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Abstract

This chapter considers the problem of discovering a rule characterizing a given sequence of events (ubjects)
and able to predict a plausible continuation of the sequence. This prediction is non-deterministic because the
rule doesn’t necessarily tell exactly which events must appear next in the sequence but rather determines a sct
of plausible next events. It is assumed that the individual events in the sequence are characterized by a set of
auributes and that the next event depends solely on the values of the attributes for the previous events in the
sequence. The attributes are cither initially given or arc derived from the initial ones through a chain of
inferences. Three basic rule modcls are employed to guide the scarch for a sequence-generating rule:
decomposition, periodic, and disjunctive normal form (DNF). The scarch process involves simultancously
transforming the initial sequences to derived sequences and instantiating general rule models to find the best
match between the instantiated model and the derived sequence. A program, called SPARC/E, is described
that implements most of the methodology as applied to discovering sequence generating rules in the card
game Eleusis. This game, which attempts to model the process of scientific discovery, is used as a source of
examples illustrating the performance of SPARC/E.

Key terms: Machine learning, sequence cxtrapolation, inductive inference, part-to-whole induction, data
transformation, model-dirccted learning, Eleusis.

1 Introduction

lmiuctivc learning—that is, lcarning by generalizing specific facts or nbscwnliuns;is a fundamental
strategy by which we acquire knowledge about the world.  Computer mudels of inductive learning have been
studied from the Al perspective for scveral years now, and one result of this rescarch has been the
identification of several different kinds of inductive learning. At least three different types have been studied.

These arc (a) instance-to-class induction, (b) part-io-whole induction, and (c) concepiual clustering.

Instance-to-class induction has received the most attention. Here, the Icﬁ:rning system is presented with
independent instances representing some cliss, and the task is w induce a general deseription of the class,
The instances can be specific physical objects, actions, processes, images, and so on. ‘The learned class
description (also called the concept description) can be used to classify new instances whuse correct class is

not known.

An example of this type of learning problem is one of determining diagnostic rules from a set of diagnosed

cascs of discases, For example, Michalski and Chilausky [1980] describe a learning program, AQ11, that is



presented with a sct of independent training instances, cach of which is an exampie of a soybean plant with a
given discasc. The AQL1 program then induces a general description of that discase. This description can be
applicd to diagnose the occurrence of this discase in other soybean plants, From several hundred such
training instances covering 19 different soybean discases, AQLL has inferred a sct of 19 diagnostic rules.
Several other rescarchers have investigated instance-to-class learning problems (e.g., [Winston, 1970],
[Buchanan and Mitchell, 1978]. [Mitcheil, Utgoff, and Banerii, 1983]). Reviews of various methods for such
instance-to-class induction appear in [Michalski, Carbonell, and Mitchell (eds.), 1983] and [Dictterich, et al,,

19821,

The second type of inductive learning—part-to-whole induction—has received less attention.  Part-to-
whole induction involves constructing a description of a whole object by observing only selected parts of it.
For example, given a set of fragments of a scene, the problem is to hypothesize the description of the whole
scene. An important part-to-whole induction problem is one of discovering a description of a sequence of
objects, where the "part” consists of the first n clements of the sequence and the "whole” is a sequence-

generating rule that can predict possible continuations of the given part of the sequence.

This type of part-to-whole induction problem has been studicd in the past under the name of “sequence
cxtrapolation" or "letter-sequence prediction.” Simon and Kotovsky [Simon & Kotovsky, 1963; Simon, 1972,
Kotovsky & Simon, 1973], for example, study problems in which a program (or a person) is given partial
sequences such as:

ABXBCWCDV ...
and asked to predict the next fow letters in the sequence. Their program does this by first finding a sequence-
generating rule and then applying that rule to predict the continuation of the sequence. In this case, the rule
might sm:n' that the sequence is a periodically repeating subsequence of three letters in which the first two
lelters arc successors of the letter appearing in the previous period, while the third letter is the predecessor of
the corresponding letter in the previous period. Related work on this type of learning problem has been
performed by Solomonoff [1964], Hedrick [1976], and Hofstadter [1983, In Press).

"T'he third type of learning problem, coneeptual clustering, has received very little attention. We mention it
here only for completeness. Clustering problems arise when several objects (or siluations) are presented to a
learner, and the learner must invent classes into whicﬁ the objects can be usefully grouped. An example of
such a problem is learning sound systems in spoken language. ‘Ihe human car is capable of distinguishing
among a wide varicty of spoken sounds. However, any given human language groups all of these sounds into
a relutively small number of equivalence classes (roughly 50). All sounds within a given class are regarded as
being identical for purposes of communication. Recently, Michalski [1980] and Michalski and Stepp [1931’;]
developed a method and a computer program, CLUSTER, for conjunctive concepiual clustering that can solve

such learning problems.



This chapter presents further rescarch on the second type of inductive learning problem, that is, part-to-
whole induction. We arc particularly interested in sequence prediction problems that are much more
complex than letter-scrics prediction. Letter-series prediction is a very simple problem for two reasons. First,
in letter scrics, cach object in the sequence has only onc attribute—its name. Second, the desired sequence-
prediction rule is deterministic, because it is assumed that there is only one legal continuation of the sequence.
This chapter presents a method for discovering sequence-prediction rules in cascs where the objects are
described by several relevant attributes and where the sequence-prediction rule is non-deterministic. This

type of learning problem is called a Nondeterministic Prediction Problem, or an NDP problem.

In an NDP problem, the learner is presented with a finite sequence of events. Each event is characterized
by the values of a number of discrete-valued attributes. The goal is to find a sequence-generating rule that,
given the first k cvents, states the values of the attributes! that must be true of event k+/. Since the
sequence-gencrating rule need only state values for some of the attributes, the rule may not necessarily predict
a unique event k+ I. This is what makes the rule non-deterministic. Because only a partial description of the
original sequence is sought and becausc the description may involve new attributes not present in the initial
st a very large number of hypotheses may need to be examined. This makes this problem much more
difficult to solve than previously-studied letter-scries cxtrapolation problems.

The card game Eleusis [Abbott, 1977; Gardner, 1977] presents a very general kind of non-deterministic
sequence prediction problem. We will use examples from this game to illustrate the proposed general
methodology for discovering rules for event sequences.

1.1 Eleusis: An Exemplary Non-Deterministic Prediction Problem

An interesting NDP problem arises in the card game Eleusis, invented by Robert Abbott [Abbott, 1977;
Gardner, 1977). Eleusis is an inductive game in which players auempt to discover a gencrating rule (known
only  the dealer) for a sequence of cards. This "secret rule” is invented and recorded by the dealer before
the game. Each player, in his or her turn, adds one card to the sequence, and the dealer indicates whether the
card is a correct (or incorrect) extension of the sequence (i.e., sutisfics or does not satisfy the secret scquence-
generating rule). Players who play incorrectly are penilized by having additional cards added to their hands.
The goal of cach player is to gct rid of all of the cards in his hand, which is only possible if correct cards are
played. The cards played during the game arc displayed in the form of a layout in which the correct cards

form the "main line” and incorrect cards form "side lines™ branching down from the main line at the card that

It is axsumed that the rube is expressed in terms of atiribules that are cither observable altributes of ohjecis present in the sequence up
o the moment when a new ubject is penerated of atiributes thal can be derived from such observable attribules by some known infurence
rules,



they followed. Figurc 1 shows a typical Flcusis layout for the sequence-generating rule "Play alternating red
and black cards.” 1n this game, the 3 of hearts was played first, followed by a 9 of spades, and a Jack of
diamonds. All of thesc were correcl. Following the Jack, a 5 of diamonds was played. It appears on a
sideline below the Jack, because it was not a correct extension of the sequence. (At this point, a black card is

required.) The 4 of clubs was then correctly played, and so on.

Main lina: 34 9S JD 4C JD 2C 10D 2C BGH

Side l1ines: 60 AH AS B8H
8H 105 7H
QD 10H

Figure 1: A sample Eleusis layout

Helow are several examples of sequence-gencrating rules for Eleusis:

o If the last card was a spade, play a heart; if last card was a hc:in. play diamonds; if last was
diamond, play clubs: and if last was club, play spades.

» The card played must be one point higher than or one point lower than the last card.

o If the Jast card was black, play a card higher than or equal to that card; if the last card was red,
play lower or equal.

e Play :ﬂternating even and odd cards.

e Play strings of cards such that cach string contains cards all in the same suit and has an odd
number of cards in it.

There are four important points to note about this game. First, observe that an Elcusis rule typically allows
any of several cards to be played legally after cach card. Hence, Elcusis provides an instance of the non-
deterministic prediction problem.

Second, notice that the rules employ deseriptors or terms that do not appear in the input sequence. The
input data provides only thesuit and rank (value) of cach card and its position in the sequence. ‘The
scquence-generating rules, however, may include such terms as “even”, "odd", "black™, “red”, and "strings of
cards such that cach string contains cards all in the same suit and has an vdd number of cards in it." The
learning program must bridge this gap between the terms appearing in the input sequence and the terms
needed fur expressing the rules. To bridge this gap, onc has to solve what is called the description space

fransformation problem,



The third puint is that several different logical forms arc employed to express the rules. Some rules take
the form of a sct of if-then rules: “1f the last card was a spade, play a heart: ..." Other rules are stated as simple
disjunctions: "The card played must be one point higher than or one peint lower than the last card.” And still
others describe the layout as a periodically repeating sequence: "Play alternating even and odd cards”, The
learning program must have the capacity to create descriptions that capture these different logical forms. Our
approach to the solution is to divide different sequence-gencriting rules into a few general classes according
to the logical form of the rules, Each class is represented by an abstract model, or logical schema, which can
be parameterized and then instantiated to yicld a particular scquence-generating rule. For this reason, we call

this method a mulftiple model learning method.

Finally, it should be noted that the space of possible Elcusis rules is very large. Indeed, there is in principle
no limit to the number of sccret rules. However, to make the game interesting t human players, Elecusis has a
point-scoring scheme that encourages the dealer o choose only fairly simple sequence-gencrating rules.

DI 7

SPARC/E is capablc of representing more than 1 rules?.

After these remarks, we can now state the three main problems addressed in this chapter. They are

« Transforming the original description space to aid induction,
e Applying multiple rule models to discover specific sequence-generating rules, and

 Developing a strategy and overall system architecture for learning with multiple models.

