SPARC/E(V.2) AN ELEUSIS RULE GENERATOR
AND GAME PLAYER

by

R S Michalski
H Ko
K. Chen

Reports of the Intelligent Systems Group, ISG 85-11, UIUCDCS-F-85-941, Department
of Computer Science, University of Illinois, March 1985.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

File No. UIUCDCS-F-85-941

SPARC/E(V.2)

An Eleusis Rule Generator and Game Player

By
Ryszard Michalski

Heedong ko
Kaihu Chen

Internal Report
Intelligent Systems Group

Department of Computer Science
University of Illinois at Urbana-Champaign

This work was partially supported by the National Science Foundation
under grant NSF DCR 84-06801.

March 1985

1. Introductioncccovveevreverecrvnnen
1.1. Background

Table of Contents

..

tt

1.2. Structure of this Reportcissiusaicnsmsanssismsssissasssns

2. The Theory of Inducing Descriptions of Sequential Event Setsc..uu...........
2.1. Events and Sequences of Eventscccoocoimeriiiciccreertecrereee e
2.2. The Description Language VL J et s
2.3. Descriptions and Predictionsccovvevevvinieciiiniceiinueninssienmnicincrnniees e

2.4. Description Models
2.5. Descriptions Based

lll

on Segmentationcc.ccoiciiiiiiiiiiiiieserenaa.

2.6. Discovering Des:.«cripi:ions-—VL1 Induction Algorithmsuceeeeeee.
2.6.1. The Ag Algorithm ... e
2.6.2. The Decomposition Algorithmc..ccoooiiririniiiinrrirnrean.
2.6.3. The Periodie Algorithm ..ot

2.7. Relationship to Statistical Methodsccccoovvriierrenriceeveiene

3. The Methodology: Knowledge LAYers ... e
3.1. Description of the Methodologyc.ccoevviirimieeiieieieeeiee v
3.2. Applying the Methodology to SPARC/E(V.2) .c.ccveiicciviinrivirnnnennanna.

3.2.1. Description

Of SPARC/E(V.2) wereereeeeereeeeeerseosresensressee s

3.2.1.1. Description of the Gameccoccirviiiiiniimiiiiiecirccrrcr e
3.2.1.2. Typical Rules and Rule Modelscccc..coiiinnvcinninnienenn.
3.2.1.3. Representing Eleusis Rulesccoocoiiiiiiiiniiiniiiniininennn,
3.2.1.4. Plausible Rulescovvmnimnmmamussnussassisamss
3.2.2. Design, SLeps .ovvvvnmmmm s rasusenamansmsmspsvas s s
3.2.3. Other FUNCtionscccevvriueiiiciionicrieiiercrnrenraierevsierenase s s
3.3. Previous Sequential Data Analysiscccceveiimmiiiiniciiniie e,

4. SPARC/E(V.2) Rule Generator and Game Playercccccomrvreeevereiriierenicrieecen
4.1. The Implementationcccciciiiiiiniiiienncsorennrrrrnereaneeerreesennnans

4.2. SPARC/E(V.2) Rule Generatorccominimivnnienrienncosinmsessesracsenns

4.2.1. Example 1
4.2.2. Example 2
4.2.3. Example 3
4.2.4. Example 4
4.2.5. Example 5

--

[B E X R R A RS EREERERNLESE R RN RY SRR R IR RN RESENF N EREE NN EN SN EE SRR RS RNNERNE RN N RN]

IR E SRR N R YRR NN EEE LSRR R RN RN E RN RN R R N R R R R R R R RN R Y RN N RN R PR R NN RN Y]

--

--

© ~ = e W

11
12
14
15
20
21

25
25
27
27
27
29
29
30
31
38
39

41
41
41
42

45
45
46

4,2.8: Example B csooosmmmsssmm s s it bannsssn s assssnansne
4.2.7. EXample T ... irieericceer e crreeceeaneeier s s res s samnerea ve

4.2.8. Example 8ccvcciuviininannn.
4.2.9. Example 9 ..coevirvvieririiinnn.
4.3. SPARC/E(V.2) Game Player

III

ll

..

APPENDIX I: Input Grammar for Interactive SPARC/E(V.2) Commands

APPENDIX II: Interactive Eleusis Commands

ll

ll

46
47

47
48
48

o4

o7

1. Introduction

1.1. Background

The type of inductive learning investigated here is part-to-whole generalizatlon. For example,
given a set of fragments of a scene, the problem is to hypothesize the description of the whole scene.
Such a description is used to predict the rest of the scene. Examples of such prediction problems include

medical diagnosis, stock market forecast, and estimating the damage to corn from cutworm infestation.

Unlike the prediction problem in letter sequence extrapolation, this work involves objects in the
sequence characterized by many relevant attributes. Further complexity is introduced by relationships
among these attributes. For example, the pattern may involve the recurrence of certain attributes depend-
ing on the attributes of objects preceding it at some arbitrary distance in the past. The Eleusis card
game, which models a process similar to scientific discovery, is identified as a domain with the above men-

tioned complexities and chosen as a domain of investigation.

This research represents an attempt in developing a program that provides problem-specific perfor-
mance together with ease of modification for application to different problems. Generality is obtained by
adhering to a knowledge discipline~the program is constructed as a layered learning system in which the
top-most layers use problem-specific knowledge, and the bottom-most layers use only general induction
knowledge (See Figure 1). The SPARC/E(V.2) program is such a program specialized in playing the
Eleusis game autonomously. To apply the program to closely related problems, the top two Eleusis-
oriented layers may be removed and replaced by new layers which perform functions peculiar to the new
problem. To apply the program to vastly different problems {which do not involve sequentially ordered
data), all but the bottom-most layer may need to be rewritten. Expert-level performance is achieved by
permitting the upper layers to make extensive use of domain-specific knowledge in whatever form is con-

venient.

1.2. Structure of this Report

This report discusses three main topics. First, the problem of describing a sequence of events is

investigated. The possible types of descriptions are defined and basic techniques for discovering these

5 User Interface Most Problem Specific

4 Eleusis Knowledge

3 Segmentation

2 Sequential
Analysis

1 Basic Induction Most General

Figure 1. Layered Structure of Eleusis Program.

descriptions are detailed. The second major topic is the methodology of knowledge layers. The detailed
design of the SPARC/E(V.2} program is presented. Lastly, the Rule Generator and Game Player ele-
ments of SPARC/E(V.2) are discussed and examples are given to demonstrate its strengths and

weak nesses.

2. The Theory of Inducing Descriptions of Sequential Event Sets

This chapter presents the theoretical background and the basic algorithms used to develop the

SPARC/E(V.2) tool.

2.1. Events and Sequences of Events

This research seeks to construct a tool which can find plausible descriptions of a Sequence of events.
Imagine, for example, that some process is occurring in timne—a process which we do not understand. We
wish to understand the process by describing it in a way which permits us to predict the future course of
the process from its past history. We 1ilvaui; this to be a plausible description—conceptually simple and in
accord with our knowledge of the problem at hand. In order to develop such a deseription, we could take
regularly spaced "snapshots” of the process. We could measure, at each snapshot, the state of the process

in terms of a set of variables which we believe are relevant or which may improve our understanding,.

These measurements form a sequence of events which merely represent the original process. Since

events are symbolic entities, they are amenable to manipulation by a computer. Formally,

Definition 1: An event is a symbolic description of a set of measurements taken of some pro-

cess, situation, or occurrence,

Definition 2: A sequential event set (sequential e-set) is a set of events which are arranged

in a totally ordered sequence. Time-series events are events whose ordering is based on the

order in which they occur in time.

There may be many different representations of events. An event may be as simple as a single
number, as elaborate as a graph or predicate logic description. The specific representation chosen for this
research is a vector of symbols known as a canonical VLl complex. A canonical VLl complex is
equivalent to an ordered n-tuple of symbols. Each symbol describes some measurement taken of the origi-

nal process. (A definition of VL 1 appears below).

There can also be many different types of sequences of events. For example, time-series events need

not be equally spaced in time. Sometimes negative events are available which indicate incorrect exten-

sions of the sequence of events. In some cases, errors may be present in the data. Errors can be of three
types: errors of ordering, of measurement, and of membership in the sequence. Ordering errors manifest
themselves as oui-of-sequence events. Measurement errors involve events which do not accurately
represent the actual processes being described. Membership in the sequence is a form of classification
error in which events have been included in or excluded from the sequence incorrectly. For the purposes
of this research, the events comprising the sequence are considered to be equally spaced and error-free.

The algorithms presented in this report work best when negative events are available, but satisfactory

performance can be obtained without negative events.

It is beyond the scope of this report to handle sequential event sets which contain noise. Although
many researchers have been criticized for ignoring noise, it was felt that there were plenty of difficult
problems to solve in sequential data analysis without introducing noisy events as an additional feature.
Error handling can be incorporated to some extent within the knowledge layer programming methodology.
For example, errors of measurement can often be detected by using a knowledge-based preprocessing layer
to filter them out. This approach is taken to some extent in Meta-DENDRAL [4,5,6] and in BASEBALL
[34,35]. Noisy data admit many more plausible descriptions than error-free data. In order to develop
plausible descriptions of noisy data, either more search or more problem knowledge is required. It is an
open question as to how such problem knowledge can be kept carefully separated from the general-
purpose knowledge of the induction program and yet still be used effectively to eliminate noisy descrip-

tions.

2.2. The Description Language VLI

The techniques and notation of VL, are used heavily in this report. VL, (Variable-valued Logic 1
[26,29,30|) is an extension of the propositional calculus (zeroeth-order logic) which uses the concept of a

selector as the basic building block for propositions.

Definition 3: A selector consists of a variable, a set of values called a reference, and a rela-

tion defined between the variable and the set of values.

Syntactically, a selector is written as

[variable relation reference]

An example of a selector is:
|suit = clubs, diamonds)

The variable is sult. The reference is {clubs, diamonds}, and the relation is ==, This selector indicates

that the suit variable may take on either of the values clubs or dlamonds.
[size > 10]

This selector indicates that size must take a value greater than 10.

