out of 2 events with value 1 in class 2 (0.0),
and O out of 1 events with value 1 in class 3 (00). The same analysis for the other messages
(values) completes the table. Figure 6c shows the calculation of likelyhood of error for each of the
values. For exampie, assuming the “correct® clas for value 2 is class 2 since the term in Figure 6b

for value 2 is greatest for class 2, The calculation is the sum of the remaining 2 "eror” classes times

/(m-1) which is /2. Finally, Figure 6d gives the remaining calculation of rclevance.

Three experiments were performed to examine the performance of equation 11 using the
program PROMISE which calculates the value of p for attributcs in a given event set. The
inductive inference engine was the program AQI1 [Michalski 1978} Both PROMISE and AQI1

were implemented in Pascal on a Cyber 178 computer,
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3.2.2.1 Exzperiment I

The velevance p for more than one attribute at a time may be cakulated by considering the
values of several attyibutes in an event as a single compound attribute. To test the behavior of p for
this type of processing, the "Animals” event set, described in [Michalski, 1975], was processed by
PROMISE. The Animals event set is shown in Figure 7. The data and a set of rules for Animals
are given in Appendix D. The protozoan creatures in each of the fourtcen classes may be
described by thirteen attributes:

® x, is the number of black circles on the body.

® x, is the number of tails,

® x, is the aumber of crossmarks on tails.

® x, is the aumber of casily distinguished extremities.

®xg is the body texture,

®xg is the sumber of empty circles on the body.

® X, is the number of empty squarca on the body.

oxsilthcnumbert:tempty triangles on the body.

® x, is the type of tail.

T L the shape of the body.
*x is the number of sharp or straight angles.
® %y is the number of “eyes” (half-black circles).

® %y is the number of black squares on the body.

Firnst, the relevance of the individual attributca were cvaluated by PROMISE, and the
attributes were arranged in order of increasing value of relevance. Next, all projections on paim of
attributes were evaluated and the results were analyzed as follows: The combinations were ranked
by increasing value of p aznd the range of observed valucs of p was divided into 10 equal-sized sub-
ranges. The number of occurrences of a particular attribute in the set of pairs with refevance

values in & sub-renge is expressed as 8 percentage of the total number of occurrences of all
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attributes in the subrange and plotted as s histogram. An example of such an snalysis is presented
in Figure 8. A relevant stiribute should exhibit greater participation in the high-vatued sub-ranges
and irrelevant attributes should exhibit greater participation in low-valued sub-ranges. When linear
regression analysis is applied to these plots, relevant sttribute "profiles” should have more positive
slopes and lemer y-intercepts and irrelevant attribute profiles should have more negative slopes and
greater y-intervepts. Such an analysis was performed for all combinations of three and four
attributes as well. The histogram piots for all of the analyses arc given in Appendix D. The
resulting attribute rankings are shown in Figure 9. Actual values from the analyses are pot given
gince valucs computed for different size groupings of sttributes ars not directly comparable. The
table shows that the relevance value measured for each attribute is independent of the interactions
between attributes in this event set because the rankings sre fundamentally the same independent
of the size of the groupings wsed. Therefore, the values indicated by PROMISE for individual

attributes are independent of the interactions between attributes in this experiment, and can be

uzed to order the attributes.
Combinations Best Worst
§ingla Actributes x; Xg Xg %19 %3 Xy X, Xg Xyq Xg Kyy Xig Xq
Pairs Xy Xg X Xyq ¥ Xy3 X3 Xy ¥g Xy ¥5 ¥pp Xy
Triples Xy Xg Xg Xpq Xy X3 Xy Xg Fyz Fyy %5 *12 7
Quadruples %y %9 ¥5 %19 Xi %13 Xy Xy Xg ¥y7 Ng X7 *¥1a

Figure 9. Aftributes ranked by their relevance when evaluated interdependently in pairs,
triples, and quadruples. A sample of such an analyss is given in Figure 7 and all
of the anaiyses are given in Appendix D



3.2.2.2 Experiment I1

The event set used for experiment I is given in Figure 10. It includes attributes with widely
varying degrees of relevance. The values of one aftribute were arranged so that the clases could
be distinguished by the value of that attribute alone. Another attribute had the same value in ail
events. Two more attributes were pseudo-random, and the rest diff ercntiated the classes to varying
degrees. The dats comprised five classes (3 with 8 events, 2 with 5 events). The resuit of the
analysis of the attributes individually is shown in Figure 11. The ordering of the attributes by p-
value (Figure 11) matches the order of attribute refevancy designed into the cvent set. The results
thow that PROMISE cvaiuates attributes based on their ability to distinguish clamses im the event
set. This indicates that a set of attributes which uniquely characterizes each class in an event set
and contains few extraneous variables can be obtained by cxamining attributes beginning with the
most relevant aitributes and adding more attributes in order of decreuiﬁ; relevance until the
projection of the cvent set on the attributes has p=1. For example, when the most relevant
atiribute is excluded, the oext three attributes can distinguish the classes uniquely (two of them

comprise the minimum number that do so in this cvent set when the best attribute is excluded).