In the next two subsections, we present general deseriptions of the first two of these problems and describe
how they have been solved in other systems.  Discussion of the overall system architecture is postponed until

scction 4,

21!1':5 cstimate is based on computing the space of all syntactically legal ‘L’T.n conjunclive stalements {see seetion 1) conlaining the
following set of descriplors (each descriplor is followed by the number of clemenis in its value sel and the number af possibic scleciors
that can be formed wsing those clementsy: surr (49), rank (13, 91y, cotor (1.3), pacromiss (2,3), eariry (230 masiNiss (2,3
RANEMOD (3.7) 15U (4.9), DSUTm2 (4.9), D-RANKSE (25,3000, D-RANKDD (25.300), s-RANKOL (25,300), sRaNK02 (25,300, p-cOLOROL
(2.3), 1roolora: (2.3), D-UPACKINESSO (3. nactisissor (2.3), pearrmyol (2,3), prakrryaz (13) D-4iisENTSsol {2.3% [rPrIMENISS0
(2.3}, nrANEMODI (1.7, b-RaNkMonioz (3.7). The surr and RANKMOND descriplors are eyclically ordered, while the RANK deseriptors
arc interval descriptors. All athers are nominal, In a decomposition rule with a lookback of 1.=2. the figst seven descripiors appear Tm
mncs-ﬂnci‘ﬁ:: cach card. llence, the taial number of possible r:nnjung],uﬁ {‘9“91'3“‘&3’3']'?1‘ * (9*I00* N3RS =
211221%107 . If there are four conjuncis in a rule, then we oblain [211221%107 ] = 1L99"1077.



1.2 Transforming the Description-Space

The problem of wransforming the initial problem description arises in any domain where the given data
(c.g.. the training instances in concept learning) arc obscrvations or measurements that do not include the
information directly relevant to the task at hand. For example, in character recognition, the input typically
consists of a matrix of light intensities representing a character, but the relevant infonnation includes pusition-
invariant propertics of letters such as the presence of a line on the lelt or right of a character, occurrence of
line endings. closed contours, and so on (c.g., [Karpinski and Michalski, 1966]). These position-invariant

propertics can be made explicit by applying description-space transformations to the raw data.

An cxample of a learning program that rerforms description space transformations is INTSUM, which is
part of the Meta-DENDRAL system [Bucha. 1 and Mitchell, 1978). INTSUM is presented with raw training
instances in the form of chemical structure  zraphs) and associated mass spectra, represented as fragment
masses and their intensities. For cach fraginent in the mass spectrum, INTSUM must determine the bonds
that could have broken to produce that fragment. A simple mass spectrometer simulator is used to develop
these hypothesized bond breaks. Each of the resulting transformed training instances has the form of a
chemical structure and a sct of bonds that broke when that structure was placed in the mass spectrometer. It
is this information that is provided to the remaining parts of the Meta-DENDRAL system (programs
RULEGEN and RULEMOI).

In character recognition programs and in Meta-DENDRAL, the data transformations are fixed in advance.
in many learning programs, however, the proper transformations are not known a priori. In such cases, a

learning system needs to select or invent appropriate descripton-space transformations.

The type of description-space transformation performed by a program is a useful criterion for
characterizing learning methods., The simplest learning methods (e.g., linear regression) determine only the
coefficients for an a pricri determined, fixed set of variables arranged in a predetermined expression. More
sophisticated are learning algorithms, such as the A% algorithm [Michalski, 1969, 1972] and the candidate
climination algorithm [Mitchell, 1978, 1983], that are able to determine which attributes are relevant and how
they should be combined. Another level of sophistication is obtained when a learning program applics a sct
of predetermined transformations W the data prior to inductive generalization (e.g., Soloway [1981], Meta-
DENDRAL [Buchanan and Mitchell, 1978]). These programs augment the basic inductive algorithms by
applying a sct of predetermined transformations to the data prior to inductive generalization, The next step
of difficulty is represented by learning algorithms that sclect description space transformations under the
guidance of special heuristics.  Very few rescarchers have addressed this problem (e.g.. [l.cnat, 1983;
Michalski, 1983]). The most sophisticated algorithms currently envisioned—but not yet developed—would



be capable of discovering new data transformations.  Figure 2 shows this spectrum of inductive learning

problems.

1. Determine cocfficients

2. Select relevant variables and combine

3. Apply predetermined transformations

4. Select ransfurmations under heuristic guidance
5. Discover new transformations

Figure 2: Specctrum of learning problems in increasing order of difficulty

The SPARC/E method presented in this chapter falls under category 4 of Figure 2, as it sclects
transformations under heuristic guidance. The program has available four general classes of description space
transformations (see Scction 2) from which it selects the appropriate ones to apply under the guidance of

domain-specific heuristics.

1.3 Learning With Multiple Models

“I'he second major problem that arises in the Eleusis prediction problem is concerned with using multiple
description models in the process of inductive learning. This problem has not received much attention in
previous Al rescarch. Almaost all existing learning systems employ only a single model for determining the
space of possible output descriptions (hypotheses). Many systems, for example, use conjunctive models to
represent concepts, that is, they assume that the learned concept will be expressed as'a conjunction of
predicates. By constraining the scarch to consider only conjunctive descriptions, the learning problem is
greatly simplified.

A more general approach, employed by Michalski [L969, 1972], constrains descriptions to be in disjunctive
norimal form with fewest r:nnjunc.[ivc descriptions. "The induction algorithm finds first ane conjunction, then
another, and so0 on until all of the training instances are covered. Meta-DENDRAL employs a fuirly claborate
simulator of the operation of the mass speclrometer o guide its scarch for conjunclive cleavage rules
[Buchanan and Mitchell, 19?3]: In general, current learning systems use a single model, and very few authors

have made their models explicit.

One rescarcher who has employed multiple models is Persson [1966]. He applied four different models to

the problem of extrapolating number- and letter-sequences. Briclly, these models were the following:



1. a model that computes the cocfficients and the degree of a polynomial by applying Newton's
forward-difference formula (the degree can be arbitrarily large);

7. an extended model that discovers exponential rules of the form ABE, where A is a polynomial of
degree 4 or less, and B and C are polynomials of degree 1 or less (i.c., B and C are of the form

ax + b)
3. a simple periodic model for periods of length 2 {i.c., intertwined sequences); and

4, a generalization of the Kotovsky and Simon model for Thurstone letter-series that can discover
simple periodic and scgmented sequence-gencrating laws.

These models arc applicd by the program ' a rather unusual learning situation in which the program is
given a sequence of sequence-extrapolation problems.  Thus, in addition 1o awempting to solve cach
individual sequence-cxtrapolation prublem, Persson’s program tics to predict the kind of sequence-

prediction problem that it will next reccive.

Persson's work shows the value of employing muliiple description modcls to search for sequence-
generating rules. The major limitation of Persson’s approach, however, is that it is specific to number- and
letrer-sequence prediction. His methods cannot solve the more gencral prediction problems described in this
chapter in which cvents have multiple attributes (both numerical and non-numerical) and the :‘.cqucﬁccs are

characterized by nondeterministic logic-based sequence-prediction rules,

One can conceive a spectrum of five model-based learning methods (sce Figure 3). The simplest approach
is 1o use a single model. “I'his has been the common approach in Al thus far. The next step is w provide a
learning program with a set of models from which it would choose the most appropriate ones, This is the
approach used by Persson. The third level of sophistication would be w have the program generate a
predetermined set of models, just as the learning program applics a predetermined sct of data
transformations. This method could be improved further by having the program decide which models to
generate on the basis of special heuristics.  Finally, an even more sophisticated program would be able to

invent new models and apply them to guide the learning process.

‘e approach described in this chapler scarches a predetermined space of possible models in a depth-first
fashion, and hence, falls under point 3 of Figure 3.

The main theoretical contributions of this research include the development of techniques for (a) selecting
description-space transformations, (b) applying of muliiple description models, and (c) matching instantiated
models to the transformed sequences using a bidirectional scarch,



1. Single model

2 Selection from a few models

3. Predetermined generation of models

4. Heuristically-guided generation of models
5. Discovery of new models

Figure 3: Spectrum of model-based methods in increasing difficulty

1.4 Overview of Solution

This section gives an overview of our approach to solving NDP problems. As described above, the learning
program is given an input sequence of events. We assume that a scquence of events is given and that the task
is to find a non-deterministic scquence-generating rule characterizing the input sequence and able to predict
its plausible continuation. In the proposed E{J!uLi(!II!.. the learning program is supplicd with various operators
for sequence transformation and with specifications of different rule models. (The implemented method

employs four sequence-transformation operators and three rule models.)

The sequence-transformation operators are repeatedly applied to the input sequence tw yicld derived
sequences in which additional facts about the sequence are made explicit. This is a bottom-up process of
eluborating and reformulating the data. Simultancously, through a top-down process, the gencral rule models
are specialized by filling in various parameters and formulas to obtain specilic sequence-gencrating rulcs.
lastly, the learning pmgrah applics three model-fiing algorithms (one for each model) to fit the partially-
refined model to the transformed data, Thus, the learning program conducts both a bottom-up claboration of
the data and a wp-down specialization of the rule models until one of the rnudc1~l“ming, algorithms can be
applicd to find a match between the claborated sequence and some specialized rule model. One or more

resulting specialized rules arc output as candidate sequence-generating rules,

Figure 4 illustrates this process schematically. “The wp-down model specialization process occurs in paraliel
with the bottom-up data transformation process, thus constituting a kind of bi-directional search.

Model instantiation, as used in this chapter, is an extension of the well-known Al technique of schema
instantiation. Schema instantiation has been applied, for example, by Schank and Abcelson [1975] to interpret
natural language, by Engelmore ard T'erry [1979] to interpret X-ray diffraction data in protein chemistry, and
by Friedland [1979] to plan genetics experiments. Madel instantiation differs from schema instantiation in
the complexity of the instantiation process, Mudcl instantiation involves not only filling in predetermined
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Figure 4: Schematic description of the rule discovery process

slots or substituting constants for variables. but also synthesizing a logical formula of an assumed type. For
example, in order o instantiate cach of the three maodcls described below, the program must synthesize a
conjunction of predicates or a disjunction of such conjunctions that satisfies certain constraints. Model-
instantiation methods share with schema-instantiation methods the advantage that they are cfficient and also
effective with noisy and uncertain data, The cnpstralnts'providcd by the models (or schemas) drastically

reduce the size of the space that the program must search.

"T'he principal disadvantage of model- and schema-instantiation methods is that they require substantial
amounts of domain knowledge to be built into the program. In order to keep this domain knowledge cxplicit
and casily modified, we employ a ring architecture in the design of the learning program, as described in
section 4. This architecture facilitates the application of the system to a varicty of problems by simplifying the
process of changing the domain-specific parts of the program.