In any particular VLl system, each variable is defined to have an explicit set of values called its
domalin. All values which appear in the reference of a selector must be taken from the domain. For

example, the domain of suit is {clubs, diamonds, hearts, spades}.

Each variable in a VLI system is also given a domain type which specifies the permitted generaliza-
tions of the variable. For example, the interval domain type indicates that any reference can be general-
ized by closing the interval between the smallest and the largest elements of the reference. Thus, the

selector
{value = 2,5)
may be generalized to

{value = 2,3,4,5]

if value has an interval domain. Domain types have the very important function of providing
problem-specific knowledge to the inductive program. In addition to interval domains, the

SPARC/E(V.2) program supports:
(1) nominal domains. All elements are unrelated and no plausible generalizations exist.

(2) cyclic interval domains. The elements in a eyclic domain are circularly ordered so that end-around

intervals are permitted. (Example: Card values are sometiines considered to be circular so that J Q

K A 2is a straight).

Intervals, both cyclic and normal, are denoted in the reference by writing the endpoints of the inter-
val separated by two dots. Thus, [value=2,3,4,5] is written as [value=2..5], and [value=J, Q, K, A, 2] is

written as [value=J..2].

Both events and descriptions can be conveniently represented by conjunctions of selectors called

complexes.

Definition 4: A complex is a conjunction of selectors. It is written by placing selectors

directly adjacent to each other:
[suit == clubs, diamonds|[value < 3]

{This conjunction describes the cards {AC, 2C, AD, 2D}). A canonical complex is a com-
plex in which all variables are present, and all selectors have the = relation and a single value

in the reference.

In the context of sequential data analysis, we use a subscripting notation to indicate the ordering of

various events. The subscript zero on a variable indicates that that variable refers to the current event of

interest. A subscript of one refers to the event immediately preceding; a subscript of two, to the event
before that; and so on. For example, [colorl=red][value0>>6] indicates that the color in the preceding
event was red and the value in the current event is greater than 6. We also introduce so-called
difference and sum variables. The variable dvalue0l has a value equal to valueO-valuel. And the vari-

able svalueQl takes on valueO+ valuel.

We noted above that a canonical ‘v’L1 complex is equivalent to an n-tuple of symbols. To use such
a representation, all of the variables in a VL1 system must be placed in some order. Then the elements in
the n-tuple provide the references for each variable in that order. Thus, if we order the card variables as
value followed by suit, the pair (10, clubs) is equivalent to the canonical VL, complex

[value=10][suit=clubs].

2.3. Descriptions and Predictions

How can a sequential event set be described? We seek descriptions which permit us to predict the

future behavior of the sequence from past events.

Definition 5: A prediction concerning an event E, is a description, D, of the set of possibilities

for E along with some specification of the likelihood of each possibility. We write
D>->E

when a description predicts an event.

In traditional fields, a statistical prediction specifies the possible values of some variable along with a
probability distribution function which indicates the probability of each possible value. In the present
work, a prediction is a logical description which subsumes all possibilities for the event in question. For
example, a prediction that the next card will be red is merely the description [color0=red] along with the
understanding that this is a perfect description {probability 1). There are two fundamental types of
descriptions for sequential event sets which allow us to predict the future course of the sequence; look-

back descriptions and perlodic descriptions. A lookback description is a function, F, of the most recent

events, which predicts the next event. If
S = <El, E2, gt - En>

is a sequence of events, then F can be applied to the 1b most recent events prior to any Ei in order to

predict Ei:
FEi b Ei_(1b-1)> ---» Bj.gr Ejoy) >>E

Ib is called to lookback parameter. It indicates how far into the past it is necessary to look back in order
to predict the next event. In a simple Markov process, for example, a lookback parameter of 1 is all that

is ever required. An example of a lookback description is the function

Fx) =x+1
which describes the sequence
<1,23,4,506,7,8,9 10>

by predicting the next value in the sequence as a function of the previous value; F(Ei] -2 Ei +1

A periodic description is a periodic function which describes each event in the sequence as a func-

tion of the position of that event in the sequence. For example, the periodic description
P(x) = x mod 4

describes the sequence
<1,23,0,1,23,0,1,2,3,0>

since

P(i) >--> E,.

Since P is a periodic function, the function has a period or length, T, after which it repeats. The
phase of an event is its relative position within the period. All events in the same phase have the same

prediction. The sequence:
<2C, 4H, 7C, AH, 6C, JH>

may be described by the periodic function P:

P(i) = [suitO==club] if imod 2 =1

P(i) = [suitO=heart} if i mod 2 = 0.

All of the clubs are in the first phase of the period, and all of the kearts are in the second phase. A
convenient way to specify the periodic function P is simply to list the descriptions of each phase as an

ordered n-tuple. We could rewrite the above function as
P: ({suitO==club], [suit0=heart])
where it is understood that [sultO==club] describes the first phase, and [suitO==heart] the second.

2.4. Description Models

Induction is the process of finding plausible and useful descriptions of events. One approach to
induction is to identify models which specify the form of plausible descriptions. Induction then becomes
the two step process of first fitting data to a model and second evaluating the fit to assess the plausibility
and utility of the resulting description. Such techmiques have long been used in traditional regression
analysis where the model is usually some specific regression polynomial. Statistical tests for goodness-of-

fit have been developed for such models.

Definition 6: A model prescribes the specific functional or syntactic form for a description.

Examples of description models are the decision tree used by Hunt [18], and the disjunctive normal
form used by Michalski [23,25,30]. In a numerical sequence, a model might specify that the description is
to be a lookback description in which the prediction is a linear function of the value of the previous

number in the sequence:
F(x) =ax + b.

In this model, the a2 and b parameters need to be determined from the data. Obviously, the models
used by a program carry a good deal of implicit problem-specific knowledge. It is important that a gen-

eral inductive tool permit modification and manipulation of the models chosen.

(1)

(2)

(3)

10

Three models have been identified for use in SPARC/E{V.2):

Periodic conjunctive model. This model specifies that the description must be a periodic description

in which each phase is described by a single VLI complex. Example:
Period ([colorO=red], |color0=Dblack])

describes an alternating sequence of red and black cards.

Lookback decomposition model. This model specifies that the description must be a lookback

description in the form of a disjunctive set of if-then rules:
[colorl=red] =>> [value0<5] v [colori=Dblack] => [value0>==35].

The left-hand sides, or condition parts, of the rules must only refer to events prior to the event to be
predicted (subscripts 1, 2, etc.). The right-hand sides provide predictions for the next event in the
sequence given that the condition part is true. The decomposition model requires that the left-hand
sides be disjoint—that only one if-then rule be applicable at any time. Furthermore, the right-hand

sides should also be disjoint.

Disjunctive Normal Form (DNF). This lookback model requires only that the description be a dis-

junction of VL 1 complexes. An example is:
[dsuit01 = 0] V [dvalue0l = 0]

which indicates that either the suit of the current card must be the same as the suit of the previous

card, or the value of the current card must be the same as the value of the previous card.

From a logic standpoint, any decomposition rule (and many periodic rules) can be written in dis-

junctive normal form. The periodic and decomposition models are useful not because of their theoretical

expressiveness or power, but because they assist in locating plausible descriptions quickly. The space of

all DNF descriptions is very large and difficult to search.

11

2.5. Descriptions Based on Segmentation

Very often sequences of events are best described in a hierarchical fashion as a sequence of subse-

quences. For example,
$=«3,44,5525,6,6,66,7,7,7,7,7>

is best described as a sequence of subsequences. Each subsequence is a string of identical digits. The
length of each subsequence is one longer than its predecessor. The digit used in the subsequence is one
larger than the digit used in the previous subsequence. In \-’Ll, this can be indicated by the two part

description;

string = |dvalue01=0] (A)

[dvalueOl=1+ 1][dlengthO1=+ 1] (B)

Statement (A) defines a subsequence to be a string of adjacent events satisfying the constraint that their
values must remain constant (dvalue01=0). The sequence is segmented into strings of maximal length

satisfying this segmenting condition. This yields, in this example, the derived sequence
§' = < (3,1), (42}, (5,3), (6,4), (7,5)>

In S' we have used the n-tuple representation for VL, events. The first value in each event is the digit
used in the corresponding string of events in S. The second value specifies the length of the corresponding

string in S.

Once the sequence has been segmented, a DNF description, statement (B), can be written. In (B)

dvalueCl and dlengthOl refer to the values and lengths of the events in sequence 5.

Any of the description models listed in section 2.4 can be applied to a sequence after it has been seg-
mented. The discovery of such segmented descriptions requires both the discovery of the segmentation

condition and the discovery of the description of the segmented sequence.

12

2.6. Discovering Descrlptlonu--VLl Induetion Algorithms

How can these descriptions be discovered? In this section we outline the basic algorithms used to
discover descriptions in SPARC/E(V.2). The general approach is to choose a segmentation condition, a
value for the lookback parameter, and a model. Then one of the VLI induction algorithms described in
~ this section is called to fit the data to a model and assess the quality of the fit. The VLI algorithms are
provided with events which have been developed by transforming the original sequence. As an example,
consider the sequence of cards, S, shown in Figure 2. Assume, for the moment, that no segmentation con-
dition is applicable and that we are considering a lookback parameter of 1. This sequence of events can

then be transformed into the VLI events listed in Table 1.

Notice, using Table 1, that [deolor0l==1] for all events (i.e. color always changes from one card to

the next). The VLI induction algorithms seek to discover exactly this sort of description.

The variables listed in Table 1 are called derlved varlables because they are derived from the ori-
ginal sequence. The events are derived events.. The events in Table 1 are unordered. The original ord-

ering of the sequence has been made explicit through the difference variables (dvalue, dsuit, and dcolor).

5 = <2C, 10D, 35, AD, JC, 6H, 6C>.

