
ORIGINAL 

KNOWLEDGE ACQUISITION AND REFINEMENT TOOLS 
FOR THE ADVISE META-EXPERT SYSTEM 

BY 

ROBERT EUGENE REINKE 

July 1984 

ISG 84-4File No. UIUCDCS-F-84-92l 



File No. UIUCDCS-F-84-921 

KNOWLEDGE ACQUISITION AND REFINEMENT TOOLS 

FOR THE ADVISE ~1ETA-EXPERT SYSTEM 


BY 


ROBERT EUGENE REINKE 


B.S., University or Dlinois, 1982 

B.S., University or Dlinois, 1982 

THESIS 

Submitted in partial rul6llment or the requirements 

ror the degree or Master or Science in Computer Science 


in the Graduate CoUege or the 

University or Illinois at Urbana-Champaign, 1984 


ISG 84-4 

Urbana, Illinois 

July 1984 

This research was supported in part by the Office of Naval 
Research under grant N00014-82--K-0186 and in part by the 
National Science Foundation under grant MCS 82-05166. 



1 

1. 	 INTRODUCTION 

Computer systems which can perrorm a task that normally requires a highly-trained human expert 

are understandably in great demand. Unrortunately, the development or such systems has proven to be 

difficult. Building an expert system typically requires months (or years) or work by both the human 

expert who is providing knowledge and the computer scientist (knowledge engineer) attempting to put 

that knowledge into a computer program. The primary problem lies in the area or knowledge acquisi­

tion and refinement. Computer programs that aid a domain expert in expressing and modifying 

knowledge would decrease the amount 01 time necessary to build userul expert systems. 

This thesis describes soltware tools that are the tirst steps along the path to aD integrated 

knowledge acquisition and refinement system. The research described here is based on tbe beliet that a 

teacher (i.e., the domain expert) should be provided with several ways to present and modify knowledge. 

The goal or this research is to develop a domain independent inlerence system that can be taught in 

several different ways. 

Two specific computer programs are described. The first, GEM (Generalization or Examples by 

~fachine). is the newest in a series or inductive inrerence programs developed by the Artificial Intelli­

gence Laboraotory at the University ot lllinois [Michalski 77. Michalski and Larson 78, Stepp 79, Hoff, 

Michalski and Stepp 831. The second program, ATEST, allows rapid, batch.type testing or:to knowledge 

base. ATEST was developed specifically to aid in rule base refinement. Both or these programs are 

intended, in their tinal implementation, to be part or the ADVISE general purpose inlerence system 

[Michalski and Baskin 83, Michalski et. at 841. 

This chapter presents an overview or previous knowledge base development work and a discussion 

or specific problems in knowledge acquisition. This will establish the context Cor the ide3S in Chapter 2 

on a paradigm lor rule base development. Chapter 3 describes the rule Cormalism used throughout the 

remainder or the thesis. and Chapter .. contains a detailed description or the GEM and ATEST pro­

grams. The last two chapters present results Irom the application or th~se programs to three domains. 
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1.1. 	An OveJ'Vlew ot Expert Systems and Knowledge AcquisItion 

An expert system contains both procedural and declarative knowledge. Declarative knowledge is 

stored in a knowledge base. Two methods have been widely used in building knowledge bases: produc­

tion rules and semantic networks. Systems such as MYCIN [Davis, Buchanan and Shortlitfe 77J, Rl 

[McDermott 821 and PLA..'JT Ids [Michalski d. 301. 831 use production rules to represent a domain expert's 

decision making rules. Expert systems such as Prospector [Gaschnig 821 and BABY [Rodewald 841 use 

semantic networks to represent real-world situations and phenomena. Procedural knowledge is built 

into the control scheme, a deductive inCerence mechanism which uses the knowledge base. The expert 

system (directed by the control scheme) asks questions of the user and applies information to the 

knowledge base in order to derive conclusions. This separation of procedural and declarative toowledse 

is a major reature o( expert system architecture. Bramer 1821 preseata an overview of expert. systems 

and related issues. Buchanan [821 has developed a good partial bibliography of work in this area. 

Knowledge acquisition is the bottleneck in expert systems developmeat, so several research elrorta 

have been directed towards providing the domain expert with tools to aid him in refining and correcting 

a knowledge base. The Teiresias system [Davis 76J provided an interactive, English-language (ront end to 

the MYCl:-.l rule base. Teiresias contained meta-level knowledge about diagnostic and therapuetic rules 

in the rorm or rule models. These models were used to generate expectations about the rorm and con­

tent or rules. Teiresias' expectations helped it to guide the debugging process. The ONCONCIN system 

[Shortlilre d. al. ;;'1 was equipped with a tool that aided the expert in identirying problem are35 in the 

knowledge base [Suwa, Scott and Shortlitfe 821. Botb this tool and Teiresias worked in the context of a 

single expert system. They also assumed that the domain expert bad already developed at le3.St a partial 

knowledge base. 

The standard method or knowledge base development is a generate-and-test process {Feigenbaum 

--I • The domain expert and the knowledge engineer construct a knowledge base and control scheme. j i 

The domain expert then tests the system on examples. When problems :ne revealed during testing, the 
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expert modifies the knowledge base. The system is tested again. This cycle is repeated until the domain 

expert is satisfied with the system's perCormance. 

Several research projects h-ave resulted in domain independent expert systems [van Melle 80, Forgy 

and McDermott i1, Hayes-Roth et. 301. 811. All oC these systems provide a single knowledge representa­

tion and inlerence mechanism. They present the domain expert with an "empty" expert system; this 

simplifies the knowledge engineer's job, since he no longer needs to go through the .system development 

and selection ol a knowledge representation. Though these systems speed the expert system develop­

ment process, they do so by providing a method that Collows the standard generate and test procedure. 

The domain expert is given a language in which to express his knowledge, but he is not givea tools which 

will aid him in doing so. 

Promising results in the area oC rule acquisitioa have been obtained through the use of computer 

programs which induce rules Crom examples 01 expert decisioas. In some cases, rules rormed by such 

programs have outperlormed rules written by human experts !Michalski aad Chilausky 80, Quinlan 831. 

However, this method has limitations. Iaductively derived rules are sometimes too complex to be used or 

understood by humans. Since one 01 the principal leatures 01 expert systems is the ability to explain the 

reasoning behind decisions. such complex rules are not appropriate. The comprehensibility of induced 

rules may be increased by breaking the problem into subproblems which can be solved individually 

[Shapiro and Niblett 82, Reinke 821. Unlortunately, the problem breakdown must be done by the 

human domaia expert. Some research has been done on automating this process by applying a "concept 

(ormation program" [Michalski and Stepp 83aJ lor dividing examples into a hierarchy 01 subclasses 

[Paterson 83/. 

Another weakness with the inductive inlerence tools developed so Car is the lack 01 any kind 01 

knowledge to guide the searcb (or appropriate generalizations. Quinlan's ID3 algorithm, lor example, 

uses an inlormation-tbeoretic measure to select the next attribute in its decision tree [Quinlan 19J. To 

compound the problem. the decision tree lormat used by ID3 is difficult lor humans to understand. 
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although it is easily executable by machine. The GEM progr:Lm (see chapter rour) presents rules in an 

iC-then rormat that is easier to understand. Also, the methodology used by GEM permits the user to 

speci!y background knowledge a.bout the domain Cor which rules are being Cormed. However, the 

languge GEM uses is somewhat limited (see Chapter 2). 

Despite some weaknesses, inductive inCerence is a promising tool. A special advantage to this 

method oC knowledge acquisition is that the expert is oCten better at generating examples than he is at 

generating an explicit declaration oC his knowledge IMichie 821. Since human apprentices are almost 

always taught by example, it would seem worthwhile to provide a Knowledge base builder with inductive 

inference tools. 

Programs that learn Crom examples will aid the domain expert in rule base acquisition. The prob­

lem of rule base debugging remains. The expert must try to find aad deal with cases where his 

knowledge base might produce an ambiguous result. For example. in a medical expert system such as 

ONCONCIN it is essential that conflicting therapy recommendations not be giveD. Similarly, expert sy!Joo 

tems in, say. C:Lult diagnosis, should be able to deal with every Cault. that. may arise. In domains where 

rule base consistency and completeness are valid concerns, the weight of the problem is again left on the 

domain expert's shoulders. 

1.2. 	Knowledp Acqullitton and the ADVISE Iyatem 

ADVISE is a set or software toola under development :Lt the Artifici:L1 Intelligence L:Lboratory at 

the University of lllinois IMichalski and Baskin 831. These toola, taken together, torm a "met:L-expert 

system" - a system Cor building expert systems. ADVISE is unique in that it does not use :L single 

knowledge representation and inference mechanism. EMYCIN Ivan Melle 801. (or example. allows only 

rule based knowledge and provides only a b:Lckward chaining control scheme. ADVISE uses a single 

low-level format Cor knowledge representation. This tormat is powerful enough to represent rules. net-. 

works and relational tables. ADVISE :LIso a.llows a host o( different inCerence mecha.nisms modules. 

Eventually the system will provide an inference mechanism language that will allow the user to define 
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his control scheme in terms oC already existing tools. 

Figure 1 shows a conceptual block diagram o( the ADVISE system. The Control Block provides 

the user with 3.n integrated access to the system's knowledge acquisition and ioCerence tools. The Con­

trol Block accesses the Knowledge Acquisition Block or the Query Block, depending on the mode the 

user has selected. The Knowledge Acquisition Block provides direct access to the knowledge base 

through a relational database system, a rule editor and a network editor. Machine learning tools are 

attached to this block and provide a means (or learning rules (rom examples (Le. the inductive inference 

Qo-:r Bodo 

Q1:Ci'-~'" 

QZ: lIsilll 1nI_ 

Knowtodp~ Bodo 

Kl:: ou- f4a _ Me 

K2: lIsilll 1nI_ 

Ccnral Bock 

Cl; Qo-:r 

C?:~..,.~ 

CJ:f!lo;>l-

Figure 1. A conceptual level block diagram of the ADVISE system. 
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programs modify and update the knowledge base rather than the user doing so using more primitive 

tools). The Query Block provides deductive inference mechanisms (control schemes) tor expert systems 

consultations and a relational d:rtabase system for direct retrieval ot knowledge stored in relational torm. 

Several expert systems bave been implemented under ADVISE IBoulanger 83, Reinke 83, Rodewald 

841. These systems were used to drive the initial development or the meta-expert system tools. 

Currently, the low-level knowledge representation language in ADVISE has been completed. The 

Knowledge Acquisition Block is partially completed [Spackman 831. as is the Query Block. The research 

described in this thesis is aimed at upgrading the capabilities or the knowledge acquisition block. 
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2. A PARADIGM FOR RULE BASE DEVELOPMENT 

As stated in Chapter 1. the standard method Cor Corming an expert system's knowledge base is a 

generate-and-test process. There are difficulties, however, in both the generation and testing oC 

knowledge bases. The source oC these difficulties is twoCold. First, the expert is trained to make deci­

sions, not to explicitly state his knowledge. Second, the expert is provided with virtually no aids in 

either stage or the process. He must generate his knowledge base rrom scratch with only the knowledge 

engineer's guidance to help him. He must then produce test examples which show raults in the 

knowledge base he himselC just constructed. 

Some relier is provided by expert sytem development systems, which establish a rramework Cor 

expressing knowledge. Such systems give the expert a pre-delined knowledge representation met.hod, 

and tberdore make the knowledge acquisition process somewhat easier. However, they may also roree 

the expert to channel his knowledge into a Cormat which does not fit it. The knowledge representation 

problem will Dot be dealt. with here. Instead. We will careCully delineate an area oC applicability, and 

describe new tools Cor knowledge acquisition within that area. 

2.1. 	A..umptlona and Domain of Appllcablllty 

Many different knowledge representation Cormalisms, each applicable to a range oC domains, have 

been developed in the last twenty years. Un tortunately. some or tbese rormalisms have been used in 

are3S for which they are not reaUy acceptable. In order to avoid this trap, the knowledge representation 

to be used will be exactly defined. Such a presentation will naturally suggest certain problem types. 

The methodology described in this thesis deals only with rules. [n a variety oC application areas, 

an expert's knowledge can best be expressed in the Corm oC it-then rules. With some extensions to the 

it-then rormat, a rule rormalism can deal with uncertainty in information, with weighted conditions and 

with multiple decisions and associated confidences. A detailed discussion or the syntax and semantics for 

rules is presented in Cbapter 3. 
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Given that we are de'l.ling with rule based knowledge, we need to define restrictions on the rule 

language. The major assumption made here is that we are dealing with domains where the expert 

system's job is to select an appropriate decision Crom a pre-specified list 01 possible decisions. As men­

tioned above, we will allow the system to associate a strength, or certainty value, with any decision it 

makes. The important thing is that the number or decisions that could be made is finite. 

We wiJ] also place restrictions on the attributes used to describe problems. Rules will be written in 

terms or discrete, finite variables. We will assume that the domain expert is able to specify the impor­

tant variables in bis area or expertise, and that tbese variables are known aod available. This does not 

assume, however, that all the attributes given by the domain expert are applicable, or that all inlorma­

tion will be available during consultations conducted by tbe expert system developed. We are simply 

restricting the language which the rules use. 

A final set or restrictions apply to the type 01 data available to inductive inlerence programs (see 

the next. two sections, and Chapter 4). The learning and testing tools described here all act on the 

assumption that examples will be presented to them in terms or defined attributes, as above. That is, 

examples 01 expert decisions will be given in terms or discrete, 60ite attributes, and each example (event) 

will be associated with a single decision. We also ~ume that events will be given in their entirety when 

presented to a learning program, i.e. events will not be given in piecemeal Corm. 

In summary, we are restricting ourselves to rule based knowledge. Our rules will be written in 

terms or discrete, &oite attribute values. (I a rule specifies a decision, that decision will be one 01 a 

known set 01 decision classes. rc the expert is to present examples or his decisions, the examples will be 

presented in terms or the same attributes, and each example will have a defined decision associated with 

it. We hope to develop a method which will provide, within this restricted Cramework, userul tools Cor 

building and debugging rule bases. Discussions throughout the remainder or this thesis will assume we 

are dealing with knowledge or the type described in this section. 



2.2. 	The Standud Rule Acquisition Paradigm 

Figure 2 shows a flow chart of tbe standard knowledge engineering process. In the figure, circles 

represent processes and blocks represent objects (botb bumans and computer programs) which partici­

pate in the processes. The rule base specification process sbown consists of two major subparts. First, 

the knowledge engineer must obtain rrom the domain expert a list of the variables that are relevant to 

the problem area. In medical diagnosis systems, ror example, tbis would be a list or relevant symptoms, 

patient data and laboratory data. Once tbe attributes are defined, the expert may write the rules for 

tbe initial knowledge base. At this stage, in consultation with the domain expert, the knowledge 

engineer must decide exactly wbat needs to be represented and how to represent it in the Corm or rules. 

He must consider, ror example, bow to deal with uncertainty, witb weigbts on conditions, and witb bow 

the rules should be evaluated. 

Once this process is completed, the knowledge engineer must proceed on his own to encode the 

rules and the inrerence mechanism which will use them. Due to the complexity of the next stages of 

knowledge acquisition, the engineer must be certain that his system is e3SY to modiry and that he haa 

provided sufficient explanatory racilities so that the expert, when debugging the knowledge base, can 

find the causes or problems. 

This leads to the third, and most difficult, stage or the expert system development process. During 

the rule base refinement stage, the domain expert must test his "pupil" on pre-classified examples. Tbis 

process often involves several domain experts using tbe systems over a period of months. Once enougb 

difficulties have been noted, the domain expert must go back to the rule base and make additions and 

changes to it and possibly to the list or relevant attributes. 

2.3. A New Puadlgm tor Rule Acquisition 

The problem with the standard pa.radigm is that the process relies very heavily on the time and 

effort of the very expert whose job should be ea.sed by tbe system. The entire process also depends on 
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Expen 
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Sy,'em 


Figure 2. The standarr' oaradigm ror rule base development. 

the domain expert's a;~ .iity to elucidate and explain his knowledge. All or this suggests that the expert 

Deeds help iD building aDd refining a. rule base. Figure 3 shows a new para.digm ror kDowledge base eOD­

struetiOD. aimed at giviDg tbe expert help in th'ose are3S iD which he is weak. The tools aligned with the 
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expert are intended to work with ezcmplu 01 expert decisions, as well as with explicit declarations or an 

expert's knowledge. These tools should also aid the expert in producing examples that. will be 01 impor­

tance. 

Under the new methodology, the development 01 a rule base begins with the expert specifying the 

attributes relevant to the problem. Some work has been done in aiding the experL here through a pro­

gram that picks important attributes out or an exhaustive list [Baim 821. At this point, the expert has 

two options. He may proceed in the standard way, aided only by a rule editor, or he may choose to 

AcquiSition 

Tools 

Domala 
Expert 

TestiD( 

Tool. 

Expert 


System 


Figure 3. Paradigm ror rule base development using automated refinement and testing 
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present the induction tools with a set or tutorial examples. The tools wiJI produce a rule base which is 

guaranteed to work correctly ror the examples given. In either ease, the initial knowledge base is eon· 

structed, and the expert enters the knowledge refinement stage. 