The remaining sections of this chapter discuss the following:
1. the methods used for representing and transforming the initial training instances,
2. the techniques for representing the models and scquence-generating rules, and finally,
3. the details of the program SPARC/E, which implements most of the described methoduwlogy. The

model-fitting algorithms are presented and the program is illustrated by a few sclected cxamples
of its operation when applied to the inductive card game Eleusis.
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2 Transforming the Original Description Space

Now that we have defined the problem to be solved (the NP problem) and sketched the solution, we
launch into the details of that solution. We start by presenting the language for describing the original
sequences and the transformation operators for changing this initial represcntation into a form more

amenable for discovering sequence-generating rules,

2.1 Representing the Initial Sequence

A sequence of objects is represenied as an indexed list®
4q;, 495 - 9>
Each object q is described by a set of attributes (also called descriptors) fl, t'l. t'n. which can be viewed as
functions mapping objects into attribute values. To state that attribute £ of object q; has value r, we write
(F(a)=1.
This expression is called a selector. For example, if f; is color and ris red, then the sclector
[coro R{qj'j =red]

states that the color of the j-th object in the sequence is red.

Each attribute is only permitied t take on valucs from a finite value set called the domain, i){f‘i)hnl"mat
attribute. This constraint is part of the background knowledge that has to be given to the program, For
cxamptle, in a deck of cards, the domain of the SUIT attribute is {clubs, diamonds, hearts, spades}. Additional
knowledge about the domain sct can be represented. In particular, the domain set may be lincarly ordered,
cyclicafly ordered (i.c.. have a circular, wrap-arpund ordering), or tree ordered. We will sce below how these

domain orderings arc applied to the problem of representing cards in an Elcusis game,

A complete inidal description of a single object, qj. called an event, is an expression giving the valucs for all
of the attributes applicable to q; “T'his is uswally written as a conjunction of selectors:
[fap=r @) =rl.If(q)=r] -
It can also be represented as a vector of attribute values: '
(rp Fpe e T
This vector notation suggests that cach object description can be viewed as a point in the event space E:
E = [X(f)) X IX£,) X... X IXF )

where ]J[f‘i) 15 the domain of attribute f'I This event space contains all possible events,

3!-. summary of the nelational conventions used in this chapier appears in Appendix L
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A complete description of the initial scquence is a list of conjunctions of sclectors (or alternatively, a list of
attribute vectors}—one conjunction for cach ubjcct in the sequence. Each sequence description can thus be
viewed as a trajectory in the event space, E. The space of all possible sequences is the set of all possible
trajectories of events in K. Itis important W note, however, that because of the discreteness of the space, these

trajectorics are not continuous, That is, two adjacent events in the sequence may net be “close” in the event

space.

2.2 Transformation Operators

As we mentioned in section 1, it is often necessary to transform the initial sequence into a derived sequence
in order to Facilitate the discovery of sequence-generating rules. Such a data transformation can be viewed as
a mapping T from one sct of scquences S, containing objects Q, described by attributes F, to another set of
derived sequences S, containing derived objects Q', and described by derived atiributes F°,

Tpl. pk: {S, QF>» -5 <8,QF>
where p,. .., P, are parameters of the transformation that control its application. Each transformation may be
applicd iteratively, that is, the output of one transformation can be the input to a subscquent transformation.
We have found four basic transformations to be especially uscful for discovering sequence-generating rules:
(a) adding derived auributes, (b) 'segmwniug, (c) splitting into phases, and (d) blocking. Each of these is

described in turn,

2.2.1 Adding derived attributes

‘The simplest transformation does not change the set of sequences, S, or the set of objects, Q, but only the
set of attributes, F. For example, in Eleusis, the initial set F contains only two attributes: the RANK and SUIT
of acard. ‘I'hese can be augmented by deriving such altributes as CO1LOR (red or black), FACEDNESS (faced or
nonfaced), PARITY (odd or cven), and PRIMENESS (prime or not prime in rank). Although the adding-
derived-attributes transformation has no parameters, in cases where many such attributes could be derived,
the program must usc some heuristics to decide which attributes should be generated and added to the
derived sequence. l

2.2.2 Segmenting

The segmenting transformation derives a new sequence that is made up of a new sct of objects, Q°, which
arc described by a new set of attributes, F', The new sequence is produced from the ariginal sequence by
dividing the original scquence into non-overlapping segments. Each segment becomes a derived object in the
new sequence. The only parameter of this transformation is the segmentation condition that specifics how th

original sequence is to be divided into segments. Three types of scgmentation conditions are distinguished:
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(a) those that usce propertics of the original objects wo detcrmine where the sequence should be broken, (b)
those that use propertics of the original objects to determine where the sequence should sor be broken, and (c)

those that use propertics of derived objects to determine where the original sequence showld be broken.

Far example, suppose the original sequence consists of physical objects described by attributes such as

WEIGHT, COLOR, and HEIGIIT. An example of each type of segmentation condition follows:

1. Break when [wiiGHT(g, > 10][weiGHT(q))< 10)

According to this condition, the original sequence is to be broken (between objects q, and q)) at
the point where the weight of an object changes from above 10 to under 10

2. Don't break as long as [col.or(g))=coLOR{g,_, }[WEIGIIT(g)>10].

This condition states that the original sequence will not be broken (between 9.1 and q.l) if the
color stays the same and the weight remains above 10. It will be broken at any point where cither
onc of these conditions fails to hold.

3. Break so that [LENGTI I{q:.‘]=?.].

‘This condition states that derived objects (q.") should be subsequences of length 2 from the
original sequence (i.e., pairs of adjacent objects from the original sequence).

The choice of attributes, F', for dc:_v.crihing the ncw]y-derivcd objects, Q, depends on the scgmentation
condition used :u:gmcnt. the sequence. For example, if the segmentation condition is [lcngth{qi'}=21,
attributes of interest might include the sum of the YALUES of the two original objects, the maximum VaALUE,
the minimum VALUE, and so on, The LENGT! of the segment would not be of interest, since by definition, it
is a constant. However, if the segmentation condition is [::nlnr{qi}:culnr(qi_lll. the LENGTI of the segment
could be an interesting attribute and should be derived. Also, the COLOR shared by all of the cards in the
scgment might be of interest.  In our implementation, the user provides an a priori knowledge base that
specifics which attributes should be derived. Every uscr-specified attribute is derived unless the program can
prove from the secgmentation condition that the attribute would not have a well-defined value for cach

segment in the sequence or else would be trivially constant for all segments.

Often, a segmentation condition leads to the creation of incomplete segments at the beginning and end of

the original sequence. These boundary cases can create difficultics during model instantiation, so they are
ignored during rule discovery, but checked during rule cvaluation,
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2.2.3 Splitting

The splitting transformation splits a singlc scquence into a sequence of P scparate subsequences called
phases: <ph,, ph,, ..>. Scquence ph, starts with object g; (the object at the i-th position in the original
sequence) and continues with objects taken from succeeding positions at distance P apart in the original
sequence. The objects in phase scquence ph, are referred to as <ph,, ph, , F'hi,z. ..>. Hence, after splitting,
derived object ph; i is idcntical to original object 9 4 gty P is the parameter of the splitting transformation

and denotes the number of phases (the period length). Figure 5 shows the splitting operation with P = 3.

Original sequence: <q; 4, 4, q, 45 q a Qg qq>
Derived sequence: <ph, phlphs‘;-, where

phy: <phy, phy, phy 5

phy: <phy) phy, Phyy?

phy: <phy, Phy, phy,>
(where phu =q,as indicated by vertical alignment, ¢.g.,
phLI - q4-)

Figure 5 Splitting transformation with P=3

"The ubjects within each phase retain the lincar ordering that they had in the original scquence. The phases
themselves can be considered to be cyclically ordered so that ph; precedes phy, which precedes ph 3 and so

on, until phy,: which is followed by ph, again. Consider, for example, the following sequence:
<1 829310 4 11>

The splitting transfuormation with P=2 would producc the sequence <ph, ph,> where

phy=¢12 3 &
ph, =<8 9 10 11>

Since the splitting transformation simply breaks the original sequence of objects into subsequences of the
same objects, no new deseriptors are defined. The descriptors used to characterize objects in cach of the

phases are the same as those used to characterize the objects in the original sequence.

The splitting transformation can be applicd tw break one sequence-prediction problem intw several

subprublems—one fur cach phase. This enables the system to discover periodic rules.

2.2.4 Blocking

The blocking transformation converts the original sequence into a new sequence made up of a new set of
objects " and a new set of attributes F'. The new sequence is created by breaking the original sequence into

overlapping segments called blocks. Fach object b; in the new sequence describes a block of L.+ 1 consccutive
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objects from the original sequence, starting at object q; (called the head) and proceeding backwards to object
9. (where L is the lookback parameter of the blocking transformation). Figure 6 shows the blocking
i

operation for L.=2 (Block length of 3).

Original sequence: <q, g, q, ay a, g9, q, qa)

Derived sequence: <b, b, bg b, b, bg>
where b, arc derived objects defined as follows:

by Q9 9 g

bd: 9, q 9

b3: q; 4q, ag>

b6: . 4, q g6>

b7: q; g, gy

b8: 9, q; qg>

The underlined objects are the head objects of each block.
Figure 6: The Blocking Transformation with Lookback Parameter L=2.

Several attributes are derived to describe cach block. For cach attribute a applicable w the objects in the
original sequence, the attributes A0, Al, ... AL are defined that arc applicable to the objects in the derived
sequence. nn{bi) has the same value as ﬁ.{qi]; M(hi] has the same value as A(q, | ); and so on until AL{bj],
which has the same value as n[ql._L}. In mhpr words, the original attributes are retained in the new scquence,
but they are renamed so that they apply to whole blocks rather than to individual objects in the original
sequence. ‘The numerical suffix on the new names encodes the relative position of the original object g, in

block bj.

For cxample, suppose the original sequence of objects is €q; q, g, q, g¢> with attributes RANK and SULT,
where

9 [RaNK(g))=2][surt(q,)=H]
qQ,: [RANK(g,)=d]surT(q,)=5]
qy: [RANK(g )= ﬁ]{ﬂurt'[q}] =]
qQ,: [RANK(g,) =8][su1T(q,) =1D]

qs: [RANK(g )= 10)[suIT(q,)=H]
Suppose we apply the blocking transformation to this sequence with [.=2 o obtain the derived sequence of
blocks <b, b, be>. Then the descriptors RANKO, RANK1, RANK2, SUITD, SUIT1, and SUTT2 will be derived with
Ihe values
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[RANK2(b,)=2][sUIT2(D,)= H] &

¥
[RANKI(b,)= 4][5U1'I‘1{h]}= Sl&
[RANKO(b,)=6]{sLr 1o(b,)=C]
b,: [Rank2(b 4}=4][5urrz(b4) =5 &
[ranK1(b,)=6][surTi(b,)= Cl&
[RaNkO(b,) = Blisurto(b,)= Dj
b [RANK2(D )= B][suIr(bg)= Cl&

[RANK1(bg)=E][surTi(bg)=D] &
[RaNKa(bg)=10][sur1o(bs) = H]

"This transformation leads to a highly redundant representation of the information in the original sequence,
For example, the information about SUIT and RANK of the original object g, is repeated as SUITO and RANKO
of block by. SUITI and RANKI of block by, and SUIN2 and RANK2 of block by. However, this derived sequence
of blocks facilitates the representation of the relationships betwcen objects in the vriginal sequence. Many

sequence-prediction rules involve such relationships.