Figure 2. Example Sequence of Cards.

valuel suitl colorl valueO suit0 color0 dvalueOl dsuit0l decolor(l

2 C black 10 D red 8 +1 1
10 D red 3 5 black -7 +2 1
3 S black A D red -2 +2 1
A D red J C black 10 +3 1
J C black 6 H red -5 +2 1
6 H red 6 C black 0 +2 1

Table 1. Transformed "V'L1 Events

13

Color is derived using knowledge of the characteristics of the cards.

In generating Table 1, valne was given an interval domain, suit a cyclic interval domain (with the
suits ordered as clubs, diamonds, hearts, spades, clubs, ...), and color 2 nominal domain (red or black].
The difference variables reflect these domain types. Dvalue0Ql takes on values from -12 to + 12, but
dsuit0l1 takes values 0, 1, 2, and 3. Differences for cyclic interval domains are computed as values modulo
n, where n is the size of the domain. Thus, the difference between clubs and hearts is + 2 ((0-2) modulo
4 = 2}. Dcolor01 is an example of a difference on a nominal variable. Dcolor is 0 if colorO=colorl, and 1

otherwise.

Table 1 could be used to discover DNF and decomposition descriptions with a lookback of 1, but it
would not be useful for discovering periodic descriptions or descriptions with other lookbacks. Different
derived variables and different events are required for discovering descriptions which fit diflerent descrip-

tion models.

14

2.8.1. The Aq Algorithm

Much work in induction has been conducted by Michalski and his collaborators. Mest of this work
is based on the Aq algorithm [23,25,30] which was originally developed in the context of switching theory.
This algorithm accepts as input a set of positive events and a set of negative events. Each event is a
canonical VL, 1 complex. Agq considers each VL, variable to be a variable in a multiple-valued logic cover-
ing problem. By developing a cover of the positive events against the negative events, Aq produces a
description which is satisfied by all of the positive events and by none of the negative events. (A descrip-
tion covers an event if the event satisfies the description). The process of developing a cover involves

partially computing the complement of the set of negative events and intelligently selecting complexes

which cover positive events. The final cover may be a single complex or a disjunction of complexes. Aq
seeks to develop a disjunction with the fewest number of complexes possible, but the algorithm is only
quasi-optimal. It is capable, under certain conditions, of giving an upper bound on the distance from

optimality of the solaution it produces.

The algorithm proceeds in best-first fashion by the method of disjoint stars. A positive event, el, is
chosen and a star is built about el. A star is an approximation to the set of all prime implicants which
cover el (and are in the complement of the set of all negative events). The best complex in the star, lq, is
chosen to form part of the solution. All events covered by lq are removed from further consideration.
The procéss of choosing a positive event, el, building a star about el, and selecting the best element of
the star is repeated. However, the new el must not have been covered by any element of any previous
star. In this manner, disjoint, well-separated stars are built, and Iq's are selected. The process repeats
until all events have been covered by at least one star. Some clean-up operations are required in the case

where some positive events were covered by some star, but by no Iq.

The process of building a star about an event el is simple. The disjunction of all negative events is
complemented and then multiplied out, one event at a time. After each event is multiplied out, the set of

intermediate products (so-called partial stars) is trimmed according to a user-specified preference criterion,
and only the MAXSTAR best elements are retained. The final star has at most MAXSTAR elements

in it.

ib

Note that all of the steps mentioned {complementation, multiplication, etc.) are being performed eon

variables which can take on a set of values. This is a multiple-valued covering process.
The strengths of the algorithm include

(1) fBexibility - The user can specify the preference criterion which determines which Iq is chosen from
each star and which partial stars are retained during the star-building process. The algorithm can

be modified to develop strictly disjoint complexes in the solution.

(2) optimality - If no trimming is performed, the algorithm provides a measure of how many additional

complexes appear in the solution above and beyond the minimum necessary for the optimal solution.
(3) quasi-optimality - The algorithm performs well even when the stars must be severely trimmed.

Unfortunately, the Aq algorithm is not sufficient for discovering all of the description models
required for describing sequential event sets. Aq was designed to develop descriptions in disjunctive nor-
mal form with the fewest number of complexes. This is only one of the description models discussed
above. Neither periodic nor decomposition descriptions can be easily discovered using Aq (although
equivalent descriptions are sometimes discovered as DNF descriptions). Aq tends to develop a "lopsided”
cover. Since it proceeds in a best-first manner, it selects the largest prime implicant first and smaller
prime implicants later. Descriptions involving symmetry (decomposition descriptions in particular) tend
to be overlooked. Thus, although the Aq'algorithm is powerful and useful, it does have some limitations

‘which prevent it from completely solving the discovery problems of sequential event sets.

Two other algorithms have been incorporated into the SPARC/E(V.2) program: the decomposition

algorithm and the periodic algorithm.

2.6.2. The Decomposition Algorithm

This algorithm seeks to fit the data to a decomposition model. It accepts as input a set of positive
events and a set of negative events. In addition, some variables are designated as "left-hand side” vari-
ables (i.e. variables which describe previous evenis). A decomposition model seeks to explain the events

in terms of the values of "left-hand side” variables. A decomposition description for the events in Table 1

would be

16

|colorl=red] =>> |[color0=Dblack] v

[colorl=Dblack|==> {color0=red].

This description decomposes on colorl. It breaks the description of the sequence into two if-then rules.
The =2>> can be interpreted as an implication. The decomposition algorithm takes advanrtage of the con-
straints that both the left-hand and right-hand parts of the if-then rules must be single VL1 complexes

and that the left-hand sides must be disjoint.

The decomposition algorithm starts by performing a trial decomposition on each possible left-hand
side variable. A trial decomposition for a given variable is formed by creating a complex for each possible
value of the given variable (This basic idea was suggested to me by R. S. Michalski). All events covered
by the given value of the given variable are merged together to form a complex. (The references of
corresponding selectors are umioned). For example, using the events of Table 1, trial decompositions

could be performed on valuel, suitl, and colorl to yield the complexes shown in Table 2. The general

idea is to form trial decompositions, choose the best decomposition, and break the problem into sub-
problems, one for each if-then rule in the selected decomposition. The algorithm can then be applied

recursively until a consistent description has been developed.

Table 2 shows the raw trial decompositions. These are very specific and very poor descriptions.
They must be processed further before a decision can be made as to which decomposition is best and

should be further investigated. Three processing steps are applied to the trial decompositions.

The first processing step involves interval (and cyclic interval) variables such as valuel. These vari-
ables often have many values and trial decompositions based on them are very uninteresting and implausi-
ble. (An SPARC/E(V.2) rule with 13 separate cases would be impossible to discover!). An attempt is
made to close intervals on the left-hand side of the trial decomposition. Imagine, for example, that some

sequence is well-described by the decomposition:
[valuel <8} => [colorO==red] v [valuel>=8]=2>> [color0=black]

A trial decompeosition would involve up to 13 different complexes for valuel. The first processing step

attempts to detect that all if-then rules below [valuel=38] should be combined into one if-then rule, and

17

On valuel:

valuel=a| =>> [valueO=j]|suit0=C][color0=B]{dvalue01=10][dsuit01=+ 3|[dcolor01=1]
valuel=2| => [value0=10|[suit0=D][color0=R|[dvalue01==8][dsuit01=1]|dcolor01=1]
valuel=3] =>> |value0=A|[suit0=D]|color0=R||dvalue0l==-2|[dsuit01=++ 2|[dcolor01=1]
valuel=6] ==> [value0==6}|suit0==C]{color0=B|[dvalue01=0]|dsuit01==+ 2][dcolor01=1]
vaiuel=10]=> [value0=3]|[suit0=>5]{color0=B|[dvalue01=-7]|dsuit01=++ 2||dcolor01=1]
valuel=j] =>> [value0=6||suit0=H]|color0=R |[dvalue01=-5||dsuit01=+ 2][dcolor01=1]

On suitl:

suitl==C| => |value0=6,10||suit0==D H][color0=R]|dvalue01=-5,8][dsuit01=+ 1,2][dcolor01==1]
suitl=D| => [value0=3,J]|suit0==C,S|[color0=B][dvaluet1=-7,+ 10][dsuit01=+ 2,3][dcolor01=1]
suitl=H| => [value0=6}|suit0=C]|[color0=B|[dvalue01=0][dsuit01=+ 2|[dcolor01=1]

suitl=S] =>> [valueO=a][suit0=D][color0=R|[dvalue01=-2}|dsuit01=1+ 2|[dcolorll=1]

On colorl

[colorl=R| =2 [value0=3,6,J][suit0=C,S||color0=B][dvalue01=-7,0,10][dsuit01=1+ 2,3][dcolor01=1]
[color1=B| => [value0==a,6,10|[suit0O=H,D][color0=R|[dvalue01 =-2,-5 8] [dsuit01=1,2[dcolor01=1]

Table 2. Trial Decompositions.

that all if-then rules above [valuel=7| should be combined into another if-then rule. The algorithm
operates by computing distances between adjacent if-then rules and looking for sudden jumps in the dis-
tance measure. Where a jump occurs (a local maximum), the algorithm tries to split the domain into

Cases.

The distance computation is a weighted multiple-valued Hamming distance. The weights are deter-
mined by taking user-specified plausibilities for each variable and relaxing these weights according to the
discriminating power of each variable (taken singly). For instance, if a right-hand side variable is
irrelevant in some if-then rule (i.e. its reference contains all possible values so that it is a2 don't care
selector), then its weight is reduced to zero. The distances between adjacent if-then rules are computed
and local maxima are located. If there is one maximum, the interval is split there, and two if-then rules
are created. If there are two maxima, three if-then rules are created. If there are more than two maxima,

the smaller maxima are suppressed.

18

Similar techniques are used for cyclic interval domains.

Once the cases have been determined, each trial decomposition is next processed by applying the
domain-specific rules of generalization to the selectors on ‘the right-hand sides of the if-then rules. Inter-
vals are closed for interval variables and cyclic interval variables. Special domain types are defined for
difference variables (variables derived by subtracting two other variables). The rules of generalization for
difference variables attempt to find intervals about the zero point of the domain. Thus, [dvalue01==-3,1,9]
would be generalized to [dvalueOl=-3..+ 3]. One-sided intervals away from zero are also created:
[dvalue01=3,4,6] would be generalized to [dvalue01>0]. These generalizations are only performed if the
reference contains more than one value. Corresponding to the trial decompositions of Table 2 we get the
generalized trial decompositions of Table 3. The notation [variable = #] is used when a variable can take

on any value from its domain (i.e. it is irrelevant).