3.2.2.3 Experiment III

Experiment three was updertakem to determine the magnitude of the computational
sdvantage, if any, realized by removing as many extrancous attributes as possible using PROMISE

before the data is processed by AQ1L

The data for the third experiment were the same data used in experiment II but with the
most-relevant attribute removed and a number of pseudo-random attributes added (42 in this
experiment) to simulate the common occurrence of cvent sets which include no perfect attribulcs
and many irrelevant ones. The attributes were processed by PROMISE and ordered by increasing
relevance value. Because the three most relevant aftributes are not distinguished by different p-

values, they were all accepted initially and the projection of the data onto those three attributes was
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Figure 10. An event set containing attributes with & wide range of relevance wmed to test
the performance of equation 11
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evaluated by PROMISE and found to have Pp=1. Next, the projected cvent sot was processed by
the inductive-leaming program AQ11 which derived rules 10 discriminate the classes. The rules
derived from the projected event set were identical to those derived from the entire cvent set.
Figure 12 shows a comparison of the time peeded to derive the same set of rules using AQ11 on the
entire event set versus running the program using only the three bemt attributes determined by
PROMISE. In this instance, the computation time required to filter the data using PROMISE and

derive rules using AQ11 was approximately one tenth the time required using AQ11 alone.
3.2.3 The Random Adaptive Search Algorithm

The relevance measure is intended for the anaiysis of single attributes independently of other
attributes to find those that are most relevant. If mch evaluation is not sufficient due to high
degree of interdependency between attributes, the Randomized Adaptive Search (RAS) algorithm

may be used.




Using PROMISE Not Using PROMISE
PREMISE 0.319 C2VJ sec. -
AQLL 0.227 CPY sec. 4,578 C2U sec.
Toral ' 0.546 CPU sec. 4,576 CPU sec.

Figure 12. A comparison of CPU time required to formulste ideatical rule scts using and
mtuin;PROMISEtomlhed:hbdebyindmﬁwhm
program AQIL

The algorithm iteratively evaluatcs groups of attributes and continuously updates an indicator
of the relevancy of the individual attributes based on the performance of the groups. Fimt, the
relevance of cach of the attributes is evaluated and stored as the initial relevance index (so-called
because the values will no longer be based on p as the algorithm progresses) for that attribute. A
uscr-epecified number of attributes is then chosen by weighted random selection based on these
values. Attributes with bettcr relevancy values are more likely to be chosen. The relevance of the
group of sttributes i then computed a3 a whole. Based on a comparison between the value for this
group and a reference value (05 initially), the relevance index for each of the coustituent attributes
in the group is increased by a mmall, fixed amgunt (005 for this siudy) if the group performed
better than the reference, or decreased by the same amount if the the group score was worse than
the reference. The individual valies are kept within the 0 to 1 range of p. The reference value is
then sct to the new group's relevance. The attributes are reordered by the new values of their
relevance indices and a new group is chosen by weighted mndom selection. The process iterates
until the refercace value converges to a constant value or until a specified aumber of iterations

have transpired.



2

The object of RAS is to find interdependent groupings of atiributes and promols their
sclection a8 & group, even if one or morc of them has a low vafue of p when evaluated
independently. As the algorithm progreses, groups of atiributes which perform well are promoted
and groups which perform poorly are suppresed. When the algorithm coaverges (if it docs), a
stable, high-relevance group of attributes has risen to the top of the list of indices and the poor

attributes have fallen to the bottom.
1.2.4 The Greedy Attribute Sclectiva Algorithm

A second method for applying the relevance measure to attributes i Greedy Attribute
Selection (GAS). When sttribute interdependency is not a problem, GAS may be an cifective way

{0 arrive st a quasi-minimal set of attributes in a leas computationally intensive way than RAS.