To represent relationships between objects, additional descriptors called sum and difference descriptors are
defined. In the casc of the above sequence, the descriptors S-RANKOL, S-RANK02, D-RANKOL, D-RANKOZ,
p-surTal, and B-sUM02 are created. The value of 5-RAN Kﬂ]_{bl] is the sum of RANKO(b,) and R!\NKI{bi). The
value of D-RANK0I(b.) is the difference between Rnnxn[lni} and RANK!{hiJ. Thus, in addition to the sclectors
shown above, the following selectors would also be derived for the new scquence:

by [s-RANKDI(h,) = 10][s-rank02b)=8] &
[RANKDI(b,)= 2][|}umxaz(b_,‘}=4} &
[o-surtai(by) = 1][1>-suriox(b,) = 2]

[s-RANKOI(b, )= 14][s-rank02(b,)=12] &

[D-RANKOI(b,)= 2[-rankoa(b,)=4] &
[>-surmib,)= If-surroab,)= 2]
bg: [s-RANKDI{D )= 18][s-raNK0Xbg) = 16] &

[L-rRANKOND,) = lirrankoxbe)=4] &
[psuntoi(by) = 1][n-sm‘ru::[b5}=ll

Using this representation, it is relatively casy to discover that II}R,\NKUI(hi}=2] is true for all blocks b,

Ordinarily, sum and difference atributes only make scnsc for attributes such as RANK whose domain sets
are lincarly ordered. We have extended the definition of difference to cover unordered and cyclically ordered
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domain sets as well. For an unordered attribute such as CO1.OR, whose domain sct is {red. black}, D-COLOR01
takes on the valuc 0 if the coloro(b,) = CoLORI(b,) and 1 otherwise. For attributes with cyclically-ordered
domnain scts, such as SUIT (with vatues {clubs, diamonds, hearts, spades}), D-SUITOL is equal to the number of
steps in the forward direction that are required to get from SUITI(b,) to surro(b,). Ifsurri(b)=diamonds and
surmo{b,)=clubs, p-surtoi(b ) =1J.

The sum and difference attributes make the ordering of the original sequence explicit in the attributes that
describe cach block. Conscquently, it is no longer necessary to represent the ordering between blocks.
Hence, the model-fitting algorithms discussed below treat the derived sequence (of blocks) as an unordered

sct of cvents.

One difficulty with the above notation is that the numerical suffixcs are not very easy to read, especially
when they arc combined with sum or difference prefixes. Hence, we have developed an alternative
representation that is more comprehensible.  In this notation, sclectors that refer to blocks, such as
[surrl{b].)=H]. are written as selectors that refer to objects in the original sequence, such as ESUi'l"{qi_l}=H].
Similarly, selectors such as [D-RANKOI(b, ) = 3] are written as [RANK(q,) =R.&NK[qi_l}+ 3]. 'This notation makes

the meaning of the sclectors clear without having to explicilly mention the blocks b,

For purposes of implementation, however, the first notation (which refers to blocks explicitly) is better
because it cnables the program to treat all sequences—including derived sequences—uniformiy. In contrast
t this, the sccond notation only works when at most one blocking transformation is applied. Multiple
blocking transformations cannot be captured without explicitly mentioning the blocks. Because it is rarc that
more than one blocking transformation is nceded and since the second notation is more understandable, we

will use it for the rest of this chapter.

3 Representing Sequence-generating Rules and Models

A sequence-generating rule is a function g that assigns to cach sequence of objects, <q;, 5. .., @2, @
non-empty set of admissible next vbjectsQ, .
B¢} 0y 9 2) = Qg
Q, ;| is the set of all objects that could appear as the next object in the sequence. For example. in the rule
"Play a card whose rank is one higher than the previous card”, the value of the function g when applicd to a
sequence whosc last card is the 4C is the set of cards {SC, 5D, 5H, 58}, This is written

8(<...40)=Q,  ,=1{5C, 3D, 5H, 58}
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Each sct Q, , , may contain only one event, or it may contain a large sct of possible cvents. 1f for all k, the

E " :
sequence €q.. Gy - @7 is mapped by g into a singleton set, then the rule is a deterministic rule; otherwise, it
is a nondeterministic rule. This chapter addresses the problem of discovering a nondeterministic sequence-

generating rule, g, given the sequence €Qy1 Qe o G2 where the g, are characterized by a finite set of discrete

attributes.

The sequence <G, Qye qk) can be viewed as the set of asscrtions

q, € 8(0)
q, € 8(<q;”)

A € B<Q), o Q)
{Recall that the valuc of g(s), where s is a sequence, is a ser of possible next objects.) These assertions are

positive instances of the desired sequence-generating rule.

In Elcusis, negative instances are provided by the cards on the sidclines—that is, the cards indicated by the
dealer as being incorrect continuations of the sequence. A sideline card q, played after card q, provides a

negative instance of the form:

q; € 8(<q,, q,5.957)
The goal is to find an cxpression for g that is consistent with these training instances and satisfies some
preference criterion. (An expression g is consistent with the training instances if it characterizes all of the

positive instances and excludes all of the negative instances.)

The preference criterion in our methodology, and generally in learning systems, attempts to evaluate a
candidate rule in terms of its generality, predictive power, simplicity, and so on, These semantic properties
are difficult to compute, however. Instead, virtually all learning systems cmploy syntactic criteria that
correspond in some way to these semantic criteria.  Syntactic criteria—such as the number of selectors in a
conjunction and the number of conjuncts in a disjunction—will only correspond to the semantic criteria if the
representational framework is well chusen (Sce MeCarthy [1958]). As we noted in the 'Enlr:uduc‘liun. most
previous Al research on learning has employed a single representational framework or model for describing
the rules or concepts to be learned. In Fleusis, a single framework is insulMicient. Instead, we have developed
three basic models that were found o be uscful: the DN model, the decoinposition model, and the periodic
model. When these models are employed, syntactic criteria can be used to approximate semantic criteria
during cvaluation.
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A model is a structure that specifies a gencral syntactic form for a class of descriptions {in our case,
scquence-generating rules). A model consists of model paramelers and a sct of constraints that the model
places on the forms of descriptions. The process of specifying the valucs for the parameters of a modcl is
called parameterizing the model. The process of filling in the form of the parameterized model is called
instantiatizg the model. A fully-parameterized and fully-instantiated model forms a’ scquence-generating
rule. Modcls can be instantiated using the original sequence, or, more typically, using a sequence derived by

applying some of the data transformations discussed in the previous section.

All three models use the variable-valued logic caleutus VL., for representing sequence-gencrating rules.
VL.,, isan extension of the predicate calculus that uscs the selector as its simplest kind of formula. The VL,,
selector is substantially more expressive than the simple sclector presented above in section 2.1, Recall that
the simple selector has the form

lfa)=r
whereas the VL,, sclector has the form
[fix) Xy e X =TV VoV L
In the VL,, sclector, attributes ﬂ can take any number of arguments (x,, X, ... X ). Furthermore, the
attributes f can take on any one of a set of values {r), r,. ... 1 }. The v denotes the internal disjunciion
operator, that is, the disjunction of values of the same attribute. Thus, the selector
[RANK(g)=9v 10vIvQVK]
indicates that the rank of uh}ctﬁ q; can be cither 9. 10, 1, Q, or K. In this case, this same selector could be
expressed aliernatively as
[RANK(q;}29],
since the domain of the RANK attribute is known to be lincarly ordered with a maximum value of K (King).
To aid comprehensibility, V1.,, provides the uperators €, >, <, =, and #, in addition to the basic =

operator.

FExamples of typical sclectors include:

 [RANK(q)=RANK(G, )]
(paraphrase; the RANK of g, is different from the RANK ofq, )

e [surr(q) =surr(g, ) +1]
(paraphrase: the SUIT increases by one from g, to q,)

* [RANK(q,)+ RANK(q, ,)>10]
(paraphrasc: the sum of the RANKs of g, and q, , is greater than 10)
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Now that we have introduced the basic notation of VL.,,, cach of the three rule models is presented in turn.

3.1 The DNF Model

The DNF model supports the broad class of rules that can be cxpressed as a universally quantified VL,,
statement in disjunctive normal form. The DNF model has one parameter, the degree of lookback, L. An
cxample of a DNF rule (with L= 1)is

Vi ([cOLOR(g,)=COLOR(g, )] V [RANK(g;)=RANK(g )]
which can be paraphrased as "Every object (g,) in the sequence has the same color or the same rank (or both)

as the preceding object ()"

In general, a DNF rule is a collection of conjuncts of the form

Vi(Cl(g)V C2(g) vV CIg) V ..V Ck(q)

The universal quantification over { indicates that this description is truc for all objects g, in the sequence.

An additional constraint specified in the DNF model is that the number of conjuncts, k, should be close to
the minimum that produces a description consistent with the data.

3.2 The Decomposition Model

The decomposition model constrains the description to be a set of implications of the form:

L, =R,
L,= l{l

[‘m =R

m
where the = sign indicates logical implication.

The model states that the left- and right-hand sides, l.J and R].. must all be VI.,, conjunctions. The
lef-hand sides must be mutually exclusive and exhaustive—that is, the following two slatements arc true:

I.J v I.2 V..V I,m. and
Vikjrk= - (Li A Lt',l.

The first statement says that at lcast one of the lefi-hand sides I,j is always sausfied. The second statement

says that if j and k arc different, then LJ and l.t cannot both be satishicd simultaneously.
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A decomposition rule describes the next object in the sequence in terms of characteristics of the previous
objects in the sequence. For example, the rule 1
‘fi{[{ml.oﬂ{qi_]}z black] = [PARITY(q))= odd]) &
([COLD[{{qL_1)= red] = [l*nul'["r{q.l}z cven)))
is 2 decomposition rule that says that if the last card was black, the next card must be odd, and if the last card

was red, the next card must be even.

The decomposition model has a lookback parameter, L, that indicates how far back in the sequence the
scquence-generating rule must "look” in order to predict the next object in the sequence, The above rule has

a lookback parameter of 1, because is examines q {the previous object in the sequence).