The third processing step examines the different if-then rules and attempts to make the right-hand
sides of the rules disjoint by removing selectors which have overlapping references. Table 4 shows the

results of this step.

On valuel

[valuel=a..4] => [valueO=a..j|{suit0==C,D][color0="+|dvalue01< >0][dsuit01 < >0][dcolor01=1]
[valuel=5.k] =>> |value0=3..6|[suit0=C,S|[color0=+|[dvaluedl < =0||dsuit01=2}[dcolor01=1]

On suitl

suitl=C] ==> lvalue0="6..10][suit0=D,H][color0=R|{dvalue0l < >0][dsuit01=1,2|[dcolor01=1]
suitl=D] =2> [value0=3..J||suit0=C,S][color0==Bj[dvalueD1 < > 0]|dsuit01=2,3][dcolor01=1]
suitl=H|] =3 [value0=6||suit0=C][color0=B][dvalue01=0]{dsuit01=2][dcolor01=1]

suitl=S] =2 |value0=a)|suit0=D][color0=R|[dvalue01=-2|[dsuit0]1=2][dcolor01==1]

On color?

[colorl=R| => [value0=3..J||suit0=C,S]{color0=B}||dvalue0l=4][dsuit01=2,3]|dcolor01==1]
[color1=B] => [value0==a..10][suit0=H,D][color0=R][dvalue01 < >0][dsuit01=1,2][dcolor01=1]

Table 3. Generalized Trial Decompositions.

19

On valuel

[valuel==a..4] => TRUE
Ivaluel=5.k| => TRUE

On suitl

suitl==C} => TRUE
suitl=D} => TRUE
suitl=H| => TRUE
suit}=5| => TRUE

On colorl

[colorl=R} =>> [suit0=C,S]{color0==B]
{colorl=B] ==>> [suit0=D,H][color0=R]

Table 4. Trial Decompositions With Overlapping Selectors Removed.
(Irrelevant selectors are omitted)

At this point, the algorithm has identified the rule fairly well. Now the best decomposition can be
selected. The selection process uses a set of cost functions which measure characteristics of each trial

decomposition. The cost functions are:

(1) Count the number of negative examples that are incorrectly covered by this decomposition.

{2) Count the number of cases {if-then rules) in this decomposition.

(3) Return the user-specified plausibility for the variable being decomposed on.

{(4) Count the pumber of null cases for this decomposition {e.g. [valuel=4] is a null case in Table 2).

{8) Count the number of "simple” selectors in this decomposition. A simple selector can be written
with a single value or interval in the reference {e.g. [value01>4| is a simple selector). After apply-

ing the generalization rules (as in Table 3] all selectors except those with nominal variables are

necessarily simple.

The cost functions are applied in an ordered fashion using the functional sort algorithm developed

by Michalski [26]. The trial decomposition with the lowest cost is selected. The lowest cost decomposi-

tion in Table 4 is the decomposition on colorl. The other decompositions are completely overgeneralized.

20

The algorithm does not always proceed as indicated above. The user can request that the best trial
decomposition be selected after performing only the first post-processing step, or after the second post-

processing step has been completed. In fact, it is recommended that the best decomposition be selected

after the second step.

Once the best trial decomposition has been selected, it is checked to see if it is consistent with the
events {covers no negative events). If it is, the composition algorithm terminates. If it is not, the prob-
lem is decomposed into separate subproblems, one for each if-then rule in the selected decomposition.
Then the algorithm is repeated to solve these subproblems. {The subproblems are solved simultaneously,

not independently).
The strengths of the decomposition algorithm are

(1) speed - The algorithm locates good decompositions quickly.

(2) aptness - The algorithm locates descriptions which fit the decomposition model very well.
The weaknesses of the algorithm are

(1) inability to produce alternatives - This is a best-first algorithm which only returns one description.

Often it is desirable to have a learning algorithm which returns a set of possible descriptions.

(2) restricted model - The algorithm was designed for a specific model. The generality of this model has

not yet been demonstrated.

2.6.3. The Periodic Algorithm

The periodic algorithm is really just a modified version of the decomposition algorithm designed for
discovering descriptions which fit the periodic model. A parameter is provided to the algorithm which
indicates the number of phases to expect in the description. Each phase is treated in somewhat the same
way as the different if-then cases are treated in a trial decomposition. First, the events in each phase are
combined to form a single complex (by forming the union of references of corresponding selectors}. For
the sequence S in Figure 2, the results are shown below. Note that no difference variables or variables

describing previous events are included in these derived events.

21

phase 1: |value0=10,3,6]{suit0=D,H|[color0=R}

phase 2: [value0=23,j,6][|suit0=C,S][color0=B|

If these complexes are consistent with the negative examples, then the references are generalized accord-

ing to the domain types of the variables:

phase 1: [value0=a..10|[suit0=D, H][color0=R]

phase 2: [value0==3..j][suit0==C,S|[color0=D)]

If these generalized complexes are still consistent, selectors with overlapping references {(overlapping with

selectors in other phases) are removed:

phase 1: [suitO=D,H]|color0=R]|

phase 2: [suit0=C,S]|color0=B]

If these complexes are still consistent, they are returned as the final description.

Both the periodic and the decomposition algorithms go through these post-processing steps until the
description becomes inconsistent. When this occurs, the algorithm backs up and returns the version of the
description before it was overgeneralized to become inconsistent. In soine cases, the star generation pro-

cess of the Aq algorithm is invoked to attempt to extend the description against negative examples.

2.7. Relationship to Statistical Methods

There are many direct parallels between the previous discussion of sequential data analysis and the

traditional area of time-series analysis.

Time-series events occur in many systems: the economy, the factory, the environment. Techniques
have been developed to predict the future course of the time-series and to determine the appropriate
amount of feedback required to coatrol the system. The same sorts of descriptive models discussed above

exist in traditional areas — the event forms and the inductive techniques differ drastically.

There are two primary approaches to time-series analysis: regresslon methods and spectral
methods. Regression methods atiempt to explain the behavior of a particular variable {the dependent
variable, ¥} in terms of the previous behavior of a set of variables (the independent variables, xi). If the
past behavior of the dependent variable is a function of itself, the system is called autoregressive.
Regression-based descriptions are the statistical counterparts of the lookback models described above. To
fit data to a regression model, the user must specify a particular model, the regression polynominal.
Often the form of the regression polynomial is suggested by theory within the field of application. The
technique of least-squares regression is applied to estimate the constant parameters of the regression poly-
nomial. Hf certain assumptions hold, a measure of goodness-of-fit (total explained variance) can be

obtained.

Spectral methods attempt to describe the behavior of a particular variable by analyzing its fre-
quency spectrum. This is the continuous frequency counterpart of the discrete periodic models described

before. Fourier analysis is used to determine the frequency components that make up the "waveform” of

the dependent variable. The independent variable is time.

Here are some examples:

Economic time-series. Let us exanine the series

S=<Dy, Dy, Dg, ..., D>

where each Di is an ordered pair, D, = (Yi’ Xi].

Let

Yi = demand l’qr beef at time i,

Xi = supply of beefl at time i.

Econamic theory predicts that the demand for beef is a function of the recent

values for supply. The form of the regression polynamial is

=3

Using the data im S, the coefficients Bﬂ, 1 and 15‘;2 can be estimated. The

goodness-of-fit of the model can be tested.

Plant management. Imagine a plastics factory where same of the key

ingredients are water, oil, and heat. Let

S=<B

1* Bgy - o) Ep

Where each Ei = (yi, U, Vs, wi):

y; = output per minute of plastic at time i
u. == input of water (per minute) at time i
v. = input of petrolewm base at time i

temperature of the reaction chamber at time i.

g
|

In order to predict the future production of the plant, we want to describe ¥;
in terms of previous values of u, v, and w. Water is believed to have a para-
bolic effect on plastic output. The regression polynomial looks like this:

yi=By + By,

¢ + Bg“i + 53‘“ + Biwi

Using linear regression, we can estimate the coefficients BO through B4 fran

the data. The regression polynomial need only be linear in the coeflicients.

24
An autoregressive sequence might have the form:
Yi=By + By, + By ¥,

Box and Jenkins [3] describe techniques for estimating the degree of autocorrelation (the lookback

parameter) from the data. Such techniques permit the researcher to base the form of the model as well as

the specific content of the mode] on the data. Few such heuristics exist in logical sequential data analysis.

25

3. The Methodology: Knowledge Layers

In this chapter we describe the programming methodology used to develop the SPARC/E(V.2) pro-
gram. The steps of the methodology are illustrated by indicating how they were applied to

SPARC/E(V.2). The knowledge layer methodology has been very useful in designing the SPARC/E(V.2)

program.

3.1. Description of the Methodology

The goal of any programming methodology is to enhance the quality and performance of the pro-

gram and improve the productivity of the programmer. The knowledge layer methodology seeks to

® simplily the programming process by providing a framework (knowledge layers) for problem decom-

position,
» develop general learning programs which are easily adapted to solve related learning problems,
2 develop learning programs with sufflicient power to solve the problems at hand.

A program designed using the knowledge layer concept is built of distinct layers roughly like an

onion (Figure 3).

Transform ﬂ:ﬂm Evatuate >
Models

Y

Figure 3. The Knowledge Layer Scheme.

Each layer has access to a specific body of knowledge. Each layer may invoke the next layer within it

and may examine the information returned by that layer. The cutermost layer interacts with the user of

28

the system to solve a specific class of problems. The innermost layer is the most general. It uses only
very general knowledge and algorithms to accomplish its task. The layering is reflected in the generality
of the knowledge used at each level, in the scope of variables at each level, and in the flow of control from
one level to the next. The knowledge _used at each level must all be of the same degree of generality,
approptiate to the function of that layer. The variables in that layer can be accessed by outer layers, but
pot by inner layers. Subroutine calls may only be directed at routines in the current layer or within inner

layers. If this discipline is adhered to, the outer layers can easily be removed and replaced by layers

better-suited to a particular task.