Here, the expert needs to produce examples that will demonstrate problems in the rule base. The 

testing tools shown in Figure 3 really consist or two parts: a mechanism to suggest areas where the rule 

base may not work correctly (Le. it should suggest testing examples) and a mechanism that rapidly tests 

examples provided on the knowledge base and presents the results in a usable rormat to the domain 

expert. 

Ie problems have been revealed in the knowledge base, it must be reBned to deal with those cases 

which it handled incorrectly. Again, the expert is given the option or doing the work himselt. However, 

he may present the examples which caused problems to the inductioD tool, which will refiDe the 

knowledge base so that it deals with these new examples correctly. 

Note here that the new paradigm completely subsumes the old one. Within the context or the new 

method. the expert may still, ir he chooses. do all the work himselr, aided by the testing and editing 

tools. The most desirable course is probably a hybrid. wherein the expert may deBne some knowledge 

which is used to guide the induction process. 

Given this paradigm, we can create a description or the sortware tools that should be available to 

the expert system builder. First, we need aD efficient, correct method ror generating and refining a rule 

base using examples. Next, we need tools that will help the expert generate testing examples and rUD 

those testing examples on the knowledge base. Additional tools to aid the expert in attribute definition 

would also be desirable. All these tools should work in the context or a powerful rule IangU3ge which 

will be or use in a wide variety 01 domains. 

The next chapter presents a rule language that is a subset or the multi·vaiued logic language sup. 

ported by the ADVISE system. Chapter 4 describes programs which partially fill the induction and test­

ing tool slots in the new paradigm. 
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3. 	RULE SASE SYNTAX AND SEMANTICS 

The ADVISE knowledge representation language can be used to express rules. This language 

(essentially a tuple or list tormalism - see [Boulanger 831) is powertul, but too detailed to be presented to 

a domain expert. ADVISE does provide. in the context ot a rule-based system, a method tor dealing 

with uncertainty in evidence and in rules, so these problems need not be considerations in our rule 

language. What is needed is a specification oC exactly what constitut~s a rule base (Le. how it is struc­

tured) and the syntax and sem3.ntics tor the rules themselves. 

3.1. 	Rule Sue Syntax 

A typical rule base has no structure. It consists ot a group 01 rules 01 tbe Corm 

condition Implle. action. 

Here, cond1tlon is a logical statement which evaluates to some numeric value expressing the degree oC 

truth or the lert hand side or the rule. The action associated with a rule is the assignment 01 a value to 

some variable. The rule language described here will rollow tbis general pattern, with one important 

exception - the knowledge base may be structured. That is, the action or a rule may be tbe selection or 

another set ot rules. Such a scheme allows a modicum or control inrormation to be incorporated into the 

rule base. There are two motivations tor this. The lirst is the incomprebensibility or large. induced rule 

bases. As discussed in Chapter 1, this problem may be relieved somewbat by imposing a structure on 

the rule base. The second motivation is the Cact that sucb a structure is natural in some domaiDs. Tbe 

standard taxoDomic key, tor example, could be easily represeDted with a structured knowledge base. 

Figure 4 shows a simple example ot such a rule base. 

An EBF gr3.mm3.r tor rules is shown in Figure 5. Under this syntax, rules cODsist or a collection ot 

(optionally weighted) modules. Each module contributes a numeric value between zero and one to the 

truth weight ot the lett hand side ot tbe rule. A module consists ot a disjunctive normal torm expression. 

Each conjunct (complex) in the module is a list ot primitive conditionals called "selectors"; where a selec­

tor is 3 st3tement ot the torm attribute relation- ualue. The terminology tor this rule base is derived rrom 
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Figure 4. A simple structured rule base for dassifying microcomputers (from [Michalski a..od Stepp 83b]). 

the variable-valued logic language VLl IMichalski 731. 

3.2. 	Rule aue Sema.ntlea 

To define the semantics (or a rule base or this type, we need to specify how the various operators 

in it (conjunction, disjunction, and logical operators in selectors) are to be evaluated. However, it seems 

likely that in dilJerent domains. dilJerent definitions of each operator might work best (see Chapter 5). 

Accordingly, we define no restrictive semantics on the modules, but rather provide a set of software 

switches which allow the user to select from a number of dilJerent options for each operator. The 

ADVISE rule evaluator has such a set or switches [Michalski et. at. 841, as do the ATEST evaluation rou­

tiDes (Ch:lpter 4). 
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Rulegroup ::= Rule+ 

Rule ..- Module:cx1:cx2 1+ Module:cx1:cxzl
• ::> Decision 

Module ..- Sel Op Module! Sel Op Sel ! Sel 

Sel ::== "I" va.riable U=" Values ", .. 

Op ::==== Alv 
•Values .. - value[,value! 

Decision ::!:1111 Sel IRulegroup 

Figure 5. An EBF gra.mmar lor rule bues. 

The modules and the cx-weights have a slightly more restrictive definition. The cxl weight is 

intended to capture the notion of independent evidence, i.e. this number should express how important 

the corresponding module is in reaching the decision on the right hand side it the values ot the other 

modules are unknown. The cx2 weight is intended to express the notion 01 cumulaUve evidence. This 

number should express the strength of the decision it this module and all previous modules are known to 

be true. II any module is known to be faise, then the el,., weight is not used . .. 
Given these definitions or the weights, the semantics of "a.ddition" or modules may be defined. 

Obviously, the elZ weights contain their own semantics - there is no need to rold the weights together. 

However. :1 threshold must be defined at which the CX weights a.re no longer useful. Research remains toz 
define mUltiple evaluation schemes (or the sum of dilJerent cx1 weights. Currently. two such weights are 

rolded together by taking their probabilistic sum. L 

1 The proba.bili~'ic ,um o( two numben /J a.nd 6 is cI + 6· (ci x 6). 
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Figure 6 shows two rules Crom an imaginary rule base Cor identifying animals in a zoo. The first 

rule says that iC an animal is striped and if its height at the should is between Cour and seven Cad, then 

we can be 6Cty percent certain that the animal is a zebra. It we know that the animal haa hooves and 

no antlers, then we have only ten percen t confidence that the animal is a zebra. However, it both condi­

tions are known to be true, then we are one hundred percent certain. The second rule is interpreted in 

a similar way, except that its action is not the identification or an animal, but the selection or another 

set oC rules. It all the conditions in this rule are met, then the rule group "tiger...rules" is called, presum .. 

ably to identity the particular type or tiger. 

The rule schema described here has considerably more power than the available induction routines 

can derive. Some oC the reatures (e.g. the C1 weights) are there to provide extra expressive power tor tbe 

domain expert who is writing his own rules. 

In an ADVISE rule base. several other tools are available. Each node in tbe rule base structure is 

called a rule group. A rule group may have contextual information 3S8ociated with it, so rule groupe 

may provide another level or "knowledge chunking". For example, different rule groupe may have 

different rule evaluation settings. These settings are stored in the rule group structure and accessed by 

the rule evaluator. Such chunking provides conceptual simplicity (or normal humans and a modular 

Ifu..J)aUenl - 'tripedl !'hollldt!f...beilh~ - ....71 : 0.50 : 0.50 

+ 


[hooYe, = prnelltj[utfers = abst!Iltl : 0.10 : 1.00 

::> l&!limal = lebral 


;rllr ..J)ltterll = HnpedHshoqlder...beilh~ == 3.. 51 : 0.50 : 0.50 

+ 


[caraiyoroqs = tl'1le! : 0.05 : 1.00 

:: > Irule-,rollp == tigerJule" 


Figure 6. Two rules illustrating the use ot C1 - weights. 



17 

construction for programmers. Eventually, rule group structures may be used to contain many bits or 

information about the properties or rules within the group. For example, Teiresias-like rule models 

could be stored with each rule group. Future versions of the ATEST program will leave, within the rule 

group structure, "footprints" of its evaluation. These footprints can be used to guide the next round or 

induction or rule group refinement. 
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4. TOOLS FOR INFERENCE AND TESTING 

Under the paradigm developed in Chapter Two, a domain expert building a rule-ba.sed system is 

provided witb tools tba.t aid in the construction and refinement or the rule ba.se. This chapter presents a 

detailed description or programs developed to rufill these roles. The programs described are somewbat 

limited in tbeir scope, but it is hoped that tbey are tbe first step on the patb towards an automated 

knowledge extraction system. The first section of this cbapter sketcbes tbe AQ algoritbm, a.s it is tbe 

beart or tbe GE:\t program. Section 4.1.2 describes the modifications to AQ tbat are necessary to make 

it work incrementally. Section 4.:! describes tbe ATEST program and presenta the algoritbms it uses to 

cbeek consistency and completeness in the knowledge ba.se. 

4.1. The GEM Tool tor Rule Baae Refinement 

4.1.1. The AQ Algorithm 

The AQ algoritbm is a method for producing minimal or qua.si-minimal descriptions or classes or 

events. Events are given a.s vectors or values or discrete attributes with finite domains. The type or 

probiem dealt witb by tbe AQ metbod caD be illustrated using generalized logic diagrams. These deci­

sion diagrams !Michalski 181 are planar representations ?r tbe multi·dimensional problem spaces used to 

represent eveDts. Tbe common Karnaugh map is a variation or tbe logie diagram applicable only to 

twc>valued logics. 

Figure 1 sbows a decision diagram. Eacb cell in tbe diagram represents a single vector in the attri­

bute space of tbe problem. Eacb sucb vector is called an event. Letters in event cells represent tbe 

assignment or a class to tbat event. So, tbe cell labelled 301 is the first event or class A. The decision 

diagram is tbererore a partial runction mapping attribute vectors to e\asses. The runction r(x ,x ,x ,x4)
1 2 3

sbown in Figure 7 is defined as ((I,O,O,I)=A, ((0.0.2,1)=8, and so on. Each circled area (labelled with 

upper ease letters) is a disjunct in the cover for 3. class. A cover is a description or the cl3.SS ba.sed on the 

observed events of the cla.ss. A correct description is one tbat is satisfied by every event in the class and 
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none or the events or other classes. Obviously, there may be several covers ror any set or events. The 

goal or the AQ algorithm is to produce the best possible cover within the constraints or its search space. 

AQ works by selecting a single event, called the ,eed, in the class ror which it is producing a cover. 

The seed is generalized as much as possible without covering any negative events (i.e. events or other 

classes). The generalization o( a seed e+ against a list or negative events E- = {e-1,e-2..... e- } is called n

the ,tGr o( e + against E-, and written G(e + 1E-). A star is (ormed by producing increasingly specialized 

covers or the seed event through logical intersections. Initially, the star is equivalent to the entire event 

space. The partially completed star is specialized by intersecting it with extensions o( the seed against 

individual negative events. The extension against operator (" -I") is illustrated in Figure 8. GeneraJi.. 

zation by extension is done by ta.king the negation or a nega.tive event and intersecting it with the value 

o( the seed along each attribute. In our example. the seed 301 is initiaUy extended against bl' This result 

is intersected with the star so (ar (in this case, the entire event space), producing the partial star G(a.1 I 

/ 
B 

XI "2 
0 b:t bxl0 
I I I 
0 ~ "31 I I 

;--,....-

1 

I I 1 I b!1I 
o I 1 11.... 

:: 

-~ L_1 I ~ 
I, 

lC, 0 I 1 o I I o I 1 o I 1 

"3 0 1 :: ! 

/ 
A 

Figure 7. An exa.mple or a decision diagram. 
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{bl}) shown in Figure 8. Since this partial star still covers the negative events b and b3, 30 is extended2 1 

against b and the result intersected with the result shown in Figure 8. Figure 9 shows the partial star
2 

G(al I {bl,b::!}) formed alter extension against bZ' The process is repeated Cor b3, producing the star 

G(a1 I{bl'bZ,b3}). which is shown as the cover Cor class A in Figure 7. 

Naturally. it the star generation process were to work exhaustively, the search tor covers could be 

exponential in the number ot negative events. To deal with this, a parameter (mIJZ81IJr) controls how 

many disjuncts may be kept in the partial star. It' an intersection produces a partial star that is too 

large, the star is trimmed by applying a "lexicographic tunctional" (LEF) which selects the best con­

juncts in the partial star and disposes oC the remainder. 

The idea of the LEF is essential here. The LEF specifies criteria tor guiding the search through the 

space ot possible covers. A LEF consists ot a list ot pairs ot the torm (criterion,toJeraDce). Typical cri-

Xl X:z 
0 blb:z II0 
1 I II 

o I *t I I l1 

1 I I~II 
I Io I I:I 

II I1 l I 

x,o I t o 11 o I 1o 11 
0 1 S2~ 

Figure 8. An example ol generaJi~ation by extension against - 301 extended against b1. 
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~ II : 

I bz!n bi 
0 

1 I I I I I i 
o I '1 I I I I 

I 

1 I I Ilb:!1 
o II I I 

Z 

1 I I I 
X.. 0 I I o I 1 o I 1 0 1 

., 0 1 Z S 

Figure 9. The partial star (ormed after extending 301 against b1 and b2, 

teria. are "maximize the number or positive events covered", or "minimize the size or the complexes". 

The first criterion is applied to a list or conjunctive expressions (complexes), producing a cost lor each. 

The first tolerance is used to establish equivalence flasses among the complexes based on these costs. 

Ties (i.e. complexes in the same equivalence class) are broken by applying the next (criterion,tolerance) 

pair in the LEF. Criterion are applied until the desired number 01 complexes have been selected, 

When star generation is completed, we are left with a list or complexes, each of which covers the 

seed event and none 01 the negative events. The lexicographic functional is applied to select the single 

best complex. This is added to the cover for tbis class (the cover starts out as empty). It there are any 

positive events remaining which are not covered by the description formed so far, a new seed is selected 

and the process iterates. 

The AQ method can be used to produce disjoint or intersecting covers. Intersecting covers logi­

cally ill tersect over"don't care" areas or the event space. Disjoint covers, obviously, do not intersect. It 
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the list or negative events used during star generations includes events of classes ror which covers have 

already been (ormed, intersecting covers will result. Ir. however, the list contains the covers of those 

classes, then disjoint covers will be formed. 

Applying AQ will produce, for each class, a cover that is satisfied by all the events of the class and 

none or the events of the other classes (see [Michalski i5J (or a more detailed theoretical discussion of the 

AQ method and the covering problem). Thl." lre, however, two essential problems with using AQ aa a 

methodology for rule acquisition in expert ..ems. The first is that the algorithm, though obviously 

powerful, does not use much knowledge about the domain in rorming its rules. The LEF is one method 

for specifying information (costs can be associated with variables, causing the LEF to select complexes 

containing "cheap" variables). The lack or guidance in rule formatioD oCteD produces rules that, while 

correct, are somewhat misleading. Typically. ind uctively derived rules cODtaia conditions that Hem 

irrelevant to the domaiD expert. One solutioD to this problem is to allow the domaiD expert to specify 

background knowledge about the domain. What is needed here, in other words. is a combination or 

learning by hing told and learnin ',.om e%ample6. In the next chapter we present a differeDt approach. 

We can cause an induced rule to e .iress more inrormation about a class by making the rule aa long aa 

possible. In other words, we seek to produce a descriptioD of a claas that characterizes that class, rather 

tban discriminating it rrom other classes. This gives the human reader more details about what the sya­

tem has learned. Some interestiDg results in this area are preseDted in Chapter 5. 

The secoDd major problem with the AQ method is that it learns everythiDg at ODce. AQ ta.kes as 

input. a set or examples and produces 3.'J output a set or rules, but it caDDot modify those rules. It would 

be useful if AQ could use rules it had learned previously to derive new rules. It turns out that some 

fairly pie modifications to the algorithm will allow it to learn in an incremental fashioD. These 

mo' ·jns are discussed in the next section. 
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'.1.2. An Incremental Version ot the AQ AJgorithm 

There afe several different ways to learn incrementally. One method is learning with imperfect 

memory. In the case oC inductive inference, this would mean rorming rules from examples then throwing 

away some or all ot the examples. When new examples which contradict the rules are observed, the 

rules would be modified using the old rules and only those examples which were retained from the previ. 

ous steps. This seems to be how people learn, as evidenced by the ract that they sometimes forget exam­

ples they have already seen. There are two related problems with learning using imperfect memory. 

The first, as mentioned, is that it can lead to errors. The second is that it is necessary, in order to 

minimize errors, to lind a method or selecting important events tor retention. An earlier implementation 

ot AQ [Michalski and Larson 781 waa designed to perform incremental learning with imperrect memory. 

However, this method did not select important events tor retention, but simply used initial hypotheses to 

aid its search tor covers. This sometimes resulted in rules which did not cover events that had been 

observed at earlier stages or the learning process. In order to avoid these problems, the GEM program 

performs a different type or incremental learning - learning with pertect memory. In this caae, the sys­

tem remembers every example it haa seen, aa well aa the rules it Cormed, and so can be guaranteed to 

produce new rules that are completely correct. The essential problem with this method is storage. Also, 

there is the danger that such a method will not provide any real speed-up over just scrapping the initial 

rules :lnd starting over. Some experiments to confirm that the algorithm developed here avoids this 

problem are presented in Chapter 5. 