3.3 The Periodic Model

This model consists of rules that describe objects in the sequence as having attribute values that repeat
periodically. For example, the rule "Play alternating red and black cards™ is a periodic rulc. The periodic
model has two parameters: the period length, P, and the lookback, L. The period length parameter, P, gives
the number of phases in the periodic rule. A periodic rule can be viewed as applying a splitting
transformation to split the original sequence into P separate sequences. Each scparatc phase scquence has a
simple description, The lookback parameter, L. tells how far back, within a phase scquence, a periodic rule
*looks" in order to predict the attributes ﬁF the next object in that phase. The periodic model imposes the
additional constraint (or preference) that the different phases be disjoint (i.c., any given card is anly playable

within unc phasce).

A periodic rule is represented as an ordered P-tuple of V1., conjunctions. The j-th conjunct describes the
j-th phasc scquence. The rule
{[coror(ph 1.i}= red], []mNK{phli}ER.&Nk(ph li_l]p
is a periodic rule with P=2 and L.=1, which says that the scquence is made of two (interleaved) phases. Fach
card in the first phasc is red; cach card in the sccond phase has at lcast as large a rank as the preceding card in
that phase. tlence, une sequence that satisfies this rule is <2H 3C 10H 58 A1) 65 6H 6C>.

3.4 Derived Models

The three basic models can be combined to describe more complex rules. Basic models can be joined by
conjunction, disjunction, and negation. For example, the rule "play alternating red and black cards such that
the cards are in non-decreasing order” is a conjunction of the periedic rule

< [coLon(ph, )=red]. fco1 or(ph, ) =black] >
and the DNF rule
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[RANK(q,) = RANK(q, ))]:

3.5 Model Equivalences and the Heuristic Value of Models

The reader may have noticed that the decomposition and periodic models appear to be special cases of the
DNF model. In particular, assuming that the lefi-hand side clauses in a decomposition rule are mutually-
exclusive and exhaustive, the decompuosition rule

L=k
L,=R,

can be written as the DNF rule
ILl & R1] v, & Rzl VoY [Lm & Rm]
Similarly, if the phases (C)) of a periodic rule are mutually-exclusive and cxhaustive, then the periodic rule
<C,C, . C.>
can be reexpressed as a decomposition rule of the form
¢, =G
C,=GC

C1=C
C,=C,

“T'his transformation from the periedic model into the decompuosition model docs not work when the phascs
of the periodic rule overlap. Consider, for example, the following periodic rule in which the phases are
neither mutually exclusive nor exhaustive: .

. < |::0u)u(ph“]=mc1]. ilmNH(phlihcvcn]) _

(paraphrase: play alternating red and cven cards)
Wy

Because the phases overlap, the transformation into a decompuosition rule produces a slightly different rule:
[colorig, )=red] = [rarITY(q)=cven] &
[PaRITY( ) =cven] = [COLOR(g)= red]
To see how the two rules differ, consider the sequence of cards
€30 2D 4C ...>
"I'his sequence satisfics the second rule (the first if-then clause can be applied twice), but not the Tirst rule
{since the 4C is not red).
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Even when the constraints of mutual exclusion and exhaustion are violated, it is always possible to develop
some equivalent DNF rule for any periodic or decomposition rule. This is so because one can always provide
additional descriptors that capture the particular relationship. The resulting DNF rules are not always as

succinct or comprehensible, however, as the same rule exp ressed using one of the other models.

Consider this same periodic rule. Suppose that a new descriptor, called POSITION, is defined whose value
for each object q, is the pusition i of the object in the sequence. With this descriptor, the above rule can be
cncoded as

[rosiTioN(q,) = odd] = [coLOR(q,)=red] &
[rosrTiON(g)) =cven] = [PARITY(q))=cven]

Since any sequence-generating rule can be expressed in the DNF model, it is rcasonable to ask why
multiple models should be used at all. The answer is that the primary valuc of multiple models is that they
provide heuristic guidance to the scarch for plausible rules. Hence, though the DNF model is capable of
representing all of these rules, it is not helpful for discovering them. In short, it is epistemeologically adeguate
but not heuristically adequate (scc [McCarthy and Hayes, 1969; McCarthy, 1977]). Each model dirccts the
attention of the learning system to a small subspace of the space of all possible DNF VL,, rules. The next
section shows how the constraints associated with cach model are incorporated into special model-fitting

induction algorithms,

4 Architecture and Algorithms

" Section 3 doscribed the three basic prﬁccsacs involved in discovering scquence-gencrating rules: (a)
transformation of the original sequence into a derived sequence, (b) selection of an appropriate model (and
determination of its parameters) for the given sequence. and (c) fitting (instantiation) of the models tw the
derived s&qucn:c. Scctions 4 and 5 presented the four data transformations and the three models. This
section covers the third step of fitting specialized models to the transformed sequence. The model-fitting
process is most easily understood in the context of the program architecture, so this section also discusses the

system’s architecture,

4.1 Overview of the System

The processes in the system (sec Figure 7) are structured into four components—the three basic ones
mentioned above plus an evaluation component. The processes of transforming the initial sequence and of
sclecting and parameterizing a model are performed in parallel. “Then, model-fitting algorithms use the
transformed sequence to instantiate the parameterized model to obtain a candidate sequence-gencrating rule.

These candidate rules are then evaluated to determine the final set of rules.
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“The reason for performing data transformation and model selection in parallel is that these two processes
arc interdependent.™ For example, if a peﬁnciic model is sclected (with period length P), then a splitting
transformation (with number of phases P) needs to be applied to the sequence. These two processcs can be
viewed as simultancous cooperative scarches of two spaces: the space of possible data transformations and the

space of possible parameterized models.

Figure 7: The Model-fitting Approach

4.2 Overview of the Concentric Ring Architecture

In order for the learning system to be casily modified to handle entire classes of NDP problems, the system
is structured as a sct of concentric knowledge rings (sec Figure 8). A knowledge ring is a set of routines that
perform a mlrLi:mﬁr function using only knowledge appropriste o that function. The procedures within a
given ring may invoke other procedures in that ring or in rings that arc inside the given ring. Under these

constraints, the concentric ring structure forms a hicrarchically organized system,

Ideally, the rings should be organized so that the outermost ring uscs the most problem-specific knowledge
and performs the most problem-specific operations and the inner-most ring uses the most general I:nuwlcdgb

and performs the most general tasks, Such an architecture improves the program’s generality because it can



Figurc 8: The knowledge ring architecture

be applied to increasingly different NIDP problems by removing and replacing the outer rings. In order to
apply the program to radically different lcarning problems, all but the inner-most ring may need to be

replaced.,

The ring architecture is used here as follows. The outer-most rings perform uscr-interface functions and
convert the initial sequence from whatever domain-specific notation is being used into a sequence of "."Lu
cvents. The inner-most ring performs the model-fitting functions. It expects the data w be properly
transformed so that the data have the same form as the models to which they are to be fitted, ‘The intervening
rings conduct the simultancous processes of developing a properly parameterized model and transforming the

input sequence into an appropriate derived sequence.

The intervening rings also evaluate the rules discovered by the inner-most ring using the knowledge

available in cach ring.

4.3 The System SPARC/E

SPARC (Sequential PAttern ReCognition) stands for a general program designed to solve a varicty of
nondeterministic prediction problems using the ring architecture. So Tar, we have implemented only a more
specific version of the program, called SPARC/LE, tailored specifically to the problem of rule discovery in the
gamc Eleusis. SPARC/I is made up of five rings, as shown in Figure 8.

This scction describes the functions of cach ring in SPARC/E. To illustrate these ring functions, we usc the
Eleusis layout shown in Figure 9. Recall that in an Eleusis layout, the main line shows the correctly-played
scquence of cards (positive examples). The side lihes, which branch out below the main line, contain cards

that do not satisfy the rule—that is, incorrect continuations of the sequence (negative cxamples),
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Main 1ine: 3H ©S 4C JD 2C 10D 8H 7H 2C

Side l1ines: JD AH AS 10H
6D BH 108
QD

Figure 9: Sample Elcusis Layout

4.3.1 Ring 5: User interface

Ring 5, the outer-most ring, provides a uscr interface to the program. [t exccutes user's commands for
playing the card game Elcusis, as well as commands for controlling the search, data transformation,
generalization, and cvaluation functions of the program. One command in Ring 5 is the INDUCE command
that instructs SPARC/E to look for plausible NDP rules that describe the current sequence. When the
INDUCE command is given, Ring 5 calls Ring 4 to begin the rule discovery process. Ring 5 provides Ring 4
with an initial scquence of "«'L22 events in which the only attributes are SUIT and RANK.

4.3.2 Ring 4: Adding derived allributes

Ring 4 applics the adding-derived-attributes transformation to the initial scquence of cards. ‘This involves
creating derived attributes that make explicit certain commeonly known characteristics of playing cards that arc
likely to be used in an Eleusis rule: COLOR, PARITY, FACED versus NON-FACED cards, and so on. ‘The user of
the program provides a definition for cach descriptor that is to be derived. Figure 10 shows the layout from
Figure 9 after it has been processed by Ring 4. 'The plusses and minuscs along the right-hand side of the
figurc indicate whether the event is a positive example or a negative example of the sequence-generating rule,

‘I'nese derived cvents are passed w Ring 3 for further processing.

4.3.3 Ring 3: Segmenting the layout

Ring 3 is the first Eleusis-independent ring. It applies the segmenting transformation to the sequence
supplicd by Ring 4. In the present implementation, the end points of cach scgment are determined by
applying a segmentation predicate, P(eard, |, card) to all pairs of adjacent events in the sequence. When the
predicate P evaltiiies w0 FALSE, the sequence is broken between E-’ll’d.rl and cardj. to form the end of a
scgment. Typical segmentation predicates used are:

[rank(card,)=rank(card,_ Dl
[rank(card,)= rank(card_)+ 1]
[color(card,) =color(card, ;)]
[suit{card,) = suit(ca rd )l
[parity(card))= parity(card, )]
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".-’L22 cvent Positive or
negative

[RANK(card )=3][sutT(card))=H] &
[pariTY(card )= odd)[coLonr(card 1) =red] &
[PRIME(card )= NJ[Factiycard )= Y] +

[RANK( card2}=f}}{s uin(card,)= Sl&
[parrTy(card,) = odd][coLor(card,)= black] &
[PrIME(card,)= Nj[ractib(card,) = N] +

[rRANK(card;)=1] l[surr{card,)=13] &
[PARITY(card,) = oddJ[coLor(card )= red] &
[PriME(card ) = Y)[ractb{eard,)= Y] -

[RANK(card,)=5][surT(card,)= D] &
[PARITY(card )= 0dd][COLOR(card ) = red] &
[I’RIME{card3)= N[acED{card 3) =Y] -

[RaNK(card 3} =d][surt(card,)=C] &
[PARITY(card,) = even][COLOR(card)= black] &
[PrRIME(card )= N][FACED(card ) = N] +

[RaNK(card,)=J][suri{card,)=13] &

[PARITY(card ) = odd][CoL.OR(card ) =red] &

[rrIME(card ) = Y][FactD(card ) = Y] +
elc. '

Figure 10:  Derived layout after Ring 4 processing of the layout in Figure 9.