The GAS algorithm begins with the independent evaluation of the relevance of each of the
attributes. The list of attributes is rank-ordered by decreasing relevance. The first two (those two
with the highest relevance) are chosen and cvaluated as s group. If the relevance of the pair is
greater than the relevance of the most relevant attribute alone, the second most-relevant attribute is
deemed to have sdded useful information (as measured through the increased relevance) and is
kept. If no improvement is noted, the second attribute is discarded since it added no information
to that from the first attribute. The third most relevant atiribute is thea added and the group
evaluated., The third attribute is mlso kept or discarded based on whether it contributes to an |
improvement in relevance score for the group, The scheme continues until a group of attributes is

found which is perfectly discriminatory (i2., p=1) or the list of attributes is exhausted.

The Greedy Attribute Selection scheme is based on the asumption that the relevance
measure is & good indicator of the value an sitribute has for discrimination and its ability to

cvaluate groups of attributes in a way that yiclds results which can be compared meaningfully.




1.3 The Rule Generstion Program GEM
1.3.1 The A9 Algorithm for Rule Generation

The A9 algorithm is s method for generating geacralized descriptions which cover all of the
positive events (ic- those within the class to be described) and none of the acgative events (ic.
those within the other claszes) [Michalski 19781 The process of developing a cover involves
partially computing the complement of the set of negative events and selecting logical conjunctions
of selectors, called complexes, which cover positive events. The final cover may be a mingle complex
or a disjunction of complexes. The algorithm proceeds depth-first using the method of digioins srars.
A pouitive event, ¢, is chosen and an approximation of the set of all prime implicants which cover
¢, and are in the compliment of the set of all negative events is developed. This set is called a gar.
The best complex in the star, Ig, is chosen using a lexicographic evaluation fuactional (see
[Diettrich,1980]). The events covered by lg are removed from further consideration. The process is
then repeated but each new cvent, ¢ is chosen so that it has not been covered by any element of
any previous star. This cnsures that disjoint, well-separated stars are built. The process is repeated

until all eveénts have been cavered by st least one star.
3.3.2 Using GEM in an Expertise Development System

The A9 algorithm is impiemented in a program called GEM written in Pascal on a Vax -
1/780. The A9 algorithm (and, consequently, GEM) is an attractive choice for an inductive
inference engine because of its fexibility. GEM is domain dependent only within the confines of
the data strucsures used. Aoy problem domain which can be described by events that can be
characterized using acceptable data structures can be processed wsing GEM. The data structures
used required for input to GEM are patterned after relational tables. This structure has proven lo

be very flexible. =
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4 EXPERIMENTATION
4.1 Experiment 1: Black-Cutworm Damage Prediction
4.1.1 Problem Domain

Black Cutworms are insect Iarvae which damage between two and tea perceat of the corn
acreage in the Midwest annually. The name derives from the effect of cutworm action on com
plants: the severing of the sialk just sbove the soil line. In mid-April, Black Cutworm {(BCW)
moths sre camied into Hlincis by southerly winds snd they land in the ficids they find most
attractive and lay their eggs. The growth cycle of the cutworm is short emough to allow three
generations of worms to mature each growing sesson. Because more mature plants are more
resistant to the ravages of the larvae, only the first generation of worms typically causcs damage to
field com. Two major factors have been identified by corn eatomologists in explaining damage
mechanisms. The first is the attractiveness of a given field for the moths. A more attractive ficld
will be the target of more moths' egg-laying. One of the most commonily postulated factors in ficld
attractiveness is weediness at the time of moth flight. The sccond factor has been termed synchrony
ar the correspondence in time between corn maturation and cutworm maturation. Both corn and
cutworm larvac mature 8t rates proportional to temperature. When the com is young and the
larvae are large, damage will be severe. When the com is mature before the larvac mature,
damage is slight. Also, if the larvae mature into pupae before the corn emerges from the soil, the
damage will be alight [Boulanger, 19831 Many factors may effect the rate of curworm development
and the size of cutworm populations. The difficuity of identifying the most important (actors lies in
the Inck of sufficient quantitics of high quality data due to both the rarity of cutworm damage and
the lack of sufficient manpower for data collection. The system described in this paper was applied

to & selected subset of the data to attempt to uncover some of the important factors.



