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1. INTRODUCTION

Computer systems which can perform a task that normally requires a highly-trained human expert
are understandably in great demand. Unfortunately, the development of such systems has proven to be
difficult. Building an expert system typically requires months {or years} of work by both the human
expert who is providing knowledge and the computer scientist (knowledge engineer) attempting to put
that knowledge into a computer program. The primary problem lies in the area of knowledge scquisi-
tion and refinement. Computer programs that aid a domain expert in expressing and modifying

knowledge would decrease the amount of time necessary to build useful expert systems.

This thesis describes software tools that are the first steps along the path to an integrated
knowledge acquisition and refinement system. The research described here is based on the belief that a
teacher {i.e., the domain expert) should be provided with several ways to present and modifly kndwledge.
The goal of this research is to develop a domain independent inference system that can be taught in

several different ways.

Two specific computer programs are described. The first, GEM (Generalization of Examples by
Machine), is the newest in a series of inductive inference programs developed by the Artificial Intelli-
gence Laboraotory at the University of Illinois [Michaiski 77, Michalski and Larson 78, Stepp 79, Hof,
Michalski and Stepp 83]. The second program, ATEST, allows rapid, batch-type testing of a knowledge
base. ATEST was developed specifically to aid in rule base refinement. Both of these programs are
intended, in their final implementation, to be part of the ADVISE general purpose inference system

[Michalski and Baskin 83, Michalski et. al. 84].

This chapter presents an overview of previous knowledge base development work and a discussion
of specific problems in knowledge acquisition. This will establish the context for the ideas in Chapter 2
on a paradigm for rule base development. Chapter 3 describes the rule formalism used throughout the
remainder of the thesis, and Chapter 4 contains a detailed description of the GEM and ATEST pro-

grams. The last two chapters present results from the application of these programs to three domains,
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1.1. An Overview of Expert Systems and Knowledge Acquisition

An expert system contains both procedural and declarative knowledge. Declarative knowledge is
stored in a knowledge base, Two methods have been widely used in building knoﬁledge bases: produc-
tion rules and semantic networks. Systems such as MYCIN [Davis, Buchanan and Shortliffe 77|, R1
[McDermott 82| and PLANT /ds [Michalski et. al. 83| use production rules to represent a domain expert's
decision making rules. Expert systems such as Prospector [Gaschnig 82| and BABY [Rodewald 84] use
semantic networks to represent real-world situations and phenomena. Procedural knowledge is built
into the control scheme, a deductive inference mechanism which uses the knowledge base. The expert
system (directed by the control scheme) asks questions of the uﬁer and applies information to the
knowledge base in order to derive conclusions. This separation of procedural and declarative knowledge
is 3 major feature of expert system architecture. Bramer [82] presents an overview of expert systems

and related issues. Buchanan [82] has developed a good partial bibliography of work in this area.

Knowledge acquisition is the bottleneck in expert systems development, so several research efforts
have‘been directed towards providing the domain expert with tools to aid him in refining and correcting
a knowledge base. The Teiresias system [Davis 76| provided an interactive, English-language front end to
the MYCIN rule base. Teiresias contained meta-level knowledge about diagnostic and therapuetic rules
in the form of rule models, These modeis were used ‘to generate expectations about the form and con-
tent of rules. Teiresias’ expectations helped it to guide the debugging process. The ONCONCIN system
[Shortlife et. al. 77] was equipped with a tool that aided the expert in identifying problem areas in the
knowledge base [Suwa, Scott and Shortliffe 82]. Both this tool and Teiresias worked in the context of a
single expert system. They also assumed that the domain expert had already developed at least a partial

knowledge base.

The standard method of knowledge base development is a generate-and-test process [Feigenbaum

Lo d
Jl].

The domain expert and the knowledge engineer construct a knowledge base and control scheme.

The domain expert then tests the system on examples. When problems are revealed during testing, the



expert modifies the knowledge base. The system is tested again. This cycle is repeated until the domain

expert is satisfied with the system’s performance.

Several research projects have resulted in domain independent expert systemé [van Melle 80, Forgy
and McDermott 77, Hayes-Roth et. al. 81]. All of these systems provide a single knowledge representa-
tion and inference mechanism. They present the domain expert with an “empty’ expert system; this
simplifies the knowledge engineer’s job, since he no longer needs to go through the system development
and selection of a knowledge representation. Though these systems speed the expert system develop-
ment process, they do so by providing a method that follows the standard generate and test procedure.
The domain expert is given 3 language in which to express his knowledge, but he is not givea tools which

will aid him in doing so.

Promising results in the area of rule acquisition have been obtained through the use of ;:omputer
programs which induce rules from examples of expert decisions. In some cases, rules formed by such
programs have outperformed rules written by human experts [Michalski and Chilausky 80, Quinlan 83).
However, this method has limitations. Inductively derived rules are sometimes too complex to be used or
understood by humans. Since one of the principal features of expert systems is the ability to explain the
reasoning behind decisions, such complex rules are not appropriate. The comprehensibility of induced
rules may be increased by breaking the problem into subproblems which can be soived individually
[Shapiro and Niblett 82, Reinke 82|. Unfortunately, the problem breakdown must be done by the
humar domain expert. Some research has been done on automating this process by applying a ““concept
formation program™ [Michalski and Stepp 83a] for dividing examples into a hierarchy of subclasses

[Paterson 83].

Another weakness with the inductive inference tools developed so far is the lack of any kind of
koowledge to guide the search for appropriate generalizations. Quinlan’s ID3 algorithm, for example,
uses an information-theoretic measure to select the next attribute in its decision tree [Quinlan 79]. To

compound the problem, the decision tree format used by ID3 is difficult for humans to understand,



although it is easily executable by machine. The GEM program (see chapter four) presents rules in an
if-then format that is easier to understand. Also, the methodology used by GEM permits the user to
specify background knowledge about the domain for which rules are being formed. However, the

language GEM uses is somewhat limited {see Chapter 2).

Despite some weaknesses, inductive inference is a promising tool. A special advantage to this
method of knowledge acquisition is that the expert is often better at generating examples than he is at
generating an explicit declaration of his knowledge [Michie 82]. Since human apprentices are almost
always taught by example, it would seem worthwhile to provide a knowledge base builder with inductive

inference tools.

Programs that learn from examples will aid the domain expert in rule base acquisition. The prob-
lem of rule base debugging remains. The expert must try to find and deal with cases where his
knowledge base might produce an ambiguous result. For example, in a medical expert system such as
ONCONCIN it is essential that conflicting therapy recommendations not be given. Similarly, expert sys-
tems in, say, fault diagnosis, should be able to deal with every fault that may arise. In domains where
rule base consistency and completeness are valid concerns, the weight of the problem is again left on the

domain expert’s shoulders.

1.2. Knowledge Acquisition and the ADVISE system

ADVISE is a set of software tools under development at the Artificial Intelligence Laboratory at
the University of Illinois [Michalski and Baskin 83|. These tools, taken together, form a “meta-expert
system” - a system for building expert systems. ADVISE is unique in that it does not use a single
knowledge representation and inference mechanism. EMYCIN [van Melle 80|, for example, allows only
rule based knowledge and provides only a backward chaining control scheme. ADVISE uses a single
low-level format for knowledge representation. This format is powerful enough to represent rules, net-
works and relational tables. ADVISE also allows a host of diflerent inference mechanisms modules.

Eventually the system will provide an inference mechanism language that will allow the user to define



his control scheme in terms of already existing tools.

Figure 1 shows a conceptual block diagram of the ADVISE system. The Control Block provides
the user with an integrated access to the system's knowledge acquisition and inference tools. The Con-
trol Block accesses the Knowledge Acquisition Block or the Query Block, depending on the mode the
user has selected. The Knowledge Acquisition Block provides direct access to the knowledge base
through a relational database system, a rule editor and a network editor. Machine learning tools are

attached to this block and provide a means for learning rules from examples {i.e. the inductive inference

A Neswork Eee
B Ruls Bees
C. Relationmal Dt base

QL Direcs Resriseal -c- K1z Direcs Represernation
Q2 Uhing [nference : K2 Using Inferencs
1
Comral Block
CL Query
C2 Knowiadge Acxpsistion
C3 Expl amsion

Figure 1. A conceptual level block diagram of the ADVISE system.




programs modify and update the knowledge base rather than the user doing so using more primitive
tools). The Query Block provides deductive inference mechanisms (control schemes) for expert systems

consultations and a relational database system for direct retrieval of knowledge stored in relational form.

Several expert systems have been implemented under ADVISE [Boulanger 83, Reinke 83, Rodewald

84|. These systems were used to drive the initial development of the meta-expert system tools.

Currently, the low-level knowledge representation language in ADVISE has been completed. The
Knowledge Acquisition Block is partially completed [Spackman 83|, as is the Query Block. The research

described in this thesis is aimed at upgrading the capabilities of the knowledge acquisition block.



2. A PARADIGM FOR RULE BASE DEVELOPMENT

As stated in Chapter 1, the standard method for forming an expert system's knowledge base is a
generate-and-test process. The}é are difficulties, however, in both the generation and testing of
knowledge bases. The source of these difficulties is twofold. First, the expert is trained to make deci~
sions, not to explicitly state his knowledge. Second, the expert is provided with virtually no aids in
either stage of the process. He must generate his knowledge base from scratch with only the knowledge
engineer's guidance to help him. He must thea produce test examples which show faults in the

knowledge base he himself just constructed.

Some relief is provided by expert sytem development systems, which establish a framework for
expressing knowledge. Such systems give the expert a pre-defined knowledge representation method,
and therefore make the kaowledge acquisition process somewhat easier. However, they may also force
the expert to channel his knowledge into a format which does not fit it. The knowledge representation
problem will not be dealt with here. Instead, we will carefully delineate an area of applicability, and

describe new tools for knowledge acquisition within that area.

2.1. Assumptions and Domain of Applicabllity

Many different knowledge representation formalisms, each applicable to a range of domains, have
been developed in the last twenty years. Unfortunately, some of these formalisms have been used in
areas for which they are not really acceptable. In order to avoid this trap, the knowledge represéntation

to be used will be exactly defined. Such a presentation will naturally suggest certain problem types,

The methodology described in this thesis deals only with rules. In a variety of application areas,
an expert's knowledge can best be expressed in the form of if-then rules. With some extensions to the
ifthen format, a rule formalism can deal with uncertainty in information, with weighted conditions and
with multiple decisions and associated confidences. A detailed discussion of the syntax and semantics for

rules is presented in Chapter 3.



Given that we are dealing with rule based knowiedge, we need to define restrictions on the rule
language. The major assumption made here is that we are dealing with domains where the expert
system’s job is to select an apptropriate decision from a pre-specified list of possible decisions. As men-
tioned above, we will allow the system to associate a strength, or certainty value, with any decision it

makes. The important thing is that the number of decisions that could be made is finite.

We will also place restrictions on the attributes used to describe problems. Rules will be written in
terms of discrete, finite variables. We will assume that the domain expert is able to specify the impor-
tant variables in his area of expertise, and that these variables are known and available, This does not
assume, however, that all the attributes given by the domain expert are applicable, or that all informa-
tion will be available during consultations conducted by the expert system developed. We are simply

restricting the language which the rules use.

A final set of restrictions apply to the type of data available to inductive inference programs (see
the next two sections, and Chapter 4). The learning and testing tools described here all act on the
assumption that examples will be presented to them im terms of defined attributes, as above. That is,
examples of expert decisions will be given in terms of discrete, finite attributes, and each example (event)
will be associated with a single decision. We also assume that events will be given in their entirety when

presented to a learning program, i.e. events will not be given in piecemeal form.

In summary, we are restricting ourselves to rule based knowledge. Our rules will be written in
terms of discrete, finite attribute values. If a rule specifies a decision, that decision will be one of a
known set of decision classes. If the expert is to present examples of his decisions, the examples will be
presented in terms of the same attributes, and each example will have a defined decision associated with
it. We hope to develop a method which will provide, within this restricted framc;work. useful tools for
building and debugging rule bases. Discussions throughout the remainder of this thesis will assume we

are dealing with konowledge of the type described in this section.



2.2. The Standard Rule Acquisition Paradigm

Figure 2 shows a flow chart of the standard knowledge engineering process. In the figure, circles
represent processes and blocks }epresent objects (both humans and computer programs) which partici-
pate in the processes. The rule base specification process shown consists of two major subparts. First,
the knowledge engineer must obtain from the domain expert a list of the variables that are relevant to
the problem area. In medical diagnosis systems, for example, this wouid be a list of relevant symptoms,
patient data and laboratory data. Once the attributes are defined, the expert may write the rules for
the initial knowledge base. At this stage, in consultation with the domain expert, the knowledge
engineer must decide exactly what needs to be represented and how to represent it in the form of rules.
He must consider, for example, how to deal with uncertainty, with weights on conditions, and with how

the rules should be evaluated.

Once this process is completed, the knowledge engineer must proceed on his own to encode the
rules and the inference mechanism which will use them. Due to the complexity of the next stages of
knowledge acquisition, the engineer must be certain that his system is easy to modify and that he has
provided sufficient explanatory facilities so that the expert, when debugging the knowledge base, can

find the causes of problems.

This leads to the third, and most difficult, stage of the expert system development process. During
the rule base refinement stage, the domain expert must test his "pupil” on pre-classified examples. This
ptocess often involves several domain experts using the systems over a period of months. Once enough
difficulties have been noted, the domain expert must go back to the rule base and make additions and

changes to it and possibly to the list of relevant attributes.

2.3. A New Paradigm for Rule Acquisition

The problem with the standard paradigm is that the process relies very heavily on the time and

effort of the very expert whose job should be eased by the system. The entire process also depends on
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Figure 2. The standar? paradigm for rule base developmeant.

the domain expert’s a. ity to elucidate and explain his knowledge. All of this suggests that the expert
needs help in building and refining a rule base. Figure 3 shows a new paradigm for knowledge base con-

struction, aimed at giving the expert help in those areas in which he is weak. The tools aligned with the
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expert are intended to work with ezamples of expert decisions, as well as with explicit declaratioas of an
expert's knowledge. These tools should also aid the expert in producing examples that wiil be of impor-

tance.

Under the new methodology, the development of a rule base begins with the expert specifying the
attributes relevant to the problem. Some work has been done in aiding the expert here through a pro-
gram that picks important attributes out of an exhaustive list [Baim 82|. At this point, the expert has

two options. He may proceed in the standard way, aided only by a rule editor, or he may choose to

Figure 3. Paradigm for rule base development using automated refinement and testing
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present the induction tools with a set of tutorial examples. The tcols will produce a rule base which is
guaranteed to work correctly for the examples given. In either case, the initial knowledge base is con-

structed, and the expert enters the knowledge refinement stage.