Other techniques for performing segmentation, such as providing a predicate that becomes TRUE at a
segment boundary (see section 2.2.2), are not implemented in SPARC/E.

Ring 3 scarches the space of pussible segmentations using two search pruning heuristics. After cach
attempt to segment the scquence, it counts the number of derived objects (segmenis), k, in the derived
sequence. IFk is less than 3, the segmentation is discarded since there are wo fow derived objects to use for
gencralization. If k is more than half of the number of ubjects in the original sequence, the scgmentation is
also discarded because in this case many segments contain only one original object. Segmented sequences

that survive these two pruning heuristics are passed on to Ring 2 for further processing.
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One scgmentation that Ring 3 always performs is the "null” scgmentation—that is, it always passcs the
unscgmented scquefce dircctly Lo the inner rings. Figure 11 shows a sample layout and the resulting derived
layout after scgmentation using the segmentation condition: [SUrT(card,)= SUI'r{cardH)]. The derived objects
(scgments) arc  denoted by  variables  segment, The negative cvent [surt(scgment,)=D)
[col.onr(segment,)= red] [LENGTI |{scgmcntz}=3] is obtained from the segment <50 20 4D>, which ends in
a "side-line” card. Notice that the very last card in the sequence, the king of spades, is not included in any
segment. This is because the king is the first card of a new scgment, and it is impussible o know how long
that segment will be until itis completed. Once a sequence-generating rule is found by the inner rings, Ring 3

will check to make sure that the king of spades is cunsistent with the rule.

The layout:

34 6D 20 7¢C AC 9C JH 6H BH QH KS
65 4D AH
75

The derived sequence:

Description of Positive or
derived object negative

[surttsegment,)= Hj[coLonr(segment )= red] &
[LENGTI(segment, ) =1] +

[suri(segment,)= | }][C{}I.OR[scgmcn(z): red] &
[LENGTTI(segment,)=2] +

[suri(segment,) = Dj[coLor(segment,) =red] &
[LEnGTI(segment,)=3]. "

[surt{segment 3] =CJ[col.or(scgment J}= black] &

[x .iiN(J'I'HI:scgmi::Il[J] =3] %
.
[suri{segment,)= H][cOLOR(segment,) = red] &
[LesGn l(scgmcnt‘}=4] +
Figure 11: Sample Luyuui and segmented sequence  under  scgmentation condition

[surifeard,)=surl '(r:ardi_l';]
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SPARC/E derives the descriptors COLOR, SUIT, and LENGTI to describe each derived object. “The choice
of which descriptors to derive involves three steps.  First, LENGTI is derived whenever the segmentation
transformation is applicd. Second, any descriptor that is tested in the scgmentation predicate (in this case,
suIT) is also derived. Third, any descriptor is derived whose value can be proved to be the same for all cards
in cach scgment. In this case, COLOR is derived because, if SUIT is a constant, then COLOR is also a constant.
Using this segmentation, SPARC can use the DNF model to discover that the segmented sequence can be
described as

[LENGTI(segment ) = LENGTINsegment,_ ) +1]

That is, the LENGTIH of cach segment of constant SUIT (in the main linc) increases by L

4.3.4 Ring 2: Parameterizing the models

Ring 2 scarches the space of parameterizations of the three basic models. Each model is considered in trn.
For cach model, Ring 2 develops a set of derived events based on cach allowed value of the lookback
parameter, 1., and the number of phases parameter, P. The user can control which models should be inspected
and what range of valucs for L and P should be investigated. By default, the program will inspect the
decomposition model with L = 0, 1, or 2, and the periodic model with P = lor2and L. = 0 or 1. "The DNF
model is not inspected under the default settings for the program.

Specifically, Ring 2 performs the fullowing actions depending on which model is being parameterized:

A. For the decomposition model with lookback parameter L., Ring 2 applics the blocking transformation to
break the sequence received from Ring 3 into blocks of length L. Afier blocking. all of the attributes that
described the original objects are converted into attributes that describe the whole block (as discussed in
scction 4 above).  Furthermore, sum and difference descriptors are derived to represent the relationships
between adjacent objects in the original sequence. The resulting derived cvents can be viewed as very specific
if-then clauses of the following form.

Given an initial sequence of objects <g,, ;. ... g_>. let us look at block b, which deseribes the subsequence
€q;.; s o Gy G Lot Fj, j=0. 1, ... L. denote the set of selectors describing object 9 renamed so that they
apply o block b. lor example, I-'] could be the selectors [:-‘.urrl{hiil=lI]|lmr~.‘l\’.!ﬂ1j:u:_’-]-sclccmrs that
ariginally referred o ohject q,- Let dl{Fj,Fk) denote all of the difference scleetors obtained by "subtracting”
event F from event Fj. and let s{FJ. F,) denote all of the summation selectors obtained by “"summing” cvents
Fi and F,. For example, d(F,. F,) could include the sclectors [|>SU|‘|'0L(bi)=2][n-n.mxm(bl)=-31 obtained
from “subtracting” F, from Fﬂ.

With these definitions, the derived events for the decomposition model have the form:
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FI&...&FL = Fn&d{FD,-FJ‘,I&‘.,&d[FD, FI.}&SIFD'FI)&"‘&S(FD' F\)

Suppose, for cxample, that the initial sequence of cards is
<ZH 4D 65 BC>

with only the SUTT and RANK descriptors being employed. Then suppose that Ring 2 applies the blocking
rransformation with a lookback of 2. Figure 12 shows the two derived events that will be produced by Ring 2

(the corresponding notation is shown to the right of each group of selectors).

Derived cvent Abbreviation
|!mNKJ{qi_]}:4][5U|T1(qi_1}=n] F,
[RANK2(Q ;)= 2][suir2(g, )= H] F,
=

[rANKO(q)= 6][surm(q,)= 5] - F,
[D-RANKDI(Q,Q; )= 2)[o-surr(g,g; )= 2] d(FyFy)
[D-RANKOAG,Q. ) =4][P-5UrT(a,q, ) =1] d(Fy.Fy)
[s-RaNKOI(g,q, )=10] s(Fo.F))
[s-RANKO2G,Q, ,)= 8] - s(Fp.F,)
[RANKI(q, ) =6][suiT)(g, ) =S] F,
[RANK2(q, ,) =4][suiT2(q; ;)= D] , F,
[ranko(q)=8][surmo(g)=C] F,
[o-raNKoI(g,q, ) =2][DsurT(g.q;,,)=1] Ay F)
[D-RANKD2Aq.q,_,) =4][D-sur(g,q, ;)= 3] d(1y.Fy)
[S-RANKﬂI{qi,qH]=l4] s(F,Fp)
[S-RhNKﬂI[qi,qH]:lz] S{E:H-le

Figure 12: Sample events showing which sum and difference descriptors are derived.

These derived c_&cnm no longer need to be vrdered, sinee the ordering information is made explicit within
the cvents. These events have the form of very specific if-then clauses. This facilitates the modcl-fitting

process in Ring 1.

B. For the DNF model with lookback parameter L, the scquence derived in Ring 3 is blocked in a very
similar manner, except that only the sclectors describing g, arc retained in the deseription of block bi. The

derived events have the following form:
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Fo & d( E':n. }-"1] & ... & d(F, I-"L] & S{Fo, F'i} & ... s(F, F, )

These events are very speeific conjunets that are passed to the A9 algorithm [Michalski, 1969, 1972] in Ring

1, where they are generalized to form a DNF description.

C. For the periodic model with period length P and lookback L, Ring 2 performs a splitting transformation
fullowed by a blocking transformation.  First, the sequence obtained from Ring 3 is split into P separate
sequences. Then cach separate sequence is blocked into blocks of length L.+ 1. The derived events have the
same form as the events derived for the DNF model. Note that because the blocking occurs after the

splitting, the lookback takes place only within a phase.

To provide an cxample of the function of Ring 2, Figure 13 shows some events from Figure 10 after they

have been transformed in preparation for ficting to a decomposition model with L=1.

4.3.5 Ring 1: The basic model-fitting algorithms

Ring 1 consists of three separate model-fitting algorithms: the A9 algorithm, the decomposition algorithm

and the periodic algorithm.

The A9 algorithm [Michalski, 1969, 1972] is applicd to fit the DNF model to the data. A9 attempts to find
the DNF description with the fewest number of cqnjum:nve' terms that covers all of the pmitiﬂ;c examples and
none of the negative examples. The algorithm operates as follows. First, a positive cxample, called the sced,
is chosen, and the st of maximally-gencral conjunctive expressions consistent with this seed and all of the
negative examples is computed. This st is called a star, and it is equivalent to the G-set in Mitchell's [1978]
version space approach (if the G-set is computed with the sced positive example and all of the negative
examples). One clement from this star is chosen 0 be a conjunct in the output DNF description, and all
positive examples covered by it are removed from further consideration. If any positive examples remain, the
process is repeated, selecting as a new sced some positive example that was not covered by auy member of any
preceding star,  In this manner, a 1JNF description with fow conjunctive terms is found. [If the stars are
computed without any pruning, then A% can provide a tight bound on the number of conjuncts that would
appear in the shortest 1INF description (i.e., with fewest conjunctive terms).

The decomposition algurithm is an iterative algorithm that seeks to fit the data to a decomposition model,
The key task of the decomposition algorithm is to identify a few attributes, called decomposition attributes,
from which the decomposition rule can be developed. A decomposition ateribute is an attribute that appears

on the left-hand side of an if-then clause of a decomposition rule. For example, the decompuosition rule
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Derived cvert Positive or
negative

[RANK1(b,)=3][sUrTi(b J=H]
[PARITY (D)= odd]corLoni(b,)=red]
[PriMEI(h,) = Y)[ractni(b,)=N]

=

[RANKO(D,)=9][suro(b,)= SJipArtTY0(b,) = 0dd]

[coLora(b,)= black][PRIMID(b,) = N]

[EACEDO(D,) = NJ[D-RANKOI(b))= + 6]

[p-surtoi(b,) = + 1D-parITY0N(D,) = N]

[D-coLoR01(b,)= Y][ll-PRlMli}I[bz)=Y]

[D-racEnoi(b,) = Y][s-RANKOI(b,)= 12 +

[RANKI(by)= 9llsuri(by)= S§]
[PARITYI(b;)=odd][COLORI(by)= black]
[PriML(b,) = NJ[FACEDI(by) = N]

[raNKa(by)=]][surmotb,)= D][pariTY0(b,)=0dd]

[coioro(b,)= red][PrRIMIN(D,) = Y]

[ractinolb,)= Y][-rANKOI(b,) =+ 2]

[p-surtni(b,)= +2][-rar 1ryoi(b,)=Nj

[D-coLORNI(b,) =Y][D>-rrIMIDI(b,) = Y]

[D-racEDol(b,) = Y]ls-rANKo1(b,)= 20] -

Figure 13: Some events of Figure 10 transformed for decomposition L=1.