4.1.2 Data

The dats for this cxperiment consists of seventeen static attributes and two dynamic attributes
as well as time and cutworm damage percentage figures for each of 210 eveats (given in Appcndt_:-

D) recorded for the 1978 growing scason. A sample event is shown in Figure 13. The breakdown

Statice Portion
[fieldowner=smith] [year=1978] [previous crop=clover]s
[bew hiszory=yes][adjacent water=no|{surface slope=northfé
{surface character=level]|(fall cillagesplowl(spring till=disc]&
{manure used=ng][fertilizer regimen=none][insecticide=nonels
(planting date=june 1]& ’

Dynamic Portion
(datesmar 24)=)> [wead species=horsaweed][weed density=heavy]
(date=mar 24] 3> [weed species=smartweed](weed density=light]
(dare=apr 15]=> [weed species=smartweed](weed density=heavy]
[date=smay 1 |=> [weed species=weedkill ]{weed density=ncne ]

1:> [damage= 75%]

Figure 13. A sampie event for the black cutworm damage dats showing static and dynamic
attributes

of the data by damage perccutage is shown in Figure 14. The zero number of felds damaged
hetween 45 and 50% was thought to be a logical class division. CONVART used the original two
dynamic sttributes to construct 10 new attributes which characterize the behavior of the dynamic
attributes over time. The attributes (both original and constructed) are given in Appendix A, with
the range of possible valucs cach may have. The original values for some of the attributes in some

of the cvents were missing so values deemed plausible by an expert com entomologist were inserted
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where appropriate. If no plausible value was sppareat, the valuc was left as “unknown®. The final
event set is missing approximately 20% of the data vahies and many of the events have limited

time-dependent data. These factors combined to complicate the experiment considerably.
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Figure 14, Histogram of the relative frequency of occurrence of different manges of
damage percentage in the 210 cvents used for this study

413 Resuits

Rules generated by applying GEM to this data are given in Appendix B. As the sparsity of

the data could inject a significant amount of noisc into the data, a corn entomologist was asked to
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identify those complexes which might be extrancous or unnecessarily convoluted. A comparison of
the performance of the random adaptive scarch method and the greedy method is given in Figure
15. The output of the test runs is given in Appendix D. The lists of attributes were comparable

with only minor differences among the least relevant attributes.

Search Scheme No. Attributes CFU Time No. Icerations No. Actriduces
Par Sample Finally Chosen
Gready = 34 ses 1 11
Random 3 46 18 10
9 10 43 48 _ 12
" 15 45 7 13

Figure 15. A comparison between different search schemes and verying sewrch parameters
for selecting a quasi-minimal set of attributes

4.1.4 Analysis

A compurison between the rules generated snd the model outlined in 4.1.1 shows substantial
agreement between the factors considered most important by coma entomologists sad those
identified by the processing. For example, factors such as planting date, several weediness
measures, and tillage regimens reflect considerations of ficld atiractiveness and synchrony presented
carlicr. Insecticide usage cffects the survival of larvae during periods of low availability of food
and during other periods of adverse conditions. The value of CONVART for this processing was

considerable mince it was required for the production of the attributes which capture the weed
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population trends that indicate both synchrony and field attractivencm.

Comparison between the performance of random sdaptive search and greedy scarch show
that, for this event set, the differences in results in terms of attribute set size is small and the
penalty for processing using the random adaptive scarch scheme is large. The results of the random
search shows that no highly synergistic combinations of attributes are contained within the event set

since RAS (designed to find such interaction) provided the same results as greedy scarch.

4.2 Experiment 2: Cranicstenosis Syndrome Identification

4,2.1 Problem Domain

The study and classification of medical syndromes is a well established ficld of medicine and
medical diagnosis. The task of disgnosing thess syndromes is increasingly difficult due to the
growing number of rare genctic disorders and poorly understood patterns of maiformation and
maifunction. In addition, the problem is compounded by discase sympiomes and hereditary traits
which resemble the indications of many of the dizorders of interest. A geanetics clinic must be

capable of reliably diagnosing approximately 8000 disorders on a day to day basis,

One of the fundamental problems in this field has been the rarity of most of the syndromes.
With only a few (sometimea only one or two) examples of a given disorder reported, it is difficult
to differentiate true indications of the syndrome from individual peculiaritics of the patients. This
problem has been approsched in the past by the merging of the findings of several geographically

scparate observers of the same findings to recognize patterns in the data,

The class of syndromes studied in Experiment 2 is named Craniostenosis. The cranium of an
infant is composed of bony plates joined at their edges by flexible joints or sutures. When these
joints ossify (become bonmy), the skull assumes its final shape and size. The now-bard pints are
known as synostes and occur normaily during the course of growth and development. If a suture

should harden before or after the others, the skull will develop abnormally, leading o asymmetry
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of the skull and face or sbnormalitics such as unusually limited cranial size. Due to the large
numbey of observable anomalies of the face and skull and the sparsenem of the available data, the
methods deseribed in this paper were applied in an attempt to pinpoint the most definitive

anomalies for differentiating the syndromes in this class of disorders,

4.2.2 Data

The data consists of 231 observed cranio-facial anomalics for 80 paticats diagnosed as baving
craniostencsis (the data may be found in Appendix D). Craniostenoais may be divided into four
major syndromes with many patients undiagnosable due to the large overlap betweca the
indications of the syndromes. Despite this overlap, doctors have charscterized each syndrome
according to certain individual terdencies [Spackman,1983F