Here, the expert needs to produce examples that will demonstrate problems in the rule base. The
testing tools shown in Figure 3 really consist of two parts: a mechanism to suggest areas where the rule
base may not work correctly (i.e. it should suggest testing examples] and a mechanism that rapidly tests
examples provided on the knowledge base and presents the resuits in a usable format to the domain

expert.

It problems have been revealed in the knowledge base, it must be refined to deal with those cases
which it handled incorrectly. Again, the expert is given the option of doing the work himself. However,
he may present the examples which caused problems to the induction tool, which will refine the

knowledge base so that it deals with these new examples correctly.

Note here that the new paradigm completely subsumes the old one. Within the context of the new
method, the expert may still, if he chooses, do all the work himself, aided by the testing and editing
tools. The most desirable course is probably a hybrid, wherein the expert may define some knowledge

which is used to guide the induction process.

Given this paradigm, we can create a description of the software tools that should be availaﬂe to
the expert system builder. First, we need an efficient, correct method for generating and refining a rule
base using examples. Next, we need tools that will help the expert generate testing examplei and run
those testing examples on the knowledge base. Additional tools to aid the expert in attribute definition
would also be desirable. All these tools should work in the context of a powerful rule language which

will be of use in a wide variety of domains.

The next chapter presents a rule language that is a subset of the multi-valued logic language sup-
ported by the ADVISE system. Chapter 4 describes programs which partially 611 the induction and test-

ing tool slots in the new paradigm.
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3. RULE BASE SYNTAX AND SEMANTICS

The ADVISE knowledge representation language can be used to express rules. This language
(essentially a tuple or list formafism - see [Boulanger 83]) is powerlul, but too detaited to be presented to
a domain expert. ADVISE does provide, in the context of a rule-based system, a method for dealing
with uncertainty in evidence and in rules, so these problems need not be considerations in our rule
language. What is needed is a specification of exactly what constitutzs a rule base (i.e. how it is struc-

tured) and the syntax and semantics for the rules themselves.

3.1. Rule Base Syntax

A typic‘al rule base has no structure. It consists of a group of rules of the form
condition implies action.
Here, conditlon is a logical statement which evaluates to some numeric value expressing the degree of
truth of the left hand side of the rule. The actlon associated with a rule is the assignment of 3 value to
some variable. The rule language described here will [ollow this general pattern, with one important
exception —~ the knowledge base may be structured. That is, the action of a rule may be the selection of
another set of rules. Such a scheme allows a modicum of control information to be incorporated into the
rule base. There are two motivations for this. Ti:e first is the incomprehensibility of large, induced rule
bases. As discussed in Chapter 1, this problem may be relieved somewhat by imposing a structure on
the rule base. The second motivation is the (act that such a structure is natural in some domains. The
standan:l taxonomic key, for example, could be easily represented with a stru;:tured knowledge base.

Figure 4 shows a simple example of such a rule base.

An EBF grammar for rules is shown in Figure 5. Under this syntax, rules consist of a collection of
{optionally weighted) modules. Each module contributes a numeric value between zero and one to the
truth weight of the left hand side of the rule. A module consists of a disjunctive normal form expression.
Each conjunct (complex) in the module is a list of primitive conditionals called “'selectors™; where a selec-

tor is a statement of the form attridute relation - value. The terminology for this rule base is derived from
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Figure 4. A simple structured rule base for classifying microcomputers (from [Michalski and Stepp 83b)).

the variable-valued logic language ‘«f"!..1 {Michalski 73].

3.2. Rule Base Semantics

To define the semantics for a rule base of this type, we need to specify how the various operators
in it (conjunction, disjunction, and logical operators in selectors) are to be evaluated. However, it seems
likely that in different domains, different definitions of each operator might work best (see Chapter 5).
Accordingly, we define no restrictive semantics on the modules, but rather provide a set of software
switches which allow the user to select from a number of different options for each operator. The
ADVISE rule evaluator has such a set of switches [Michalski et. al. 84], as do the ATEST evaluation rou-

tines (Chapter 4).
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Rulegroup w= Rule’

Rule = Module:a;:a, [+ Module:al:az]‘ 2> Decision
Module u=  Sel Op Module | Sel Op Sel | Sel

Sel = “|” variable “=" Values “|"

Op s= AV

Values tmm value[,value]‘

Decision z=  Sel | Rulegroup

Figure 5. An EBF grammar for rule bases.

The modules and the a-weights have a slightly more restrictive definition. The @y weight is
intended to capture the notion of independent evidence, i.e. this number should express how important
the corresponding module is in reaching the decision on the right hand side if the values of the other
modules are unknown. The a, weight is intended to express the notion of cumulative evidence. This
number should express the strength of the decision if this module and all previous modules are known to

be true. If any module is known to be [alse, then the a, weight is not used.

Given these definitions of the weights, the semantics of “addition” of modules may be defined.
Obviously, the @, weights contain their own semantics — there is no need to fold the weights together.
However, a threshold must be defined at which the a,, weights are no longer useful. Research remains to

define multiple evaluation schemes for the sum of different ay weights. Currently, two such weights are

folded together by taking their probabilistic sum.!

L The probabilistic sum of two numbers g and #is a + 5« (a x §).
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Figure 6 shows two rules from an imaginary rule base for identifying animals in a zoo. The first
rule says that if an animal is striped and if its height at the should is between four and seven feet, then
we can be fifty percent certain that the animal is a zebra. If we know that the animal has hooves and
no antlers, then we have only ten percent confidence that the animal is a zebra. However, if both condi-
tions are known to be true, then we are one hundred percent certain. The second rule is interpreted in
a similar way, except that its action is not the identification of an animal, but the selection of another
set of rules. If all the conditions in this rule are met, then the rule group ‘‘tiger_rules” is called, presum-

ably to identify the particular type of tiger.

The rule schema described here has considerably more power than the available induction routines
can derive. Some of the features (e.g. the a weights) are there to provide extra expressive power for the

domain expert who is writing his owa rules.

In an ADVISE rule base, several other tools are available. Each node in the rule base structure is
called a rule group. A rule group may have contextual information associated with it, so rule groups
may provide another level of “knowledge chunking”. For example, different rule groups may have
different rule evaluation settings. These settings are stored in the rule group structure and accessed by

the rule evaluator. Such chunking provides conceptual simplicity for normal humans and a modular

{fur_pattern == striped|[shoulder_height = 4..7]: 0.50 : 0.50
+

[hooves = present[antlers = absent] : 0.10 : 1.00
> [animal = zebra|

ifar_pattern = striped|[shoulder_height == 3..5| : 0.50 : 0.50
.
[carnivorons == truef : 0.05 : 1.00
1> [rule_group == tiger_rules|

Figure 6. Two rules illustrating the use of & - weights.
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construction for programmers. Eventually, rule group structures may be used to contain many bits of
information about the properties of rules within the group. For example, Teiresias-like rule models
could be stored with each rule group. Future versions of the ATEST program will leave, within the rule
group structure, “footprints” of its evaluation. These footprints can be used to guide the next round of

induction or rule group refinement.
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4. TOOLS FOR INFERENCE AND TESTING

Under the paradigm developed in Chapter Two, a domain expert building a rule-based system is
provided with tools that aid in the construction and refinement of the rule base. Tkis chapter presents a
detailed description of programs developed to fufill these roles. The programs described are somewhat
limited in their scope, but it is hoped that they are the first step on the path towards an‘:\utomated
knowledge extraction system. The first section of this chapter sketches the AQ algorithm, as it is the
heart of the GEM program. Section 4.1.2 describes the modifications to AQ that are necessary to make
it work incrementally. Section 4.2 describes the ATEST program and presents the algorithms it uses to

check consistency and completeness in the knowledge base,
4.1. The GEM Tool for Rule Base Refinement

4.1.1. The AQ Algorithm

The AQ algorithm is a method for producing minimai or quasi-minimal descriptions of classes of
events. Events are given as vectors of values of discrete attributes with finite domains. The type of
probiem dealt with by the AQ method can be illustrated using generalized logic diagrams. These deci-
sion diagrams [Michalski 78] are planar representations ?f the multi-dimensional problem spaces used to
represent events. The common Karnaugh map is a variation of the logic diagram applicable only to

two-valued logics.

Figure 7 shows a decision diagram. Each cell in the diagram represents a single vector in the attri-
bute space of the problem. Each such vector is called an event. Letters in event cells represent the
assignment of a class to that event. So, the cell labelled 3y is the frst event of class A. The decision
diagram is therefore a partial function mapping attribute vectors to classes. The funcﬁon f(xl,xz,xg,x4)
shown in Figure 7 is defined as {(1,0,0,1)=A, £(0,0,2,1)=B, and so on. Each circled area (labelled with
upper case letters) is a disjunct in the cover for a class. A cover is a description of the class based on the

observed events of the class. A correct description is one that is satisfied by every event in the class and
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none of the events of other classes. Obviously, there may be several covers for any set of events. The

goal of the AQ algorithm is to produce the best possible cover within the constraints of its search space.

AQ works by selecting a si;xgle event, called the seed, in the class for which if is producing a cover.
The seed is generalized as much as possible without covering any negative events (i.e. events of other
classes). The generalization of a seed e against a list of negative events E- = {e'l,e'z,...,e'n} is called
the star of et against E°, and written G(e+ |E"). A star is formed by producing increasingly specialized
covers .of the seed event through logical intersections. Initially, the star is equivalent to the entire event
space. The partially completed star is specialized by intersecting it with extensions of the seed,_ against
individual negative events. The extension against operator (** —| ”} is illustrated in Figure 8. Generali
zation by extension is done by taking the negation of a negative event and intersecting it with the value
of the seed along each attribute. In our example, the seed 3 is initially extended against‘bl. This result

is intersected with the star so far {in this case, the entire event space), producing the partial star G(al |
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1 by /
O| i I‘{
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x‘OilG]IOIOI
Xy O 1 2 3

Figure 7. An example of a decision diagram.




{bl}) shown in Figure 8. Since this partial star still covers the negative events b, and bs, a, is extended

against b, and the result intersected with the result shown in Figure 8. Figure 9 shows the partial star

Gla b,,bs}} formed after extension against b,. The process is repeated for b,, producing the star
1 1 2 3

Gla, [ {bl’bz'b:;})' which is shown as the cover for class A in Figure 7.

Naturally, if the star generation process were to work exhaustively, the search for covers could be
exponential in the number of negative events. To deal with this, a parameter (mazsiar) controls how
many disjuncts may be kept in the partial star. If an intersection produces a partial star that is too
large, the star is trimmed by applying a “lexicographic functional” {LEF) which selects the best con-

juncts in the partial star and disposes of the remainder.

The idea of the LEF is esseatial here. The LEF specifies criteria for guiding the search through the

space of possible covers, A LEF consists of a list of pairs of the form (criterion,tolerance). Typical cri-

X X
0 b | | b
°
1| l
0 ;1 i
l *
1 by|
. ‘
2
1
x,0 1]o | 0\1 oix

Xy 1] 1 2 3

(3; —b) =[x =10.2] V [x; = 1.2]

Figure 8. An example of generalization by extension against — a, extended against bl'
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Gla; [{bybol) = [x; = 1.2 V [x3 = 0..1] V [x5 = 2|[x = 1]

Figure 9. The partial star formed after extending ay against bl and bQ.

teria are ‘‘maximize the number of positive events covered”, or “minimize the size of the complexes™.
The first criterion is applied to a list of conjunctive expressions (complexes}, producing a cost for each.
The first tolerance is used to establish equivalence classes among the complexes based on these costs.
Ties (i.e. complexes in the same equivalence class) are broken by applying the next (criterion,tolerance)

pair in the LEF. Criterion are applied until the desired number of complexes have been selected.

When star generation is completed, we are left with a list of complexes, each of which covers the
seed event and none of the negative events. The lexicographic functional is applied to select the single
best complex. This is added to the cover for this class (the cover starts out as emp;y). If there are any
positive events remaining which are not covered by the description formed so far, a new seed is selected

and the process iterates.

The AQ method can be used to produce disjoint or intersecling covers. Intersecting covers logi-

cally intersect over "don’t care” areas of the event space. Disjoint covers, obviously, do not intersect. If
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the list of negative events used during star generations includes events of classes for which covers have
already been formed, intersecting covers will result. If, however, the list contains the covers of those

classes, then disjoint covers will be formed.

Applying AQ will produce, for each class, a cover that is satisfied by all the events of the class and
none of the events of the other classes (see [Michalski 75] for a more detailed theoretical discussion of the
AQ method and the covering problem). The ire, however, two essential problems with using AQ as a
methodology for rule acquisition in expert  cems. The first is that the algorithm, though obviously
powerful, does not use much knowledge about the domain in forming its rules. The LEF is one method
for specifying information (costs can be associated with variables, causing the LEF to select complexes
containing ‘‘cheap” variables). The lack of guidance in rule formation often produces rules that, while
correct, are somewhat misleading. Typically, inductively derived rules contain conditions that seem
irrelevant to the domain expert. One solution to this problem is to allow the domain expert to specify
background knowledge about the domain. What is needed here, in other words, is a combination of
learning by being told and learnin  ‘rom ezamples. In the next chapter we present a different approach.
We can cause an induced rule to ¢ .ress more information about a class by making the rule as long as
possible. In other words, we seek to produce a description of a class that characterizes that class, rather
than discriminating it from other classes. This gives the human reader more details about what the sys-

tem has learned. Some interesting results in this area are presented in Chapter 5.

The second major problem with the AQ method is that it learns everything at once. AQ takes as
input a set of examples and produces as output a set of rules, but it cannot modify those rules. It would
be useful if AQ could use rules it had learned previously to derive new rules. It turns out that some
fairly - —ple modifications to the algorithm will allow it to learn in an incremental fashion. These

mo: ans are discussed in the next section.