In order to apply the methodology, it is easiest to proceed by the following steps:

Step 1.
Identify the input representations. What kinds of data must the program accept? Do these data

contain errors? Are negative examples available? How should the data be described?

Step 2.

Identify output representations. What kinds of output descriptions must the program produce?

How can these be represented? What description models should be used?

Step 3.
Identify the basic algorithms needed to accomplish the learning task. Most learning in non-trivial
environments requires three basic operations: interpretation, generalization, and evaluation. Furth-
ermore, after generalized descriptions have been developed, they must be evaluated to assess their
plausibility within the domain in question. This step (step 3) involves determining how the generali-
zation process will take place. A few learning algorithms may be chosen from the many general-

purpose algorithms currently in use. Alternatively, new algorithms may be required. These should

be designed to use ounly general knowledge.
Step 4.

Identify the transformations required to prepare the input events for the general-purpose algorithms

identified in Step 3. This step solves the interpretation portion of the learning problem.

27

Step 5.
Identify the evaluations and transformations necessary to convert the descriptions produced by the
general induction algorithms into the desired output descriptions identified in Step 2. This step

solves the evaluation portion of the learning problem.

Step 6.
Identify the knowledge needed to perform the tasks defined in steps 3, 4, and 5. What knowledge is
needed to generalize the events? What knowledge is required to perform the transformations on the
input data? What knowledge is required during evaluation? This is a very diflicult step to perform
because knowledge has a way of entering programs quietly and implicitly. It may help to imagine

applying the program to different but related problems.

Step 7.
Decompose the program into layers according to the knowledge and tasks performed in each layer.
In this step, correspunding functions of interpretation and evaluation are identified and grouped
together in layers according to the knowledge required for each function. The layers are designed to
surround the basic generalization functions and span the distance from these general-purpose algo-

rithms to the special-purpose problem the program is intended to solve.

3.2. Applying the Methodology to SPARC/E(V.2)
3.2.1. Description of SPARC/E(V.2)

3.2.1.1. Deseription of the Game

Eleusis was invented over a period of years by Robert Abbott. It is an inductive game in which
players attempt to discover a secret rule known only to the dealer. The secret rule describes a sequence of
cards which are "legal.” Players attempt, in their turns, to extend the sequence by playing one or more

cards. The sequence of cards which has thus far been played is arranged in a layout (see Figure 4).

The layout has a main line which contains all of the correctly played cards in sequence. Incorrect

cards are placed in side lines below the main line card which they follow. In a turn, a player may play a

string of from one to four cards. If the cards are correct, the dealer places them in the proper positions on

the main line.

mainline: 3h 9s 4c jd 2¢ 10d 8 Th 2¢ b5h

sidelines: jd ah as 10h
5d 8h 10s (10s
qd 9s <- string played incorrectly
48
2s)

Figure 4. Sample Eleusis Layout

If any one of the cards is incorrect, the entire string is placed on a side line below the last legal card. The
string of cards is overlapped so that players examining the layout can recall that only one of the cards in

the string need be wrong.

The goal of the game is to get rid of all of one’s cards. When a player plays correctly, he or she gets
rid of the cards so played. If a player makes errors, the dealer deals additional cards equal in number to

double the number of cards played by the player.

The secret rule is invented by the dealer at ﬁhe start of each round. What prevents the dealer from
choosing an impossibly difficult rule? Besides the dealer’s natural desire to have an interesting game, the
scoring for each round is contrived so that the dealer gets a score equal to the difference between the best
and the worst scores for that round. Thus, the dealer is encouraged to choose rules of intermediate
difficulty. The rules should stump some players-but not others. In this way a large point spread can be
cre-ated. There are addition2l rules for the game and the reader is advised to refer to appendix 4. This

program should
@ suggest possible rules to describe the layout,

2 evaluate rules suggested by the player, and

. suggest possible cards to play from the player's hand.

Previous work on Eleusis has been done by Barto and Prager. Their work is limited to basic induc-
tion tasks. The rule model which they demonstrated in {2} was a decomposition model with a lookback

parameter of 1.

3.2.1.2. Typical Rules and Rule Models
Here are some examples of secret rules (after Abbott]21]):

e R1 "If the last card was a spade, play a heart; if last card was a heart, play diamonds; if last was dia-

mond, play clubs; and if last was club, play spades.”

o R2 "The card played must be one point higher than or one point lower than the last card.”

e R3 "If the last card was black, play a card higher than or equal to that card; if the last card was red,

play lower or equal.”
s R4 "Play alternating even and odd cards.”

e R5 "Play strings of cards where each string is one card longer than the previous string and where a

string is an ascending sequence of cards starting with an Ace.”
e R6 ”The sum of the values of the last card and the current card must be less than 16.”
Where values are mentioned, Ace is usually understood to be 1, Jack 11, Queen 12, and King 13.

The rule models for these rules are precisely the description models introduced in Chapter 2. Rules
R1 and R3 are decomposition rules with a lookback parameter of 1. Rule R2 is a DNF lookback rule (a
degenerate form of a disjunction) since it expresses the value of one card in terms of the values of the pre-
vious card. R5 is also a DNF rule based on segmenting the sequence into strings of ascending cards. R4

is a periodic rule. R6 is a DNF rule, but instead of cards being related by differences, they are related by

a BUm.

3.2.1.3. Representing Eleusis Rules

Although the VLI descriptions introduced in Chapter 2 are sufficient for representing the Eleusis

rules described above, it was felt that the user of the SPARC/E(V.2) program would prefer a more

30

elegant and clear representation language. Therefore, %22 was developed as a description language for
rules which describe sequences of events. VL22 is a successor of VL21[21]. Both languages are subsets of

a very extensive description language, VL2 {21,27].

VL22 is an extension of first-order predicate logic which uses a VL22 selector as the basic building

block for well-formed formulas. VL22 selectors are a bit more complex than "U'L1 selectors:

[function (variable-list) relation function (variable-list) operation value-list)

Variables in the variable-lists refer to specific cards or strings. The same subscripting convention used in
VLI is used in ‘J’L22 to indicate the order of the cards. For example, cardO refers to the current card;
cardl, to the card before card0; etc. Functions applied to these variables take on values from explicitly
defined domains (exactly like VL, variables). Difference and sum variables are not needed in VL,, since
functions can (optionally) appear in the reference. The operations required to express Eleusis rules are
plus, minus, and plus-or-minus. Each VL22 expression is assumed to be universally quantified over the
entire event sequence (with the implicit condition that card0 is adjacent to cardl, cardl to card2, etc.).
Table 5 shows the VL22 equivalents of the Eleusis rules listed above. Note that the dummy variable
string is used to describe a string of cards in a segmented rule. Subscripts are applied the strings as well

as to cards.

3.2.1.4. Plausible Rules

In order to discover Eleusis secret rules, we must first define what we are looking for. Induction is
the process of selecting plausible descriptions from the space of all possible descriptions. In

SPARC/E(V.2), we are searching for plausible rules to describe the layout. Abbott gives some guidelines

for forming good Eleusis rules, and these quidelines can be used to define characteristics of plausible rules.

First of all, conceptual simplicity is important. Complex Eleusis rules will not score well for the
dealer because no one will be able to guess them. Even apparently trivial rules are quite difficult for peo-
ple to guess. Secondly, some rules permit many cards to be legal at many points. Abbott observes that

rules which, on the average, permit fewer than one-fourth of the deck to be played are usually easier to

31

R1 [suit{card0)= suit(card1}+ 1]

R2 [value(card0)== value{card1)+ -1]

R3 |suit{card1)==black] — [value(card0)>=value(cardl)] V
|suit{card1}=red| — [value(card0)<=value{card1)]

R4 Period { [parity{card0)=even], [parity(card0)=odd])

R5 string = [value(card0)=value(card1)+ 1] :
[length{string0}=length(stringl}+ 1

R6 [value(card0) <= - value(card1)+ 16]

Table &. %22 Descriptions of Eleusis Rules.

discover than rules which typically allow half the cards to be played. A rule which permits any card to be
played any time is quite difficult to discover because no negative examples are ever produced. Thirdly,

most dealers arrange the rule so that every card is playable at some time during the game.

These plausibility constraints can be used to evaluate rules produced by the general induction algo-
rithms. To measure conceptual complexity, we can count the pumber of selectors in the rule. Other syn-
tactic measurements, such as measuring the number of values in a reference, can be used to approximate
conceptual complexity. The size of the set ol"legal cards can be deduced from the 'VL1 description of the

rule. An estimate of the average size of the set of legal cards can be developed and used to test the plau-

sibility of the rule.

3.2.2. Design Stepa

Here are the steps of the design methodology applied to the design of the SPARC/E(V.2) program:

® Identify Input Representations. The input representations for the SPARC/E(V.2} program are sym-
bols of the form '2¢’ or 'jd’ representing cards in a card deck. The input is entered in order of play.
Each string of cards (one to four cards in length) is entered using a "card” command along with the

judgment of the dealer:

card 2¢ 3dsy;

This command indicates that a player played two cards and the dealer prorounced them correct.

The input is stored in the program as a linked list in the form of the layout.

& Identify Output Representations. Rules produced by the program are written in VL22 as described

above, The rules fit the three description models described in Chapter 2: periodic, decomposition,

and DINF.

® Identify Generalization Algorithms. The three algorithms presented in Chapter 2 are the algorithms
used in the inner-most layer of the SPARC/E({V.2) system. Each algorithm is designed to fit unor-
dered VL.1 events to one of the description models. Each algorithm produces a description in the

form of a disjunction of VLl complexes.

Y Identify Interpretation Steps. Four interpretation steps can be identified. The first step is to con-
vert cards to canonical VLI complexes containing the suit and value of each card. Thus, 2¢

becomes [suit=clubs][value=2].