@ Crouzon’s Syndrome patients exhibit premature craniosynostoms, shallow orbits
and frontal boszing, and maxillary hypoplasia with or without a8 parrot-like
nose. About a quarter of the reported cases appear to be fresh mutations.
@ Saethre-Chorzen Syndrome is highly veriable in almost all of its features. Among
the more common abnormalities are: synostes of the coronal sutures, low-
set hairline, facial ssymmetries, shallow orbits, ptosis (drooping eyelid),
smal! ears, and partial webbing of two or more fingers or toes.
® Apert's Syndrome includes both craniosynostosis and severe syndactly (fusion of
two or more fingers).
® Pfeiffer's Syndrome also involves craniosynostosis and syndactly, although it is
milder in aimost every similar feature.
Among the 81 paticnts, many were got disgnosed as to individual syndrome. When = single
*sormal” patient is added as a sixth control class, the data may be brokea down as shown in Figure

16. A sample event is shown in Figure 17. A list of the 231 anomalies is given in Appendix C.



Syndroma # Patients
Apert 16
Crouzon 24
Saethre-Chotzen 8
Pfeiffer 1
Undiagnosed 31

Figure 16. Breakdown of data for craniostenosis paticnts by syndrome

4.2.3 Results

The attributes were all binary (i2., syndrome present=1, not present=0), VARSEL identified
a set of 20 attributes, smong the original 231 in the event set, which successfully characterized each
of the syndromes without characterizing any of the patients of indeterminate diagnosis or the
normal patient. The chosen attributes are given in Figure 18. GEM then analyzed the new cvent
set and used 16 of the twenty attributes to produce the rules shown in Figure 19. A physician who
had been attempting to perform the same task manuaily, had invested approximately 4 man-months
in the job. He also discovered twenty attributes but had only succeeded in characierizing about
75% of the patients successfully. These astributes are also given in Figure 18. The rules he derived
using GEM and these attributes are given in Appendix D. The total real-time required for the

computer processing was lcss than un hour.

If we compare the generated rules in Figure 19, with the clinical profiles presented cadier, we
may note close correspondence between the rules for cach clas and the clinical findings. An
important consideration is that the clinical profiles presented have a great deal of overlap so they
are not a perfcet "benchmark” for deciding rule validity. Ia addition, the data collected by

different clinicians often varies as to quality and scope.



[patient number=00C|[date=l/1/81]1(flat forehead=present]{syndactly=present]s
[craniasynostosis=absenc] «.. 228 other anomalies

Figure 18.

1> [syndrome=Pfeiffer]

Figure 17. A sample event from the craniostenosis event set

Chosen by VARSEL

Craniosynostosis
Craniosynostosis-Coronal
Craniosynostosis-Saggital
Facial Asymetry

Flat Forchead

Amymetric Forehesad
Ptozis-Eye

Shallow Orbit
Exophithaimos/Proptosis-L. Eye
Exophthalmos/Proptosis-R Eye
Byzantine Palate

Midface Hypoplasia
Cutancous Syndactly-Hand
Syndactly-Foot

Partial Syndactiy-Foot
Hypertonia

Plagiocephaly

Pyloric Stencsis

Position Anomolies-Digite
Undescended Testes

Chosen by Expert

Cranjosynostosis-General
Ear Malformations
Impaired Hearing

‘Facial Amymetry

Flat Forehead
Beaked Nose

Ptosis
Hypertelorism
Proptosis

Hallux Valgus
Byzantine Palatc
Maxillary Hypoplasia
Syndactly of Fingera
Syndactly of Toes
Webbing of Tocs
Webbing of Fingers
Strabiamus