4.1.2. An Incremental Version of the AQ Algorithm

There are several different ways to learn incrementally. One method is learning with imperfect
memory. [n the case of inducti;e inference, this would mean forming rules from examples then throwing
away some or all of the examples. When new examples which contradict the rules are observed, the
rules would be modified using the old rules and only those examples which were retained from the previ.
ous steps. This seems to be how people learn, as evidenced by the fact that they sometimes forget exam-
ples they have already seen. There are two related problems wit;h learning using imperfect memory.
The first, as mentioned, is that it can lead to errors. The second is that it is necessary, in order to
minimize errors, to find 3 method of selecting important events for retention. An earlier implementation
of AQ [Michalski and Larson 78] was designed to perform incremental learning with imperfect memory.
However, this method did not select important events for retention, but simply used initial hypotheses to
aid its search fof covers. This sometimes resulted in rules which did not cover events that had been
observed at earlier stages of the learning process. In order to avoid these problems, the GEM program
petforms a different type of incremental learning — learning with perfect memory. In this case, the sys-
tem remeimbers every example it has seen, as well as the rules it formed, and so can be guaranteed to
produce new rules that are completely correct. The essential problem with this method is storage. Also,
there is the danger that such a method will not provide any real speed-up over just scrapping the initial
rules and starting over. Some experiments to confirm that the algorithm developed here avoids this

problem are presented in Chapter 5.

As mentioned above, AQ can be made to learn incrementally in a fairly simple manner. The essen-
tial modification (originally suggested by Jefl Becker) involves changing the star generation procedure.
Recall that during star generation, the result of extending a seed against a negative event is intersected
with the partial star. If the extension was the first for this seed, however, the result becomes the partial
star. In other words, the initial extension is intersected with the entire event space. If the initial inter-

section is done with some subset of the event space, the resulting star is guaranteed to fall within that
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subset.

We can use this modification in producing specializations of a cover. Suppose that we start out
with the situation shown in Fig'sire 10, and that we are attempting to form a neir cover for class ""A",
The problem is that the old cover is covering the newly classified events b, and bS’ The first step in
modilying this cover, under the incremental algorithm, is to specialize it so that it covers no negative
events. This is done by applying the star procedure to all positive events covered by the old rule {events
3y, 3g, 3 and a, in our example) with the intial partial star equal to the old cover. The negative events
are all events of other classes covered by the old cover (b4 and b5 in Figure 10). Figure 11 shows the

resuit of specializing the cover for class A against the events b 4 and bS'

Once the rule is specialized, we can apply the regular AQ algorithm, using the specialized covers

{and any uncovered positive events) as seeds.
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Figure 10. An incremental learning problem.
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Figure 11. Specialized cover for class A generated by applying the modified star procedure.

Obviously, given perfect memory, this method will produce rules that take into account all the
events seen so far. The major concern is the time consumed by the bookkeeping necessary for maintain-

ing all the events ever observed. These concerns are addressed in the next chapter.

4.2. The ATEST Tool for Rule Base Debugging

For the new rule base acquisition paradigm to be effective, the domain expert must be able to pro-
duce testing examples for his knowledge bas_,e and apply those examples in order to assess rule base per-
formance. ATEST is a tool developed specifically for that purpose. It provides the domain expert with
two new capabilities. First, ATEST allows the expert to rapidly test a rule base on numerous examples
under a variety of evaluation schemes. These evaluation facilities provide information about the overall
performance of the rule base and about the performance of specific rules on specific examples. Second,
ATEST provides routines that check a rule base for consistency and completeness. These routines can

be used to point out problem areas in the rule base and to help the expert generate new examples.
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Section 4.2.1 presents an introduction to the rule testing terminology used throughout the rest of
this thesis. Section 4.2.2 presents the evaluation parameters available in ATEST and describes the
program’s evaluation and trace-abilities in detail. Section 4.2.3 presents a discussion of the consistency
and completeness problems and describes the algorithms used by ATEST to test coansistency and com-

pleteness in a rule base.

4.2.1. Terminology

ATEST views rules as expressions which, when applied to a vector of attribute values, will evaluate
to a real number. This number is termed the degree of consonance between (the left hand side of) the
rule and the event. The method for arriving at the degree of consonance, given a syntactically correct
rule and an event, varies with the settings of the various ATEST parameters (see next section). When
ATEST is run on a set of pre-classified testing examples, it simply applies each rule to each example and
reports the degree of consonance. However, with a large number of testing examples, and a large
number of rules, output of this sort is likely to get unwieldy. Therefore, ATEST has the ability to sum-

marize the results.

Rule testing is summarized by lumping together the results of testing all the events of a single
class. This is done by establishing equivalence clésscs among the rules that were tested on those events.
Each equivalence class (called a rank) contains rules whose degrees of consonance were within a specified
tolerance (called tsu) of the highest degree of consonance for that rank. When ATEST summarizes the

results, it reports, for each rule, the number of testing events for which that rule was a frst rank deci-

sion.

The only remaining term to be defined is satisfication. Satisfaction applies to disjunctive normal
form (DNF) expresssions. A DNF expression is a disjunction of conjunctive statements, i.e. 3 module as
defined in Chapter 3. A DNF expression is said to be satisfied if some complex in it is satisfied. A com-
plex is satisfied by an event if every selector in the complex is true for the event. In other words, satis-

faction is a boolean logic conditional, and therefore applies to selectors and DNF expressions, but not to
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modules or rule groups (which may have weights associated with their conditions).

4.2.2. The ATEST Evaluation Routlnes

ATEST takes as input a set of attribute definitions, a set of rules (and an optional structuring on
the rules), a set of testing events, and a set of parameter values. The parameters control what ATEST
does with the rules and how it evaluates the rules on the testing events. There are nine different param-
eters involved with rule testing. Six of these determine how rules are evaluated. The remaining three
control which of ATEST’s capabilities will be used during a given run. This section presents a discussion
of the six evaluation parameters. The User's Guide in the appendix provides definitions for all the

parameters.

Three evaluation parameters provide definitions for the logical operators in Figure 5. The operator
“and” (“A”) may be evaluated as minimum or as sverage. The operator “or” (V") may be evaluated as
mazimum or as probabilistic sum. The final evaluation parameter controls the the definition of the ele-
mentary conditions, called selectors. A selector may be treated as a boolean conditional (i.e. it may
evaluate to 0 or 1), or as a function which when applied to an event evaluates to a normalized reai
pumber between 0 and 1. Given a selector in some attribute x whose domain is the ordered list
(31’32“"’311)’ and an event where x = ap, the uoﬁnalized value for the selector [x = aj] is

1--(|aj--ak |/ n).
I the selector has several values on its right hand side, the value closest to a, is used.

The tau parameter mentioned in the previous section controls the assignment of rules to
equivalence classes when testing on a single event. This parameter allows the user to determine what
kind of range in degree of consonance he may expect when actually using the rule base for consuitation.
Increasing tau will increase the number of first rank decisions, and therefore increase the number of
(possibly conflicting) actions associated with a given testing event. By varying the tau parameter, the

expert can determine how robust his rules are in discriminatory terms.
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The dropa? parameter (mentioned in Chapter 2) controls the use of the a, weight on rules. It
specifies the truth threshold a module must exceed before that module can be included in the weight of

cumulative evidence. -

The remaining parameter, threshold, controls the degree of consonance threshold for a rule.
ATEST reports, for every class, how many testing events caused the correct rule to have a degree of
consonance greater than tAreshold. Figure 12 shows a sample problem input to ATEST and the result-
ing output if all of ATEST's evaluation capabilities (see Appendix) are being utilized. The output shown
consists of two parts. The table is a confusion matrix showing the performance of the rules on class B
events. The numbers in the matrix are the degrees of consonance; numbers surrounded by asterisks
indicate correct first rank decisions. If ATEST is told to summarize the resulits, only the first and last
rows of this table will be output. The second portion of the output is a trace of evaluation for those
cases where the rule base did not perform correctly. The selectors surrounded with question marks are
those which were not satisfied. Selectors in double brackets are those which were satisfied. In a struc-
tured rule base, this trace is considerably more complex, as it details the paths takea to reach the final

degree of consonance.

4.2.3. Consistency and Completeness

In some domains, it is essential that no two rules in the rule base conflict, i.e. that the rule base is
consistent. Inconsistency occurs if there is a situation (event) in which two rules would indicate
different, mutually exclusive actions. In the terminology of Section 4.2.1, an inconsistency exists if there

is ap event which causes two rules of different class to evaluate to first rank decisions.

There are also cases in which it is necessary for some conclusion to be reached for every possible
input. We say a rule base is incomplete if there is an event for which no rule has a degree of consonance
greater than {Areshold. The threshold used in ATEST is defined by the user, but has a default value of

0.50. s
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Number of events satisflying rule for correct class : 1
The rule for class B was evaluated as follows for testing event B-L:

72lxy = 2|7 [xy = 1,2}] V ??xy = 0??[[xy = 1]|

1

Figure 12. Sample input and ATEST output for a toy problem.

Testing consistency and completeness in a rule base are relatively easy if we are dealing with

unweighted, non-structured rules and applying a boolean logic scheme for rule evaluation. However, the

3
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rule base we defined in Chapter 3 allows weighted, structured rules which may be evaluated in multiple
ways. Therefore, ATEST does consistency and completeness checking under more general conditions.
The routines in ATEST use a generate and test method for recognizing consistency and completeness
problems. This methodology takes advantage of the speed and fexibility of the evaluation procedures

already present for testing exampies.

Consistency and completeness are handled in essentially the same manner. First, ATEST calls rou-
tines that apply logical and set theoretic operators to the rules to produce ‘‘test complexes”. The test
complexes are fed through the evaluation routines and the results are examined to determine if there is

indeed a problem.

] If rules RI and R, are being tested for connstency:
Ryt [x; = 3lixy = 4.8|[xy = 4![xg = T7|[x; = 9| : 0.8
-+

[X5 ==0.3|:04
n>idy =0

Ry [xy = 0|[x, = 6.8|[x, = 4][x; = 4][xg =9]: 0.9
-+
[xg = 4..6| : 0.05
o> dy =1]
L Then ATEST will generate the test complexes:
[x; = FALSE|[x, = 8{[x; = 4][xg = T|[x; = 4i{xg = 9]
[xg = 4..6]

{xg = 0.3
[ ] These complexes, if “and® is evaluated as average, will cause ATEST to report:
The complex : x, = 8llx, = 4lx, = 7][x, = 4|{x, = 0

produces a de of 3 88 with rule R1 and a dc of 0.91 for rule R,.

Figure 13. An example of consistency testing.
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The generating routines for consistency operate by forming the intersection of the left hand sides
of the rules that are to be tested. A standard logical intersection will not work for two reasons. First,
there are cases where such an intersection will be empty even though, under certain evaluation schemes,
the rules will produce conflicting decisions. Second, the number of intersections to be performed grows
exponentially with the number of complexes in the rules.

The first problem is dealt with by changing the definition of intersection. The consistency testing
routine multiplies rules together in the standard fashion except that the existence of non-intersecting
selectors in a comjunct does not reduce the intersection to the empty set. lastead, a special selector,
which always evaluates to zero, is inserted. In this way, events that may satisfly two rules to a high

degree of consonance may be generated.

The second problem is handled in two ways. First, the consistency checking routines accept a

parameter {dweight) which specifies a minimum weight for modules. If a module has an @ weight below

L] Given four boolean variables Xy %o Xg, Xy and the rules:
R,: [x; == filxy =t][xy =t| : 0.80

-+
[xy =1]: 0.60
u> [df =10

R, : [x, = t|[x, = t|
2 ::>1 [y =1

[ The uvnion of all complexes is subtracted from the entire event space yielding the test complexes:
{xi = ﬂ[xg = q[x;; =t

Ixy = tlixy = fllxg = t|
L Cauning ATEST to report that aeither complex satisfies any rules.

Figure 14. An example of completeness testing.




dweight, the module is simply not used when forming the intersection of two rules. Second, the fact that
the knowledge base is structured should tend to decrease the number of test complexes produced. Since
consistency checking is only done between children of the same parent in the rule base structure, the
number of rules that are involved in consistency checking is reduced. Figure 13 shows an example of

how the consistency and completeness routines work.

Completeness checking is done by taking the union of the left hand sides of all rules that have the
same parent in the rule base. Again, the dweight parameter is used to exclude modules whose weights
may be too low. Once the union is formed, it is subtracted from that portion of the event space which
should be covered. If the rules being tested are at the top of the knowledge base structure, then the
union is subtracted from the entire event space. Otherwise, the union is subtracted from that portion of
the event space covered by the parent node. Figure 14 shows an example of the steps involved in com-
pleteness testing.

This process again generates test complexes. These complexes are applied to every rule used in the
union. If none of the rules have a degree of consonance greater than the defined threshold, then the test

complex is reported as an area of the event space that the rules should cover but do not.



5. AN EVALUATION OF LEARNING MODES

The new paradigm for rule base refinement requires an efficient method for learning inerementally
from examples. Chapter four presented a revised version of the AQ algorithm which, it is hoped, will
satisly this eriterion. Also, it was mentioned that rapid testing of a knowledge base under different
evaluation schemes, as allowed by ATEST, may aid a domain expert in selecting the best method by
which to evaluate his rule base. This chapter presents experiments designed to test whether the incre-
mental learning algorithm presented in Chapter 4 satisfies the criteria of Chapter 2, and whether the

testing facilities provided by ATEST are worthwhile in knowledge base development.

There are two major concerns related to the incremental learning algorithm. The first is whether
the method provides a worthwhile way to learn incrementally from examples. The second is that there
may be several ways to form rules incrementally using this method. The LEF in GEM provide; a means
to vary the rule formation process; there may be certain eriterion which work best in a given domazin or

a given domain type.

Under the rule base formation paradigm, rules are not put into the expert system until the domain
expert is satisfied with their performance. ATEST provides a means to test the performance of a rule
base under several different evaluation schemes. - If, however, rules in different domains perform at the
same level regardless of evaluation schemes, then the extra tools ATEST provides may not be necessary.
On the other hand, it may be that rules formed by different means in the same domain should be
evaluated differently. For example, “AND” may not mean the same thing to a domain expert as to the

GEM program. In such a case, the function should be evaluated differently for different types of rules.

In order to assess the performance of both ATEST and GEM, the programs were applied to three
separate problems of increasing complexity. Hopefully, the range in problems is sufficient to suggest the

differences in performance that will occur in other real-world applications.

The first domain was the classification of different species of Stenonems mayfly nymphs [Lewis 74].