As mentioned above, AQ can be made to learn incrementally in a tairly simple manner. The essen­

tial modi6cation (originally suggested by Jeff Becker) involves changing the star generation procedure. 

Recall that during star generation, the result or extending a seed against a negative event is intersected 

with the partial star. If the extension was the tirst tor this seed, however, the result become, the partial 

star. In other words, the initial extension is intersected with the entire event space. It the initial inter­

section is done with some subset of the event space, the resulting star is guaranteed to tall within that 
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subset. 

We can use this modifiution in producing specializatioDs or a cover. Suppose that we start out 

-. 
with the situatioD shown iD Figure 10, and that we are attemptiDg to torm a new cover tor class lOA". 

The problem is that the old cover is covering the newly classified events b 4 aDd bS' The first step in 

moditying this cover, uDder the incremental algorithm, is to specialize it so that it covers DO negative 

events. This is doDe by applying the star procedure to all positive events covered by the old rule (eveDts 

aI' aZ' 303 and a .. iD our example) with the intial p:utial star equal. to the old cover. The negative eveDts 

are all events or other classes covered by the old cover (b. and bS ia Figure 10). Figure 11 showl the 

result ot specializing the cover tor class A agaiDst the events b. aDd bS' 

ODce the rule is specialized, we can apply the regular AQ algorithm, usiag the specialized covers 

(and any uncovered positive events) as seeds. 
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Figure 10. AD incremeDtallearning problem. 
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Figure 11. Specialized cover ror class A generated by applying the modified star proeedure. 

Obviously, given perrect memory, this method will produce rules that take into account aU the 

events seen so rar. The major concern is the time consumed by the bookkeeping necessary for maintain­

ing all the events ever observed. These concerns are addressed in the next chapter. 

4.2. 	The ATEST Tool tor Rule Bue Debugging 

For the new rule base acquisition paradigm to be effective, the domain expert must be able to pro­

duce testing examples ror his knowledge base and apply those examples in order to assess rule base per. 

rormance. ATEST is a tool developed specifically ror that purpose. It provides the domain expert with 

two new capabilities. First, ATEST allows the expert to rapidly test a rule base on numerous examples 

UDder a variety or evaluation schemes. These evaluation facilities provide inrormation about the overall 

performance or the rule base aDd about the performance or specific rules on specific examples. Second, 

ATEST provides routines that check a rule base ror consistency and completeness. These routines can 

be used to point out problem areas in the rule base and to help the expert generate new examples. 
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Section 4.2.1 presents an introduction to the rule testing terminology used throughout the rest of 

this thesis. Section 4.2.2 presents the evaluation parameters available in ATEST and describes the 

program's evaluation and trace-abilities in detail. Section 4.2.3 presents a discussion or the consistency 

and completeness problems and describes the algorithms used by ATEST to test consistency and com­

pleteness in a rule base. 

4.2.1. 	Termlnolog)' 

ATEST views rules as expressions which, when applied to a vector or attribute values, will evaluate 

to a real number. This number is termed the degree 0/ COll80llOllce between (the lelt hand side 01) the 

rule and the event. The method (or arriving at the degree 01 consonance, given a syntactically correct 

rule and an event, varies with the settings 01 the various ATEST parameters (see next section). When 

ATEST is run on a set o( pre-dassified testing examples, it simply applies each rule to each example and 

reports the degree or consonance. However, with a large number or testing examples, and a large 

number 01 rules, output 01 this sort is likely to get unwieldy. Therefore, ATEST has the ability to sum­

marize the results. 

Rule testing is summarized by lumping together the results 01 testing aU the events 01 a single 

class. This is done by establishing equivalence classes among the rules that were tested on those events. 

Each equivalence class (called a rallk) contains rules whose degrees or consonance were within a specified 

tolerance (called tau) 01 the highest degree o( consonance (or that rank. When ATEST summarizes the 

results, it reports. (or each rule, the number or testing events tor which that rule was a first rank deci­

sion. 

The only remaining term to be defined is aatiaficatioll. Satisfaction applies to disjunctive normal 

(orm (Dr....'F) expresssions. A Ot-.'F expression is a disjunction o( conjunctive statements, i.e. a module as 

defined in Chapter 3. A ONF expression is said to be satisfied i( some complex in it is satisfied. A com­

plex is satisfied by an event it every selector in the complex is true (or the event. In other words, satis­

(action is a boolean logic conditional, and therefore applies to selectors and ONF expressions, but not to 
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modules or rule groups (which ma.y have weights aasociated with their conditions). 

4.2.2. The ATEST Evaluatlon Routines 

ATEST takes aa input a set or attribute definitions, a set or rules (and an optional structuring on 

the rules), a set or testing events, and a set or parameter values. The parameters control what ATEST 

does with the rules and how it evaluates the rules on tbe testing events. There are nine different param. 

eters involved with rule testing. Six or these determine how rules are evaluated. The remaining three 

control which or ATEST's capabilities wiU be used during a given run. This section presents a discussion 

or the six evaluation parameters. The User's Guide in the appendix provides de6nitions ror aU the 

parameters. 

Three evaluation parameters provide definitions ror the logical operators in Figure 5. The operator 

"and" ("A") may be evaluated aa minimum or aa 1J'Ulmlge. The operator "or" ("V") may be evaluated aa 

mlJZimum or a.s proolJbiiistic sum. The final evaluation parameter controls the the definition or the ele-­

mentary conditions, called selectors. A selector may be treated a.s a boolean conditional (Le. it may 

evaluate to 0 or 1), or a.s a runction which when applied to an event evaluates to a normalized real 

number between 0 and 1. Given a selector in some attribute x whose domain is the ordered list 

(al'a2.... ,a ), and an event where x == ak' the normalized value ror the selector [x == ajJ is n

1 • ( Iaj .ak II n). 

It the selector haa several values on its right hand side, the value closest to ak is used. 

The tlJU parameter mentioned in the previous section controls the assignment or rules to 

equivalence classes when testing on a single event. This parameter allows the user to determine what 

kind or range in degree or consonance he may expect when a.ctually using the rule base ror consultation. 

Increasing tau will increase the number or first rank decisions, and therefore increase the number or 

(possibly confticting) actions associated with a given testing event. By va.ryiD~ the tau parameter, tbe 

expert can determine how robust his rules a.re in discriminatory terms. 



28 

The dropfJe parameter (mentioned in Chapter 2) controls the use ot the CIt) weight 00 rules. It ... 

specifies the truth threshold a module must exceed betore that module can be iocluded in the weight ot 

cumulative evidence. 

The remaining parameter, threshold, controls the degree ot consonance threshold (or a rule. 

ATEST reports, Cor every class, how many testing events caused the correct rule to have a degree or 

consonance greater than threshold. Figure 12 shows a sample problem input to ATEST and the result.­

ing output i( all or ATEST's evaluation capabilities (see Appendix) are being utilized. The output shown 

consists or two parts. The table is a contusion matrix showing the perrormance or the rules 00 class B 

events. The numbers in the matrix are the degrees or consonance; numbers surrounded by asterisks 

indicate correct 6rst rank decisions. It ATEST is told to summarize the results, only the 6rst aDd last 

rows or this table will be output. The second portion or the output is a trace or evaluation tor those 

cases where the rule base did Dot perrorm correctly. The selectors surrounded with question marks are 

those which were not satisfied. Selectors in double brackets are those which were satisfied. 10 a struc· 

tured rule base, this trace is considerably more complex, as it details the paths taken to reach the 6nal 

degree or consonance. 

4.2.3. Consistency and Completeness 

In some domains, it is essential that no two rules in the rule base conflict, i.e. that the rule base is 

consistent. Inconsistency occurs it there is a. situation (event) in which two rules would indicate 

different. mutually exclusive actions. In the terminology or Section 4.2.1. an inconsistency exists ir there 

is an event which causes two rules o( different class to evaluate to 6rst rank decisions. 

There are also cases in which it is necessary Cor some conclusion to be reached Cor every possible 

input. We say a. rule base is incomplete i( there is an event (or which no rule has a degree or consooance 

greater than threshold. The threshold used in ATEST is defined by the user, but has a. deCault value or 

0.50. 
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Testillg Evellts for cia" B: 
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OR mUIlDum 

A TEST OUTPUT: 
TEST RESULTS FOR CLASS B 

A BEVENT #rIES I 
0.00 0.50B-1 I 
0.00 -1.00·B-2 I 

Number of evelU, 3lItlafyillg rule for correct cia,. : 1 


The r1lle ror cia" B was evalQated as follow, for te'tillg event B-1: 


Figure 12. Sample input and ATEST output (or a. toy problem. 

Testing consistency and completeness in a rule base are rela.tively easy i( we are dealin~ with 

unweighted, Iloll-structured rules and applying a boole3.1l logic scheme for rule evalua.tion. However. the 

http:boole3.1l
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rule base we defined in Chapter 3 allows weighted, structured rules which may be evaluated in multiple 

ways. Thererore, ATEST does consistency and completeness checking under more general conditions. 

The rou tines in ATEST use a. -generate and test method ror recognizing consistency and completeness 

problems. This methodology takes advantage or the speed and flexibility or the evaluation procedures 

alrea.dy present ror testing examples. 

Consistency and completeness are handled in essentially the same manner. First, ATEST calls rou­

tines that apply logical and set theoretic operators to tbe rules to produce "test complexes". The test 

complexes are red through tbe evalua.tion routines and the results a.re examined to determine if there is 

indeed a problem. 

• If rllin RI &lid R::! ue belue tened for coumteDcy: 

RI . IXI = 3!;xZ = L61!X3 = 4ExS = 7i[xs = 01 : 0.8 

-+­

[x6 = 0 .. 31 . 0.4 

::> !d1 == 01 


: IXI ... OJ[xZ == 6.. 8I!X3 .... 41[xs .... 41!xS == 01 : URz 
-+­

!x6 == L61 : O.OS 

::> idl == 11 


• TheD ATEST will geDerate the te,t complexes: 

!xI = FALSEllxz .... 61!x3 = 41[x = 7!!x7 = 41[xs .... 01s 

IX6 = usl 

[x6 .... 0 .. 31 

• Tht!e complexe" If" aDd' i, evahuted a, average: w,1I cag,e ATEST to repol1: 

The complex: :xz = 61!", = 4l[xs = 7l!x7 == 4!ixs == 01 
produce, a dc of o.ss wl~h rule Rl ud a dc of 091 for rule R::!" 

Figure 13. An example of consistency testing. 

http:alrea.dy
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The generating routine:5 ror consistency operate by rorming the intersection of the left hand side:5 

of the rules that are to be tested. A standard logical intersection will not work ror two reasons. First, 

there a.re cases where such an intersection will be empty even though, under certain evaluation schemes, 

the rules will produce contiicting decisions. Second, the number or intersections to be performed grows 

exponentially with the number ot complexe:5 in the rules. 

The first problem is dealt with by changing the definition of intersection. The consistency testing 

routine mUltiplies rules together in the standard fashion except that the existence or non.intersecting 

selectors in a conjunct does not reduce the intersection to the empty set. Instead, a special selector, 

which always evaluates to zero, is inserted. In this way, events that may satisfy two rules to a high 

degree or consonance may be generated. 

The second problem is handled in two ways. First, the consistency checking routines accept a 

parameter (dweight) which specifies a minimum weight ror modules. If a module has an (11 weight below 

RI : [XI == fl[xa == t][x3 == tl : 0.80 

+ 


[x3 == f] ; 0.110 

::> [di = 0] 


R2 : IXI - t!lx2 == tl 
::> ld t == IJ 

• The l11liOIl of <1.11 complexes is !ubtr<l.cted from the entire event sp<l.ce yielding the te,t, complexe,: 

(X t -= fl!xz = fl\x3 == tl 

[Xl = t][xZ = CI[x3 = tl 

Figure 14. An example or completeness testing. 
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dweight, the module is simply not used when forming the intersection of two rules. Second, the fact th:lt 

the knowledge base is structured should tend to decre3o'Se the number of test complexes produced. Since 

consistency checking is only dOlle between children or the same parent in the rule base structure, the 

number of rules that are involved in consistency checking is reduced. Figure 13 shows an example or 

bow tbe consistency and completeness routines work. 

Completeness checking is done by taking the unioll of the lett hand sides of aU rules that have the 

same parent in the rule base. Again, the dweight parameter is used to exclude modules whose weights 

may be too low. Once the union is (ormed, it is subtracted from that portion o( the event space wbich 

should be covered. Ir the rules being tested are a.t the top of the knowledge base structure, then the 

union is subtracted from the entire event space. Otherwise, the union is subtracted Crom that portion or 

the event space covered by the parent node. Figure 14 shows an example of tbe steps involved in com­

pleteness testing. 

This process again generates test complexes. These complexes are applied to every rule used in the 

union. Ir none or the rules have a degree or consonance greater than the defined threshold, then tbe test 

complex is reported 30'S 3n area or the event space that the rules sbould cover but do not. 
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5. 	 AN EVALUATION OF LEARNING MODES 

The new paradigm ror rule base refinement requires an efficient method ror learning incrementally 

rrom examples. Chapter four presented a revised version or the AQ algorithm which, it is hoped, will 

satisfy this criterion. Also, it was mentioned that rapid testing or a knowledge base under different 

evaluation schemes, as allowed by ATEST, may aid a domain expert in selecting the best method by 

which to evaluate his rule base. This chapter presents experiments designed to test whether the incre­

mental learning algorithm presented in Chapter" satisfies the criteria or Chapter 2, and whether the 

testing racilities provided by ATEST are worthwhile in knowledge base development. 

There are two major concerns related to the incremental learning algorithm. The lirst is whether 

the method provides a worthwhile way to learn incrementally rrom examples. The second is that there 

may be sever:ll ways to form rules incrementally using this method. The LEF in GEM provides a means 

to vary the rule rormation process; there may be certain criterion which work best in a given doma.in or 

a given domain type. 

Under the rule base rormation paradigm, rules are not put into the expert system until the domain 

expert is satisfied with their perrormance. ATEST provides a means to test the perrormance or a rule 

base under several different evaluation schemes. -It, however. rules in different domains perrorm at the 

same level regardless 01 evaluation schemes, then the extra tools ATEST provides may not be necessary. 

On the other hand, it may be that rules rormed by different means in the same domain should be 

evalu:lted differently. For example, "AND" may not mean the same thing to a domain expert as to the 

GE~t program. In such a case, the function should be evaluated differently for different types 01 rules. 

In order to assess the performance 01 both ATEST and GEM. the programs were applied to three 

separate problems oC increasing complexity. Hopefully, the range in problems is sufficient to suggest the 

differences in perrormance that will occur in other real-world applications. 

The first domain was the classification 01 different species or Stenonemll mayOy nymphs ILewis 741. 

Seven species or lnterpunctatum group nymphs were described in terms 017 attributes - the size or the 
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event space was on the order or 106, Five different examples or each species were used ror learning, and 

another live were used for testing the induced rules. The description in Figure 15 is a typical event in 

this domain. 

The second application area was the King-Pawn-King black·to--move chess endgame, where the 

pawn's side is white. Here, examples were described in terms or 31 boolean attributes !Shapiro and 

Niblett 821. This domain differed somewhat rrom the other two in that each example actually covered 

several legal KPK positions. That is, the input examples are somewhat generalized representations or 

the board positions. The examples were correctly classified into WDn ror the pawn's side or Dr(Jwn. All 

legal combinations or attribute vectors (a total of lool) were used. Hall or the events were used ror 

learning, with the remainder set aside ror testing or the induced rules. A typical event ror this domain is 

shown in Figure 16. 

The largest application area. was the soybean disease diagnosis domain !Michalski and Chilausky 

801. Diseased soybean plants were described in terms or 50 attributes. Attribute domains ranged in size 

rrom two to eleven values, meaning that 'nproximately 1030 attribute vectors were possible. The event 

set consisted or examples or 17 different bean diseases common in nlinois; there were 17 different 

examples of each disease. Figure 17 shows a typical example or one disease, alternaria lea.r spot. This 

1) muilla._crowlI..,pillell - 10 

2) muilla.Jalera.l..,elu -.21 

3) illller_cuille_teetb "'" 2 

4) outer_callille_teetb =- 7 

5) terga.JIlid_dorlla.I..,pa.le..,trea.k, =- a.b,ellt 

6) terga._duk..,posteriorJlll.rgllU = a.b,ellt 

7) dukJllulcs..,teru_9 = a.bsnl 

Figure 15. A single event in the mayRy domain - a nymph or the species Stenonema carolina. 
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1) cimmt =- Caise 

2) cpl1l2 = Cal,e 

3) cplul = h.lse 

4) cahea. = fal,e 

5) cwkn = Cal,e 

6) cent = Cal,e 

7) cpat! = Calse 

8) cpatZ = fal,e 

g) rueac = Calse 

10) tIlea8 =- false 

11) tIlea.p = false 

12) rp'q = fal,e 

13) rrpl = fabe 

H) rrpZ = Cal,e 

15) rlleu = fahe 

16) nul - false 

17) mdiro = false 

18) mmpl = Calse 

HI) mmp2 = Cabe 

20) mpmov =- fal,e 

21) dir05 = Cal,e 

22) btopS = fabe 

23) mp5 = false 

24) r5p6 = faise 

25) 'pra7 = fabe 

26) sprn = tl"lle 

27) ,malll == fal,e 

Z8) sril =- raise 

zg) ,iot = raise 

30) lI.Xto1 = tne 

31) stlm7 = fal~e 

(Cn the black killg immedia'ely cap'lIre the pawl?) 