Clefi Palate

Tear Duct Stenosis
Propiosis

A comparative listing of the attributes chosen as most relevant by VARSEL and
by lhmnew!wtbdicﬁmiuﬁnnotcrmimnuimdmmufmn the

dats nsed in this stody
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Figure 19. A sct of ﬁu-imhmmh!mthmw&m:t (the numbers in

theses are the pumber of events fire covered by this complex, the number
otmnﬂmbmwmhmph.ndtheumlmbue!muwwmd

by this complex)

Random adaptive search failed to converge for this cvent sct, probably due to the low
lixelyhood of synergistic interaction since the minimum aumber of binary atiributes required to
differentiate six classes would be three and 16 were actually required. The sysiem has clearly
operated cost-effectively on this cvent sct, producing plausible rules within the limitations of the
event sct in 8 computationally attractive amount of time. The resulting data reduction from the use
of VARSEL as 8 preprocessor was over 91% since only 20 of the original 231 attributes were

necded,
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5 CONCLUSIONS

A model has been presented which describes the process of domain expertise development in
terms of the sequential spplication of four sub-procemes with multiple feedback paths. The
nibprocesses include atribute construction (implemented in CONVART), attribute sclection
(implemented in SELECT), rule formation (implemented in GEM), and rule implementation (left

for the system builder).

A system has been constructed which is capable of spplying the model for the purpose of
deriving expert decision rules from data using 8 minimum of explicitly siated domain knowledge
and minimal iterative processing. The system contains modulea for: the construction of attributes
which describe time-dependent behavior of other attributes so that time-varying processes can be
analyzed, the sclection of most relevant attributes for clam discrimination using a recently
developed measure of attribute relevancy, and inductive rule inference based on cstablished
methods of automated inductive inference. The rule implementation process in which a set of rules

is embedded in m program which can apply the rules to new events, remains as a task for the

programmer.
5.1 System Performance

The constructive induction program CONVART was vitally important in the processing of
Black-Cutworm damage data because cutworm damage is closely tied to time-dependent processes.
it was of not used for Craniostencsis data since the attributes present were all static. The variable
selection program VARSEL was useful in both cases but different scarch strategics were of
different utility. Random adaptive scarch showed explicitely the lack of gynergistic intsraction
between attributes in the BCW data since the attribute scts chosen by RAS were the same as those
chosen by greedy search (these results arc given in Appendix D). RAS failed to produce useful
results of any sort for the craniostenosis data because of the poor discriminatory value of binary

attributes for multi-class cvent sets. Greedy scarch was effective in both cases since significant data
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reduction was achieved in both cases and sppropriste cxperts favomably evailuated the resulting
aitribute sets. The inductive inference engine GEM produced good rules from the pre-processed
event sets which were thought to be reasonable and consistent with the input data when examined

by experts from within the problem domains.

5.2 Indicated Future Directions of Inquiry

The potential for significant future inquiry exists throughout the processing chain used in this
system. Specific avenues of study for the comcepts embodied in CONVART and GEM are
described in detail elsewhere [Michaleki,1982b] [Davis,1981] Future directions for applying and
studying the measure of relevancy preseated earlier include cxploring its use as an indicator of
potentiglly relevant groupe of attributes for constructive induction purposes, and further refinement
of the measire to cnhance its resofution. [n addition, new implementations of the greedy and
random adaptive scarch schemes may overcome the limitations of the current implemcutations, and

ncw search schemes may prove more effective than either.
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APPENDICES

Appendix A: Attributes in BCW Damage Event-Set

The following is a list of the attributes, both original and constructed, used for the analysis of

black cutworm damage in the state of lllinos.

* means this ativibute was chosen by RAS.
** means this attribute was chosen by GAS.

*** means this attribute was chosen by both RAS and GAS.



€ummmneea= Constructed ACEributes -----~—----»<------ Initlal Artributes -----c-ecac--=>

Atiribute

Statis Ageributes

1.
z.
3.
vueg
5.

asay,

aeng,

9.
anEll,
seajl,
12.
11,
TUITR
*15.

Damage
Flald Owner
Srowing Yoor
Provioua Crog
0y History
Permanaat Border
Vagetation
Permanont Bordar
Watwr
Surface Direciion
Surfaca Character
Fall Tillage
Soring Tt11aga
#ynura Usaga
Fertilizer Usags
Insecticida
Planting Cata

Planting Rute

Oynamie Attributsa

17.
l8.
Static
=19,

20.

.