Seven species of Interpunctatum group nymphs were described in terms of 7 attributes — the size of the
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event space was on the order of 106. Five diflerent examples of each species were used for learning, and
another five were used for testing the induced rules. The description in Figure 15 is a typical event in

this domain. -

The second application area was the King-Pawn-King black-to-move chess endgame, where the
pawn’s side is white. Here, examples were described in terms of 31 boolean attributes [Shapiro and
Niblett 82|. This domain differed somewhat from the other two in that each example actually covered
several legal KPK positions. That is, the input examples are somewhat generalized representations of
the board positions. The examples were correctly classified into Won for the pawn's side or Drawn. All
legal combinations of attribute vectors (a total of 1901) were used. Half of the events were used for
learning, with the remainder set aside for testing of the induce& rules. A typical event for this domain is

shown in Figure 16.

The largest application area was the soybean disease diagnosis domain [Michalski and Chilausky
80|. Diseased soybean plants were described in terms of 50 attributes. Attribute domains ranged in size
from two to eleven values, meaning that -»proximately 1020 attribute vectors were possible. The event
set consis;;ed of examples of 17 different bean diseases common in [llinois; there were 17 different

examples of each disease. Figure 17 shows a typical example of one disease, alternaria leal spot. This

1} maxilla_crown_spines == {0

2} maxilla Jateral_setae = 21

3) inner_canine_teeth == 2

4} outer_canine teeth =7

§) terga_mid_dorsal_pale_streaks == absent
) terga dark_posterior_margins == abseat
7) dark_marks _sterna_9 == absent

Figure 15. A single event in the mayfly domain — a nymph of the species Stenonema carolina.
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1) cimmt == false
2) cplu2 == false

3) eplul == false

4) cahea = false
5} cwksa == false
6) cenit == [alse

7) cpatl == false
8) cpat2 == false
9) rneac = false
10) rnead == false
11) roeap = [alse
12) rpsq = false
13) rrpl = false
14) rrp2 = false
15) rnear = false
18} ratal = false
17) mdiro = false
18) mmpl = false

19) mmp2 = {alse

20) mpmoy == false
21) dire5 == false
22) btops == false
23) mp$ == false
24) r5p6 == {alse
25) spra? = false
26) sprap == true
27) smain == {alse
28) srfil = false
29) sint == {alse
30) axto7 == true
31) stlm? = false

{Can the black king immediately capture the pawn?)

{Is the distance of the pawn from the queening square

greater than the black king’'s efective distance plus two?)

(Is the distance of the pawn from the queening square

greater than the black king’s effective distance plust one?)

{Can the black king get ahead of the pawn on the pawn’s file?)

{1s the white king abead of the pawn?)

(Does the white king control the seventh rank 3quare coveriag

the queening square on the black king’'s side of the pawn?)

(Is the biack king constrained to retreat?)

(s the black king in stalemate or will advancing pawn force stalemate?)
{Can the black king reach c8 before the white king?)

(Can the black king reach a8 before the white king?)

{1s the black king nearer to the pawn than the white king?)

{Can the black king move inside the pawn’s square?)

{Special pattern; see [Shapiro and Niblett 82/)

{Caa the black king trap the white king near the edge of the board?)
{Special pattera; see [Shapiro and Niblett 82]}

(Does this position lead to stalemate?)

(Is the white king one rank ahead of the pawn and does he have the opposition?)
{Can white, by moving the king alone, get to mainpatt 1 rank
abead of the pawn?)

{Can white, by moving the king alone, get to mainpatt 2 ranks
abead of the pawn?)

{Can white get to mainpatt by irst moving the pawn?)

{(Daes the 6th rank pattera hold or can it be schieved?)

{1s the black king directly in front of the pawn or can he get there?)
{Can white get to mainpatt by moving the king alone?)

{Special pattern; see [Shapiro aad Niblett 82)

(Is pawn on rank 7 and not on rook’s file?)

(Is pawn on rank 5 or 8 and not on rook’s file?)

(Is pawa on rank 1-5 and not on rook's file?)

{Is pawn on rook’s file?)

{Can black prevent pawn from ruaning or maispatt but not both?)
{Can white king force its way next to pawn?}

(13 the initial position a stalemate?)

Figure 16. A single event in the KPK domain of the Won class. Parenthesized
expressions are definitions of the corresponding attribute.
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data set was divided into a set of 170 examples {10 of each disease) to be used by GEM for learning and
119 (7 of each disease) to be used in testing the rules formed. The data used differed from that
described in [Micbalski and Chilausky 80]. For these experiments, fifteen more attributes were used and
two new diseases were added to the data. In this domain, rules written by human experts were also

available, so these too were tested.

5.1. Single Step Learning

This section presents experiments designed to answer the questions raised above about different
rule formation methods and the utility of different evaluation schemes. These experiments have nothing

to do with incremental learning methods. [nstead, we wish to determine how different goals for rule

1) time_of _occurrence == october

2) precipitation = above_normal

3) temperature = above_normal

4) croppiag _history == three_or_more

5) damaged _area = plants_jn_upiand _areas
§) severity == minor

1) plant _beight = normal

8) condition_of Jeaves == abnormal

%) leaf spots == present

10) leaf _spot_color == browa

11) color_of spot_on_reverse_side = none

12) yellow Jeal_spot_halos == absent

13) leaf spot _margins == water_soaked

14) raised_)eafl _spots = abasent

15} leaf _spot_growth == scattered with_concentric_rings
16) leaf _spot_nze == greater_than_eighth_jnch
17) shot hoiiag == present

18) shredding = absent

19) leal_maliformation == absent

20) premature defoliation == present

21) leal_mildew _growth == absent

22} teaf _discoloration = none

23) position_of _afected Jeaves = scattered_on_plant

24) condition _of Jeaves_below_afected Jeaves == nnaffected

25) leaf withenng and_wiitiag = abasent

Figure 17. A single event in the soybean disease diagnosis domain — a plant with alternaria leaf spot.

26) condition _of stem == normal

27) stem_Jodging == does_not_apply

28) stem_cankery == doey_not_apply

29) canker_jeston_color == does_not_apply

30) reddish canker_margin = does_not_apply

31) froiting bodies_oa stem == does_not _apply

32) external_decay_of stem = does_not_apply

33) myceliom_on _stem == does_not_apply

34) external_stem discoloration == does_not_apply
35) location_of stem _discoloration == does_not_apply
38) internal _discoloration of stem = does_not_apply
37) sclerotia_internal_or_external == does_not_apply
38} condition_of fruit_pods = abnormal

39) frait_pods = diseased

49) fruit _spots == colored _spots

41) condition_of _seed == normal

42) seed _mold_growth = does_not_apply

43) seed_discoloration = does_not_apply

44) seed _discoloration_color = does_not_apply

45) seed_size == does_not _apply

48) seed shnveling == does_not _apply

47} condition _of _roots = normal

48) root_sot == does_pot_apply

49) root_galls_or_cysty = does_not apply

50) root_sclerotia == does_not _apply
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formation, as expressed in the LEF, can affect the quality of induced rules and the type of evaluation

scheme that is best for them.

The AQ algorithm produces a quasi-optimal description of a set of ciasses in terms of discrete finite
attributes. Normally, AQ is applied to a problem with the express goal of producing a small, correct and
discriminatory description of each class. However, rules produced in this manner sometimes do not seem
sensible to the domain expert because the attributes chosen by GEM for use in the rules are sometimes
not the attributes he chose. One obvious solution to this problem is to allow the domain expert to tell
GEM which attributes are important and useful and allow this knowledge to guide the search. However,
this places the weight of rule formation right back on the expert’s shoulder's. In order to specily the
varying importance of each attribute to the induction program, the expert must essentially write rules,

which is what we are trying to avoid.

Another possibility, which does not depend on the expert's ability to explain his methods, is to
cause GEM to generate characteristic descriptions [Michalski 83]. A characteristic description does not
define a class as an entity distinct from other classes, but presents a description of the class in as much
detail as possible. In other words, a characteristic description is the type of explanation an expert might
give if asked to describe a class in detail, apart from considerations of other classes. If an induction pro-
gram produces good characteristic descriptions, the expert can view, in detail, how the learning process
is proceeding. Causing GEM to generate a lengthy, complete description of the events in a class is not
difficuit. By inserting a criterion in the LEF that causes AQ to select the fongest complexes in a partial
star, the algorithm will produce a detailed description of each class. Ideally, such a description will be

conjunctive.

If a discriminant description is necessary, there are two ways to build it. Naturally, GEM couid be
applied in the usual way. However, GEM can induce over rules in the same way as it induces over
examples. It may be possible to produce good discriminant rules by inducing over characteristic descrip- .

tions (this idea was suggested by R.S. Michalski).
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It is therefore possible to produce three kinds of rules from a set of examples —~ characteristic
descriptions, discriminant descriptions induced from the examples, and discriminant descriptions induced
from characteristic descriptions.- The performance of these different types of rules is compared to give
an idea of the usefulness of each method. Also, rules produced in different ways may work best under
different evaluation schemes. GEM was applied to each of the three domains above. In each domain, a
set of examples was chosen at random to be the learning events. These events were used to produce the
three different types of descriptions. Then, the induced rules were tested on the remaining examples
under four different evaluation schemes. The evaluation schemes varied in their evaluation of the
“AND" operator, and in whether or not selectors in linear variables were normalized. Performance of
the rules on the testing examples was measured by two means — what percentage of the events caused
the correct rule to have a degree of consonance in the first rank {with tau = 0.02) and what percentage
of the events caused the correct rule to have the only first rank degree of consonance. The experiments
were repeated twice in each application area in order to observe how changing the learning events
affected the performance of the rules. All rules were formed using the ‘‘disjoint cover” mode of the
GEM program (see Chapter 4). [t is possible that different resuits would be obtained if intersecting cov-

ers were created.

The results for the rules induced to identify the Stznonema mayfy nymphs are shown in Table 1.
The induction time shown is the total CPU time used by the GEM program while forming rules. The
complexity measure used here is a rather simple scheme that characterizes rules by size. The complezity
of a single rule is defined as the sum of the number of complezes {conjuncts} in the rule, the number of
attributes used in the rule, and the number of selectors in the rule. The complexity of a set of rules is

the average complexity of the rules in the set.

All induction times shown in the tabie are for a Pascal implementation of GEM runnning under

UNIX on a VAX 11/780. In this application area, the induction times for the characteristic and discrim-

inant rules were about the same.
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Rule Tvpe | Induction Time | Complexity “OR" “AND" Normalised | %51st Rank | %Only Choice
Characteristic 17.70 secs 8.28 maximum | mintmuom o 34.29 34.29
Description maximam average R0 82.86 7714

maximum | misimem yes 100.00 0.00
max:mam average yes 100.00 0.00
Discriminant 20.13 secs 8.00 maximam | minimam o 34.29 34.29
From maximgm average 2o 74.29 71.43
Examplea maximum | migimum yes 100.00 6.00
maximam average yes 100.00 0.00
Discriminant 0.85 secs 7.00 maximum | minimam no 65.71 65.71
Frem maximuam average no 91.43 85.71
Characteristic maximum | minimum yes 100.00 0.00
maximum average yes 100.00 0.00

Table 1. Comparison of three different rule types for identification of Stenonema mayfly aymphs.

None of the rules produced were very complex. The relative complexity of different rule types
remained the same over two runs. Figure 18 shows an example of the three rule types induced for one

of the seven species of nymphs.

The interesting point here is the sensitivity of the rules to evaluation scheme. Preliminary results
showed that the only useful evaluation scheme for “or™ was "“maximum.” In the table, the *“%lst Rank”
columa shows the percentage of all learning events for which the correct rule evaluated to a first rank
decision (see section 4.2.1 for a definition of “‘rank”). The *%Oualy Choice” column shows the percentage
of all events for which the correct rule evaluated to the only first rank decision. For mayfly
identification, normalization of linear selectors produces disastrous resuits. Because most of the attri-
butes are linear, counting "nearness” of a selector to an event causes virtually every rule to be satisfied

by every example. On the other hand, averaging had a positive effect on all the rules. These two effects

are related because one attribute is usually enough for identification and one completely satisified selec-
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Characteristic description :

Imaxilla_crown _spines = 10||maxilla_Jateral_setae == 21,26,28,30|[inner_canine _teeth =2
louter_canine_ teeth = 7.8]{terga_dark_postenior_margins = absent|

Discriminant description induced from characteristic description :

{maxilla_crown _spines == 10|[inper_canine teeth = 2|[terga_dark_posterior_margins = absent]

Discriminant description induced from examples :

{terga _mid_dorsal_pale_streaks = absent|

Figure 18. Three diflerent rule types for identifying nymphs of the species Stenonema carolina.

tor may cause a rule to be satisified (causing normalization to fail). Similarly, having one selector not
satisfied should not cause a rule to be rejected (hence the failure of minimum as an evaiuation scheme in

this case).

The results for the KPK endgame data are shown in Table 2. Since none of the attributes used in
this domain were linear, the normalization parameter in ATEST will not have any effect. In this
domain, attempting to induce discriminant rules from characteristic ones fails — GEM simply returns the
rules given as input. Therefore, there are no entries in the table for such rules. Since there are two

mutually exclusive classes, a decision that is first rank, but not the only first rank, is irrelevant; for this

reason the '“%%1st Rank” column is also excluded from Table 2.

Again, the resuits shown are for one set of learning examples. A second run, using a different set of
learning examples, produced results that were similar in terms of the relations between the different
types of rules. However, the performance in absolute terms differed considerably — the rules induced

during the second run were more than 95% accurate.
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Rule Type !ndkuction Time I Complexity “OR* “AND” % Caly Choice

Characteristic 453.58 sees 60 maximum | migimum 40.32
Descniption maximnm average 40.32
Disenminant 436.95 secs 43.5 maximum | minimam 40.21
From maximom average 40.21
Examples

Table 2. Comparison of two different rule types for the KPK chess endgame.

In this domain, there was little difference between the characteristic and discriminant descriptions.
This is probably due to the nature of the attributes used to describe events. Since each input vector is
really a generalization of several actual chess pt;sitions, one event may not generalize easily to cover
another. This hypothesis is partly borne out by the fact that the rules produced were very disjunctive,
containing an average of twenty complexes each. This also explains GEM's failere to induce discrim-
inant covers from the characteristic ones. There may not be many cases where a longer complex will
serve as well as a shorter {more general) one. In this problem area, when such a long complex does exist,
it will be disjoint {rom other complexes in the cover. It then becomes impossible to generalize several
complexes together to form a discriminant description. Typical rules of each type, induced for the “won

for white” class, are shown in Figures 19 and 20.