The second step is to derive additional variables which may lead to plausible descriptions of the lay-
out. Color and parity {the value of the card modulo 2) might be added at this point. Also, some indica-
tion of whether the card is a faced card or has a value which is a prime number might be desired. In the
second step we could transform [suit=clubs|{value=2] to [suit=clubs][value=2][color=black]

[parity =even]{faced="(alse|[prime=true].

The third step involves segmenting the layout. As discussed in chapter 2, many interesting and
plausible descriptions are based on segmentation. In SPARC/E(V.2), we segment the layout into strings
of maximal length which satisfly a segmentation condition. Although it might be possible to develop some
techniques for inferring the segmentation condition from the data, we have chosen o use a hypothesize

and test approach. The program is provided with a list of segmentation conditions. It attempts to seg-

ment the layout with each condition and then evaluate how plausible the segmentation is. For example,

if the segmented layout has nearly the same number of events as the original layout, then it is very

33

unlikely that the layout is well-described using that segmentation condition. Conversely, if the whole lay-
out satisfies the segmentation condition so that only one segmented event is produced then this is not a
plausible segmentation either (invariant properties of the entire layout are discovered by other pro-

cedures).

The final transformation step involves making the order of the events explicit in the events and
removing the order from the sequence. Once a model and a value for the lookback parameter have been
chosen, it is easy to develop events like those of Table 1 which contain descriptions of the current card,
the preceding cards, and relationships between them. Thus, this step computes sum and difference vari-

ables.

Once the events have been processed by these transformation steps, they are ready to be generalized

using the VLI induction algorithms of the inner-most layer.

8 Identify Evaluation Steps. Three evaluation steps can be identified. The first step examines rules
developed by the VLI induction algorithms and filters them to remove redurdant information. For

example, it often happens that the VL, induction algorithms develop descriptions like:

|facekLalse] => [value@=j|[value@valuel]|[faceO=true] &

[facel=true] => |value0<=10] {valueO<valuei] [faceO=false]

The selectors [value0>>valuel] and [valueO<valuel] are redundant because [facel=false] implies
[taceO=true] is the same as [valueﬂ)valuel], but logically correct, statements. The VLI induction
algorithms cannot remove these selectors since the algorithms are mot aware of the order of the
events. There is another redundancy. [faceD=true| and [value0>=j] are redundant. This redun-
dancy was caused because VLl induction algorithm are not aware of the structural relationships

between selectors. The filtering is done in layer 2 right after level 1 learning element discovers all

the rules.

34

S~ T

[face(ca:ﬂ]=true] |face{card)="alse] [color(card)=red] [color{card)=black]

N /

[val(card)=a|&fﬁni)=2] [val{card)=3| ... [suit{card}=spade] [suit(card)=club}...
= |

{

|

as 2535 ... jsqs ks ah 2h 3h ... jh gh kh 'ad 2d 3d ... jd qd kd

The structural information in Eleusis domain is shown above and is used in the filtering procedure as
follows:

for each rule in the rulebase do
for each complex in the rule do
take two selectors based on the same primitive from the complex and call them sl and 82;
if 81 = 82 then keep more abstract selector
else if sl contains 82 then drop sl

else if 82 contains sl then drop 82;

Selector, 51, is more abstract than s2 if s1 is defined in terms of 52. It makes sense to consider those
descriptors for redundancy only il they are compaﬁble. For instance, it does not make sense to compare
face descriptor with color descriptor or to compare face with dvalue descriptor. The first problem is easily
solved by testing subset relationship. The second problem is solved by only comparing descriptors base on
same primitives. For instance, both face and value descriptors are comparable because they are based on

the same primitives, cards, but not face and dvalue.

The second evaluation step is required when the layout has been segmented. Using a segmenta-
tion condition, the end of the layout cannot be successfully segmented. For example, if we had the

sequence;

35

S =<«3,4,4,5,55,6,6,6,67, 7>

we would not want to create an event for the sevens. Such an event would indicate that there was a

string of sevens of length 2. If the VL, induction algorithms received such an event, they would not be
able to discover that the length of a string always increases by 1. Thus, the segmentation process must

always leave the end of the layout unsegmented. However, when a description is developed, it might in

fact be inconsistent with the unsegmented portion of the layout. If the sequence had looked like

S =«3,445556,66,6,7777777>

then the VLI induction algorithms would incorrectly describe the sequence. Each description produced by
the VLI induction algorithms must be checked to verify that it is consistent with the tail end of the lay-

out.

The third evaluation step involves assessing the plausibility of the descriptions in terms of
Eleusis. The complexity of each description must be measured (approximately). The average size of the
set of legal cards must be measured in accordance with the plausibility criteria mentioned above. 1t must
not be possible to reach a dead-end while playing according to the rule. Lastly, the description must be
checked to see that it is consistent with megative string plays. Recall that, in Eleusis, if a player plays a
string of cards (2, 3, or 4 cards), and any one of the cards is in error, the entire string is placed on a side-
line below the main line. Although this information cannot be used during rule discovery, it is necessary
to check each description developed by the VLI induction algorithms to see that it is consistent with
these negative string plays. At least one of the cards in each negative string must be illegal according to

the description.

Once the descriptions have passed through all of these evaluation steps, they must be converted to
VL,, In the SPARC/E(V.2) program, the discovered rules are maintained in a rule base along with rules
which the user may have entered into the system. The rule base is consulted when the player wants to

play a card.

36

® Identify Knowledge Requirements, First, we list the knowledge required for the interpretation steps,
then for the generalization step, and finally for the evaluation steps. The first interpretation step
(converting 2¢ to a VL, complex) merely requires knowledge of the card notation. The second step
{(adding color, parity, etc. to the events) requires knowledge of the definitions of the added variables.
The user is able, in the SPARC/E(V.2) program, to enter the definition of a new variable as a VLo,

complex. For example, color can be entered as:

define color = red [suit(cardO}=hearts, diamonds],

black [suit(cardO)==spades, clubs];

In fact, this is a set of production rules.
[suit(cardO}=hearts] v [suit{card0)=diamonds] — [color{card0)=red]
[suit(card0)==spades] v [suit(card0)=clubs] -~ [color(cardO)=black]

The action of the program when the situation matches, is to assert the consequence into the layout.

The segmentation process requires knowledge of the ordering of the layout. The program must
know how to compute the difference variables between adjacent events in order to determine that they
satisly the segmentation condition. This in turn requires knowledge of the domains of the variables. The
segmentation process must also know how to segment negative events properly. Violation of either the
segmentation condition or the segmented rule can cause a card to be illegal. However, at the time the

layout is being segmented in preparation for rule discovery, only the segmentation condition is known.

The last interpretation step requires knowledge of the ordering of the layout so that the unordered
events may be developed. Knowledge of how to compute sum and diflerence variables is obviously
needed. This in turn requires knowledge of the domains and domain types of the variables. The last
interpretation step prepares events for a specific model with a specific lookback parameter, so this infor-

mation must be available,

The generalization steps require knowledge of the domains and domain types of the variables. In

particular, the domain type-specific rules of generalization must be available during the generalization

37

process. The decomposition algorithm requires knowledge of which variables are left-hand side variables.
The algorithms also have a good deal of knowledge available in their cost functionals. The cost functions

must measure the plausibility of the descriptions under development.

Knowledge required to evaluate the rules and remove irrelevant variables includes knowledge of the
ordering of the events and knowledge of each rule model. The process which removes redundant
difference variables must understand the relationship between the differénce variables and the variables

from which they were derived.

Knowledge required to test the tail end of the segmented layout for consistency is precisely identical

to the knowledge required to initially segment the layout.

Knowledge required to estimate the average size of the set of legal cards includes knowledge of the
relationships between variables and knowledge of how segmentation interacts with the description models.
The process of verifying that each negative string play contains a bad card requires little knowledge
beyond the knowledge of how negative string plays are handled in SPARC/E(V.2). The conversion of a

VLI rule to a VLo, rule is a straightforward syntactic manipulation.

¢ Decompose the System into Layers. Figure 5 indicates the layers of the SPARC/E(V.2) system and
the functions of each layer. The top-most layer (Layer 5) provides the menu driven user interface.

It also has strategic knowledge of the game so as to act as an independent player. It also performs

Layer Function Knowledge Used
5 User Interface Cards, VL.22 syntax, Menus
4 Eleusis Color, parity, negative strings, plausible Eleusis rules
3 Segmentation Ability to segment layout, check tail end of segment, plausible segmentations
2 Sequential Models and parameters, ordering in the layout
Analysis sum and difference variables
1 Basic Induction Domains and domain types, basic algorithms, cost functions

Figure 5. Architecture of the SPARC/E(V.2) System.

the first interpretation step by converting cards into VL 1 complexes.

Layer 4 contains Eleusis-specific knowledge including all of the knowledge of the relationships
between variables and knowledge of negative string plays. This layer performs the second interpretation
step by expanding the input events to contain all possible variables which might be relevant. This layer
removes negative string plays from the layout and uses them later to evaluate the descriptions returned

from layer 3. Layer 4 also converts VLI descriptions to VL22. Knowledge of plausibility in

SPARC/E(V.2) is used in this layer to evaluate descriptions according to the average number of cards

playable under the rule.

Layer 3 performs all functions relating to segmentation. It segments the layout according to a list
of possible segmentation conditions and evaluates each. Those which it finds to be promising it hands to
layer 2 for further discovery. It evaluates descriptions returned from layer 2 to guarantee that they are

consistent with the tail end of the layout.

Layer 2 performs the function of removing order from the layout. It computes the unordered VLI
events including the sum and difference variables. For each model, it develops a specific set of events and
passes them to layer 1 for generalization. Layer 2 filters the resulting descriptions to remove redundant

selectors.

Layer 1 performs the basic generalization tasks described in Chapter 2. It implements the three

VL, induction algorithms discussed above.