L :

23,
"4,

'2’4

7.
=28,

Yead Species

Weud Ounsity

Attributes

Moot Common
Wead Spezies

Lenak Common
Yood Spacias

Husber OF
Ohasrvations
Of Sams Wand
Speutes

Numbor OF
Dirfarsat
Vead Jpsuies

Averape Dansity

Intsrcept of
Oenaity ve
Ting

$lopa OFf Dansity
ve Timg

Max tus Yoed
Daraity

15t Time OF Nax.

Ninisus Yeod
Oeneity

15t Tiee of Nin.

Posatble Values (deamin)

«{30%, >50%

toe numercua ta 1ist

1978

Corn. Desns, Weeds, Sorghum
Yes, Mo

Yes, Mo

Yoz, He

Morth, South, East, Vest, Roms

Level, Ralling, Bottomland

fiene, Plow, Chisal, Dise

None, Plow, Chisel, Ofsg

Yes, W&

Yes, Mo

Nonw, Yes (nonspecific), Prevemtative, Rescua Treatsset
Jarl-Aprl0, April-Aprl®, April-Sayld, Maylé-Jund,
After Jund

<{100%, 100%

Rone, H_ndl (nonspecific), Very Fre Vouds, Onion,
Gress; Leguss, Vintar Annuail, Other fircadieaf, Weedkill
Mone, Light, Meavy, Heswy fztches

Nons, Weeds (nomspscific), Very Few Weeds, Omion,
Erese, Loguse, Wintar Annual. Other Brosdiss’, Weadkil)

Hone, Veeda (nonspecific), Very Few Wesds, Onfom,
Srags, Leguse, Vinter AnAzal, Other Brosdisaf, Wesdkill

llt

g, 1, 2.3 3
dons, Light, Heavy, Heavy Patched

-, 057, -.047, =.044, -.040, -.038, -.034, -.032, -.030,
-;029, -.028, -.024, =-.020, -.018, -.015. >9

Hone, Light, Heavy, Heavy Fatchas
Before Marld, Mar2d-Aprld

Hone. Light. Heavy, HWeavy fatches

AorS-toril. Aprl9-22, Apr2l-Rprll, Aprll-RpedN,
Rayi-Nayl, Mayl-#ay?, Nay@-Sayll, Nayld-Hayi®,
May20-Fayil, Mayll-Rayl@, Hay27-Jusd
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Appendix B: BCW Damage Estimation Rules

The following two pages give rules for predicting black cutworm damage severity derived by
GEM from 1978 BCW data after new attributes were constructed by CONVART and selection
was performed by VARSEL. Esach rule is quite complicated in that esch has many compiexes.
The resson for this becomes clear when one examines the parameters on the right-hand side of the
page:
® NEW - The first number is the number of events covered by this complex which were not
covered by previous complexes in the list.
@ IND - The second is the pumber of events covered by this complex alone of all complexes.
® COV - The third is the total number of events covered by this complex.
Examination of the numbers ehows that the rules reveal a subtle and complex interaction between three
factors: weediness, synchrony, and pesticide use. The interaction is suggested by the coverage number.
Note that cach complex covers scveral events but covers very few uniquely. Therefore, the complexes
have significant overiap in coverage but each one accounts for a slight variation on one or more of these

themes.
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Appendix C: Attributes {or Craniostenosis Event Set

Tbe following list gives the snomalica present in the original cramiosienosis datss=t grouped by
body system cffected. See Figure 18 for lists of which attributes were chosen by VARSEL and which

were chosen by s human expert.

Palate
Incomplece Median Cleft
Madian Cleft
Submucous Cleft (3 varieties)

Skull
General
Assymetric
Macrocaphaly
Cranlosyncatosis
Craniosynastosis=Coronal
Craniosynostosis-Sagttzal
Faulty Sutures
Shape Anomalies
Brachyeephaly
Cloverlieaf Skull
Plagiocephaly
Trigonocephaly
Prominent Coronal Sutyre

Forehead
Ganeral
Aasymetric
Large
Typical Aperts
Bossing
Prominent/Bulging
Elongated
Flae
Midline Defeect
Typlcal Crouzona
Supraorbical Ridge Anomalies



Midface
Genaral
Facial Assymecry
Midface Hypoplasia
Hypertelorism
Hypotelorism
Assymetric Orbical Placemenc (Right Higher)
Hypoplasia (Left Side)

Jaw
General
Assymetric
Hicrognathia/Hypoplasia
Antegonial Notehing
Prognachia
Wide Gonlal Angle