(Is the distuce oC the pawlI Crom the queellillg sqqare 

greater thu the black killl" e!ectlVl! di'tance pillS two7) 

(Is tbe distallce oC the paWII Crom the qaeellillg sqaare 

greater thu the black killg" e!ective di'tance pla't one?) 

(Can the black killg get ahead of the pawlI 011 the pawlI', liler) 

(Is tbe white killl ahead of the paw II?) 

(Does the wbite killg cOlluol the sevellth rallk 'quare coverillg 

the queuilll 'quare 011 the black killg', 'ide of the pawllr) 

(Is the black killl cOlUtrailled '0 retreat?) 

(I, the black kill, ill 'talemate or will advancill' pawlI Coree ,talemater) 

(Cu the black killl reach c8 before the white kill,?) 

(Cn the black killl reach as before the white killln 

(Is the black killg llearer to the pawlI thall the white killS1) 

(Cn the black killl move ill'ide the pawII" ,qurer) 

(Special pattei'll; ,ee IShapiro nd NibleU 821) 

(Cn the black kille trap ibe wbite kill' lIear tbe edee or tbe board?) 

(Special pauel'll; see 1Sbpiro nd Nibleu 821) 

(Doe, thi' po,itioll lead to ,talemate?) 

(Is the white kill, one ruk ahead oC the pawlI aDd does be bave 'be oppositioll?) 

(CaD white, by moYiIlS tbe killl alolle, let to maillpaU 1 r&Dt 

ahead or the pawlI?) 

(Cn white, by moYiD.S the kiD., alolle, eet to maillpaU 2 rub 

ahead of the pawlI?) 

(Cu white let to maillpaU by lint moYiIl, the paw II?) 

(Doe. the 6th r&Dt paUel'll bold or cn it be achieved?) 

(Is the blade killS directly ill Crollt or the pawlI or cu he let there?) 

(Call white let to maillpaU by moYi~I the killl aloller) 

(Special paUel'll; lee [Sbpiro ud Niblett 821) 
(I. paw II 011 r&Dt 7 aDd 1I0t 011 rook', lile?) 


(Is pawll 011 rallk 5 or II aDd 1I0t 011 rook', lile?) 


(Is pawll 00. rnt 1-5 nd D.ot 011 rook', liler) 


(13 pawlI 011 rook', lil(7) 


(Cn black prevellt paWIl from I"Illlllilll or maillpaU bUi 1I0t bothr) 


(Cn white kiD.S force it, way lied to pawll?) 


(h t tie illitial PO'ltloll a stalemate?) 


Figure 16. A single event in the KPK domain or the Won class. Parenthesized 
expressions are definitions or the corresponding attribute. 
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data set was divided into a set oC 170 examples (10 or each disease) to be used by GEM Cor learning and 

119 (7 oC each disease) to be used in testing the rules Cormed. The data used differed Cram that 

described in [Michalski and Chilausky 801. For these experiments. fifteen more attributes were used and 

two new diseases were added to the data. In this domain, rules written by human experts Were also 

available. so these too were tested. 

5.1. 	SIngle Step Learning 

This section presents experiments designed to answer the questions raised above about different 

rule Cormation methods and the utility oC different evaluation schemes. These experiments have nothing 

to do with incremental learning methods. Instead, we wish to determine how diJrerent. goals tor rule 

1) time_oCoccurrl!Dce == october 
2) preclpltlotloll = a.bove..llormlol 
3) tempera.ture = lobove..llormlol 
4) croppllIgjistory == tllree_or -more 
5) da.ma.ged_uu = pilollujll_llpil.lld_uelos 
6) ,eventy == mlilor 
1) pllolltjeil'ht = 1I0rmloi 
8) cOllditioll_ofjuns == a.bllormlol 
0) le&f..,.,pots == presellt 
10) le&f_,pot_color = browlI 
11) color _of..,.,pot_oIlJeveru..,.,ide = DOlle 
12) yellow jelor..,.,potjlolos == lobseDt 
13) lelof..,.,pot-ma.rgil1l =- wa.ter..,.,oa.ked 
14) raisedje&f..,.,potJ = lobsent 
IS} lea.f..,.,pot-,fowtll == sca.uered_witll_coDcentricJiDp 
Hi) lelof..,.,pot..,.,lle == grea.ter_tb&D_elghtlljDch 
17) 3hotjolilll "'" preseDt 
18) !llreddiDI' =- a.bseD' 
10) luf-mlolformlotioll == a.bsn' 
::0) prema.tare_defolia.tioll .... presellt 
::!l) le&f-mildew-,rowtll .... a.bseD' 
:!::!) Iea.Cdiscolorlotloll .. 1I0ile 
23) P03ltloll_oC....,ol.lI'ectedjea.ves == ,c&uered_oll-pll.IIt 
:!4) I;ollditloll_ofjeloves_below _atl'ectedjeiLves = Illll.tl'ected 
ZS) leil.!_,,,thenlll'..alld_,,iltllll' == &b,ellt 

28) cOllditioll_of..,.,tem .... lIormlol 
27) stemjodgilll = does..llot....,ol.pply 
28) stem_cuken == does..llot....,ol.pply 
20) clollil:erje3loll_color == doeJ....IIot....,ol.ppiy 
30) reddisll_cuil:er-mlorgID = does....llot....,ol.pply 
31) fruitiDI'_bodieJ-OD..,.,tem == does....IIot....,ol.pply 
32) externl_decloy_oC..,.,tem ... doeJ..llot....,ol.pply 
33) myceliam_oD..,.,tem == does....IIot....,ol.pply 
34) extenlol..,.,tem_di3ColorlotioD =- doe'....IIot.,.apply 
3S) loc...tioll_of..,.,tem_di,colora.tioD - doe'....IIot_...pply 
38) illteru...l_discolor...tioll_oC..,.,tem == dOel....llot.,.apply 
37) sc!eroti ...jo.terul_or_exterua.J =- dOeJ..llot.,.apply 
38) cOllditioll_ofJnit-pod, == ... bDorm...J 
30) lruit-pod, = disea.sed 
40) Cruit..,.,pot, == colored..,.,pou 
41) cOllditioD_Or..,.,eed = lIorm.... 
42) seed-mo1d-,ro'll'tll = does....IIot....,ol.pply 
43) seed_discolorlotioll = does....llot....,ol.pply 
44) seed_discolora.tioD_eolor ,. does..llot_",pply 
4S) seed..,.,'le - does....llot....,ol.pply 
46) ,eed..,.,llnvelio.g = dOeJ....IIot_apply 
47) cODditioll_OCJOOU = Dorm'" 
48) root Jot = doe'..llot....,ol.pply 
40) root...giLlI,_or_cy,u = does....llot.,.apply 
SO) root..,.,clerotl ... = doe'....IIot....,ol.pply 

Figure 17. A single event in the soybean disease diagnosis domain - a plant with alternaria leal spot. 
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rormation, as expressed in the LEF, can affect the quality or induced rules and the type or evaluation 

scheme that is best ror them. 

The AQ algorithm produces a quasi-<lptimal description or a set or classes in terms or discrete finite 

attributes. Normally, AQ is applied to a problem with the express goal ot producing a small, correct and 

discriminatory description or each class. However. rules produced in this manner sometimes do not seem 

sensible to the domain expert because the attributes chosen by GEM ror use in the rules are sometimes 

not the attributes he chose. One obvious solution to this problem is to allow the domain expert to tell 

GEM which attributes are important and useful and allow this knowledge to guide the search. However, 

this places the weight or rule rormation right back on the expert's shoulders. In order to specity the 

varying importance ot each attribute to the induction program, the expert must essentially write rules, 

which is what we are trying to avoid. 

Another possibility, which does not depend on the expert's ability to explain his methods, is to 

cause GE:\f to generate characteristic descriptions [Michalski 83J. A characteristic description does not 

define a class as an entity distinct trom other classes, but presents a description ot the class in as much 

detail as possible. In other words, a characteristic description is the type ot explanation an expert might 

give ie asked to describe a class in detail, apart rrom considerations or other classes. It an induction pro­

gram produces good characteristic descriptions, the expert can view, in detail, how the learning process 

is proceeding. Causing GEM to generate a lengthy, complete description ot the events in a class is not 

difficult. By inserting a criterion in the LEF that causes AQ to select the longed complexes in a partial 

star. the algorithm will produce a detailed description or each class. Ideally, such a description will be 

conjunctive. 

It a discriminant description is necessary. there are two ways to build it. Naturally, OE:\I could be 

applied in the usual way. However, GE:\{ can induce over rules in the same way as it induces over 

examples. It may be possible to produce good discriminant rules by inducing over characteristic descrip- , 

tions (this idea was suggested by R.S. Michalski). 
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It is theretore possible to produce three kinds ot rules from a set ot examples - characteristic 

descriptions, discriminant descriptions induced rrom the examples, :t.nd discriminant descriptions induced 

from characteristic descriptions.- The performance of these different types of rules is compared to give 

an idea or the usefulness or each method. Also, rules produced in different ways may work best under 

different evaluation schemes. GEM was applied to each or the three domains above. [n each domain, a 

set or examples was chosen at random to be the learning events. These events were used to produce the 

three different types ot descriptions. Then, the induced rules were tested OD the remaining examples 

under four different evaluatioD schemes. The evaluatioD schemes varied in their evaluatioD or the 

"AND" operator. and in whether or not selectors in linear variables were Dormalized. Perrormance or 

the rules on the testing examples was measured by two means - what percentage or the events caused 

the correct rule to have a degree or consonance in the first rank (with tau = 0.02) and what percentage 

or the events caused the correct rule to have the only first rank degree or consonance. The experiments 

were repeated twice in each application area in order to observe how changing the learning events 

:t.lI'ected the perrormance of the rules. All rules were formed using the "disjoint cover" mode of the 

GE~f program (see Chapter 4). [t is possible that different results would be obtained ir intersecting cov­

ers were created. 

The results for the rules induced to identiry the Shmonema mayOy nymphs are shown in Table 1. 

The induction time shown is the total CPU time used by the GEM program While (orming rules. The 

complexity measure used here is a rather simple scheme that characterizes rules by size. Theeomple%'lly 

of a single rule is defined as the sum of the number of eompJeze8 (conjunets) in the rule, the number 0/ 

attributes used in the rule, and the number of lIelee tor 11 in the ruk The complexity ot a set or rules is 

the average complexity or the rules in the set. 

All induction times shown in the table are for a Pascal implementation or GEM runnning under 

UNIX on a VAX 11/780. In tllis application area, the induction times for the characteristic and discrim­

inant rules were about the same. 
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Rule Tvpe I Induction Time I-Complexity 1 "OR" I "AND" INonnalifed I%ht Ranle I %Onlv Choice 

Characteri~tlc 

Description 

17.70 seC3 8.28 muimam 

muimam 

muimam 

muimum 

i 
minimum 

average 

minimam 

average 

no 

no 
ye, 

yes 

34.29 

82.86 

100.00 

100.00 

34.29 

77.14 

0.00 

0.00 

DI,crimlnant 

From 

Examples 

20.13 sec' 8.00 muimum 

muimam 

muimum 

mUlmum 

minimam 

l.verl.ge 

miuimum 
average 

no 

no 
ye, 

ye, 

34.29 

74.211 

100.00 

100.00 

34.29 

71.43 

0.00 

0.00 

Discriminant 

From 
Characteristic 

0.85 sec, 

i 

7.00 mUlmum 

muimllm 

muimum 

muimum 

minimum 
average 

minimum 
l.verage 

no 

no 
ye, 
ye, 

65.71 

1Il.43 

100.00 

100.00 

65.71 
85.71 

0.00 
0.00 

Table 1. Comparison of three different rule types (or identification of Stenonema mayfly nymphs. 

None of the rules produced were very complex. The relative complexity of different rule types 

remained the same over two runs. Figure 18 shows an example of the three rule types induced ror one 

o( the seven species o( nymphs. 

The interesting point here is the sensitivity of the rules to evaluation scheme. Preliminary results 

showed that the only useful evaluation scheme Cor "or" was "maximum." In the table, the "%lst Rank" 

column shows the percentage o( all learning events Cor which the correct rule evaluated to a first rank 

decision (see section 4.2.1 (or a definition or "rank"). The "%Only Choice" column shows the percentage 

of all events Cor which the correct rule evaluated to the only 6rst rank decision. For mayfly 

identification, normalization of linear selectors produces disastrous results. Because most o( the attri­

butes are linear, counting "ne:uness" oC a selector to an event causes virtually every rule to be satisfied 

by every example. On the other hand, averaging had a positive effect on all the rules. These two effects 

are related because one attribute is usually enough ror identification and one completely satisified selec­

'. 
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Characteristic description: 

[maxill~_cro."n-,pines = lO\[maxillaJ~teral-,eh.e = 21.25.28.30I[inoer_c&oine3eeth = 2\ 

[ollter_cuine_teeth = 7..8J[terga_d,a.ri:..Jlo3tenor~,a.rgll13 = absent\ 

Discriminant. descript.ion induced (rom characteristic description: 

Discriminant description induced (rom examples: 

Figure 18. Three different rule types ror identifying nymphs of the species Stenonema carolina. 

tor may cause a rule to be satisified (causing normalization to fail). Similarly, having one selector not 

satisfied should not cause a rule to be rejected (hence the failure of minimum as an evaluation scheme in 

this case). 

The results Cor the KPK endgame data are shown in Table 2. Since none of the attributes used in 

this domain were linear, the normalization parameter in ATEST will not have any effect. In this 

domain, attempting to induce discriminant rules from characteristic ones fails - GEM simply returns the 

rules given as input. Therefore, there are no entries in the table (or such rules. Since there are two 

mutually exclusive classes, a decision that is first rank, but not the only first rank, is irrelevant; for this 

reason the "%lst Rank" column is also excluded (rom Table 2. 

Again, the results shown are (or one set of learning examples. A second run, using a different set of 

learning examples, produced results that were similar in terms or the relations between the different 

types or rules. However, the performance in absolute terms differed considerably - the rules induced 

during the second run were more than 95% accurate. 
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-
Rule Type Induction Time I ComplexIty "OR' "AND" , %Only Choice 

Cha.n.cteri~tie 453,58 ~ee, 60 muimum 4032Iminimum 
De~cnptlon muimum a.ven.ge 10.32 

Di5cnmlunt 136.95 5eC5 48.5 40,21minimumImuimum 
,"ven.geFrom mUlmnm 40.21 

E.umples 

Table 2. Comparison or two different rule types ror the KPK chess endgame. 

In this domain, there was little difference between the characteristic and discriminant descriptions. 

This is probably due to the nature o( the attributes used to describe events. Since each input vector is 

really a generalization o( several actual chess positions, one event may not generalize easily to cover 

another. This hypothesis is partly borne out by the ract that the rules produced were very disjunctive, 

containing an average of twenty complexes each. This also explains GEM's failure to induce discrim­

inant covers (rom the characteristic ones. There may not be many cases where a longer complex will 

serve as well as a shorter (more general) one. In this problem area, when such a long complex does exist, 

it will be disjoint from other complexes in the cover. It then becomes impossible to generalize several 

complexes together to Corm a discriminant description. Typical rules of each type, induced for the "won 

ror white" class, are shown in Figures 19 and 20. 