3.2.3. Other Functions

In addition to discovering plausible Eleusis rules, the SPARC/E(V.2} program in its interactive
mode, provides other valuable services to its user. First, it permits the user to enter Eleusis rules in VL 00
form. It checks those rules for consistency with the layout and adds them to its VL22 rule base. Second,
it permits the user to enter the cards that s/he has in her or his hand. When the user issues an EVALU-
ATE command, each rule in the VL22 rule base is processed against the layout to determine which cards

are currently legal according to that rule. Each card in the player’s hand which is currently legal is
marked. The user can display this information in order to choose a card to play, or s/he can ask the sys-

tem to suggest a card to play. The system plays according to two strategies. The conservative strategy is

39

to play a card which is legal under as many rules as possible. The discriminant strategy is to play a card

which will eliminate implausible rules from further consideration.

These additional functi;:ms require two major additions to the SPARC/E(V .2) program. Besides rule
discovery, the program needs the ability to check a rule against the layout to determine if it covers all of
the mainline and is consistent with all of the negative examples on the sidelines. This is called the Critic
function. The program also needs the ability to determine which cards are legal extensions of the layout

according to a given rule. This is called the Performance Element function.

3.3. Previous Sequential Data Analysis

Most prior work in sequential data analysis has sought to induce plausible grammars (or
equivalently, automata) which could generate or extrapolate a sequence of events [17,40). Grammars have

advantages:

& Grammars provide a natural representation for segmented descriptions. A particular grammar rule

can be used recursively by a new grammar rule. This solves the segmentation problem.
8 Grammars are well-understood mathematically.

Grammars also possess disadvantages which make them difficult to use for describing sequential

eventl sets:

® Grammars describe sequences of events by generating them. It is difficult to write a grammar which
merely constrains the possibilities at a point. For example, to write a grammar which permits the

next event to have an even value, we must write:
even ->2 | 4| 6| 8] 10| 12
S -> even | S even

Furthermore, in order to extend a series, the start symbol, S, must be reduced to terminal symbols.

All possible extensions of a series must be generated in order to develop a prediction.

40

Grammars do not correspond to the way people describe sequential events. The grammar above

describes a sequence of even numbers. I think people tend to describe such a sequence logically as
x even{x) x in the sequence.

It is important that a computational tool produce descriptions which are conceptually simple and in
accordance with human-based descriptions. In the game Eleusis, typical rules are much more easily

expressed in logic than as a grammar.

Grammars lack many useful operations. Unadulterated grammars use only juxtaposition. Even in
the augmented grammars used in general production systems, juxtaposition plays a major role. Yet
a good description of a sequence of events is event-centered. The characteristics of the next event
are described in terms of its immediate environment. For example, in R1 (Table 5) if the previous
card is a club, we must play a diamond. In R4, the position of the next card in the layout deter-
mines whether it must be odd or even. These event-centered descriptions are very clear, and they
make it very easy to compute legal extensions of the sequence. Such descriptions have grammatical

counterparts, but these counterparts are rarely as succinct and clear.

41

4. SPARC/E(V.2) Rule Generator and Game Player

The program can be conceptually divided into two parts: a Rule Generator that generates plausible
rules from a layout, and a Game Player that is equipped with all the necessary user interfaces to enable it
to play the game with minimum assistance from human users. The Rules Generator encompasses the
algorithms discussed in section two and section three, and essentially includes layer 1 throughout layer 4
of the of the knowledge layers. The Game Player constitutes the fifth layer of the system that sits on top
of the Rule Generator. Its functions is to allow users to communicate with the program through menus,
and maintain the progress of a game throughout a game session. In this section, the SPARC/E(V.2) Rule

Generator and Game Player will be described.

4.1. The Implementation

The SPARC/E(V.2) program (Sequential PAttern ReCognition, Eleusis Version 2} is an extension of
SPARC/E(V.1), originally written in Pascal on a CYBER 175 (Control Data Corporation) by Thomas
Dietterich. The program was later transcribed to Berkeley Pascal running under 4.2 BSD UNIX operating

system, which was where all the extension took place.

4.2. SPARC/E(V.2) Rule Generator

To show the function of the Rule Generator, the result of several sample runs without the Game
Player interface are discussed in detail in this section. These example are based on actual games played

by the authors.

It is intended that the program be run with a standard, relatively conservative, set of parameters. If
the user of the program is dissatisfied with the results obtained using those parameters, then they may be
changed to increase the power of the program. Ideally, the program would make such decisions based on
knowledge of what constitutes good Eleusis rules. It would be very nice, for example, if the system
demonstrated satisfactory behavior. It could examine the simplest (and computationally cheapest) possi-

bilities first and then move on to more complex description possibilities if the simple ones did not work.

The system would stop searching as soon as it found a few plausible rules.

42

However, at present, the user of the program indicates a space of possibilities by setting parameters

and the program searches that space and returns all plausible rules found. Five segmentation conditions

were given to the program to investipate. These are:

value{card0)=value(card1)]
suit{card0}=suit{card1)|
value(card0)=value{cardl)+ 1]

parity (cardU)=parity(card1}]

color({cardO}=color(card1}].

For segmented rules, the system was told to investigate only a degenerate form of the periodic model.
This degenerate period has a lookback of one and only one phase. Such a degenerate periodic description
can be used when a single conjunctive description of the layout is desired. The program was given the

following relevaant descriptors:

Color: Color of the card.

Face: True if the card is a faced (picture) card, false otherwise.

Prime: True if the card has a prime value, false otherwise.

Parity: Takes the value of even or odd.

Mod3: Takes on the value of the card modulo three. This is an example of a
“noise” descriptor since it is very unlikely that it will be involved
in any plausible descriptions.

Lenmod2: Takes on the value of the length of a subsequence, moduic 2.

4.2.1. Exampie 1

Below is the layout for the first example rule. It is a very simple rule and the program discovers

three equivalent descriptions for it:
main line je ad gk 10s qd 9% q¢ 7h qd 94 ge 3h kh
ke B5s 4s 10d
78

main line 4c kd 6c je 8 jh 7¢ jd 7h jh 6k kd

43

The program discovered the following descriptions of this layout:

rele 1: lookback: 1 nphases: 0 decamp
[tace(cardl) =false| => [value{card0) >value{cardl)] v
[face(cardl) =true| => [value{card0) <value(cardl)]
[face(card0) =false]

rule 2: lookback: 1 nphases: 1 periodic
period([face(card0) <>face(cardl)])

rele 3: lookback: 1 nphases: 2 periodic

period{[value{card0} >=value(cardl }20],
[value(card0) =3..10] [value{card0) =value{card1}+5..17])

Rule 1 expresses the rule as a decomposition rule with a lookback of 1. Most periodic rules which
have disjoint phases can be expressed as decomposition rules. Rule 2 expresses the rule as a single con-
junction. This is possible because face vs. non-face is a binary condition and there are precisely two

phases to the rule. Rule 3 expresses the rule in the "natural” way as a periodic rule of length 2.

4.2.2. Example 2

This example shows what happens when the phases of a period are not strictly disjoint. Recall that
the program seeks symmetrical, disjoint descriptions for the phases of a period and for the if-then cases of
a decomposition rule. The rule intended by the dealer was "play a periodic rule where the first phase may
be either a spade or a heart, and the second phase may bhe either a diamond or a heart.” The layout for

the game was:

main line 95 4d kh 3d ks 5d as 2d kh 6h
9¢ 4¢ 5¢ gs 6s
7ic

main line qs ah ah 10d 75 7h
je

id
The program discovered the following rules using the decomposition and periodic rule models:

rule 1: lookback: O nphases: 1 periodic
string == [parity(card0) ==parity(card1)] :
period({length{string0) =1,2,5])

rule 2: lookback: 1 nphases: 2 periodic
period(|value(card0) >=-value(card1)}+ 6]
[suit(card0) ==hearts..spades]
[suit(card0) =suit(card1)+ 3..1]

44

mod3(card0) =0..1}

mod3(card0) =-mod3({card1}+ 1..2],
value(card0) <=10]

value(card0) < >value{cardl)|
value{card0) =-value(card1)+ 5..15]
suit(card0) =diamonds..hearts|
suit(card0) =suit(card1)+ 3..1]
color{card0) =red|

color{card0) ==color(card1})]
face(card0} =(alse]

face(card0) =face(card1)]
mod3({card0} =-mod3(card1)+ 1..2])

The first rule is absolutely miserable. Because the plausibility evaluation part of the program is
only partially implemented, this rule manages to make its way up to the top level. The rule says that the
main line is made up of strings of cards which have the same parity. These strings are either 1, 2, or 5,

cards in length. Under the SPARC/E(V.2) knowledge of plausibility, this rule would be eliminated

because there are many times when any card is legal.

The second rule is not much better. One can see that the dealer’s rule was discovered (e.g.
[suit{card0)= diamonds..hearts]), but when the periodic algorithm attempted to remove overlapping selec-
tors, it removed the significant selectors along with the insignificant ones. Recall that the algorithm backs

up in such cases and returns the ungeneralized rule.

Since these descriptions were so bad, the program was instructed to examine a DNF model for this
game. The following rule was discovered:
rule 2: lookback: 1 nphases: O dnf

[value(card0) <=-value(cardl}+ 16]{suit{card0) =diamonds..spades| v
[suit{card0j =hearts]

This rule states that hearts are always legal, and that if the sum of the values of the current card
and the previous card is less than or equal to 16, then the current card may be a diamond or spade.
Although this rule is incorrect, it does serve the useful purpose of isolating the relevant variables. A user

of the program might then be able to identify the rule.

It is clear that the program does not handle asymmetrical rules well. The DNF model is able to iso-

late relevant variables even though the rule it discovered will lead to incorrect play.

45

4.2.3. Example 3

In this example, we show the program discovering a segmented rule. Notice that in the previous
rules, although several segmentation conditions were suggested, only one {very poor) segmented rule was
discovered. Included in the parameters for these example sessions are the plausibility limits for segmenta-
tion. These were set so that a segmentation of the layout must produce at least 5 segments, and the
number of events in the segmented layout must be no more than half the number in the.original layout.
These plausibility limits have been very successful in weeding out unpromising segmentations. Further-
more, in all of our testing of the program, pever has a segmentation condition been erronecusly eliminated

from further consideration.