Lefr Eye
General
Ansphthalmia
Microphthaimia
Exophthalmos/Proptaosis
Prominent/Protrvuding
Setcing Sun Sign
Devil’s Eye
Shallow Otbic
Small Oebit
Malpositioned Orbic
Blepharitis
Ptosis
Antimongoloid Slant
Eplcanthal Fold
Synoche of the Lids
Esotropla
Strabismus
Nystagmus

Right Eye
General
Anophthalmia
Microphthalmia
Exophthalmos/Proptosis
Prominent/Protruding
Ocbit Anomalies
Devil’s Eve
Shallow Otrhic
Small Orbicz
Blepharitis
Petosis
Lids Fail To Close
Antimongoleid Slane
Eplecanthal Fold
Syneche of the Lids
Esotropla -
Strabismus
Nystagmus



Left Ear
Small
Preauricular Pirc/Sinus
EAC Atresia
Low Ser
Posterisorly Set
Oasicular Anomalies
Cupped
Lopped/Protruding

Right Ear
Small
Preauricular Tag
Rataced
Low Set
Cupped
Lopped/Protruding

Nose
General
Azssymecrie
Bifid
Narrow
Broad/Bulbous
Alae Ancmalles
Cleft Nostrils/Alae
Pinched Yares
Baakad
Saddle Shaped/¥o Bridge/Flac Bridge
Choanal Atresia/3tcanosis
Deviated Bridge/Yose
Daviared Saptum

Oral Cavicy
High Arched Palate
Byzantine Palate
Torus PFaltinus
Narrow Palata
Maxillary Assymetry
Commissural Lip Pits
Macrostomia

Tongue
Short Frenulum/Tongue Tia

Ory

Dentition
Open Bite
Crossbice
Dental Crowding
Migsing Teeth
Typleal Apercs

Mimeeic Muaculature
Motor Problem
Paresis



Musclas of Masticacion
Motor Problem
Pareals

Neck
General
Torticolllis
Shore

Abdominal Wall
‘Hernia, Unagecified
Umbilical Hernia
Inguinal Hernia

Chast Wall
Ceneral
AsymmetLry
Prominent
Pactus Excavatun

Back
General
Scollosis
Xyphosis/Kyphoscoliosis

Resplratery Systexm
Chronic URI gr Other Respiratory Disease

Cardiovascular System
Cardiac Anomalias
Valve Angmalies
Rychm Anomalles
Aoetic Arch Anomalles

GI Systen
Liver ,Spleean
Pyloriec Stenosis

Ganital
Ganeral
Hypoapadias
Undescended Testes
Scrotal Anomallecs
Uterina Anomalies
Kidney Anomalies

Skin and Adnexia
Alopecia/Bald
Thin/Sparse Hair
Echzema

Left Arm
Ceneral



Upper Arm Anomaliss
Jofnt
Dialocacion/Subluxacion
Contracturas

Right Arm
General
Upper Arm Anomalies
Jaint
Contractures

Left Hand
General
Arachnodactly
Contcractures
Syndactly
Complete Syndactly
Cutaneous Syndactly
Dermatoglyphics
Simian Crease
Phalangeal Anomalies
Positlon Anomalles/Digics

Righe Hand
General
Arachnodactly
Contractures
Syndacely
Complete Syndactly
Cutaneous Syndactly
Simfan Crease
Posicion Anomalies

Left Leg
Cangractures
Jolnt
Knge

Right Leg
Contractures
Joinc
Knee
Overlapping Toes

Laft Faot
Ovarlapping Toes
Bifid Toe
Broad/Large Digits
Syndactly
Partial Syndactly



Cutaneous Syndactly
Clubbing

Abnormal Pesition
Cleftr/Saperacion, Toes
Abnarmal Poscion/Foot

Right Foot
8road/Large Toes
Syndactly
Parcial Syndactly
Cutan=ous Syndactly
Clubbing
Abnormal Position
Overlapping Toes
Cleft/Seperation, Toes
Abnormal Poscition/Foot

Wervous System
Genaral
Facial Nerves
Retardation
Developnancal Retacdacion
Epllepsy/Salzure Dlsocder
EEG Abnormal
Hyperactiva
Reflexes Hyperactive
Cerebral Anomalles
Corpus Collosum Anomalies
Aplusia/Speech Problems

Skeletal (Primary Axial)
General
Cervical
Carvical Fusions
C=1 Anomalies
Qecipitalizacion, C=1
Bastlar Iavagination
Seoliaosis
Hip Anomalies
Hip Dislocations
Joint Anomalies, Generalized
Spina Abifida

Muscular System
Ganeral
Hypotomia
Hypertonia
Contractures