Another important point here is that choice or evaluation scheme made no difference in rule perror­

mance. This is also rebted to the nature of the problem space. Since the effect of treating conjunction 

as average is to generalize the complexes, averaging will only improve perCormance if a complex can be 

easily expanded to cover more events. Since each complex in this problem area seems to be highly spe­

cialized. generalization through averaging does not increase rule correctness. 

http:a.ven.ge
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[eimmt = f]fcpl1l2 = rJ[cpllll = f][cahel. = fl[cwlcn = fl[rrp2 = fl!ntal = fl V 

(cimmt = f![mmp2 = tllbtopS = fli!pra7 = fllnnl = fl V 

[elmmt = fllcplu2 = (lIepllll = fllcahu = f![rueae = fl[rrp2 = (I[ntal = fl V 

leimmt = fllrrp2 = fllmpS = tli,pra1 = flispra.n = tllulil = fl V 

[eimmt = f![eplill = (llrueae = (J[rrp2 = fdrueu = f!lntal = fJ[mpmov = t][spra7 = fdsrfil == tl V 

[eimmt = f!lcplul flleahu = fllrne&c = f[[rrp2 = fllntal = r) 
[mmp2 = tHufil = tllnxto7 = tl v 

[cimmt == flicahea = f[[ruear == fl!btopS = fl lspr&7 tHufil = f![nxto1 = t] V 

[cimmt = fliemt = fi[mmpl = tj[mp5 = tj[,pr&7 = f!l,mall) = t!lsrlil == fl V 

[cimmt = fl[rrp2 = fllmpmO'f' = tllmpS = fJ[spra7 = f!lsmail) = tllsrnl = f] V 

[cimmt = fHemt == fllbtopS == fllspra7 = tl!ulil = fJ[nxto1 = tl V 

[eimmt = fllbtopS == fl[,pra1 == fj[,pru = t!iulil = fl V 

[elmmt = f![cerit = fJ[mdiro = tllbtopS = fj[spra1 == fll,rlil = fI V 

[cimmt = filecrit = f][,pa7 = fl[smalD == t!lunl = fll,iDt == tl V 

[eimmt == fllcerit = fHdiroS .... tli,pr&7 = fli,pru = t![,ml =: fl V 

[eimmt = filCplol = fI[cahea == rllcwkn = fJ[ecrit = tl!rrp2 = £Ilntal = fllmpS = fll,ml tllnxto7 == tJ V 

[cimmt = r![cplul = fl[cerit = rllrueae fl[nul == fllmmpl ".. tllmpS = tl[,pr&7 = fJ V 

[eimmt == filcpllli = f![rne&c = fiirrp2 = fl[nt&1 = fJ[mmp2 == tj[mpS == tl[,pra7 = fl V 

[cimmt == fl[epllli == f]!ccrit == f1[rnuc = rlirrpl tllntal = fj[,pra7 = fl[ulil = tl V 

[eimmt == fl!eplul = fl[ewlcn = fHTTp2 == fllntal == fllmpmov = tl ImpS = fllspr&7 = f![unl = t] V 

Jeimmt = f![rrp2 = fl'rSp6 = tl[,pra.n = tlisrlil = fl(nxto7 = tl V 

[cimmt = flleent = f! Impmoy = tj[spr&1 == fll,m&in = tl[,rlil = fl V 

[eimmt = f!ieerit = t][rneae = (!!rrp2 = fl!nta.1 = (I!mmp2 = tj[mpmoy = t![,pra.7 = f!!ulil = t! V 

leimmt = (i!eahu. = (Heerit = tl[rrp2 = fj[rnear = fJ[mpS = tllsrlil = (j[nxto7 = tJ V 

Icimmt = fllruuc = fllntal = fl[mmp2 = tllbtopS = (llspra7 = fl 

Figure 19. Discriminant description ror tbe KPK class Won. 
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[cimmt = fllcplu2 = rllcplul = f![ea.hu. = fllcwlcsa. = fl!rp5Q = f)[rrp2 = fl V 

[eimmt = fileplul = fllea.hea. = fllruea.c = fl!rrp2 = flimmp2 = tlln:xto7 = tl v 

[cimmt = fl!ephll = fl[ecnt = f![ruea.e -- fl[mpmov = t! v 

[eimmt = fllcplu2 = fl[cplul = fllea.hea. = fl[ewren. = f![rrp2 = f!lmp,) = tlfn:xto7 = tj V 

[eimmt = flleplu2 = fl!cplul = fHea.hea. = fllrnea.c = fl[rrp2 = f\lntil = t] V 

[cimmt = f!lcplul = CJlruuc = fllrrp2 = fJ!rueu = Cl!mmpl = tl[mp,) = ti V 

[cimmt = fl!eprul = fllewba. = fj[rnea.c = fl:rrpl = tl/rrp2 = fI V 

[eimmt = flfrnea.8 = fl[rrp2 = fllruea.r = fl!mpmov = ti!5ma.iu = tl V 

[cimmt = flleplu2 = flleplul = fjfrrp2 = fl[mpmov = t!lsma.iu = t] V 

[cimmt = fJlrnea.c = fllmmp2 = tJ[btop,) = flln:xto7 = tl V 

[eimmt = fllcwkn ... tl/ruea.c = fllmmpl = tilbtop.) = fl V 

[eimmt = fj[ewba. = fllrrp2 = fllmp,) = t!!spra.u = tl v 

[cimmt = fj[cphu = Cllea.hea. = Cllewba. = fl!rrp2 = fl[ruea.r = C!lmp,) = tl[spra,7 = tHn:xto7 = t! V 

[cimmt = fl[epllll ... fqea.hea. = fllcwkn = flleent = fllmp,) = tl!spra.7 = tl V 

[eimmt = fl[ewba. = fllbtop,) == fllspra.u = tl V 

leimmt = f)lrrp2 = f!lmmp2 = tllmp.) = tl[sma.iu = tl V 

[cimmt = fl!eplul = fllrrp2 "" fllruea.r == fllmdiro = tl/mp.) = tl[sma.iu == t! v 

leimmt = fl[epllll ... flleent = fllsma.iu = t[[sint == tl V 

[eimmt = fllewba. = fllrrp2 = f!ldiro,) = tllspra.u = tl V 

leimmt = f!!ewlen = fHeent = tl(rue&8 = fllrrp2 = fj[ruea.r = fl[mpmoy = tllmp,) = f\lnti! = tl V 

[eimmt = flleplul = fllea.hea. = fllewba. = flleent = tl!rrp2 = fl[rueu = fllmp') == fJ!srfil = tl V 

[eimmt = (!Ieplul = fl[ewlcsa. = tl[rrp2 = fl[mpmov = tj[sma.iu = tl v 

lcimmt = fqcplul = fllca.hea. = tl!rnea.e = fl[rrp2 = f1[mmp2 = t!lmp,) == tj V 

!eimmt = fj[ecrit = fllmmpl = tllmp,) = tl[sma.in = tl V 

[cimmt = f!!cplul = t!!rrp2 = fjirSp6 = tl!spra.n = tl v 

[cimm' = fliccnt = fllrnea.c = fllmpmov = tl[sma.iD = tl v 

Icimmt = fUca.hea. = fllcwku = flleerit = tJ[rrp2 = f!lrueu = fl[mp,) = t!l,pra.7 = tl!n:xto7 = tl v 

[cimmt = flleplul = tl!rrp2 == fllmp') = t![,pra.n = tl V 

[cimmt = fllcplul = tjlcent = tl[rDea.c = fllrrp2 = fl!ruur = fjlmpmov = tj[srfi! = tJ V 

(cimmt = rllea.hea. ". t[[eent = f![mdiro = tHbtop,) = fi!,ma.iD = tl 

Figure 20. Characteristic description for the KPK class Won. 

The final important factor in this domain is that the performance or rules of all types is highly 

dependent on the set of events chosen for learning. Two rule sets were produced by induction over two 

learning sets or exactly the same size, yet rule correctness varied drastically. This suggests that events 

ot a given class appear in many distinct clusters in the event space. If learning events are taken trom 

only a few of the clusters, then rule performance will be poor, as was the case in the run shown in Table 

2. If, however, the learning events contain at least one element from each cluster, the rules should have 

relatively good performance. Also, we would expect the more correct rules to have a larger number of 

complexes than the poorer rules. This was indeed the result obtained - the good rules had. on the aver­

http:fi!,ma.iD
http:tl[sma.iD
http:tl[sma.in
http:tj[sma.iu
http:fllsma.iu
http:tl[sma.iu
http:tl[sma.iu
http:t!lsma.iu
http:ti!5ma.iu
http:f![ea.hu
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age, almost twice as many complexes as the poorer rules. 

The results (or the soybean data are shown in Table 3. Characteristic descriptions took the longest 

amount o( time to induce, by a-large margin. This may be due to the extra overhead involved in work­

ing with longer descriptions. Only the results or one run are shown in Table 3 - the second run, with a 

different set o( learning events, produced similar relative induction times. 

More interesting results are shown in the "Complexity" column. The simplest rules were the 

discriminant descriptions induced (rom examples. However, the rules produced during the second run 

through the data were considerably simpler in the case or the charactersitic descriptions. The discrim­

inant rules induced rrom the examples had almost exactly the same complexity in both runs. It appears 

that characteristic descriptions are more performance sensitive to the distribution or learning events 

Rule Type I Induction Time I CompleXity I "ORO I "AND· I Nonulised I %ht Rulr: %Only Choice 

Expert Rules 75.63 68.0120.52 muimum minimum no-
71.4378.00a.vera.ge nomuimllm 
70.5070.83yesmuimum minimum 

76.47 73.95a.vera.ge yesmuimum 

Chua.cteri,tlc 

Description 

-U2.23 mins 102.05 

Discrlmlna.nt 

From 

Exa.mples 

296.25 mins 13.71 

22.88 millSDiscnmllla.U 15.17 

From 

Chua.cteristic 

muimum 

muimum 

muimum 

muimnm 

muimllm 

muimum 

muimnm 

mUlmnm 

muimum 

muimum 

muimum 

muimnm 

minimum 

a.veuge 

minimum 

a.Vera.ge 

minimum 

a.vera.ge 

minimnm 

a.veug·e 

millimum 

a.veuge 

minimum 

a.vera.ge 

no 

no 

yel 

yes 

no 

no 

yes 

yes 

no 

no 

yes 

yes 

56.30 

07.-48 

71.43 

07.-48 

56.30 

0-4.12 

60.75 

91.96 

90.76 

01.60 

93.28 

91.12 

00.76 

01.60 

87.30 

88.21 

96.61 

06.64 

00.16 

90.16 

96.64 

06.64 

02.44 

92.14 

Table 3. Comparison o( (our different rule types (or the soybean disease diagnosis domain. 
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given to the program. This sensitivity is explained by the order or criteria in the LEF. Since the pri­

mary criterion is to maximize coverage of positive events, there may be cases where a longer description 

will not work. This will happen- frequently ir the learning events of a class are widely separated in the 

event space - events that are farther apart require a more general. and thererore shorter, description. It 

this is true, then the performance of characteristic descriptions should also vary with the learning 

events. Specifically, we would expect that a more complex description should not perform as well as a 

simpler one if we are evaluating conjunction as minimum. Similarly, we would expect that averaging 

would greatly increase the performance of the more complex rules. 

The characteristic rules performed as predicted over the two runs. As shown in Table 3, the very 

complex characteristic descriptions perrormed poorly if "AND" was evaluated as minimum, but perfor­

mance improved drastically if averaging was used. The second set of characteristic rules performed in 

the 85% accuracy range regardless of evaluation scheme. 

In this domain, it appears that the method of inducing discriminant descriptions indirectly may be 

worthwhile. Although the rules induced in this way were slightly more complex, their performance was 

comparable to that of the rules induced from examples, and considerably better than that of the rules 

written by experts. Typical rules in this domain are shown in Figure 21. 

5.2. 	Incremental Learning 

This section presents experiments designed to evaluate the performance or the incremental learning 

algorithm presented in Chapter 4. In that chapter, questions were raised as to whether incremental 

learning with perfect memory is efficient. There are two concerns here. The first is that the incremental 

method, as described. might not be any faster than learning by the standard method (i.e. by starting 

over each time new examples are presented). The second concern is that the incremental method. even 

if it is faster than the single step method, will produce rules that are more complex. This concern is 

especially relevant because the only way to specialize a complex is by splitting it into two or more 
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Characteristic: desc:ription: 

[precipiu.tion = aboveJlormall[temperature = normaLaboveJlormalj[severity = millor .. potelltiallY.,.:levere! 

[colldition_ofjuve, = abnormalI [leaf.,.:lpot_color = browlIl 


[Ieal.,.:lpot.gro..th = ,cattered _with_co llCentric...,rings .necrosisJ,crou_vein'lllea.f.,.:lpot.,.:lile = greater_than_eighthjnchl 

[,hotj!oling = presel1ti[po3ltioll_ofJ,'ectedjeaves = acattered_oll-p1ant] 


[condition_o(juve,_below J,!ectedjuvea = llna'ectedl!stem_c:&lIken = doel/JlotJ,pply] [fruit.,.:lpot, = colored.,.:lpots] 


Discriminant description induced trom characteristic: description: 

Ileaf.,.:lpot_color = browl1l!led.,.:lpot.growth = scauereICwith_concelltric:.)ings.necro,i'J,crolS_veinal 
[po,ition_oCalfectedjeaveJ = sca.uered_on-p1antl!lruit.,.:lpota .... c:olored.,.:lpotal 

Discriminant description induced trom examples: 

Description written by domain expert: 

/led.,.:lpot.growth = Ic.&Uered_witll_conc:entric:.)ingsl:O.gO 
+ 

[time_oCoccllrrence = augu,i ..octoberl1,botj!oling =- pre,ellil:O.50 
+ 


[Ieaf,..,pot.,.:lile = greater_tbD_eigbthjnchl:O.4S 

+ 


[time_oCoccurru.ce = auguat..octoberl!fruit-poda =- diaeuedl[fruit.,.:lpob = colored.,.:lpotsl:O.l0 
+ 

[aeed_diacoloratioD_color ... blackl:O.05 
+ 

[Iea.f.,.:lpot-ma.rgiu = water,..,oa.kedJ:O.OS 
+ 

[yellow jea.f.,.:lpoi j!a.IOJ = absent/:O.OS 

Figure 21. Four different rule types for identifying the soybean disease alternaria leaf spot. 

complexes. IC the specialization step in the incremental method produces too many complexes. the 

resulting rules will be so complicated as to be useless. On the other hand, it may be that the gener:l.liz:l­

tion steps will simpliry the rules enough so that they are acceptable. 

The experiments in the last section showed that viable discriminant rules could be produced Crom 

characteristic descriptions in two of the test domains. Characteristic descriptions may be especially use­

ful for incremental learning. Since sucb descriptions contain large conjuncts, they are more specialized. 

http:absent/:O.OS
http:blackl:O.05
http:colored.,.:lpotsl:O.l0
http:time_oCoccurru.ce
http:greater_tbD_eigbthjnchl:O.4S
http:pre,ellil:O.50


47 

Because a major concern here is that specialization will produce overly complicated rules. it may be 

worthwhile to learn incrementally using characteristic descriptions. Hopefully. these will not have to be 

changed much during rule specialization. This could lead to less complex incremental rules. As belore, 

iC shorter descriptions are necessary. we can induce them in a small amount ot time trom the characteris­

tic descriptions. 

In order to test these ideas, GEM was applied incrementaUy to each 01 the three application areas 

used in the previous section. From an initial set of learning events, three types ot rules were induced: 

discriminant trom examples. characteristic trom examples, and discriminant Crom characteristic. For 

each class, a random number 01 new events (i.e. events not used in the previous learning step) were 

selected. These were added to the learning events. GEM was applied again using the rules Cormed in 

the last step. The entire process was repeated until no learning events remained. At each step in the 

learning process, rules were also Cormed in single step fashion (Le. with no input hypotheses) Cor' com­

parison purposes. For example. in Figure 22 the initial learning set consisted oC one event per class (a 

total oC seven events out 01 the thirty five available). A random number between zero and one was gen­

erated. This number was used to determine the percentage ot the remaining events ot the first class to 

be added Cor the second learning step. Another random number was generated to select the number 01 

events oC the second dass, and so on. This resulted in a new learning set in which 3. total oC Courteen 

events were distributed randomly among the classes. These events, and the rules lormed in the initia.l 

step, were used as input to GEM. Once rules were Cormed. the event selection process was repeated, 

producing input Cor the third learning step. 

The rules formed at each stage were tested on examples using the ATEST parameter settings that 

worked best in the given domain (as determined in Section 5.1). The entire experiment was repeated 

twice ror each domain. In all cases, disjoint rather than intersecting covers were formed. As in the pre­

vious section, different results might be obtained it intersecting rules were used. 
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In the small mayfly nymph recognition domain, problems that may arise in the two larger domains 

should exist to a lesser degree. The results in Section 5.1 lead to the expectation that characteristic 

descriptions will not differ much from discriminant ones. All induction times and rule complexities 

should be small compared to the other two application areas. 

Figure 22 shows the complexity of the four different rule types during the learning process. Some­

what different results were obtained when different learning events were used. In Figure 22, the discrim­

inant rules induced incrementally from examples were the most complex. A second run produced 

simpler discriminant rules and more complex characteristic ones. 

Figure 23 shows the induction times for three rule types. Again, times shown are for a Pascal 

implementation ot GEM running on a VAX 11/780. The time to induce characteristic rules is included 

in the time to induce discriminant rules from characteristic ones; in general, about ninety percent ot this 

time was used in inducing the characteristic rules. The results here show that the incremental method 

provides signi6cant improvement in induction time. The second repitition ot this experiment produced 

results similar to those shown in the 6gure. 

Figure 24 shows the performance of the rules induced in this domain. All three rule types show a. 

steady increase in performance. Similar results were obtained during the second run, although all the 

rules performed better (in absolute terms) with a different set of learning events. 

The incremental method worked quite well overall. In this area. the method of inducing discrim­

inant descriptions from characteristic descriptions produced better results than le:uning incrementally 

with discriminant rules. Performance of the rules was dependent on which events were used for learn­

ing. 

The KPK chess endgame domain is somewhat less complex than the soybean dise3Se problem, but 

it presents problt'ms or its own. As was discussed in Section 5.1, the nature of this problt'm is such that 

ind uting simple rules from examples is very difficult, it not impossible. Also, results in that section 

showt'd that GEM did not produce good characteristic descriptions, and that attempting to induce 
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Figure 22. Complexity of four different rule types for identification or Stenoneml1 mayOy nymphs. 
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Figure 24. Performance 01 three different rule types Cor identification 01 StenonemlJ mayfly nymphs. 

discriminant descriptions Crom them resulted in no changes to the chara.cteristic rules. In other words, 

the discrimina.nt descriptions produced were identical to the characteristic ones. 

Figure 25 shows the complexities oC the three different rule types in the three learning processes. 