Another important point here is that choice of evaluation scheme made no difference in rule perfor-
mance. This is also related to the nature of the problem space. Since the effect of treating conjunction
as average is to generalize the complexes, averaging will oaly improve performance if a complex can be
easily expanded to cover more eveats. Since each complex in this problem area seems to be highly spe-

cialized, generalization through averaging does not increase rule correctness.
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Figure 19. Discriminant description for the KPK class Won.
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[cimme = f|[cplu2 == f|{cplal == f|[cahea = fljcwksa == {|[rpsq = {]frrp2 = (| V
I

leimmt = f{jcpiul == f|[cabea = f|[rneac == {{{rrp2 == I}|{mmp2 == t{jaxto? =1t| V

[eimmt = f|[cplal == f}{cerit = f{|[rneac == {|[mpmov =t} V

[cimmt == ([[cpiuz == fl{cplul = {|[cahea = (|[cwksa = f][rrp2 = f|{mps = t|jnxto? =¢| V
[cimmt == {][cplu2 = f|lcplul == f|[cabea = {|[rneac = {|[rrp2 == [}[srfil =] V

[eimmt == {}{cplul == {|[rmeac = f}[rrp2 == {][rnear == {}{mmpl == t|[mp3 = ¢| V

{cimmt == fi[cplul = {|jcwksa = {|[raeac = {|{rrpl = t)[rrp2 =1{] V

{[eimmt = f{[rnead = {|[rrp2 = {|[rnear = {|{mpmov = t|[smain = ¢| V

[eimmt = f}{cplu2 == {[[cplul == {][rrp2 == [||mpmov = t{smain = ¢} V

leimmt == f|[rneac = [||mmp2 = t|[blops = {|[mxt07 =¢t| V

{cimmt = f|{cwksa = tj{rneac == {|[mmpl = t|{btops == | V

[cimmt == {]{cwksa = {]{rrp2 = f|[mp5 == t{[spran = t| V
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jeimmt == f|[rrp2 == {|{mmp2 == t|{mp5 == t|[smain =1tV

[cimmt = f|{eplul == f|[rrp2 = {]|rnear = {|[mdiro == ¢t|{mps = t|[smain = t| V

[cimmt == f]{cplul == f|[cerit == f][smain == tj{sint =]V

[cimmt == f]jcwksa == {][rrp2 = f|[diros = t|[spran = ¢{ V

[cimmt = f) lewksa == f|[ccrit == t|{rpea8 = f|[rrp2 == f|{rnear = {|[mpmov = t|[mp5 == f][srfil =t} V
[cimmt == f|[cpla) == [{[cahes == f|lcwksa = {|{[cenit = t{[rrp2 == {|[raear == {}[mp5 == f][srfil = t| V
[cimmt == f| {cpiul = fl{ewksa = t|{rrp2 = {|[mpmov = t|[smain = ¢t| V

[cimmt = f! {eptul == {|[cakea == t|{rneac = f|[rep2 = f|{mmp2 = t{jmps = | V

leimmt = f{[ccrit = [|{mmpl = szmps == t|[smain =t| V

[c;mmt = fl[cplul = t|{rrp2 == [}|rSp6 = t|lspran =t| V

jcimme = f|[cent = f]{rneac = f[[mpmov = tj{smain =1] V

[cimmt == f}{cabea = [][cwksa = f|{ccrit = t|[rrp2 = {|{rnear = [{[mp5 == t|[spra7 = tijuxte? =t| V
{cimmt = f|{cplul = t|[rrp2 == {{{mp5 == t|{spran =1t| V

{cimmt = f]{cplul == tj[cent = t{[roeac = f]jrrp2 == f|/rnear = {||mpmov == t|[srfil =t V

[cdmmt == {|{cabea == t{[cenit = {{[mdire = t|{btop5 = f|{ymain = ]

Figure 20. Characteristic description for the KPK class Won,

The final important factor in this domain is that the performance of ruies of all types is highly
dependent on the set of events chosen for learning. Two rule sets were produced by induction‘ over two
learning sets of exactly the same size, yet rule correctness varied drastically. This suggests that events
of a given class appear in many distinct clusters in the event space. If learning events are taken from
only a few of the clusters, then rule performance will be poor, as was the case in the run shown in Table
2. If, however, the learning events contain at least one element from each cluster, the rules should have
relatively good performance. Also, we would expect the more correct rules to have a larger number of

complexes than the poorer rules. This was indeed the result obtained — the good rules had, on the aver-
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age, almost twice as many complexes as the poorer rules.

The results for the soybean data are shown in Table 3. Characteristic descriptions took the longest
amount of time to induce, by a large margin. This may be due to the extra overhead involved in work-
ing with longer descriptions. Only the results of one run are shown in Table 3 — the second run, with a

different set of learning events, produced similar relative induction times.

More interesting results are shown in the ‘“Complexity” column. The simplest rules were the
discriminant descriptions induced from examples. However, the rules produced during the second run
through the data were considerably simpler in the case of the charactersitic descriptions. The discrim-
inant rules induced from the examples had almost exactly the same complexity in both runs. It appears

that characteristic descriptions are more performance sensitive to the distribution of learning events

Rule Tvpe Induction Time | Complexity “OR* | “AND"® Normalized | %1st Rank | %Ounly Choice
Expert Rules - 20.52 maximum | minimum no 75.63 63.91
maximom average no 78.99 71.43
maximum | minimum yes 79.83 70.59
maximum average yes 76.47 73.95
Characteristic 412.23 mins 102.05 maximum | minimum no 56.30 56.30
Description maximum average no 97.48 94.12
maximum | minimum yes 71.43 69.75
maximam average yes 97.48 94.96
Discriminant 296.25 mins 13.71 maximem | minimum no 90.76 90.76
From maximum average no 01.60 91.60
Examples . maximaom | minimom yes 93.28 87.39
maximam average yes 94.12 88.24
Discnminant 22.88 mins | 15.17 maXimum | minimum no 96.64 96.64
From maximum average no 96.64 96.64
Characternistic . maximum | minimum yes 99.16 92.44
maximaom average yes 98.16 92.44

Table 3. Comparison of four different rule types for the soybean disease diagnosis domain.
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given to the program. This seasitivity is explained by the order of criteria in the LEF. Since the pri-
mary criterion is to maximize coverage of positive even'ts, there may be cases where a longer description
will not work. This will happen frequently il the learning events of a class are widely separated in the
event space ~ events that are farther apart require a more general, and therefore shorter, description. If
this is true, then the performance of characteristic descriptions should also vary with the learning
events. Specifically, we would expect that a more complex description should not perform as well as a
simpler one if we are evaluating conjunction as minimum. Similarly, we would expect that averaging

would greatly increase the performance of the more complex rules.

The characteristic rules performed as predicted over the two runs. As shown in Table 3, the very
complex characteristic descriptions performed poorly if “AND” was evaluated as minimum, but perfor-
mance improved drastically if averaging was used. The second set of characteristic rules performed in

the 8595 accuracy range regardless of evaluation scheme.

In this domain, it appears that the method of inducing discriminant descriptions indirectly may be
worthwhile. Although the rules induced in this way were slightly more complex, their performance was
comparable to that of the rules induced from examples, and considerably better than that of the rules

written by experts. Typical rules in this domain are shown in Figure 21.

5.2. Incremental Learning

This section presents experiments designed to evaluate the performance of the incremental learning
algorithm presented in Chapter 4. In that chapter, questions were raised as to whether incremental
learning with perfect memory is efficient. There are two concerns here. The first is that the incremental
method, as described, might not be any faster than learning by the standard method {(i.e. by starting
over each time new examples are presented). The second concern is that the incremental method, even
if it is faster than the single step method, will produce rules that are more complex. This concern is

especially relevant because the only way to specialize 3 complex is by splitting it into two or more
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Characteristic description:

[precipitation == above_normall[temperature = normal..above_normal|[severity = minor..potentially_severe|
[coudition_of Jeaves == abnormal| [leaf_spot_color = brown]
[feal _spot_growth = scattered_with_concentric_rings necrosis_across_veins||leaf_spot_size = greater_than eighth _inch|
{shot _holing = present|[position_of_afected Jeaves == scattered on_plant]
[condition_of jeaves_below _afected Jeaves = unaflected|{stem cankers = does_not _apply] [fruit_spots = colored _spots]

Discriminant description induced from characteristic description:

[leaf_spot_color = brownl{leaf spot_growth == scattered_with_concentric_sings, necrosis_across_veins)
|position of afected Jeaves = scattered_on_plant}{fruit_spots == colored_spots]

Discriminant description induced from examples:

[leaf_spot_growth = scattered_with_concentric_rings,necrosis_across_veins

Description written by domain expert:

{leaf spot_growth = scattered_with_concentric_rings}:0.90

[time_of_occurrence == zngust..oc-:ober]{sho&_ho!ing == present|:0.50
[leaf _spot_sise = gre;t;.thn_eighth_inchI;ﬁ.és
[time_of occurrence = angnst..october}{fmit_po:s == diseased|[fruit_spots = colored_spots|:0.10
[seed.discolontionrcolor == black|:0.05
[leaf_spot_marging ; water_soaked|:0.05
+

[yeliow_jeaf_spot_halos = abzent|:0.05

Figure 21. Four different rule types for identifying the soybean disease alternaria leaf spot.

complexes. If the specialization step in the incremental method produces tooc many complexes, the
resulting rules will be so complicated as to be useless. On the other hand, it may be that the generaliza-

tion steps will simplily the rules enough so that they are acceptable.

The experiments in the last section showed that viable discriminant rules could be produced from
characteristic descriptions in two of the test domains. Characteristic descriptions may be especially use-

ful for incremental learning. Since such descriptions contain large conjuncts, they are more specialized.
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Because a3 major concern here is that specialization will produce overly complicated rules, it may be
worthwhile to learn incrementally using characteristic descriptions. Hopefully, these will not have to be
changed much during rule specialization. This could lead to less complex incremental rules. As before,
if shorter descriptions are necessary, we can induce them in 2 small amount of time from the characteris~

tic descriptions.

In order to test these ideas, GEM was applied incrementally to each of the three application areas
used in the previous section. From an initial set of learning events, three types of rules were induced:
discriminant from examples, characteristic from examples, and discriminant from characteristic. For
each class, a random number of new events {i.e. events not used in the previous learning step) were
selected. These were added to the learning events. GEM was applied again using the rules formed in
the last step. The entire process was repeated until no learning events remained. At each stgp in the
learning process, rules were also formed in single step fashion (i.e. with no input hypotheses) for com-
parison purposes. For example, in Figure 22 the initial learning set consisted of one event per class (a
total of seven events out of the thirty five available). A random number between zero and one was gen-
erated. This number was used to determine the percentage of the remaining events of the first class to
be added for the second learning step. Another random number was generated to select the number of
events of the second class, and so on. This resulted in a2 new learning set in which a total of fourteen
events were distributed randomly among the ciasses. These events, and the rules formed in the initial
step, were used as input to GEM. Once rules were formed, the event selection process was repeated,

producing input for the third learning step.

The rules formed at each stage were tested on examples using the ATEST parameter settings that
worked best in the given domain (as determined in Section 5.1). The entire experiment was repeated
twice for each domain. In all cases, disjoint rather than intersecting covers were formed. As in the pre-

vious section, different results might be obtained if intersecting rules were used.
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In the small mayfly nymph recognition domain, problems that may arise in the two larger domains
should exist to a lesser degree. The results in Section 5.1 lead to the expectation that characteristic
descriptions will not differ much from discriminant ones. All induction times and rule complexities

should be small compared to the other two application areas.

Figure 22 shows the complexity of the four different rule types during the learning process. Some-
what different results were obtained when different learning events were used. In Figure 22, the discrim-
inant rules induced incrementally from examples were the most complex. A second run produced

simpler discriminant rules and more complex characteristic ones.

Figure 23 shows the induction times for three rule types. Again, times shown are for a Pascal
implementation of GEM running on a VAX 11/780. The time to induce characteristic rules is included
in the time to induce discriminant rules from characteristic ones; in general, about ninety percent of this
time was used in inducing the characteristic rules. The results here show that the incremental method
provides significant itﬁprovemeut in induction time. The second repitition of this experiment produced

results similar to those shown in the figure.

Figure 24 shows the performance of the rules induced in this domain. All three rule types show a
steady increase in performance. Similar results were obtained during the second run, although all the

rules performed better (in absolute terms) with a different set of learning events.

The incremental method worked quite well overall. In this area the method of inducing discrim-
inant descriptions from characteristic descriptions produced better results than learﬂing incrementally
with discriminant rules. Performance of the rules was dependent on which events were used for learn-
ing.

The KPK chess endgame domain is somewhat less complex than the soybean disease problem, but
it presents problems of its own. As was discussed in Section 5.1, the nature of this problem is such that
inducing simple rules from examples is very difficult, if not impossible. Also, resuits in that section

showed that GEM did not produce good characteristic descriptions, and that attempting to induce
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Figure 24. Performance of three different rule types for identification of Stenenema mayfly aymphs.

discriminant descriptions from them resulted in no changes to the characteristic rules. In other words,

the discriminant descriptions produced were identical to the characteristic ones.

Figure 25 shows the complexities of the three different rule types in the three learning processes.
Characteristic descriptions were more complex, but not markedly so, than discriminant descriptions.

Unfortunately, the extra complexity generally came from the addition of a few selectors to complexes
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that existed in the discriminant descriptions; the characteristic descriptions were not more conjunctive.
When this experiment was repeated, similar results were obtained. However, as in Section 5.1, the
results for the second run produced rules that were considerably more complex than those shown in Fig-

ure 25.

Figure 26 shows the induction times for the induced rules in this domain. Here, there was little
difference (except at the initial stage) between the time taken to induce characteristic and discriminant
descriptions. As in the mayfly domain, the incremental method provided a considerable speed-up in

learning time.

Figure 27 shows the ‘“learning curve” for the induced rules. These rules performed very poorly and
exhibit an odd behaviour ~ the curve goes down for all three rule types. The second run in this domain
produced better {though more complex} rules which improved in performance as new events were added.
The behaviour shown in Figure 27 may be explained by the hypothesis presented in Section 5.1. If we
assume that poor performance is due to poor representation of different disjuncts in the learning set,
then the addition of new events to the existing disjuncts will cause them to be extended to cover nega~

tive events not in the learning set.

Since the soybean disease domain is the largest of the three being tested, it should present the most
potential problems. The results in Section 5.1 show that induction in this domain takes a large amount
of time, and that the descriptions produced may be quite complex. For incremental learning to be suc-
cessful here, a large decrease in induction time is necessary. This must be coupled with the formation of

rules that are not much more complex than those produced by non-incremental induction.