[cot or(eard,_ )= bluck] = [PARITY(card ) =odd] &
[cororfeard, )= red| = [ParITY(card)= even)

decomposes on COLOR. Henec, COLOR is the single decompaosition attribute.

The algorithm uses a generate-and-test approach of the following form: I
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decomposition-attributes := {3 Thecmpty set

while rule 15 not consistent do
bagin
generate a trial decomposition

(based on positive evidence only)
for each possible decompasition attribute

test these trial decompositions against
the data

select the best decomposition attribute and
add it to the set decomposition-attributes

and

The process ::;I" generating a trial decomposition takes place in two steps.  First, a VL, conjunction is
formed for each possible value of the decomposition attribute. All positive events that have the same value of
the decomposition attribute on their Ieft-hand sides are merged together to form a single conjunction of
sclectors. This ‘--’L22 conjunction forms the right-hand side of a single clause in the decomposition rule,
Within this conjunction, a selector is created for cach attribute by forming the internal disjunction of the
values in the corresponding selectors in the events. For example, using all of the events derived in Ring 2 for
the sample layout in Figure 9, the deccompuosition algorithm generates the trial decomposition shown in Figure
14 for the PARTTY(card,_, ) attribute.

Since there arc only two values (onD and EVEN) for the decomposition attribute in the sequence shown in
Figure 9, two conjunctions are formed. 'The first conjunction is obtained by merging all of the positive events
f{_)r which [murr?[curd.r ])_ =odd]. ‘There are four such cvents, ‘The first selector in that conjunction,
[R;\Nlclfmrd_l}:'ii v 4 v 2], is obtained by forming the internal disjunction of the values of RhNK{cardi] in each
of the four cvents,

The sccond step in forming a trial decomposition is to gencralize cach clause in the trial rule. The
generalization is accomplished by applying rules of gencralization to extend internal disjunctions and drop
sclectors.  (Sce [Michalski, 1933]_ for a description of various rules of gcncm]imtinh.) Corresponding
attributes in the different clauses of the decomposition rule are compared, and sclectors whose value scts
overlap are dropped. When these rules of generalization are applied w the trial decomposition of, for
example, PARITY, the following gencralized trial dmnmﬁcmiliun is obtained:

[pARrTY(card, ) =odd] = [surr(card)=C v S][col Or(card ) =black] &
[eA RITY(card, )= cven] = [SUI‘Itcurdl}= Hv DECOLDR[C&I‘&i] =red]

This is a very promising trial decomposition. However, it has been dc\rcl'npcd using only positive

evidence—without considering the possibility that it may cover some negative events. Hence, the trial



[paRITY(card; )= odd]

[mh‘ﬂ{cnrdl}‘] =9vdvl]

Esurr{card‘}=5 v Cl[parity(card )=cven v ndd]
[coton(card,)= black][PriME(card ) =Y ¥ N]
[FacED(card,)= M)

[D-rRANK(card, card, )= +6v-5v-7]
1[‘»5Ui'rtcnrdi.cmdivl}¢l v2vi
[D-eariry(card card )= Y v N

[o-col oR(card card, )=Y v N]
'[r:-}*mm!-‘{cardi.card.._l}z* ¥ v Nj
[n-lmcun{cardi.card.I_l}="( v NJ
[s-RANK(card card, )= 12v1iv9] &

[MRI'L'Y[cnrdH:pzcvcn]

[RhN]:{cﬂrdJ:] vidviv7]
[surr{card)=H v Dj[pARrITY(card)=cven v wdd]
[CDLOI{{EiIrdi}=rcd][l‘lllM1-‘.{c':|rd1.}= Y v N]°
[l-'ﬁ('lil'}(i'_'ﬂr{]i}=Y v NJ

[D-RANK(card card, )=TvE8v-2v -1]
[p-suri(card, card, }}-——i] vli]
[>-eakrty(card card, =Y v N]
[p-coi.owlcard ca l'di_l] =Y v Nj
[I)—l'lt!MI-’.[C.’]rdi.c:IrdH}=Y v N|

[o-rachi 3Ecard.‘.card.=_1)=' Y v N]
[S‘RhNK[curd].Eﬂrd.L_l]I 15v 12 v 18]

Figure 14: T'rial decompuosition on the |=Aur['Y(r:urdi_1}mtﬁbutc

decomposition must be tested against the negative events to determine whether or not it is consistent. It turns

out that the generalized trial decomposition shown above is indeed consistent with the negative evidence.

After a trial decomposition has been developed for cach possible decomposition attribute, the best
decompuosition attribute is sclected according to 2 heuristic attribute-quality functional. The autribute-quality
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functional tests such things as the number of negative events covered by the trial decomposition, the number
of clauses with non-null right-hand sides, and the complexity of the trial decomposition (defined as the
number of sclectors that cannot be written with a single operator and a single value), The chosen trial

decomposition forms a candidate sequence-prediction rule.

If the candidate rulc is not consistent with the data (i.c., still covers some negative examples), then the
decomposition algorithm must be repeated to select a second attribute to add te the left-hand sides of the
if-then clauses. This has the cffect of splitting cach of the if-then clauses into several more il-then clauses.

For example, if we first dccomposed on PARITY(card,_ 1] and then on FACED(card, ), we would obtain four

if-then clauses of the form:
[parITY(card,,)=odd][FACED(card,_ )= Nl=..
[parITY(Card ) =odd][mcnn{-:ard1._l}= Y]=..
[ParITY(card, ) =cven][FACED(card, )=N] = ...
[PARTTY(card, ) =cven][FacED(card, )=Y]= ..

The periodic algorithm is similar to the decomposition algorithm. For cach phase of the period, it takes all
of the positive cvents in that phase and combines them to form a single conjunct by forming the internal
disjunction of all of the valuc scts of corresponding selectors. Next, rules of gencralization are applied to
cxtend internal disjunctions and drop sclectors.  Finally, corresponding attributes in different phases are
comparcd, and selectors whose value sets overlap are dropped if this can be done withulul covering any

negative examples.

4.3.6 Evaluating the NDP rules

Once Ring 1 has instantiated the parameterized models w produce a set of rules, the rules are passed back
through the concentric rings of the program. Hach ring evaluates the rules according to plausibility criteria
based on knowledge availuble in that ring. Ring 2, for example, applics knowledge of the fact that valid
scquences can be continued indefinitely. [t checks to sec that the rule predicts that the sequence could be
so-comtinued. Ring 3—which applics the segmentation transformation—applics its knowledge about tail end
of the unsegmented sequence t make sure it is consistent with the rule. (Recall that the segmentation
transformation is sometimes unable w scgment the last few cvents in the sequence.) Ring 4 tests the rule

using the plausibility criteria for Eleusis. ‘These criteria are:

1. Prefer rules with intermediate degree of complexity, In Eleusis, Occam's Razor does not always
apply. The dealer is unlikely to choose a rule that is extremely simple, because it would be two
casy to discover. Very complex rules will not be discovered by anyone, and, since the rules of the
game discourage such an outcome, the dealer is not likely to choose such complex rules cither,
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2. Prefer rules with an intermediate degree of non-determinisim. Rules with a low degree of non-
determinism kead to many incorrect plays, thus rendering them casy to discover. Rules that are
very nondeterministic gencrally lead to few incorrect plays and are therefore difficult to discover.

Rules that do not satisfy these heuristic criteria are discarded. ‘The remaining rules are returned to Ring 3

where they arc printed for the user.

5 Examples of Program Execution

In this section, we present some example Eleusis games and the corresponding scquencc-generating laws
that were discovered by SPARC/E. Each of these games was an actual game among people, and the rules are

presented as they were displayed by SPARC/E (with minor typesctting changes).

The raw sequences presented to SPARC/E had only two attributes: SUIT and RANK. SPARC/E was given

definitions of the following derivable attributes:

e COLOR (red for Hearts and Diamonds; black for Clubs and Spades)
e FACE (truc if card is a faced, picture card, false otherwisc)

o PRIME (true if card has a prime rank, false otherwise)

* MODZ (the parity value ﬁf the card, 0 if card i; cven, 1 otherwise)

« MODN3 (the rank of the card modulo 3)

& LENMOID2 (when SPARC/E segments the main sequence into derived subsequences, it computes
the LENG T of each of the subsequences modulo 2)

Three examples of the program exccution are presented.  Here are some points to notice in reading the
examples. First, cach rule is assumed to be universally quantified over all events in the sequence. This
quantification is not explicitly printed. Second, when the value set of a selector includes a set of adjacent
values (c.g. [RANE(card)=3 v 4 v 5]. this is printed as [RANK(CARDI }=3..6]. The computation times
given arc for an implementation in PASCAL on the CDC CYBER 175.
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5.1 Example 1
In this cxample. we show the program discovering a segmented rule. The program was presented with the

following layout:
Main 1ine: AH 7C 6C 9S 10H 7H 10D JC AD

Side 1ines: KD 65 QD
JH
continued: 4H 8D 7C 95 10C KS 2C 105 J§
4 3s 9H QH
GH AD

The program only discovered onc rule for this layout, precisely the rule that the dealer had in mind (1.2
seconds required):
RULE 1: LDOKBACK: 0 NPHASES: 1 PERIODIC MODEL
SEGMENTATION CONDITION = [COLOR(CARDI)=COLOR(CARDI-1)]:

PERIODS [LENMOD2({PH1SEGMENTI}=1] >

The rule states that one must play strings of cards with the same color. The strings must always have odd
length. The segmentation condition states that a segment is a string of cards all of the same color. CARDI
refers to the [-th card in the original sequence. SPARC/E discovered this rule as a degenerate periodic rule
with a period length, P. of 1. Hence, PHISEGMENTI refers to the I-th scgment in phasc 1 (the only phasc)
of the derived sequence. Actually, the rule that the dealer had in mind had onc additional cnﬁstr:tint: aqueen
must not be played adjacent w a jack or king. .