Characteristic descriptions were more complex, but Dot markedly 50, than discriminant descriptions. 

UnCortuna.tely, the extra complexity generally came Crom the addition oC a Cew selectors to complexes 

36 

http:discrimina.nt
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that existed in the discriminant descriptions; the characteristic descriptions were not more conjunctive. 

When this experiment was repeated, similar results were obtained. However, as in Section 5.1, the 

results (or the second run prodll'Ced rules that were considerably more complex than those shown in Fig­

ure 25. 

Figure 26 shows the induction times (or the induced rules in this domain. Here, there was little 

difference (except at the initial stage) between the time taken to induce characteristic and discriminant 

descriptions. As in the mayOy domain, the incremental method provided a considerable speed-up in 

learning time. 

Figure 27 shows the "learning curve" for the induced rules. These rules performed very poorly and 

exhibit an odd behaviour - the curve goes down for aU three rule types. The second run in this domain 

produced better (though more complex) rules which improved in performance as new events were added. 

The behaviour shown in Figure 27 may be explained by the hypothesis presented in Section 5.1. It we 

assume that poor perCormance is due to poor representation of different disjuncts in the learning set, 

then the addition of new events to the existing disjuncts will cause them to be extended to cover nega­

tive events not in the learning set. 

Since the soybean disease domain is the largest oC the three being tested, it should present the most 

potenti3.1 problems. The results in Section 5.1 show tha.t induction in this domain takes a large amount 

of time, and that the descriptions produced may be quite complex. For incremental learning to be suc­

cessful here, a Ia.rge decrease in induction time is necessary. This must be coupled with the Cormation oC 

rules that are not much more complex than those produced by non-incremental induction. 

Figure 28 shows the complexity of Cour different rule types at various stages of the learning pro­

cess. As expected, the characteristic descriptions were by far the most complex. However, the discrim­

inant descriptions learned incrementa.liy were not much more complex tha.n those Cormed by the one 

step method. The discriminant rules induced from the chaf3cteristic descriptions were considerably 

larger than discriminant rules induced Crom examples. Simila.r results were obtained when the experi­
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Figure 21. Performance of three difl'erent rule types (or the KPK endgame. 

ment was repe:).ted with a difl'erent set ot learning events. 

Figure 29 shows the tot:).) induction time necessary for forming the rules described in Figure 25. 

Note here that the time to induce the "discriminant Crom characteristic" rules includes the time to 

induce the characteristic descriptions. The incremental method worked quite well; induction time for 

incremental learning appears to be a function ot the number ot new events rather than the total number 
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o( events, as desired. Similar results were obtained (or the second run, although induction times (or the 

characteristic descriptions were larger. 

Figure 30 shows the perrormance o( the three different rule types on 119 testing examples. All 

three rule types showed a fairly steady increase in performance as new events were added. The tem­
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porary dips in performance may be attributed to over-generalizations due to the addition of new, 

uncovered events. Such errors are corrected as new events are added later. The second run produced 

similar results, except that the discriminant rules induced indirectly had a markedly poorer performance. 
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Overall, the incremental learning method worked as well as the non-incremental method and took 

considerably less time. However, in this domain. incremental learning with characteristic descriptions 

does not appear to be worthwhile. Compared to learning discriminant descriptions directly, this method 

produced larger rules and took considerably more time. These results are somewhat at odds with those 

obtained in the mayfly domain. Some ideas about the causes or these variations in rule perrormance and 

rule complexity are presented in the next chapter. 
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&. CONCLUSION 

In general terms, the goal of the research described in this thesis was to build software tools that 

would aid a domain expert in expressing knowledge in a rule rormalism. The paradigm ror rule acquisi­

tion presented in Chapter two was used to generate criteria for these tools. Specifically, the aim was to 

provide useful programs for inductive iderence and rule base testing. Chapter five described experi­

ments which characterized the performance of the induction program and the rules it produced. 

It is obvious from the results of these experiments that incremental learning with perfect memory 

is a viable way to rorm decision rules from examples. In all three application areas, incremental rule 

induction was faster than single step application. The rules produced tended to be slightly more com­

plex, but their performance was comparable to rules induced using non-incremental means. 

In section 5.2, reasons were given for believing that incremental learning might work best on 

characteristic descriptions. However, the characteristic descriptions produced by GEM tended to be 

large and took much time to produce. The performance of characteristic descriptions on testing events 

depended on the evaluation scheme to a larger extent than was the case ror discriminant descriptions. 

Also, peformance was alected by the events chosen for learning. This elect was more marked ror the 

characteristic rules. 

None or these results suggest that characteristic descriptions are useless. It is likely that the prob­

lems discussed in chapter five were caused by the way in which characteristic descriptions were rormed. 

It appears that a special method will have to be developed to produce such descriptions. 

Another important point is that the performance or rules induced by GEM is dependent on the 

nature or the events used for learning. This is not terribly surprising, but the elect seems to be stronger 

in certain domains (e.g. the KPK chess endgame). Even more interesting, the perrormance or dilerent 

evaluation schema depends not only on the domain and the rule type, but also on the learning event set 

used to induce the rules. This suggests that a method for selecting important learning events IMichalski 

and Larson 781 could be very useful. 
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Some hypotheses about these variations were presented in section 5.1. It seems probable that the 

variations are due to the relative locations ot the learning events in the event space. Ir events ot 

different classes are in small clusters packed closely together, then the quality ot the rules produced 

depends on whether events from each cluster are available. In any case, good characteristic descriptions 

cannot be produced in such domains; this situation was observed in the KPK application. The chess 

endgame domain, due to the nature of the attributes used, is highly disjunctive. That is, it we view the 

problem as defining a runction mapping events to classes, the chess problem is a densely specified runc­

tion - there are not "don't care" areas. Any characterization or such a problem will be disjunctive. 

The soybean disease problem presented a different kind or event distribution - a large, sparse event 

space. In other words, the (unction defined by the examples is sparsely specified. Here, it seems likely 

that the events of a single class were distributed throughout a large area, most or which consists ot 

"don't care" regions. In such a problem space, rules are orten incorrect not because they cover negative 

events but because they rail to cover enough positive events. Only in the mayo.y identification domain 

did the characteristic descriptions work as expected. However, the domain was so small that characteris­

tic rules often did not differ much Crom discriminant ones. 

The variations in performance observed for different evaluation schema was also related to the 

problem area and to the available learning events. This is not surprising, as changing the evaluation 

scheme changes the area ot the event space that each rule covers. Using average ror conjunction simply 

extends the boundary or the area covered by a conjunct. Therefore, averaging works well in areas like 

the soybean disease domain because the major problem is that rules do not cover events that they 

should. It Cails in domains like the chess problem because rules are too general under averaging. 

Because the KPK problem is by nature disjunctive, averaging causes individual conjuncts to cover areas 

of the event space that they should not. A similar situation applies to con tin uous evaluation or selectors 

in linear variables (i.e. normalizing the difference between a selector and an event to a value between 

zero and one rather than treating selectors as boolean conditionals). Normalization had little effect in 

the soybean domain because there were few linear variables. However, in the mayfly domain, where 
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almost all the attributes were linear, normalization caused the rules to become overly general. 

All of this suggests several possible directions for Cuture research. The obvious first step is to find 

a good method Cor producing characteristic descriptions. The motivation for using characteristic rules is 

strong, so a workable means for producing such rules should prove quite usefuL An algorithm for pro­

ducing characteristic descriptions, once developed, could be easily tested using the methods presented 

here. 

Further study is necessary on the issues involved in characterizing an application area. The results 

presented here. as well as common sense, suggest that di.fferent domains will require different learning 

methods. Learning tools will probably have to be applied to many more application areas before any 

coherent pattern emerges. Ideally, a learning system will be able to accept events in a problem area, 

select those that are most relevant for learning, suggest a learning method, and define an evaluation 

scheme to be used on the resulting rules. 

The ADVISE system provides an excellent framework for research in this area to proceed. The 

tools described in Chapter four will be attached to the QUIN relational data base system. which, with 

associated editors for modifying knowledge, will provide an integrated interface for the domain expert 

building a knowledge base. Similarly, the ADVISE architecture provides a strong foundation for the 

addition of further learning and testing tools. 
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APPENDIX 

USER'S GUIDE FOR GEM AND ATEST 

GEM and ATEST are Pascal programs consisting or approximately 5,000 lines or code each. The 

programs run on the University or Illinois Department or Computer Science VAX 11/780 under the 

Berkeley Unix Operating System. The program load modules are each about 190K bytes. Run-time 

memory requirements vary with problem size, but a minimum or 192K bytes is necessary. GEM and 

ATEST are currently constrained to problems using no more than 60 variables with an overall total or 

1,160 values. A single variable may have up to 58 values. All or these limits are constants defined in the 

program source code. 

Both programs take their input in the rorm or relational tables. Relational tables are a convienient 

(ormat (or representing events or the type dealt with by ATEST and GEM. This also allows the pro­

grams to be used as operators by the QUIN relational database system [Spackman 83J. Both programs 

read (rom standard input and write to standard output. 

Input to GEM and ATEST consists or a single file containing a series or relational tables. A rela,.. 

tional table is composed or three parts: a table-name, a list or column names, and a set or tuples con­

taining the data. In general, columns may be entered in any order. The columns accepted ror each 

table type are defined in the section describing each program. The length or the tuples, and the type or 

information in them. must correspond to the appropriate column names. The table name and the 

column headings, as well as each tuple in the table, must be on a single input line. If all the columns in 

a table will not fit on a single line, the table may be split into several tables, each or which has some part 

o( the columns. Individual items on a line are separated by any number or spaces. 

Table names are or two types. First, there are tables which have only a single part name (such as 

"parameters"). There are also table names which consist or two parts. These are or the (orm "specific­
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general", where each or "specific" and "general" is an alphanumeric string. Tables or this type (e.g. the 

"·names" tables) must have a specific name associated with them because there may be several tables or 

the same general type. In the table definitions that rollow, any table whose name is given with an intial 

"." must have a specific name preceding the "." in program input. A specific name, and any other 

alphanumeric string entered as input, must be a continuous string or characters containing only letters 

and numbers and beginning with a letter. The maximum length or such strings is a program constant, 

currently set to twenty. 

1. GEM Input and Output 

1.1 The title table 

This table provides a header ror an input file. It is not used in any way by the GEM program. 

The title table is theretore optional. It consists or two columns: 

. " 

'Optional column which contains the row number or the text in the next column. Row numbers 
must begin with 1 and continue sequentially. 

• text 

Each entry in this column consists ot a string or characters that are a single line in the title or the 
input file. It there are any blanks or tabs in the row, the string must be surrounded with quotes. 
Ir single quotes appear in the string, double quotes must be used to surround it, and vice versa. 

A sample title table is shown below. 

title 

" text 
1 "This is a sample title table" 
2 "or the type input to GEM." 
3 "It is not used by the program." 
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1.2 The parameters table 

The parameters table is mandatory. This table contains values which control the execution or the 

program. Many or the parameters have derault values, as noted below; these columns need not be 

entered in the table ir the derault value is acceptable. Each row or the parameters table represents one 

run or the program; this allows the user to speciry many different runs on the same data in a single 

input Ole. 

• run 

Optional row number. The Orst row must be numbered 1 and rows must be numbered sequen. 
tially. 

• eeho 

Optional specification or which tables are to be echoed to output. Values in this column consist or 
a string or characters. each oC which represents a single table to be echoed. There must be no 
blanks or tabs in this string. Legal characters Cor the echo column. and the tables they represent 
are: 

t the title table 
p the parameters table 
c the criteria tables 
d the domaintypes table 
n the -names tables 
v the variables table 
h the -inhypo tables 
e the -events tables 
b the -children tables 

The default value Cor the echo parameter is pcvh. 

• mode 

Optional specification oC the way which GEM is to (orm rules. The legal values Cor this column 
are ic, dc and v!. In ic (intersecting cover) mode, GEM will produce rules that may intersect over 
areas or the event space where there are no learning events. This value is the debult. In dc (dis­
joint cover) mode, GEM will produce rules that do not intersect at all. In vi (variable valued 
logic) mode, the rules produced will be order dependent. That is, the rule Cor class "n" will 
assume that the rules Cor the classes 1 through n.1 are not satisfied. 

• maxstar 

This parameter controls the size or the partial star kept during star rormation (see Chapter 4). 
DeCa.ult value is 10. Maximum value is a program constant, currently set to 100. 
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• 	 trim 

Boolean parameter (legal values are "yes" and "no") which, ir on, causes GEM to trim the covers 
it produces. Trimming is done by removing values rrom the right hand sides or selectors in the 
cover. A value is removed ir it does not appear in any event or the corresponding class. Trim will 
not change which variables appear in the rules. Derault value is" on." 

• 	 wt. 

Boolean parameter (legal values are "yes" and "no") which, ir on, causes GEM to associate two 
weights with each complex it produces. The first weight produced is the percentage or positive 
events that the complex covers. The second weight is the percentage oC events that this complex, 
and no other complex in the rule, covers. 

• 	 erlterla 

The name or the criteria table to be used Cor this run. The name must be Jess than twenty 
alphanumeric characters with no blanks, and a -criteria table with that name must appear in the 
input file. 

A sample parameters table is shown below. Values shown in the first row are the deCault values ror 

the parameters. Note that the deCault value ror the criteria column is the only -criteria table specific 

name ror which it is not necessary to actually define a table (see below). Since the second row contains 

the string "maxim" for the criteria column, a table Damed "maxim-criteria" must be defined. 

parameters 
run echo mode maxstar trim wts criteria 
1 pcvh ic 10 yes no derault 
2 pc de 50 yes yes maxim 

1.3 	The -el'ltel'la tables 

This table type is used to define a lexicographic Cunctional (LEF). The LEF is used by GEM to 

judge the quality or complexes (ormed during learning. A LEF consists oC several criterion - tolerance 

pairs. The ordering oC the criteria in the LEF determines the relative importance or each. The tolerance 

specifies the estimated error within each criterion. See Chapter 4 for a more detailed discussion or when 

and how the LEF is used. 
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A criteria table name consists or two parts - the specific name, which must appear in the "criteria" 

column or the parameters table, and the general name, -criteria. Any value in the criteria column of the 

parameters table except defa.ult must have a corresponding -criteria table. 

The criteria table consists or three columns, all of which must be present: 

• II 
The order of this criterion in the LEF. The 6rst row must be numbered "I" J and the rows must 
be numbered sequentially. This column is optionaL 

• criterion 

This column specifies the functional which is to be used for this row or the LEF (the rows or the 
table give the ordering in which the functional will be applied). There are five different criteria 
available: 

1 - Ma..ximize coverage of positive events that are not covered by previous 
complexes. Complexes in a cover are produced sequentially; this criterion 
specifies the selection of complexes that cover events not covered by earlier 
complexes in the sequence. 

2 - Minimize the number of selectors. 

3 - Minimize the total cost of the variables used (see section 1.5). 

4 - Maximize the total number of positive events covered. 

5 - Maximize the number of selectors. 

• tolerance 

This must be a real number between 0 and 1. The tolerance specifies the uncertainty in the assOoo 
ciated criterion. For example, say the best complex in a list had a value of 100 Cor some criterion 
and the tolerance ror the criterion was 0.1. The absolute tolerance allowed is computed by multi­
plying the tolerance by the best value, yielding an absolute tolerance or 10. Then any complex 
with a value between 90 and 100 would be regarded as having the same value as the best complex 
Cor this criterion. 

The default-criteria table is shown on the next page. This is the only incarnation oC the -criteria 

table which need not be entered explicitly. 
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default-criteria 
#: criterion tolerance 
1 1 0.00 
2 2 0.00 

1.4 The domalntypes table 

The domain types table is used to define domains Cor attributes. This table is optional, but it is 

convienient if several attributes have the same set of possible values. The table consists of three 

columns, aU of which must be included: 

• name 

This is the name of the domain being defined. Must be a string of less than twenty alphanumeric 
characters with no white space. 

• type 

The type of the domain being defined. Three domain types are legal: nominal (nom), linear (lin) 
or cyclic (cyc). A nominal domain consists of discrete, unordered values (e.g. color is a typical 
nominal domain). A linear domain consists or discrete, ordered values (e.g. size). A cyclic domain 
is discrete values in a circular ordering (e.g. the integers modulo 4). 

• levels 

An integer value between 1 and 57 specirying the size or the domain. The maximum domain size 
is related to the size of sets allowed in the Pascal implementation. GEM was originally imple­
mented on a machine which allowed sets to have a cardinality of no more than 58. On other 
machines, the maximum domain size is a declared program constant. 

The domain types table is used in conjunction with the variables table and the -names table. An 

example of the use or these three table types is shown alter the de6nition 01 the -na.mes table (see section 

1.6). 

1.S The variables table 

The varia.bles table is mandatory - it specifies the names and types of the variables used to 

describe events. It may contain up to 6ve columns: 



69 

• II 
Optional numbering oC variable declarations. The first row must be numbered "1", and rows 
must be numbered sequentially. 

• name 

Optional column associating a name with the variable. If this column is omitted, variables will be 
given names oC the (orm xii. where '* is the row the variable appears in. It a domain types table is 
being used, then the variable name may consist of two parts - "name" ."domain-name", where 
"domain-name'" is a string appearing in the name column or the domaintypes table. 