Figure 28 shows the complexity of four different rule types at various stages of the learning pro-
cess. As expected, the characteristic descriptions were by far the most complex. However, the discrim-
inant descriptions learned incrementally were not much more complex than those formed by the one
step method. The discriminant rules induced from the characteristic descriptions were cousiderably

larger than discriminant rules induced from examples. Similar results were obtained when the experi-
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Figure 27. Performance of three different rule types for the KPK endgame.

ment was repeated with a different set of learning events.

Figure 29 shows the total induction time necessary for forming the rules described in Figure 25,
INote here that the time to induce the ‘discriminant from characteristic” rules includes the time to
induce the characteristic descriptions. The incremental method worked quite well; induction time for

incremental learning appears to be a function of the number of new events rather than the total number
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Figure 28. Complexity of four different rule types for soybean disease diagnosis.

of events, as desired. Similar results were obtained for the second run, although induction times for the

characteristic descriptions were larger.

Figure 30 shows the performance of the three different rule types on 119 testing examples. All

three rule types showed a fairly steady increase in performance as new events were added. The tem-
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porary dips in performance may be attributed to over-gemeralizations due to the addition of new,
uncovered events. Such errors are corrected as new events are added later. The second run produced

similar results, except that the discriminant rules induced indirectly had a markedly poorer performance.
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Figure 30. Performance of three different rule types for soybean disease diagunosis.
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Overall, the incremental learning method worked as well as the non-incremental method and took
considerably less time. However, in this domain, incremental learning with characteristic descriptions
does not appear to be worthwhile. Compared to learning discriminant descriptions directly, this method
produced larger rules and took considerably more time. These results are somewhat at odds with those
obtained in the mayfly domain. Some ideas about the causes of these variations in rule performance and

rule complexity are presented in the next chapter,
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8. CONCLUSION

In general terms, the goal of the research described in this thesis was to build software tools that
would aid a domain expert in expressing knowledge in a rule formalism. The parédigm for rule acquisi-
tion presented in Chapter two was used to generate criteria for these tools. Specifically, the aim was to
provide useful programs for inductive inference and rule base testing. Chapter five described experi-

ments which characterized the performance of the induction program and the rules it produced.

It is obvious from the results of these experiments that incremental learning with perfect memory
is a viable way to form decision rules from examples. In all three application areas, incremental rule
induction was faster than single step application. The rules produced tended to be slightly more com-

plex, but their performance was comparable to rules induced using non-incremental means.

In section 5.2, reasons were given for believing that incremental learning might work best on
characteristic descriptions. However, the characteristic descriptions produced by GEM tended to be
large and took much time to produce. The performance of characteristic descriptions on testing events
depended on the evaluation scheme to a larger extent than was the case for discriminant descriptions.
Also, peformance was afected by the events chosen for learning. This effect was more marked for the

characteristic rules.

None of these results suggest that characteristic descriptions are useless. It is likely that the prob-
lems discussed in chapter five were caused by the way in which characteristic descriptions were formed.

It appears that a special method will have to be developed to produce such descriptions.

Another important point is that the performance of rules induced by GEM is dependent on the
nature of the events used for learning. This is not terribly surprising, but the effect seems to be stronger
in certain domains (e.g. the KPK chess endgame). Even more interesting, the performance of different
evaluation schema depends not only on the domain and the rule type, but also on the learning event set
used to induce the rules. This suggests that a method for selecting important learning events [Michalski

and Larson 78] could be very useful.
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Some hypotheses about these variations were presented in section 5.1. [t seems probable that the
variations are due to the relative locations of the learning events in the event space. If events of
different classes are in small clusters packed closely together, then the quality of the rules produced
depends on whether events from each cluster are available. In any case, good characteristic descriptions
cannot be produced in such domains; this situation was observed in the KPK application. The chess
endgame domain, due to the nature of the attributes used, is highly disjunctive. That is, if we view the
problem as defining a function mapping events to classes, the chess problem is a densely specified func-
tion — there are not “‘don’t care” areas. Any characterization of such a problem will be disjunctive.
The soybean disease problem presented a different kind of event distribution — a large, sparse event
space. In other words, the function defined by the examples is sparsely specified. Here, it seems likely
that the events of a single class were distributed throughout a large area, most of which consists of
‘“don’t care” regions. In such a problem space, rules are often incorrect not because they cover negative
events but because they fail to cover enough positive events. Only in the mayfly identification domain
did the characteristic descriptions work as expected. However, the domain was so small that characteris-

tic rules often did not differ much from discriminant ones.

The variations in performance observed for different evaluation schema was also related to the
problem area and to the available learning events. This is not surprising, as changing the evaluation
scheme changes the area of the event space that each rule covers. Using average for conjunction simply
extends the boundary of the area covered by a cégjunct. Therefore, averaging works well in areas like
the soybean disease domain because the major problem is that rules do not cover events that they
should. It fails in domains like the chess problem because rules are too general under averaging.
Because the KPK problem is by nature disjunctive, averaging causes individual conjuncts to cover areas
of the event space that they should not. A similar situation applies to continuous evaluation of selectors
in linear variables (i.e. normalizing the difference between a selector and an event to a value between
zero and one rather than treating selectors as boolean conditionals). Normalization had little effect in

the soybean domain because there were few linear variables. However, in the mayfly domain, where
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almost all the attributes were linear, normalization caused the rules to become overly general.

All of this suggests several possible directions for future research. The obvious first step is to find
a good method for producing ch“a:acteristic descriptions. The motivation for usiné characteristic rules is
strong, so a workable meaans for producing such rules should prove quite useful. An algorithm for pro-
ducing characteristic descriptions, once developed, could be easily tested using the methods presented

here.

Further study is necessary on the issues involved in characterizing an application area. The results
presented here, as well as common sense, suggest that different domains will require different learning
methods. Learning tools will probably have to be applied to many more application areas before any
coherent pattern emerges. Ideally, a learning system will be able to accept events in a problem area,
select those that are most relevant for learning, suggest a learning method, and define an evaluation

scheme to be used on the resulting rules.

The ADVISE system provides an excellent {ramework for research in this area to proceed. The
tools described in Chapter four will be attached to the QUIN relational data base system, which, with
associated editors for modifying knowledge, will provide an integrated interface for the domain expert
building a knowledge base. Similarly, the ADVISE architecture provides a strong foundation for the

addition of further learning and testing tools.
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APPENDIX

USER'’S GUIDE FOR GEM AND ATEST

GEM and ATEST are Pascal programs consisting of approximately 5,000 lines of code each. The
programs run on the University of Illinois Department of Computer Science VAX 11/780 under the
Berkeley Unix Operating System. The program load modules are each about 190K bytes. Run-time
memory requirements vary with problem size, but a minimum of 192K bytes is necessary. GEM and
ATEST are currently constrained to problems using no more than 60 variables with an overall total of
1,160 values. A single variable may have up to 58 values. All of these limits are constants defined in the

program source code.

Both programs take their input in the form of relational tables. Relational tables are a convienient
format for representing events of the type dealt with by ATEST and GEM. This also allows the pro-
grams to be used as operators by the QUIN relational database system [Spackman 83]. Both programs

read from standard input and write to standard output.

Input to GEM and ATEST consists of a single file containing a series of relational tables. A rela-
tional table is composed of three parts: a table-name, a list of column names, and a set of tuples con-
taining the data. In genmeral, columns may be entered in any order. The columns accepted for each
table type are defined in the section describing each program. The length of the tuples, and the type of
information in them, must correspond to the appropriate column names. The table name and the
column headings, as well as each tuple in the table, must be on a single input line, If all the columns in
a table will not fit on a single line, the table may be split into several tables, each of which has some part

of the columns. Individual items on a line are separated by any number of spaces.

Table names are of two types. First, there are tables which have only a single part name (such as

“parameters”). There are also table names which consist of two parts. These are of the form “specific-
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general”, where each of “specific™ and ‘‘general” is an alphanumeric string. Tables of this type (e.g. the
“.pames” tables) must have a specific name associated with them because there may be several tables of

the same general type. In the table definitions that follow, any table whose name is given with an intial

TR Gu»
- -

must have a specific name preceding the in program input. A specific name, and any other
alphanumeric string entered as input, must be a continuous string of characters containing only letters

and numbers and beginning with a letter. The maximum length of such strings is a program constant,

currently set to twenty.

1. GEM Input and Output

1.1 The title table

This table provides a header for an input file. It is not used in any way by the GEM program.

The title table is therefore optional. It consists of two columns:

e #

‘Optional column which contains the row number of the text in the next column. Row numbers
must begin with 1 and continue sequentially.

® text
Each entry in this column consists of a string of characters that are a single line in the title of the

input fle. If there are any blanks or tabs in the row, the string must be surrounded with quotes.
If single quotes appear in the string, double quotes must be used to surround it, and vice versa.

A sample title table is shown below.

title

#  text

1 "This is a sample title table”

2 "of the type input to GEM.”

3 "It is not used by the program.”
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1.2 The parameters table

The parameters table is mandatory. This table contains values which control the execution of the
program. Many of the parameters have default values, as noted below; these columns need not be
entered in the table if the default value is acceptable. Each row of the parameters table represents one

run of the program; this allows the user to specify many different runs on the same data in a single

input file.

® run

Optional row number. The first row must be numbered 1 and rows must be numbered sequen-
tially.

® echo

Optional specification of which tables are to be echoed to output. Values in this columa consist of
a string of characters, each of which represents a single table to be echoed. There must be no
blanks or tabs in this string. Legal characters for the echo column, and the tables they represent
are:

- the title table

—- the parameters table
the criteria tables

the domaintypes table
the -names tables

the variables table
the -inhypo tables

the -events tables

the -children tables

reoprepmaong o

The default value for the echo parameter is pcvh.
® mode

Optional specification of the way which GEM is to form rules. The legal values for this column
are ic, de and vl In ic (intersecting cover) mode, GEM will produce rules that may intersect over
areas of the event space where there are no learning events. This value is the default. In de {dis-
joint cover) mode, GEM will produce rules that do not intersect at all. In vl (variable valued
logic) mode, the rules produced will be order dependent. That is, the rule for class “n™ will
assume that the rules for the classes 1 through n-1 are not satisfied.

® maxstar

This parameter controls the size of the partial star kept during star formation (see Chapter 4).
Default value is 10. Maximum value is 3 program constant, currently set to 100.
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® trim

Boolean parameter (legal values are “yes” and "‘no”) which, if on, causes GEM to trim the covers
it produces. Trimming is done by removing values from the right hand sides of selectors in the
cover. A value is removed if it does not appear in any event of the corresponding class. Trim will
not change which variables appear in the rules. Defauit value is* on.”

® wis

Boolean parameter {legal values are “yes” and “no”) which, if on, causes GEM to associate two
weights with each complex it produces. The first weight produced is the percentage of positive
events that the complex covers. The second weight is the percentage of events that this complex,
and no other complex in the rule, covers.

® criteria

The name of the criteria table to be used for this run. The name must be less than twenty

alphanumeric characters with no blanks, and a -criteria table with that name must appear in the
input file,

A sample parameters table is shown below. Values shown in the first row are the default values for
the parameters. Note that the default value for the criteria column is the only -criteria table specific
name for which it is not necessary to actually define a table (see below). Since the second row contains

the string “maxim” for the criteria column, a table named “maxim-criteria” must be defined.

patameters ,

run echo mode maxstar trim wits criteria
1 pevh ic 10 yes no default
2 pe de 50 yes yes maxim

1.3 The -c¢riteria tables

This table type is used to define a lexicographic functional (LEF). The LEF is used by GEM to
judge the quality of complexes formed during learning. A LEF consists of several criterion - tolerance
pairs. The ordering of the criteria in the LEF determines the relative importance of each. The tolerance
specifies the estimated error within each criterion. See Chapter 4 for a more detailed discussion of when

and how the LEF is used.
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A criteria table name consists of two parts ~ the specific name, which must appear in the “criteria”
columa of the parameters table, and the general name, -criteria. Any value in the criteria column of the

parameters table except default must have a corresponding ~criteria table.

The criteria table consists of three columas, all of which must be present:

o #

The order of this criterion in the LEF. The first row must be numbered “1”, and the rows must
be numbered sequentially. This column is optional.

® criterion

This column specifies the functional which is to be used for this row of the LEF {the rows of the

table give the ordering in which the functional will be applied). There are five different criteria
available:

1 - Maximize coverage of positive events that are not covered by previous
complexes. Complexes in a cover are produced sequentially; this criterion
specifies the selection of complexes that cover events not covered by earlier
complexes in the sequence.

2 = Minimize the number of selectors.

3 - Minimize the total cost of the variables used (see section 1.5).

4 - Maximize the total number of positive events covered.

5 - Maximize the number of selectors.

® tolerance

This must be a real number between 0 and 1. The tolerance specifies the uncertainty in the asso-
ciated criterion. For example, say the best complex in a list had a value of 100 for some criterion
and the tolerance for the criterion was 0.1, The absolute tolerance allowed is computed by muliti-
plying the tolerance by the best value, yielding an absolute tolerance of 10. Then any complex

with a value between 90 and 100 would be regarded as having the same value as the best complex
for this criterion.

The default-criteria table is shown on the next page. This is the only incarnation of the -criteria

table which need not be entered explicitly.
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default-criteria
# criterion tolerance
1 1 0.00

2 2 0.00

1.4 The domalintypes table

The domaintypes table is used to define domains for attributes. This table is optional, but it is
convienient if several attributes have the same set of possible values. The table consists of three

columas, all of which must be included:

® pame

This is the name of the domain being defined. Must be a string of less than twenty alphanumeric
characters with no white space.

® type

The type of the domain being defined. Three domain types are legal: nominal (nom), linear (lin)
or cyclic {cyc). A nominal domain consists of discrete, unordered values (e.g. color is a typical
nominal domain). A linear domain consists of discrete, ordered values {e.g. size). A cyclic domain
is discrete values in a circular ordering {e.g. the integers modulo 4).

® levels

AD integer value between 1 and 57 specifying the size of the domain. The maximum domain size
is related to the size of sets allowed in the Pascal implementation. GEM was originally imple.

mented on a machine which allowed sets to have a cardinality of no more than 58. On other
machines, the maximum domain size is a declared program constant.

The domaintypes table is used in conjunction with the variables table and the -names table. An
example of the use of these three table types is shown after the definition of the -names table (see section

1.6).