5.2 Example 2

The sccond example requires the program to discover a fairly simple periodic rule. Here is the layout:
Main 11ne: JC 4D QH 35 QD 9H QC 7H QD
Side 1ines: KC BS 45 10D
! ?3
Main 1ine continued: 90 QC 3H KH 4C KD 6C JD 8D

Main 1ine continued: JH 7C JD 7JH JH 6H KD

The program discovered three eguivalent versions of the rule, which can be paraphrased as "Play
alternating faced and non-faced cards.” Here arc the rules (0.49 scconds werce required):
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RULE 1: LOOKBACK: 1 NPHASES: 0 DECOMPOSITION MODEL

[FACE(CARDI-1)=FALSE] =>
[RANK(CARDI )=>JACK]
[RANK (CARDI ) >RANK (CARDI-1)]
[FACE (CARDI)=TRUE]

[FACE(CARDI-1)=TRUE] =>
[RANK(CARDI)=3..9]
[RANK (CARDI ) <RANK{CARDI=1)]
[FACE(CARDI) =FALSE]

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD<[ RANK(PH1CARDI)=>3]
[RANK( PH1CARDI ) #RANK(PH1CARDI-1)]
[FACE (PH1CARDI )= FACE (PH1CARDI-1)]>

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERIOD<[RANK( PH1CARDI)=>JACK]
[RANK( PH1CARDI ) =-RANK(PH1CARDI-1)+20]
[FACE (PH1CARDI )=TRUE],

[RANK( PHZCARDI )=3..9]
[RANK( PH2CARDI ) =-RANK (PH2CARDI-1)+6..14]
[FACE (PH2CARDI ) =FALSE]>

Rule 1 is a decomposition rule with a lookback of 1. Rule 2 expresses the rule as a degenerate periodic rule

with a single phase. Rule 3 expresses the rule in the “natural” way as a periodic rule of length 2.

Notice that, although the program has the gist of the rule, it has discovered a number of redundant
conditions. For example, in rule 1, the program did not use knowledge of the fact that [RANK{curd.L}igjack]
implies [I'ACi(card,)=true], and therefore, it did not remove the former sclector. Similarly, because of the

interaction of the two conditions in rule 1, [RANK(card )>RANK(card, )] is completely redundant.

5.3 Example 3

‘The third example shows the upper limits of the program's abilities. During this game, only onc of the
human players even got close w guessing the rule. yet the program discovers a good approximation of the rule

using only a portion of the layout that was available to the human players, Here is the layout:
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Main 1ine: 44 6D 8C JS 2C B6S AC 65 10H
54ide 1ines: 7C 65 KC AH - 6C AS

JH 7H 3H KD

4C 2C Qs

2D 4C

The program produced the following rules after 6.5 seconds:
RULE 1: LOOKBACK: 1 NPHASES: 0 DNF MODEL

[RANK(CARDI )<<5][SUIT(CARDI)=SUIT(CARDI-1)+1] V
[RANK(CARDI)=6][SUIT(CARDI)=SUIT(CARDI-1)+3]

RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERTOD<[RANK(PH1CARDI)=RANK(PH1CARDI-1)-9]
[RANK(PH1CARDI )=-RANK(PH1CARDI-1)+4,6,7,11,13,17]
[SUIT(PH1CARDI)=SUIT(PH1CARDI-1)+1,2,3]>

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERIOD<[RANK(PH1CARDI)=ACE,2,8,10]
[RANK(PH1CARDI )=-RANK(PH1CARDI-1)+1,8,9,10],

[RANK(PHZCARDI)=6..JACK][SUIT(PH2CARDI)=SPADES]

[RANK ( PH2CARDI ) =RANK ( PH2CARDI-1)+-0, .6]

[RANK( PH2CARDI ) =-RANK ( PHZCARDI-1)+8. .14]
[SUIT(PH2CARDI)=SUIT(PH2CARDI-1)+0..2]
[COLOR(PH2CARDI ) =BLACK ][ PRIME ( PHZCARDI ) =PTRUE]

[PRIME (PH2CARDI )=PRIME { PH2CARDI-1)]
[MOD2(PH2CARDI )=1][MOD2( PH2CARD1 ) =MOD2 ( PH2CARDI-1)+0]
[MOD2 ( PH2CARDI ) =-MOD2 ( PH2CARDI-1)+0][MOD3 (PH2CARDI ) =2]
[MOD3( PHZCARDI ) =MOD3 ( PHZCARDI-1)+0]

[MOD3 ( PH2CARDI )=-M0D3 ( PH2CARDI-1)+17]>

The rule that the dealer had in mind was:

[surt(card))= SUI'IT;:au'd.r J+3]
[nml{{cardl}-‘-jlmn K(eard, )]V

[surifcard}= surt(card, )+ 1]
[rRAN K(card) <<RANK(card )}

There is a strong symmetry in this rule: the players may cither play a lower card in the next "higher™ suit
(recall that the suits are cyclically ordered) or a higher card in the next "lower” suit. ‘The program discovered
a slightly simpler version of the rule (rule 1) that happened to be consistent with the training instances. Note
that adding 3 to the SUIT has the effect of computing the next lower suit,
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The other two rules discovered by the program are very poor. They are typical of the kinds of rules that the

program discovers when the model does not fit the data very well. Both rules are filled with irrclevant
(=}

descriptors and values. The current program has very little ability to assess how well a model fits the data.

These rules skould not be printed by the program, because they arc highly implausible.

6 Summary

We have presented here a methodology for discovering sequence-generating rules for the nondeterministic

prediction problem. The main ideas behind this methodology are

1. the usc of deseription-space transformations of the initial data and

3. the use of different rule models to guide the scarch for sequence-generating rules.

Four different description-space transformations (adding auributes, blocking, splitting into phases, and

segmenting) and three models (IDNF, periodic, and decomposition) have been presented.

The main part of the methodology has been implemented in the program SPARC/E and applied to the
NIDP problem that arises in the card game Eleusis. The performance of the program indicates that it can

discover quite complex and interesting rules.

This methodology is quite general and can be applied to other nondeterministic prediction problems in
which the objects in the initial sequence are describable by a set of finite-valued attributes. The main
strengths of the method are (a) that it can solve learning problems in which the initial training instances
require substantial deseription-space transfornmation and (b) that it can search very large spaces of puossible

rules using a sct of rule models for guidance.

Many aspects of this methodology remain w be investigated. We have not considered NDP problems in
which (a) the training instances are noisy, (b) the training instances have internal structure so that an attribute
vector representation is not adeguate, and (c) the sequence-generating rules are pchni:m:d to have exceptions,
Application of this methodology to real world problems will probably also require the development of
additional scqucnr_:c transformations and rule models. Adso, more heuristics necd W be developed that can be

used Lo guide the application of transformations and models.

The implementation of the methodology in program SPARC/E and the experiments made so far have
demonstrated that the method can discover the majority of Elcusis secret rules playing in ordinary human
games, There are some shortcounings of the implementation, however. The program presently conducts a

nearly exhaustive depth-first search of the possible models and wvansformations. Much could be gained by
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having the program conduct a best- first heuristically-puided search instead. “The present implementation does
not include the ability to valuate the plausibility of the rules it discovers. It is also not able to simplify rules by
removing redundant selectors, nor is it able to estimate the degree of nondeterminism of the rule. Both of
these can be implemented without o much difficulty by including inference routines that make more
complete use of the background knowledge already available to the program. Finally, an important weakness

of the current program is its inability to form composite models.

In addition to these specific problems, there are some more general problems that further rescarch in the
arca of scquence-generating laws should address.  First, in some real world problems, there are several
example sequences available for which the sequence-gencrating law is believed to be the same.  Such
problems occur, in particular, in describing the process of disease development in medicine and agriculture.
A specific problem of this type that has been partially investigated involves predicting the time course of
cutworm infestation in a cornficld and estimating the potential damage to the crop (sec [Davis, 1981], [Baim,
1983], and [Boulanger, 1983]). In this problem, several sequences of obscervations arc available—one for cach
ficld—and there is a need to develop a sequence-generating law that predicts all of these seguences.

A second gencral problem for further research is to handle processes in which time is a continuous variable.
In particular, programs that could perform qualitative modelling of sucﬁ processes and qualitative cvaluation
of trends based on example event sequences would be very valuable. Al rescarch has so far given little
attention to these tasks.
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|. Notational conventions

The following mutational conventions are employed in this chapter. In general, lowercase Ietters denote

objects in some sequence (g, ph, b) or index variables {i, . k) or the lengths of sequences (m, n). Uppercase

fetters denwte sets of objects, attributes, and so on (Q, F, 5) as well as parameters of modcels and

transformations (L. I). Small capitals denote attributes (COLOR, RANK) and their values (RED, KING).

o

Ifa)=r,]

Angle brackets denote sequences of objects, ¢.g., <2 4 6 8 and also periodic rules, ¢.g.,
<[coi.or(ph, )=red][COLOR(ph, )= black]>.

The i-th object in an input scquence.

" The i-th object in a derived sequence,

An object that constitutes an incorrect extension of the sequence after object g .
The i-th block in a sequence derived by the blocking transformation.
The i-th phase derived by the splitting transformation.

The j-th object in the i-th phase after a splitting transformation.

The number of descriptors.

The space of possible cvents.

‘The starting set of attributes for a transformation.

e starting set of seq uences for a transformation.

The starting set of objects for a transformation.

The set of derived attributes from a transformation.

The set of derived sequenees from a transformation.

‘Ihe sct of derived objects from a ransformation.

"I'he set of selectors deseribing object q; in block b,

The sequence-generating function that maps a sequence into a set of objects Q, +1 that can
appear as continuations of the sequence,

‘The set of objects that can appear as continuations of the sequence <q 1.' Qe s G2
“I've number of phases parameter of the spliting transformation and the periodic model.
The lookback parameter ol the blocking ransformation and all three imodels.

A simple selector, which asserts that fealure F. of object 9 has the value r,.

[r,-(qj)=fl v r2 v rj]}

D prefix

A sclector containing an internal disjunction. It asserts that f can have the value r or r, or

r

¥ ;

The D prefix on an auribute name indicates that it is a difference attribute.  Hence,
n-mm;(qi.qH) is cqual o RANK(g,) = RANK(q, ).



5 prefix

d(F, F)
S(F, F)
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The § prefix on an attribule name indicates that it is a summation attribute.
S-RANK(q,.q, ;) is equal to RAN K(q) + RANK(G, ;).

The st of difference selectors obtained by "subtracting” sclectors Fi fromF..
The set of summation sclectors obtained by “adding” sclectors Fi and Fj.

Logical implication.

Hence,
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