• type 

Same as the type column in the domain types table. 

• levels 

Same as the levels column in the domaintypes table. 

• eost 

A real number specirying how "expensive" this variable should be to use compared to other vari­
ables. C"sed in computing criterion 3 in the LEF (see the definition of the -criteria table). 

The variables table may be used in conjunction with the domamtypes and -names table. An exam-

pie or a variables table is shown arter the definition of the -names table, below. 

1.0 The -Dames tables 

This table is optional. The -names table is used to specify names for values in a domain. It no 

-names table appears Cor a variable or domain, then the values for that domain are assumed to be the 

integers beginning with O. The specific name or a -names table must be the name of a variable in the 

variables table or an entry in the name column or the domaintypes table. A -names table consists ot two 

columns, both ot which are mandatory: 

• value 

This is the integer equivalent ot the value to be defined in the next column. 
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• name 


The name or the va.lue being defined. 


Below is a typical eX3mpie of the use of the domain types, variables and names table. In this exam-

pie, two vari3bles ("long" a.nd "wide") are defined to be boolean with the values "raIse" a.nd "true". 

The va.ri3ble "color" may take any of the values "red", "blue" or "green". The variable "size" takes on 

integer values between 0 and 5. Note that if the domain types table were excluded, then the "type" and 

"levels" column would have to appear in the variables table. 

domain types 
name type levels 
boolean nom 2 
colors nom 3 
range lin 6 

variables 
;; name 
1 long.boolean 
2 wide.boolean 
'3 color . color s 
.. size.range 

boolean-names 
value name 
o raise 
1 true 

colors-names 
value name 
o red 
1 blue 
2 green 

1.7 The -lnhypo tables 

The -inhypo table is used to input rules to GEM Cor incremental learning. The specific name of 

this table must be the name of a decision class. If the name given ror a -inhypo table h3.S not been seen 
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berore (i.e. in a -children table, see below), the 3.Ssociated class is assumed to be at the top of a struc­

tured rule base. The rules input in a -inhypo table are used as the initial covers when doing incremental 

learning. If iDcremeDtallearDing is Dot desired, then this table may be excluded. 

• II 

Mandatory columD associating a number with each complex in the rule. In -inhypo tables only, a 
single relational tuple may span more than one IiDe. However, there must be only ODe II entry for 
every complex in the table. 

• cpx 

Mandatory column giving a VLl declaration of the complex. A complex is preseDted all a series ol 
selectors. Selectors may be separated by any amount of white space or new lines. A new complex 
is started only when a new entry ror the II column (i.e. a number) is round. Eacb selector is all 

expression or the form Ivariable == valuesl. The brackets are mandatory. The variable may be 
any variable declared iD the variables table, but the same variable may not appear twice in one 
complex. The values must be defined values for the variable given on the left of the " .... " sign. 
Several values may be specified in one selector in aDY of the following forms: 

value1,value2 

value1..value2 (valid only for linear and cyclic variables) 

valuel"value2,value4..valueS (also valid only for linear and cyclic variables) 

The symbol "," in a selector means "or" and the symbols " .. " specify a range of acceptable values. 
So. the selector Icolor == blue,greenl is read "color is blue or green." The selector [::Iize = 0 .. 31 
means "size is between 0 and 3, inclusive." 

Below is an example of a -inhypo table which uses the variables defined in the example at the end 

of the previous section. This rule would be used a.s an initial hypothesis for the class "ONE". The rule 

consists of two complexes, and is read .. If long aDd wide are false or size is 1 then the event is of cl3SS 

ONE." 

Ol\'E-inhypo 

II cpx 

1 [long == ralsej[wide == ralsel 

2 Isize == 11 
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1.8 The -event. tables 

These tables are used to input events to GE~f. Tbe specific name given to a -events table 

corresponds to a single decision-Class. In GEM, ir the specific table name has not been seen previously 

(in a -children table, see below), then 3. new class is created at the top of the rule base structure. 

The column headers tor this table type consist of variable names defined ill the variables table. 

The values in the rows of the table must be legal values for the appropriate variables. Since many attri ­

butes may be us!",! to describe an event, it is possible to split a -events table into several tables. Tbis is 

done by repeating the table name (both specific and general). and using difl'erent column headings in 

each occurence. Column headings may not overlap, and each table must have the same number or 

events. 

The -events table shown below uses tbe attributes defined in the example for the -names table. 

above. This table would associate four events with the class "ONE". 

ONE-events 

long wide color size 

raise false blue 0 

true false red 1 

false false red 0 

false false blue 1 


I.V The -chlldren table. 

GE~f accepts -children tables in order to define a structuring on a rule base. The specific name or 

the table must be the name or an already defined class. Le. the name must have appeared as the name 

of a -events table. The rule base may be structured to arbitr3l'Y depth. 

The -children table consists of two columns: 

• node 


This column is a string ot characters giving the name or the node to be defined. 
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• evtl 

This column specifies which events attached to the parent class also belong to this child node. It 
consists or a string oC integers separated by commas or by"..", as in selectors. These numbers 
correspond to events associated with the parent. The parent's events are numbered in the order 
they appear in the -events table. Classes more than one level deep in the rule base use the event 
numbers associated with their ancestor at the top or the structure. This allows the user to specify 
all events with the same set or numbers. 

The tree below shows how a sample rule base might be structured. In this rule base, classes Of'.'E 

and TWO are siblings at the top of the structure. The class ONE has two sub-<:Iasses, THREE and 

FOl;'R. 

TWO 

THREE 

The tables below define the rule base structure given in the tree. In this example, class ONE con­

tains rour events. The -<:hildren table assigns the first and last of these to class THREE, and the 

remainder to class FOUR. 

Ol\'E-events 
;; long wide color size 
1 false false blue 0 
2 true false red 1 
3 false false red 0 
4 false false blue 1 

TWO·events 
;; long wide color size 
1 true true green 2 
2 true true red 3 
3 false true green 3 

Of'.'E-children 
;; node evts 
1 THREE 1,4 
2 FOUR 2..3 



1.10 An Example ot Input to GEM 

This subsection contains a deta.iled example 01 input to the GEM program. The sample input file 

shown in the left column below uses every table GE~f accepts. Comments in the right column explain 

the corresponding ta.ble a.nd provide pointers to the previous subsections for more deta.iled explanations. 

To input this example to GE~f, the tables would be entered (in the order given) into some file using 1 

standa.rd text editor. If this file was called "gem.input," then executing: 

gem < gem.input > gem.output 

under the UNIX shell would cause GEM to run the example and save the results in the file 

"gem.output." 

GEM Input 

title The title bble is used oDly for refereDce &lad m&y be omitted. 


# text 

1 "Sample input file" 


pa.rameters The par&meten t&ble debes the W&1 iD which GEM will !"IlD. 

echo mode maxstar trim wts criteria The table here tell. GEM to !"IlD oDce, echo oDly the title 

t dc 50 yes yes maxim t&ble, Corm diajoiDt !"Illes, use a. must&r of SO, trim the 

result.. report weight. a.od Ult the LEF detiDed iD the 

muim-criteri& t&ble. The para.meten are debed iD del&il 

011 p&ges 65-66. See Chapter" Cor n expl&lI&tioll of the ter­

miDology. 

maxim-criteria Thi. table specilies & LEF (see sectioD 1.1.1) of two criteri&: 

# criteria tolerance muimile the Dumber or DeW eveDU covered &Dd muimJle 

1 1 0.10 	 the length of the rules. The lint criteria. haa & toler&Dce of 

2 	 5 0.00 10% - &D)' complex who.e v&lue (or thi' criterioD is w.thiD 

10% 01 the be,t complex Will be reg&rded &a equivalent to the 

best complex. The criteri& table IS de6Ded iD det&ll OD p&ge, 

66-68. 

http:standa.rd
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GEM Input 

domaintypes 
name type levels 
sizes lin 3 
colors nom .. 
nums lin 10 

sizes-names 
value name 
o small 
I medium 
2 large 

colors-names 
value name 
o red 
1 blue 
2 greeD 
3 yellow 

variables 

'* name 
1 size.sizes 
2 color .colors 
3 numl.nums 
.. num2.nums 

or-.'E-events 

'* size color numl num2 
I sm3.11 red 0 0 
:2 medium red 4 2 
3 medium blue 1 1 
4 sm3.11 blue 2 3 

Comments 

Three types of ,,:ui ...blu wltb 3, 4, ud 10 " ...Ines, rupee­

tivt'ly, 1nll be lued. The definition of the doma.intypes ta.ble 

i, on pa.ge 68. 

N...mu to be ...noei ...ted wi\b .... Ioe' 01 ... .....ri ... ble with 

dOllUID ",i..s.· The -umes t ... ble is upl ...ined Oil p...ge 60. 

The .....ri&bles th&~ will be lISed to describe eYeatl lor this 

problem. If the dom&illtypes t.&bl. ,,:ILI 1l0' beilll ued, thea 

the Inel. ud '''. COIOmllS woald be ia thi' t.&ble. AI i' i., 
we Ileed only speciliy tlul n&me of the nri&ble ud iu dom&ia 

t.ype. The nri&bles t.&ble is debed oa P&C. 61. 

This t&ble cont&ins evt'nU of the cl ...., ONE. Since thil is the 

lir" clus \0 be defined. i' '11',11 be ...t the top of the rule bue. 

No'e th&, since no -ll&mes t&ble ,,&S lued for the IlUmS'H 

dom...ill. the nlues elltered ue illtege1'll. The" #' column 

here is option&1. 
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GEM Input Comments 

TWO-events 

/I size color numl num2 

1 medium yellow 7 3 
2 medium yellow 8 3 
..I) large green 4 4 
3 medium green 9 5 

ONE-children 

node evts 

THREE 1,4 
FOlTR 2 .. 3 

ONE-in hypo 
/I cpx 
1 (size == small.. mediumHnuml .... 0 .. 71 

TWO-inhypo 
/I cpx 
1 (size == small,large] 
2 [size = mediumllouml == 8..9J 

THREE-in hypo 
/I cpx 
1 (size - smalll 

FOL"R-inhypo 

/I cpx 
1 (size == medium] 

Evellu or da.u TWO, also a.t the top o( the structured rule 
bue. The -evelit, ta.blu ue discussed 011 pa.ge 12. 

Thi. ta.ble de6D.e. the ,tructare 01 the nile b".e. CI",. 

THREE is a. child oC diU. ONE, ud cODt"lllI it. pueDt'. 
lint ud (oQI'tll neDn. CI"" FOUR i. de6D.ed ,imila.rly. 
The method of ,tructurillg rule bue. i. de.cnbed il deta.il Oil 

pa.ges 12·73. 

Thi. ta.ble debes a.a iDitial rule (or du. ONE. Thi. rule i, 
iDpat (or the illcremeJI,uJ learailg a.1,ori,lI.m. See pare 10 ror 
deta.i1l1 01 rorma.' a.ad Gha.pter f ror iDiorm&tloll 011 tile illcre­
melltaJ lurallir mecllod. 

Thi. ta.ble debe. the rule Cor cia... TWO, Thi, rule will 
.erye u illpat ror the illcremeDtaJ &Igorithm. 

This ta.ble debe, the rule ror d&,s THREE. Thi. rule will 
,erye u illpllt ror the ilicrementaJ a.1,onthm. 

Thi, t&ble debe, tile rale (or dau FOUR. This rule will 
serve a.. IIIPllt (or the illcremellul algorithm. 
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2 

1.11 An Example or Output From GEM 

If GE~ is given the input in part 1.10, it will produce output consisting of two parts: an echo of 

certain 	input tables (as per the- echo parameter), and 

below. 

GEJ,f Output 

title 

text• 
'Sample illput lile" 

ONE-olubypo 

• 	 cp"
[sise == small..mediumllcolof "" red,bluej 

[lI1Im1 = 0 .. 2,11 : 1.00, 1.00 

TWQ.olnbypo 

• 	 cp"
fuml == 1 .. DI : 0.50, 0.15 


I,in == larcel : 0.25, 0.50 


THREE-outbypo 

• 	 Cpll 
isin - smaUI : 1.00, 1.00 

FOUR-oathypo 

• 	 Cpll
[sise = mediamj : 1.00, 1.00 

This rUll used (millisecolld. of CPU time): 

System time 34 

User time 184 

3. summary of the results. This output is shown 

Commentll 

The title table i, tbe ollly table ecboed becau.e tbe yalae of 

tbe ecbo parameter iD tbe illput lile was "t.· 

The rule prodllced Cor ela.. ONE are olltpat ia thi. table. 
Tbi. rule cODli.u of a SiDCle coajud; di.jllaen ant .eparated 

by ellt.ries ia tbe .. r colamD. as iD the Dellt. table. The in' 
Damber rollo ..illC tbe complex i. tbe percelltale of po.it.iye 
(i.e. cia.. ONE) eyeDt.. coyered by t.bis complex aDd 110 otber 

complex. The secoDd umber is tbe percellt.ace or class ONE 

eyeDU coyered by tbi. complex. 

The rule prodllced for clu. TWO. 

The rale prodllced fOf dus THREE. 

The fllie produced for c1ulI FOUR. 

Time taku to form tbe rules. This doe, not include input 

nd outPllt time. 
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2. ATEST Input and Output 

2.1 The title table 

This table provides a header for an input Ole. It is not used in any way by the ATEST program. 

The title table is therefore option:ll. It consists of two columns: 

• * 
Optional column which contains the row number or the text in the next column. Row numbers 
must begin with 1 and continue sequentially. 

• text 

Each entry in this column consists or a string or characters that are a single line in the title 01 the 
input tile. It there are any white space charaters in the row, the string must be surrounded with 
quotes. 

A sample title table is shown below. 

title 
* text 
1 "This is a sample title table" 

2 "01 the type input to ATEST" 


2.2 The parameters table 

The parameters table is mandatory. This table contains values which control the execution of the 

program. Many or the parameters have default values, as noted below; these columns need not be 

entered in the table ir the default value is acceptable. Each row or the parameters table represents one 

run or the prog!am; this allows the user to specify many different runs on the same data in a single 

input tile. 

• run 

Optional row number. The orst row must be numbered 1 a.nd rows must be numbered sequen­
tia.lly. 
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• eeho 

Optional specification of which tables are to be echoed to output. Values in this column consist of 
a string of characters, each of which represents a single table to be echoed to output. There must 
be no blanks or tabs in this string. Legal characters (or the echo column, and the tables they 
represent are: 

t the title table 
P the parameters table 
c the criteria tables 
d the domaintypes table 
n the -names tables 
v the variables table 
h the -outhypo tables 
e the -test tables 
b the -ehildren tables 

The default value (or the echo parameter is pcvh. 

• test 

This parameter tells ATEST whether to test rules it is given on events. Legal values are "yes," 
"no" and '·sum." It test is "yes," ATEST will produce a confusion matrix for each testing class. 
If test is "sum." A TEST will only report a summary of the results for all classes. If test is "no," 
then the rules will not be tested on any events. The default value is "yes." 

• mise!... 

If misclass is on (legal values are "yes" and "no," default value is "no"). then ATEST will print a 
trace of every event that was evaluated incorrectly. 

• ee 

It cc is on (again. values are "yes" and "no," default is "no"), then ATEST will perform con­
sistency and completeness checking on the rules input in the -outhypo table. 

• andtype 

Determines how conjunction is evaluated. Legal values are "average" and "minimum;" the 
default value is "minimum." 

• ortype 

Determines how disjunciton 15 evaluated. Legal values are "maximum" and "psum;" the debult 
value is "maximum." 

• norm 

Determines whether selectors in linear variables will be evaluated to a range between zero and one 
(normalized) or as a boolean conditional. Legal values are "yes" and "no," the default is "no." 
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• 	 threshold 

Real-valued parameter in the range 0 to LATEST uses this parameter as the threshold Cor rule 
satisraction. Ie a rule has a degree or consonance with an event greater than the value specified in 
this column. then the rule is deemed satisfied by the event. The default value is 0.50. 

• 	 dropa2 

Real-valued parameter in the range 0 to L This parameter is used to determine when to stop 
using the a.t) weigbt in rule evaluation. See section 4.2.1 Cor a detailed explanation. The default 
value Cor thiS parameter is LOa. 

• 	 dwelght 

Real-valued parameter in the range 0 to 1. This parameter is used to determine which modules to 
use when mUltiplying during consistency and completeness checking. Modules whose ar. weights1
are below dweight are not used. The default value is 0.50. 

A sample parameters table is shown below. Values shown are the deCault values (or the parame­

ters. 

parameters 
run echo test misclass cc andtype ortype norm threshold dropa2 dweigbt 
1 pcvh yes no no minimum maximum no 0.60 1.00 0.50 

2.3 	The domalntypes table 

The domain types table is used to define domains ror attributes. This table is optional. but it is 

convienient if several attributes take the same values. The table consists of three columns. all of which 

must be included: 

• 	 name 

This is the name or the domain being defined. Must be a string o( less than twenty alphanumeric 
characters with no wbite space. 