1.5 The variables table

The variables table is mandatory — it specifies the names and types of the variables used to

describe events. It may contain up to five columns:
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e #

Optional numbering of variable declarations. The first row must be numbered “1”, and rows
must be numbered sequentially.

o name

Optional column associating 3 name with the variable. If this column is omitted, variables will be
given names of the form x#, where # is the row the variable appears in. If 2 domaintypes table is
being used, then the variable name may coasist of two parts -~ “name”.“domain-name”, where
“domain-pame” is a string appearing in the name column of the domaintypes table.

® type

Same as the type column in the domaintypes table.

® levels

Same as the levels column in the domaintypes table.

® cost

A real number specifying how *‘expeasive” this variable should be to use compared to other vari-
ables. Used in computing criterion 3 in the LEF (see the definition of the -criteria table).

The variables table may be used in conjunction with the domaintypes and -names table. An exam-

ple of a variables table is shown after the definition of the -names table, below.

1.8 The -names tables

This table is optional. The -names table is used to specify names for values in a domain. If no
-names table appears for a variable or domain, then the values for that domain are assumed to be the
integers beginning with 0. The specific name of a -names table must be the name of a variable in the
variables table or an entry in the name column of the domaintypes table. A -names table consists of two

columns, both of which are mandatory:

® value

This is the integer equivalent of the value to be defined in the next column.
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L J name

The name of the value being defined.

Below is a typical example of the use of the domaintypes, variables and names table. In this exam-
ple, two variables (“long” and “wide”) are defined to be boolean with the values ‘false® and “‘true”.
The variable “color” may take any of the values “red”, “blue” or ““green”. The variable “size” takes on
integer values between 0 and 5. Note that if the domaintypes table were excluded, then the “type” and

“levels” column would have to appear in the variables table.

domaintypes

name type levels
boolean nom 2
colors nom 3
range lin 6

variables

name

long .boolean
wide .boolean
color.colors
sitze.range

A

boolean-names
value name
0 false
1 true

colors-names

value name
0 red

1 blue
2 green

1.7 The -inhypo tables

The -inhypo table is used to input rules to GEM for incremental learning. The specific name of

this table must be the name of a decision class. If the name given for a -inhypo table has not been seen
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before {i.e. in a -children table, see below), the associated class is assumed to be at the top of a struc-
tured rule base. The rules input in a -inhypo table are used as the initial covers when doing incremental

learning. If incremental learning is not desired, then this table may be excluded.

® #

Mandatory column associating a number with each complex in the rule. In -inhypo tables onfy, a
single relational tuple may span more than one line. However, there must be only one # entry for
every complex in the table.

® epx

Mandatory columa giving a VL1 declaration of the complex. A complex is presented as a series of
selectors. Selectors may be separated by any amount of white space or new lines. A new complex
is started only when a new entry for the # column (i.e. 2 number) is found. Each selector is an
expression of the form [variable = values|. The brackets are mandatory. The variable may be
any variable declared in the variables table, but the same variable may not appear twice in one
complex. The values must be defined values for the variable given on the left of the "==" sign.
Several values may be specified in one selector in any of the following forms:

valuel,value2
value, ..value, (valid only for linear and cyclic variables)
valuel..valueg,value4..value5 (also valid only for linear and cyclic variables)
The symbol “,” in a selector means “or” and the symbols ““..” specify a range of acceptable values,

So, the selector [color = blue,green| is read “color is blue or green.” The selector [size = 0..3]
means “‘size is between 0 and 3, inclusive.”

Below is an example of a -inhypo table which uses the variables defined in the example at the end
of the previous section. This rule would be used as an initial hypothesis {or the class "ONE”. The rule

consists of two complexes, and is read " If long and wide are false or size is 1 then the event is of class

ONE.”

ONE-inhypo

# epx

1 [long = false|[wide = [alse]
2 [size = 1]



1.8 The -events tables

These tables are used to input events to GEM. The specific name given to a -events table
corresponds to a single decision class. In GEM, if the specific table name has not been seen previously

(in a -children table, see below), then a new class is created at the top of the rule base structure.

The column headers for this table type consist of variable names defined in the variables table.
The values in the rows of the table must be legal values for the appropriate variables. Since many attri- -
butes may be use1 to describe an event, it is possible to split a -events table into several tables. This is
done by repeating the table name (both specific and general), and using different column headings in
each occurence. Column headings may not overlap, and each table must have the same number of

events.

The -events table shown below uses the attributes defined in the example for the -names table,
above. This table would associate four events with the class “ONE".
ONE-events
long wide color size
false false blue
true false  red

0
1
false false red 0
false false  blue 1

1.8 The «children tables

GEM accepts —children tables in order to define a structuring on a rule base. The specific name of
the table must be the name of an already defined class, i.e. the name must have appeared as the name

of a -events table. The rule base may be structured to arbitrary depth.

The -children table consists of two columas:

& node

This column is a string of characters giving the name of the node to be defined.



® evis

This column specifies which events attached to the parent class also belong to this child node. It

consists of a string of integers separated by commas or by “.”, as in selectors. These numbers

correspond to events associated with the parent. The parent’s events are numbered in the order
they appear in the -events table. Classes more than one level deep in the rule base use the event
pumbers associated with their ancestor at the top of the structure. This allows the user to specify
all events with the same set of numbers.

The tree below shows how a sample rule base might be structured. In this rule base, classes ONE
and TWQO are siblings at the top of the structure. The class ONE has two sub-classes, THREE and

FOUR.

ONE TWO

THREE FOUR

The tables beiow define the rule base structure given in the tree. In this example, class ONE con-
tains four events. The -children table assigns the first and last of these to class THREE, and the

remainder to class FOUR.

ONE-events

# long wide color size
1 false false blue O

2 true  f{alse red 1

3 false false red 0

4 false false  blue 1
TWOQ-events

# long  wide color size
1 true  true  green 2

2 true  true  red 3

3 false  true green 3
ONE-~children

# node evts

1 THREE 14

2 FOUR 2.3
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This subsection contains a detailed example of input to the GEM program. The sample input file

shown in the left column below uses every table GEM accepts. Comments in the right column explain

the corresponding table and provide pointers to the previous subsections for more detailed explanations.

To input this example to GEM, the tables would be entered {in the order given) into some file using 3

standard text editor. If this file was called “gem.input,” then executing:

gem < gem.input > gem.output

under the UNIX shell would cause GEM to run the example and save the results in the file

“gem.output.”

GEM Input
title
# text
1 "Sample input file”
parameters
echo mode maxstar trim wts criteria
t de 50 yes yes maxim
maxim-criteria
# criteria tolerance
1 1 0.10
2 5 0.00

Comments

The title table is used only for reference and may be omitted.

The parameters table defines the way in which GEM will run.

" The table here tells GEM to run ance, echo oaly the title

table, form disjoint rules, use » maxstar of 50, trim the
results, repert weights and use the LEF defined in the
maxim-criteria table. The parameters are defined in detail
on pages 65-56. See Chapter 4 for an expianation of the ter-
minology.

This table specifies a LEF (see section 1.1.1) of two criteria:
maximise the nomber of new eveats covered and maximise
the leagth of the rules. The first critenia has a tolerance of
10% — any complex whose valae for this criterion is within
10%5 of the best complex will be regarded as equivaient to the
best complex. The criteria table is defined in detail on pages
66-68.
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GEM Input Comments

domaintypes ) Three types of variables with 3, 4, and 10 vaines, respec-
name type levels tively, will be ased. The definition of the domaintypes tabie
sizes lin 3 is on page 68.

colors nom 4

nums lin 10

sizes-names Names to be associated with values of a vaniable with
valye npame domain “sizes.® The -names table is explained on page 0.

0 small

1 medium

2 large

colors-names

value name

0 red

1 blue

2 green

3 yellow

variables ' The rariables that will be used to describe events for this
# name problem. If the domaintypes table was not being used, then
1 size.sizes the levelr and type columns wouald be in this table. As it i,
2 color.colors we need only specifiy the name of the variable and its domain
3 numl.nums type. The variables table is defined on page 63.

4 aum2.aums

ONE-events This table contains events of the class ONE. Since this is the
#  size color puml num2 first class to be defined, it will be at the top of the rule base.
1 small red 0 0 Note that since no -pames table was used for the “‘aums”
2  medium red 4 2 domain, the values entered are integers. The “# columa
3 medium blue 1 1 here is optional.

4 small biue 2 3



GEM Input
TWOQ-events -
#  size color numl num32
1 medium  yellow 7 3
2  medium yellow 8 3
2 large green 4 4
3  medium greem 9 3
ONE-children
node evts
THREE 1.4
FOUR 2.3
ONE-iohypo
# <pXx
1 [size == small..mediumj{pum1 = 0..7]
TWO-inhypo
# epx
1 [size = small,large]
2 [size = medium|[num] = 8..9]
THREE-inhypo
#* cpx
1 [size == small]
FOUR-inhypo
# cpx

1 [size = medium]

Comments

Events of class TWO, alse at the top of the structured rule
base. The .events tables are discussed on page 72.

This table defines the structure om the rule base. Class
THREE is a child of class ONE, and contains its parent’s
first and fourth events, Class FOUR is defined similarly.
The method of structanng rule bases is descnbed in detail on
pages 72.73.

This table defines an initial rule for class ONE. This rule is
input for the incremental learning aigonithm. See page 70 for
details on format and Chapter 4 for informatioa on the incre-
mental learning meshed.

This table defines the rule for class TWO. This rule will
serve as inpat for the incremental algorishm.

This table defises the rule for class THREE. This rule will
serve as inpat for the incremental algonthm.

This table defines the rule for class FOUR. This rule will
serve as input for the incremental algonithm,
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1.11 An Example of Qutput From GEM

If GEM is given the input in part 1.10, it will produce output consisting of two parts: 2a echo of

certain input tables {as per the echo parameter), and a summary of the results. This output is shown

below.
GEM Output Comments

title The title table is the only table echaed because the value of

¥ taxt the echo parameter in the input file was *“2.*

1 *Sample inpat file”

ONE-outhypo The rule produced for class ONE are catput in this table.

* cpx This rule consists of a single conjuct; disjuncts are separated

1 [size = small. medium|[color == red biue] by entries ia the ‘‘#" columa, as in the next table. The first

[nami = 0..2,4] : 1.00, 1.00 number following the complex is the percentage of positive

(i.e. class ONE] events covered by this complex and oo other
complex. The second number is the percentage of class ONE
events covered by this complex.

TWO-suthypo The rule produced for class TWO.

» epx

1 [numi = 7..9): 0.50, 0.75

2 [size = large] : 0.25, 0.50

THREE-outhypo The rule prodaced for class THREE,

[ cpx

1 [size == small] : 1.00, 1.00

FOUR-outbypo The rale produced for class FOUR.

* cpx

1 [size = medium| : 1.00, 1.00

This run ased (milliseconds of CPU time): Time taken te form the rales. This does not include input

System time : 34 and outpat time,

User time : 184
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2. ATEST Input and Output

2.1 The title table

This table provides a header for an input file. It is not used in any way by the ATEST program,

The title table is therefore optional. [t coasists of two columns:

* #

Optional column which contains the row number of the text in the next column. Row numbers
must begin with 1 and continue sequentially.

® text

Each entry in this column consists of a string of characters that are a single line in the title of the

input file. If there are any white space charaters in the row, the string must be surrounded with
quotes.

A sample title table is shown below.

title

#  text

1 ™This is a sample title table”
"2 "of the type input to ATEST”

2.2 The parameters table

The parameters table is mandatory. This table contains values which control the execution of the
program. Many of the parameters have default values, as noted below; these columns need not be
entered in the table if the defauit value :s acceptable. Each row of the parameters table represents one
run of the program; this allows the user to specify many diflerent runs on the same data in a single

input fle.

@ run

Optional row number. The first row must be numbered | and rows must be numbered sequen-
tially.



® echo

Optional specification of which tables are to be echoed to cutput. Values in this column consist of
a string of characters, each of which represents a single table to be echoed to output. There must
be no blanks or tabs in this string. Legal characters for the echo columan, and the tables they
represent are:

t - the title table

p - the parameters table
¢ - the criteria tables

d - the domaintypes table
n — the -names tables

v - the variables table

h o the -outhypo tables

e — the -test tables

b - the —children tables

The default value for the echo parameter is pevh.

® test

This parameter tells ATEST whether to test rules it is given on events. Legal values are ‘“‘yes,”
“no” and “sum.” If test is ‘‘yes,” ATEST will produce a confusion matrix for each testing class.
If test is “sum,” ATEST will oaly report a summary of the results for all classes. If test is “no,”
then the rules will not be tested on any events. The default value is “yes.”

® misclass

If misclass is on {legal values are “yes” and “no,” default value is “no”), then ATEST will priat a
trace of every event that was evaluated incorrectly.

@ ce

If cc is on {again, values are “yes” and “no,” defauit is “‘no”), then ATEST will perform con-
sistency and completeness checking on the rules input in the -outhypo table.

® andtype

Determises how conjunction is evaluated. Legal values are “average” and “minimum;” the
default value is “minimum.”

® ortype

Determines how disjunciton is evalyated. Legal values are “maximum” and “psum;” the default
value is “maximum.”

® norm

Determines whether selectors in linear variables will be evaluated to a range between zero and one
(normalized) or as a boolean conditional. Legal values are “yes” and “no,” the default is “‘no.”
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® threshold
Real-valued parameter in the range O to 1. ATEST uses this parameter as the threshold for rule

satisfaction. If a rule has a degree of consonance with an event greater than the value specified in
this column, then the rulé is deemed satisfied by the event. The default value is 0.50.

® dropa2

Real-valued parameter in the range 0 to 1. This parameter is used to determine when to stop
using the a, weight in rule evaluation. See section 4.2.1 for a detailed explanation. The default
value for this parameter is 1.00.

® dwelght

Real-valued parameter in the range 0 to 1. This parameter is used to determine which modules to

use when multiplying during consistency and completeness checking. Modules whose o, weights
are below dweight are not used. The default value is 0.50.

A sample parameters table is shown below. Values shown are the default values for the parame-

ters.

parameters
run echo test misclass cc andtype ortype norm threshold dropa2 dweight
1 pcvh yes no no minimum maximum no 0.50 1.00 0.50

2.3 The domalintypes table

The domaintypes table is used to define domains for attributes. This table is optional, but it is
convienient if several attributes take the same values. The table consists of three columas, all of which

must be included:

® pame

This is the name of the domain being defined. Must be a string of less than twenty alphanumeric
characters with no white space.

® type

The type of the domain being defined. Three domain types are legal: nominal {nom), linear (lin)
or cyclic (cyc). A nominal domain consists of discrete, unordered values (e.g. color is a typical
nominal domain). A linear domain consists of discrete, ordered values (e.g. size). A cyclic domain -
is discrete values in a circular ordering (e.g. the integers modulo 4).
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® levels
An integer value between 1 and 57 specifying the size of the domain. The maximum domain size
is related to the size of sets allowed in the Pascal implementation the program is running under.

GEM was originally implemented on 3 machine which allowed sets to have a cardinality of no
mote than 58. On other machines, the maximum domain size is a declared program constant.

The domaintypes table is used in conjunction with the variables table and the -names table. An

example of the use of these three table types is shown after the definition of the -names table.

2.4 The variables table

The variables table is mandatory — it specifies the names and types of the attributes used to

describe events. It may contain up to five columas:

o #

Optional numbering of variable declarations. The first row must be numbered “17, and rows
must be numbered sequentially.

. ® name
Optional column associating a string of up to 20 alphanumeric characters with the variable. If
this column is omitted, variables will be given names of the form x#, where # is the row the vari-
able appears in. If a domaintypes table is being used, then the variable name may consist of two
parts — “name”."domain-name”, where “domain-name” is a string appearing in the name column
of the domaintypes table. If a variable is specified in this way, then it is assumed to have values
corresponding to those in the appropriate row of the domaintypes table.
® type
Same as the type column in the domaintypes table.

® levels

Same as the levels column in the domaintypes table.

The variables table may be used in conjunction with the domaiatypes and -names table. An exam-

ple of a variables table is shown after the definition of the -names table, below.
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2.5 The -names tables

This table is optional. The -names table is used to specily names for values in a domain. If no
-names table appears for a variable or domain, then the values for that domsin are assumed to be the
integers beginning with 0. The specific name of 3 -names table must be the name of a variable in the

variables table or an entry in the name column of the domaintypes table. A -names table coansists of two

columns, both of which are mandatory:

® value
This is the integer equivalent of the value to be defined in the next column.
® name

The name of the value being defined.

Below is a typical example of the use of the domaintypes, variables and names table. The domain-
tyﬁes table must be entered first. The table shown below defines three domaias: boolean, colors and
range. In this example, two variables (“long” and ‘‘wide”) are defined to be boolean with the values
“false” and ‘“‘true”. The variable ‘‘color” may take any of the values *red”, “blue” or “green”. The
variable ‘'size” takes on integer values between 0O and 5. Note that if the domaintypes table were
excluded, then the “‘type” and “levels” column would‘ have to appear in the variables table. Every vari-
able must have a defined type and a defined domain size (number of levels). If some variables have
domains defined in the domaintypes table and some do not, the “type” and “levels” columns must still

appear in the variables table. The declarations must match for those variables whose domains are

declared twice.

domatatypes

name type levels
boolean nom 2
colors nom 3

range lin 6
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variables

# pame

1 long.boolean

2 wide.boolean

3 color.colors -
4 size.range
boolean-names

value name

0 false

1 true

colors-names

value hame
0 red

1 blue
2 green

2.8 The -outhypo tables

The -outhypo tables are used to provide ATEST with rules to test. The specific name of this table
must be the name of a decision class. If the name given for a -outhypo table has not been seen before
(i.e. in a -children table, see below), the associated class is assumed to be at the top of a structured rule
base. This name is somewhat confusing since -outhypo tables provide snput rules. The name is used to
correspond to the name of the output tables from the GEM program. This allows GEM output files to
be used as ATEST input files with only minor modifications (changing the parameters and entering test-
ing events). .

Rules input in a -outhypo table may also have weights associated with them. Chapter 3 provides a

syntax and semantics for these a-weights. When weights are encountered by ATEST, they are automat~

ically associated with whatever expression was read in since the last time weights were seen.

e #

Mandatory column associating 3 number with each complex in the rule. In -outhypo tables only,
a single relational tuple may span more than one line. However, there must be only one # entry
for every complex in the table.
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® cpx

Mandatory column giving a VL1 declaration of the complex. A complex is presented as a series of
selectors. Selectors may be separated by any amount of white space or new lines. A new complex
is started only when 3 new entry for the # column (i.e. 2 number) is found. Each selector iz an
expression of the form [variable = values|. The brackets are mandatory. The variable may be
any variable declared in the variables table, but the same variable may not appear twice in one
compiex. The values must be defined values for the variable given on the left of the “==" sign.
Several values may be specified in one selector in any of the following forms:

mluel,v:;lue2
valuel..value,, (valid only for linear and cyclic variables)
value,..value,,value,..value, {also valid only for linear and cyclic variables)

wo”

The symboi “,” in a selector means “‘or” and the symbols “..” specily a range of acceptable values.
So, the selector [color = blue green| is read ‘‘color is blue or green.” The selector [size = 0..3]
means ‘‘size is between 0 and 3, inclusive.”

Below is an example of a -outhypo table which uses the variables defined in the example in part
2.5. This rule would be used as an initial hypothesis for the class "ONE”. The rule consists of two com-

plexes, and is read * If long and wide are false or size is 1 then the event is of class ONE.”

ONE-outhypo
# cpx
1 [long == false|[wide = false]
2 size == 1 ‘
[ l 3

2.7 The ~test tables

These tables are used to input testing events to ATEST. They are identical (except in table name)
to the -events tables in GEM. The specific name given to a -test table corresponds to a single decision
class. In ATEST, if the specific table name has not been seen previously {in a -children table, see below),

then a new class is created at the top of the rule base structure.

The column headers for this table type consist of variable names defined in the variables table.
The values in the rows of the table must be legal values for the appropriate variables. Since many attri-

butes may be used to describe an event, it is possible to split a -test table into several tables. This is
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done by repeating the table name (both specific and general), and using different column headings in
each occurence. Columa headings may not overlap, and each table must have the same pumber of

events. -

The -test table shows below uses the attributes defined in the example in part 2.5. This table
would associate four testing events with the class “ONE”.
ONE-test
long wide color size
false false blue O
true false red 1
0
1

false false red
faise  false  blue

2.8 The -children tables

ATEST accepts -children tables in order to define a structuring on a rule base. A children table
specifies the children of a class in the rule base. The specific name of the table must be the name of an
already defined class, i.e. the name must have appeared as the name of a -outhypo table. There will be
one -children table for every class that has subclasses. The rule base may be structured to an arbitrary
depth. The range of structures allowed is 2 slight generalization of tree structuring wherein a child may

have have more than one parent class. No recursion is allowed.

The -children table consists of two columas:

o #

The number of the row. The first row must be numbered “1,” and the rows must be numbered
sequentially.

€ node

This column is an alphanumeric string of up to twenty characters giving the name of the node to
be defined.

The tree below shows how a sample rule base might be structured. In this‘rule base, ONE and

TWO are siblings at the top of the structure. The class ONE has two sub-classes, THREE and FOUR.
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N

ONE &

PZN

ya
'I'HREE/ \ FOUR

The tables below define the rule base structure given in the tree. Again, the variables defined in

® TWO

s
.,

part 2.5 are used. The -children table is only used for rules that are not at the top of the rule base
structure. Unlike the GEM -children table, events are not associated with a child node in this table.
Note that the -outhypo tables for the child nodes are not entered until after the nodes are defined in the

-children table.

ONE-outhypo

# epx

1 [long = false][wide == false]
TWO-outhypo

# cpx

1 [long = true|[size = 3|
ONE-children

# node

1 THREE

2 FOUR
THREE-outhypo

# cpx

1 [size = 0..1}
FOUR-outhypo

# cpx

1 [size = 2]



”

87

2.9 An Example of Input to ATEST

This subsection contains a detailed example of input to the ATEST program. The sample input
file shown in the left column below uses every table ATEST accepts. Comments in the right column
explain the corresponding table and provide pointers to the previous subsections for more detailed expla~
nations. To input this example to ATEST, the tables would be entered (in the order given) into some

file using a standard text editor. If this file was called “atest.input,” then executing:
atest < atest.input > atest.output

under the UNIX shell would cause ATEST to run the example and save the results in the file

‘“‘atest.output.”

ATEST Input Comments

title The title table is used only for reference and may be omitted.

# text

1 "Sample input file”

parameters The parameters table defines the way in which ATEST will

run  echo test rmisclass andtype ortype _ run. This table tells ATEST to echo oaly the title table,

1 4 yes yes average maximum report on the evaluation of misclassified events, evaluate
““and” as average and evaluate “or’ a» maximum. The
parameters are defined ia detail on pages 78-80.

domaintypes

name type levels Three types of variables with 3, 4, and 10 vaines, respec.

sizes  lin 3 tively, will be used. The definition of the domaintypes table

colors nom 4 is on page 80.

aums lin 10

sizes-names

value name Names to be associated with values of a variable of type

0 small ‘*sizes.” The -names table is explained on page 82.

1 medium

2 large



ATEST Input
colors-names -
value pame
0 red
1 blue
2 green
3 yellow
variables
# name
1 size.sizes
2 color.colors
3 numl.oums
4 num2.pum
ONE-outhypo
#  cpx
1 [size = small..medium][color == red,blue]

[numl = 0..2,4)

TWO-outhypo

# cpx
1 [ouml=7.9
2 |[size = large]

ONE-children

# node

1 THREE

2 FOUR
THREE-~outhypo
#  cepx

1 [size = small|
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Comments

The variables that will used to describe events. If the
domaistypes table was pot being used, the levels and type
columns wounld be in this table. The vanriables table is
defined on page 81.

The input rule for class ONE. This rule will be tested on all
testing events. This ruies contains a siagle complex; com-
plexes are separated by entnes in the “#" coiumn, as ia the
aext table. See pages 83-84 for more details oa the cuthypo
table.

The inpat rale for class TWO.,

The children of class ONE 1o the structured rule base. Here,
class ONE bhas two childres, THREE and FOUR. See page
85 for an explanation of the -children table.

The input rule for class THREE.
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ATEST Input Comments

FOUR-outhypo - The input rule for class FOUR.
#  cpx
1 [size = medium]|

TWO-test The testing events of class TWO. These events will be
size color nauml aum2 applied to all the rules and the resuits reported. Note that
medium  bilue 0 0 only leaf nodes in the rule base structure can bave testing
large green 8 4 events (there i3 no -test table for clays ONE). The -test table

is defined o8 page 34.

THREE-test The testing events of class THREE.
size color auml aum?2

small blue 0 3

small red 3 3

FOUR-test The testing eveats of class FOUR.
size color numl num2

medium  red 0 4

medium  blue 2 ]

2.10 An Example of Output from ATEST

If ATEST is given the input in part 2.9, it will produce output coasisting of two parts: an echo of
certain input tables (as per the echo parameter), and a summary of the results of testing. This output is

shown below.

ATEST Output Comments
title The title table is the only table echoed because the value of
# text the echo parameter in the input file was “t.”

1 "Sample input file”



ATEST Output

TEST RESULTS FOR CLASS THREE

CORRECT DECISION CLASS = D1 (class THREE)

jsvf:m I #TIES ! ASSIGNED DECISION |
| D1 D2 D3

THREE-t | { *1.00* | 000 | 000 |
THREE-2 | | *100* ' 000 | 000 |
# 1t RANK EVENTS | 2 o | o |

NUMBER OF EVENTS SATISFYING CORRECT RULE : 2

TEST RESULTS FOR CLASS FOUR

CORRECT DECISION CLASS = D2 (ciass FOUR)

EVENT l #TIES 1 ASSIGNED DECISION |

D1 D2 D3
[Fouax | | 0.00 | *100* | 0.00 |
| FOUR-2 | | 000 | *100° | 0.00 |
Iﬁm RANKEVENTS | ¢ | 2 | o

NUMBER OF EVENTS SATISFYING CORRECT RULE : 2

TEST RESULTS FCR CLASS TWO

CORRECT DECISION CLASS = D3 {class TWO)

EVENT | #TIES ’ ASSIGNED DECISION |
D1 D2 D3
TWO-1 | [ 000! 100 | o000 |
Two-2 | | 000 | 000 1 *1.00° |
|# 1L RANKEVENTS | 0 | ¢+ | 1 |

NUMBER OF EVENTS SATISFYING CORRECT RULE : t
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Comments

The confusion matnx shows how the rules performed when
evaluated on testing events of class THREE. The sombery in
the matrix are degrees of consonance. Numbers surrcunded
by asterisks are cases where the correct rule (in this matrix,
the rule for class THREE) evaluated to a first rank decision.
The #TIES columa specifies the number of Srat rank deci-
mions for the event if there were more than one. See section
4.2.1 for defintions of terma.

This confasion matnx shows how the rules performed when
evainated on testing events of class FOUR.

This confusion matrix shows bow the rules performed when
evainated on testing eventy of clasy TWO. Note that the
event TWO-1 satisfied the rule for class FOUR instead of the
rule for class TWO.
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The testing eveat
TWO-1 [sise = medinmi{color == blge]
[suml = Oj[pum2 = 0}

was evaluated as follows:

Rule ONE : Degree of consonance = 1.00
# cpx
1 [size==small, medium][color==red blue!{numi="0. 4|

Rule THREE : Degree of consonance = 1.00 x 0.00 = 0.00
# cpx
1 [size = small|??

Rule FOUR : Degree of consonance = 1.00 x 1.00 = 1.00
# cpx
1 [sise = mediom]

Rule TWQO : Degree of consonance == 0.00
# cpx

1 7faumi = 7.9{7?

2 Msize == large|??

SUMMARY OF TEST RESULTS

OVERALL % CORRECT : 83.33
OVERALL % CORRECT 1ST RANK - 83.33
OVERALL % CORRECT ONLY CHOICE ; 83.33

This run used (milliseconds of CPU time)
CPU user time : 367
CPU system time : 184
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Comments

This part of the output is reporting a trace of evaluation for
an event that was not evaluated correctly. The selectors sur-
rounded with question marks are those which were not
satisfied by the testing event. Note that the degree of conso-
pance {or a child node is the prodnét of ity dc and that of its
parent. See section 4.2.1 for a detailed explanation of the
terminology.

This portion of the output is the only part reported if the
test parameter is set to ‘‘sam® {see page 79). The first
number gives the percentage of sll testing events for which
the correct rule was above the value set by the threshold
parameter. The second number is the percentage of all test-
ing events for which the correct rule was a first rank decision.
The last samber is the percentage of events for which the
correct rule was the only firss rank decision.

The amount of CPU time used in testing the rules.
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