• 	 type 

The type of the domain being defined. Three domain types are legal: nominal (nom). line:n (lin) 
or cyclic (cyc). A nominal domain consists or discrete, unordered values (e.g. color is a typical 
nominal domain). A linear domain consists of discrete. ordered V3lues (e.g. size). A cyclic domain· 
is discrete values in a circular ordering (e.g, the integers modulo 4). 



81 

• levels 

An integer value between 1 and 57 specilying the size or the domain. The maximum domain size 
is related to the size 01 sets allowed in the Pascal implementation the program is running under. 
GE~{ was originally implemented on a machine which allowed sets to have a cardinality 01 no 
more than 58. On other machines, the maximum domain size is a declared progr3m constant. 

The domaintypes table is used in conjunction with the variables table and the -names table. An 

example of the use 01 these three table types is shown arter the definition 01 the -names table. 

%.4 The variables table 

The variables table is mandatory - it specifies the na.mes and types or the attributes used to 

describe events. It may contain up to five columns: 

• # 
Optional numbering of variable declarations. The first row must be numbered "1", :lnd rows 
must be numbered sequentially. 

• Dame 

Optional column associating a string of up to 20 alphanumeric characters with the varia.ble. It 
this column is omitted, variables will be given names of the lorm xii, where';; is the row the vari­
able appears in. Ie a domaintypes table is being used, then the variable name may consist or two 
parts - "name" ."domain-name", where "domain-name" is a string appearing in the name column 
of the domaintypes table. Ie a variable is specified in this way, then it is assumed to have values 
corresponding to those in the appropriate row of the domain types table. 

• type 

Same as the type column in the domaintypes table. 

• levels 

Same as the levels column in the domaintypes table. 

The variables table may be used in conjunction with the domain types and -names table. An exam­

pIe of a variables table is shown after the definition of the -names table, below. 
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2.5 The -Damet tablet 

This table is optionaL The -names table is used to specify names (or values in a domain. It no 

-
-names table appears for a variable or domain, then the values for that domain are a.ssumed to be the 

integers beginning with O. The specific name ot a -names table must be the name or a variable in the 

variables table or an entry in the name column of the domain types table. A -names table consists ot two 

columns, both or which are mandatory: 

• value 


This is the integer equivalent of the value to be defined in the next column . 


• Dame 


The name or the value being defined. 


Below is a typical example or the use or the domaintypes, nriables and names table. The domain-

types table must be entered first. The table shown below defines three domains: boolean, colors and 

range. In this example, two variables ("long" and "wide") are de8ned to be boolean with the values 

"Calse" and "true". The variable "color" may take any or the values "red", "blue" or "green". The 

variable "size" takes on integer values between 0 and 5. Note that it the domaintypes table were 

excluded, then the "type" and "levels" columD would have to appear in the variables table. Every vari­

able must have a defined type and a defined domain size (number or levels). If some variables have 

domains defined in the domaintypes table and some do not, the "type" and "levels" columns must still 

appear in the variables table. The declarations must match tor those variables whose domains are 

declared twice. 

domaintypes 
name type levels 
boolean nom 2 
colors nom 3 
r3nge lin 6 
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variables 
;; name 
1 long.boolean 
2 wide.boolean 
3 color.colors 
4 size.range 

boolean-names 
value name 
o raise 
1 true 

colors-names 
value name 
o red 
1 blue 
2 green 

2.5 The -outhypo table. 

The -outhypo tables are used to provide ATEST with rules to test. The specific Dame or this table 

must be the name or a decision class. Ir tbe name given ror a -outhypo table bas not been seen before 

(i.e. in a -children table, see below), tbe associated class is assumed to be at tbe top or a structured rule 

base. Tbis name is somewbat confusing since -outhypo tables provide input rules. The name is used to 

correspond to the name or tbe output tables rrom the GEM program. This allows GEM output files to 

be used as ATEST input files with only miDor modifications (changiDg the par3meters and entering test­

ing ev('n ts). 

Rules input in a -outhypo table may also bave weigbts associated with tbem. Cbapter 3 provides a 

synt:u: and semantics ror these a-weights. When weigbts are encountered by ATEST. tbey are automat­

icaHy associated with whatever expression was read iD since the last time weights were seen. 

. ;; 

Mandatory column associating a number with each complex in tbe rule. In -outhypo tables only. 
a single relational tuple may span more than one line. However. there must be only one :# entry 
ror every complex in the table. 
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• cpx 

~1andatory column giving a VLI declaration or the complex. A complex is presented 3.S a series or 
selectors. Selectors may be separated by any amount or white space or new lines. A new complex 
is started only when a new entry Cor the" column (i.e. a number) is Cound. Each selector is an 
expression oC the Corm [variable = valuesl. The brackets are mandatory. The variab Ie may be 
any variable declared in the variables table. but the same variable may not appear twice in one 
complex. The values must be defined values Cor the variable given on the left oC the H=" sign. 
Several values may be specified in one selector in any o( the (ollowing Corms: 

valuel ..value~ (valid only (or linear and cyclic variables) 

valuel··value~,value4 ..valueS (also valid only (or linear and cyclic variables) 

The symbol "," in a selector means "or" and the symbols .... " specify a range of acceptable values. 
So, the selector [color = blue,greenj is read "color is blue or green." The selector [size 0 .. 3\ ::It 

means "size is between 0 and 3, inclusive." 

Below is an example oC a -outhypo table which uses the variables defined in the example iD part 

2.5. This rule would be used as an initial hypothesis ror the class "ONE". The rule consists or two com­

plexes. aDd is read" rr long and wide are raise or size is 1 theD the event is or class ONE." 

ONE-outhypo 

# cpx 

1 Ilong = (alsellwide = ralsel 

2 Isize = 11 
 • 

2.7 The -test tables 

These tables are used to input testing events to ATEST. They are identical (except in table Dame) 

to the -events tables in GEM. The specific name given to a -test table corresponds to a single decision 

class. In ATEST, ir the specific table name has not been seen previously (in a -children table, see below), 

then a new class is created at the top or the rule base structure. 

The column headers ror this t:l.ble type consist or variable names defined in the variables table. 

The values in the rows oC the table must be legal values Cor the appropriate variables. Since many attri ­

butes m:l.Y be used to describe an event, it is possible to split a -test table into several tables. This is 
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done by repeating the table name (both specific and general). and using different column headings in 

each occurence. Column headings may not overlap, and each table must have the same number or 

events. 

The -test table shown below uses the attributes defined in the example in part 2.5. This table 

would associate Cour testing events with the class "ONE". 

01\'E-test 
long wide color size 
raise false blue 0 
true Calse red 1 
false raise red 0 
false false blue 1 

2.8 The ·chlldJ'en tables 

ATEST accepts -children tables in order to define a structuring on a rule base. A <hildren table 

specifies the children or a cl3.SS in the rule base. The specific name or the table must be the name or an 

already defined class, i.e. the name must have appeared as the name or a -outhypo table. There will be 

one -children table (or every class that has subclasses. The rule base may be structured to an arbitrary 

depth. The range or structures allowed is a slight generalization of tree structurinl wherein a child may 

have have more than one parent class. No recursion is allowed. 

The -children table consists of two columns: 

• II 

The number of the row. The !irst row must be numbered "1," and the rows must be numbered 
sequentially. 

• node 

This column is an alphanumeric string of up to twenty characters giving the name of the node to 
be defined. 

The tree below shows how a sample rule b3.Se might be structured. In this rule base, 01\'E and 

TWO are siblings at the top or the structure. The class ONE has two sub<lasses, THREE and FOUR. 
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The tables below define the rule base structure given in the tree. Again, the variables defined in 

part 2.5 are used. The -ehildren table is only used (or rules that are not at the top or the rule base 

structure. Unlike the GE~f -children table, events are not associated with a child node in this table. 

Note that the -outbypo tables Cor tbe child nodes are not entered until alter the nodes are de.llned in the 

-children table. 

Or-.."E-outbypo 
:# cpx 

[long = Calsel[wide = CalseJ 

TWO-outbypo 
:# cpx 
1 llong "'" truel[size == 31 

ONE-children 
:# node 
1 THREE 
:2 FOUR 

THREE-outbypo 
:# cpx 
1 [size = 0.. 11 

FOl'R-outbypo 
:# cpx 
1 lsize = 21 
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2.9 An Example of Input to ATEST 

This subsection conta.ins a. det:liled enmple 01 input to the ATEST program. The sample input 

file shown in the lett column below uses every table ATEST accepts. Comments in the right column 

explain the corresponding table and provide pointers to the previous subsections for more detailed expia-­

nations. To input this example to ATEST, the tables would be entered (in the order given) into some 

file using a. standard text editor. (f this file was called "atest.input," then executing: 

atest < atest.input > atest.output 

under the UNIX shell would cause ATEST to run the example and save the results in the file 

"atest.output." 

A TEST Input 

title The title h.ble is used only for reference ;and ma.y be omitted. 


:# text 

1 "Sample input file" 


parameters The pua.meters ta.ble debes the wa.y in which AT EST will 

run echo test misdass andtype ortype r''IlD. This h.ble tell. ATEST to ecbo only the title ta.ble. 

1 t yes yes average maximum repon 011 the eva.lution of miscla.ssilied eTellt.. eva.lute 

"a.nd" &I a.vera.ge I.Ild eYa.lua.te "or" a.. m.u:imllm. The 
pa.ra.meters are ddned ill deta.ll 011 pa.ges 78·80. 

domain types 
name type levels Three types or varia.ble, With 3, 4. ud 10 va.lues. respec. 

sizes lin 3 tively. will be \I~ed. The definition of the doma.intype, ta.ble 

colors nom 4 i. on pa.ge 80. 

nums lin 10 

sizes-names 
value name Names to be a.ssociated with. va.iqes of a nriable of type 
o small ",iJH: The ·umes hoble i, expla.ined on page 82, 

1 medium 
2 large 
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A TEST Input 

colors-names 
value name 
o red 
1 blue 
2 green 
3 yellow 

variables 
:# name 
1 size.sizes 
:2 color .colors 
3 numl.nums 
4 num2.num 

ONE-outbypo 
:/I cpx 
1 [size = smal1 .. medium][color = red,bluel 

[numl == 0 .. 2,41 

TWO-outbypo 
:(I cpx 
1 Inuml == 7..91 
2 (size == largej 

Ot-.'E-cbildren 
:(I node 
1 THREE 
r).. FOUR 

THREE-ou tbypo 
:(I cpx 
1 [size == smalll 

Comment, 

The variable, tbL will und to describe eveDta. It tbe 

domaiDtype, tl.ble Wloa Dot beiDI' used, tbe I",cI. &Dd twe 
columDs would be ia lbi. tl.ble. Tbe nnl.bler table i. 

dehed aD pl.l'e 81. 

Tbe iDput rule for clul ONE. Thi, rule will be lated oa l.lI 

testilll' eveDU. Tbi. rul" COIIll.ill' l. ,illl'le compla; com­
plaes ue separl.ted by eDtrie, ia tbe "fill' cohutla, l.' iD tbe 

Ilat tl.ble. See pl.l'" 83-84 for more detl.lla 011 tbe outbypo 

tl.ble. 

Tbe i!lpilt rule for c1u. TWO. 

Tbe cbi/dreD of c1us ONE iD tbe structured rule bl.,e. Here. 

ell." ONE b, u,o childreD. THREE ud FOUR. See pl.l'e 
85 for &D expll.D:t.&loll of the -cbildreD tl.ble. 

Tbe i!lput rule for ci",s THREE. 
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A TEST Input 

FOUR-outhypo 
11 cpx 

[size = mediuml 

TWO-test 
size color Duml num2 
medium blue o o 
large greeD 8 4 

THREE-test 
size color num! Dum2 
small blue o 3 
small red 3 3 

FOUR-test 
size color Dum! num2 
medium red o 4 
medium blue 2 o 

2.10 An Example or Output froID ATEST 

Comments 

The input rule {or d.lu FOUR. 

The te,tinr evente of cia" TWO. The!e eVeIIU will be 

applied to aU the rules aDd the renlt, reported. Note th.1t 

OIl, leal lodes ill the rule b.l,e !trueture eao have testillr 

enllU (there is 10 .test table for clu. ONE). The .test table 
i. dehed 011 pare U. 

The testillr enll" of dan THREE. 

The testilll evellU of du. FOUR. 

It ATEST is given the input in part 2.9, it will produce output consisting ot two parts: 3D echo of 

certain input tables (as per the echo parameter). aDd 3 summary ot the results ot testing. This output is 

shown below. 

ATEST Output Comments 

title The title table is the OIly table echoed because the value of 
11 text the echo parameter III the Input file wu "t." 
1 "Sample input file" 
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A TEST Output 	 Comments 

TEST RESUL TS FOR CLASS THREE 

CORRECT OECISIO~ CLASS 01 (eLm THREE) 

I
i 

EVEi'o'T ASSIGNED OECISIO~ I#TIES 	
i. 

. Dl D2 D3! 

"1.00· i 	000 0.00ITHREE-l 

THREE-2 "1.00· I 000 ! 000 

I. Is~ RANK EVE.NTS I a ° 
Nu~aER OF EVEi'o'TS SATISFYING CORRECT RULE: 2 

TEST RESULTS FOR CLASS FOUR 

CORRECT DECISION CLASS = D2 (du. FOUR) 

EVE~T #TIES ASSIGNED DECISION I· 

01 D2 031 

0.00 "100· 0,00 

FOUR·2 000 ·1.00· 0.00 

" lsi RANK EVEmS 0 '2 0 

Nu~aER OF EVEmS SATISFYI~G CORRECT RULE: 2 

TEST RESULTS FOR CLASS TWO 

CORRECT DECISION CLASS - 03 (dan TWO) 

EVEm #TIES 

I 
·ASSIGNED DECISION I 

Dl D2 03 

TWO-I 0.00 I t 00 000 

TW0-2 I 0.00 000 I "1.00· 

I 

i " 1st RANK EVE~TS 0 

NUMBER OF EVENTS SATISFYING CORRECT RULE: 1 

The confaSioll m:unx ,how, boW' the rule, performed whell 

eva.luted Oil te"llIg evellu of cLu, THREE. Tbe umber:! III 

the lIllotnx lore degrees of COIISOlllollce. NUlIlben sarrouded 

by "'Hemlc, ue Close, W'here the correct. rule (ill thi, lIllo~ri.;Ic. 

~he rule for ell." THREE) eVl.luted to I. int rUE demioll. 

The #TIES colulIlll 'pecliel the ulIlber of 5ni rUE decl­

,iOI13 for the evellt If there were lIlore thloll ODe. See ,eCiIOIl 

4.2,1 for defintlOU of terma. 

Thi, coaru,ioll lIllotri.;lc showl hoW' the rulel performed wbell 

enhuted Oil teliillr evellU of cla.n FOUR. 

This cOIl(a,ioll mlotri.;lc ,hOWl how the rule. performed W'hea 

evloluted Oil testlllg evellU of dlo" TWO. Note tha.i the 

evellt TWO-l utis/ied the rule Cor clloU FOUR loltud of the 

rule for dlo" TWO. 
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ATEST Output 

The testing evellt 

TWO-l 	 [,ise = mediumilcolor = blQel 

inml = 0l[nm2 = 01 

11'&3 evaluted ;u lollows: 

Rule ONE: Degree ol (Oll,on.uce = LOO 


# cpx 

1 [,ize=3m&II,mediuml[color=red,blue![nml=0.41 


Rule THREE: Degree of cOIl,onuce = LOO x 0.00 = 0.00 

# cp" 
1 nlsile = sm&lIlrt 

Rule FOUR: Degree of con,onuce = 1.00 x 1.00 "'" l.00 

# cP" 
1 !sin = mediuml 

Rule TWO: Degree of COllsolluce = 0.00 


# CP" 

1 11(numl == 7..IIIH 

2 !!Isise ... l&rgej!r 


SUMMARY OF TEST RESULTS 

OVER...LL % CORRECT. 83.33 

OVERALL % CORRECT 1ST RANK: 83.33 

OVERALL % CORRECT ONLY CHOICE: 83.33 

Thi, rull used (milliseconds of CPU lime) 

CPU user time: 367 

CPU synem time: 184 

Commefl" 

This pU1 of the output is reponillg & tr&ce ol ev&lutioll lOf 

all evellt th&t was lIot evaluated correctly. The ,electon SUf­

roullded with questioll mule! ue tho,e which were 1I0t 

satided by the testillg evellt. Note that the degree of COIlSo­

lIuce for & chIld node is the product of its de ud that of ita 

parellt. See ,ectloll 4.2.1 lor & det&iled explu&tiOll of the 

termillology. 

Tlli. portio. of tbe output is the ollly part reported if the 

test pafameter i. set to "sum- (see p&,e 711). The nn' 

umber givH tbe percelIt&,e of .11 testill, evellt. for which 

the correct rule wu abon the valu. set by the thmhold 

par&meter. The secolld IIQmber i. the percelIta,. of &11 tHt­

in, e .... II,U for which tbe corred rule wu &lint rult decilio•. 

Tbe I&s' lI,umber is tbe pereell,t&ge of events for which the 

correct rule wu tbe ollly lint rult dec:isioll. 

The .moullt oC CPU time used in testing the rule •. 

http:ize=3m&II,mediuml[color=red,blue![nml=0.41
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