The layout for this example is:
main line ah 7¢ 6¢c 9s 10h 7h 10d jc ad 4h 8d 7c 9s 10c ks 2¢ 105 js as 5¢ ke
kd 5s qd 3s gh qh
jh | 6h ad
The program only discovered one rule for this layout, precisely the rule which the dealer had in mind:
rule 1: lookback: O nphases: 1 periodic

string = [color{card0) =color{card1}] :
period([lenmod2(string0} =1])

The rule states that one must play strings of cards with the same color. The strings must always
have odd length. Actually, the rule which the dealer had in mind had one additional constraint: a queen
must not be played adjacent to a jack or king. This is a type of exception-based description. The pro-

gram cannot handle such exceptions. This is a problem for further research (see below).

41.2.4. Example 4

The layout is taken from Abbott’s rules for Eleusis.

main line 3h 95 4c jd 2¢ 104 8 T7h 2¢ 5h

jd ah as 10h
&d 8h 10s
qd

The program discovered two rules to explain the layout. The first rule is very close to the rule described

by Abbott:

rule 1: lookback: 1 nphasesl: 0 decomp
[parity(card1) =odd} =>> |color{card0) =black]| v

48

[parity(cardl) =even] => [color(card0} ==red]

rule 2: lookback: 1 nphases: 2 periodic
period(|value(card0) =2..8|[value{card0) < >value(cardl)]
value(card0) =-value{card1)+ 4..8]

suit{card0) ==clubs..hearts][suit(card0) =suit(card1)+ 0..2]
face(card0) =false]

face(card0) =face(card1))[prime{card0) < >prime(cardl)|
parity(card0} =even]

mod3(card0) =1..2][mod3{card0) =mod3(card1)+ 0..1]
mod3(card0) =-mod3(cardl}+0..1),

value(card0} =5..jack|[value{card0) <> value(card1)
value(card0) =-value{card1)+ 10..19]

suit(card0) =diamonds. hearts][suit{card0) =suit(card1)+ 0..2]
color{cardQ) ==red]

mod3(card0) =1..2}[mod3(card0) =-mod3(card 1)+ 2..0})

The second rule is worthless!

4.2.5. Example 5

current layout:
main line 4¢ 8 6c 10c 2h ¢h qgh qs 4c 10s 25 as ©6h
ic (9h ad 5d qs 8s
4d) 10h

main line qd ke 9¢ 2¢ 10c 2¢ 6c 10d jh
(id jc
ks }
The program discovered the following rule:
rule 1: lookback: 1 nphases: 0 decomp

[color(card1) ==red] => [face{card0) =true] v
[color(card1) =Dblack] =>> [face(card0) =false]

4.2.8. Example 6

main line 4h 2h ah qs ks 8h Oh S5¢ 44 5d

10s as 3h ke 48 Td T7Tc 8d
T¢ je jd

3k

kh

The program discovered the following rule:

rule 1: lookback: 1 nphases: 0 decomp
[parity(card1) ==odd] =>> [suit(card0) =suit{card1}+ 1..3][color({card0) < >color(card1)] v
[parity(card1) =even| =>> [suit(card0) =suit{card1}+ 0][color(card0) ==color{card1)]

47

4.2.7. Example 7

current layout:
main line 85 3d 6s 10¢c jh 9d ad 2c

ac is as ks
2h Ts
6d

The program discovered the following rule:

rule 1: lookback: 0 nphases: 0 dnf
[color{card0) =red]|parity(card0} =odd] v
[color{card0) =black]|parity{card0}) —even]

4.2.8. Example 8

This example shows the upper limits of the program’s abilities. During this game, only one of the
human players even got close to deducing the rule, yet the program discovers a good approximation of the
rule using only a portion of the layout that was available to the human players. Here is the layout:

main line. 4h 5d 8¢ js 2¢ 5 ac 5s 10h

7¢c 6s kc ab 6c a5

jh 7h 3h kd

4c 2c qs

108 7s

8h 6d

ad 6h

2d 4c¢

The program was told, in this game, to check all three models. It produced the following rules:

rule 1: lookback: 1 nphases: 0 dnf
[value(card0} <=>5|[suit(card0d) =suit{cardl)+ 1] v
[value(card0) >==5|[suit(card0) =suit{card1)+ 3|

rule 2: lookback: 1 nphases: 1 periodic

period{[value(card0) =value(cardl)-9]
[value{card() =-value(cardl)+ 4,5,7,11,13,17]
[suit{card0) =suit{card1)+ 1,2,3])

rule 3: lookback: 1 nphases: 2 periodic
period{[value(card0) =ace,2,8,10]
value(card0) =-value(card1)+ 1,8,9,10],

value(card0} =5..jack|[value{card0) =value{card1)+ -0..6]
value(card0) =-value{card1)+ 8..14]

suit(card0) =spades|[suit(card0) =suit(card1)+ 0..2]
color{card0) ==black]
prime(card0) =ptrue|[prime(card0) ==prime(card1)]

parity(card0} =even||parity({card0) =parity{card1)]

parity(card0) =parity{card1)][mod3(card0) =2

mod3(card0) =mod3(card1)+ 0][mod3(card0) =-mod3{card1)+ 1])

48

The rule which the dealer had in mind was:
[suit{cardO}=suit(card1}+ 1]|value({card0)> =value(cardl)] v
{suit{card0)=suit(card1)+ 3|[value(card0)< =value(cardi)}
It is very likely that a player could have deduced the correct rule once he/she had seen the rule produced

by the program. The program has isolated the relevant variables, and has produced a very plausible

description. Note that adding three to a suit gives the next lower suit in the cyclic interval domain of

suits.

4.2.9. Example 9

This example is also not based on actual game. The layer 2 learning element invokes periodic model
recursively and stops when the length of the layout is too small.

main line 25 4c kd ks Th gqd 35 8 2d 9s 5k 4d 6s

js as kc 2h 4h 84 6h
10¢ ad O¢
ah
qs

main line j¢ 9d 95 8h 6d 3s 10c 6d as
108 2¢

The program was told to examine periodic model with 1 or 2 or 3 phases. It produced the following rule:
rule 1: lookback: 0 nphases: 3 periodic
period([suit{card0) =spades],
Embedded rule: lookback: 0 nphases: 2 periodic
period([suit{card0) =clubs],
[suit(card0) =hearts|),
[value(card0) >>=2][suit{card0} =diamonds))

Without the recursion, the program produced [suit{card0)==clubs,hearts| in the second phase.

4.3. SPARC/E(V.2) Game Player

During a game session SPARC/E(V.2) is capable of playing as an independent player and competes

with other human players. The user of the program must help reporting the progress of the game to the
program through the use of menus, and executing the program’s decision by physically play a card from
the program’s hand of cards. When it is the turn for the program to play, the program will play a card

upon request from the user. It then receive from the user the judgement concerning the correctness of the

49

card played, together with penalty cards if any, and modify the internal representations to reflect the

changes that have been made.

The Menus

The menus are organized into a tree structure, where each node in the tree as a lower level menu,
and the leaves of the tree as actions to be executed. Selecting a lower level menu bring you down the tree

one level deeper. Only one menu at a time is displayed.

The top level menu consists of 11 entries, as shown in figure 1, which can be divided roughly into
three categories according to their functions: game playing commands, help commands and parameter
adjusting commands. Game playing commands include entries 1, 2, 3, 4, 5, 6 and 10 which are the com-
mands that will normally be used in playing the game. Help commands include entries 7 and 11, which
provide online information for the user. Entries 8 and 9 are parameter adjusting commands that allow the
user to fine tune the system parameters. Parameter adjusting commands allow the user to direct the Rule
Genefator of SPARC/E(V.2} to instantiate rule models in certain particular way, and search the rule
space according user specified criteria. It is thus advisable that a user have some knowledge about the
theory behind the program in order to understand and make use of these commands. Command pumber 9
(Interactive Eleusis) allows the program user to bypass the menus and communicate interactively with the

Rule Generator. This command is reserved for users that know his way in the program. Casual user are
advised not to invoke this command. See appendix 2 for detail descriptions of parameter adjusting com-

mands,

Add new card(s) to the layout
Play a card

Show me your hand

Show me the layout

Show me your rules

Add cards to your hand

Help

Accept my advice

. Interactive Eleusis (for advanced users)
10. Quit

11. Rules of the game

L R ol ol

Figure 1. The top level menu

50

In general, it is assumed that the user of the program is "talking” to the program, thus the "you” in
the menu commands indicates the program, and "me” indicates the program user. For example, the com-

mand "Show me your rules” is used to ask SPARC/E(V.2) to display the rules it has found.

The other menus at different levels have a structure similar to that of top level menu’s, the meaning
of most entries are rather simple and self-explanatory. Here we shall elaborate only on the second com-

mand "Play a card” where most game playing strategies reside.

When a card is selected and played by the program, the program use is asked to specify if the card
bas been declared correct or incorrect by the dealer. If the card played is declared a negative card, the

program will ask for the penalty cards to be added to its hand. If the program has no playable card in its

band, the No Play option will be considered.

Play a eard

When the program user request SPARC/E{V.2) to play a card, the rule base is investigated to see if
the rules (if any) predicted in the previous play is still valid. If not, the rulebase is cleared and a new set
of rules are generated by invoking the induction algorithm from scratch. The hand is then evaluated

against the rule base, and a card is played according to the strategies explained in the following section.

Strategles

SPARC/E(V.2) will play cards in its band that satisfy the rules produced by the Rule Generator.
There are two options if there is no playable card in hand: either declare No Play, or assume that the
rules produced by the Rd]e Generator are wrong and play a card randomly. Since the stake of declaring
No Play is rather high, we use the following rules to make the decision when none of the cards in the

hand satisfies the rules:

(1) I there exists at least a rule that looks good, and the number of cards in the hand is few, then the

program will declare No Play.

(2} Otherwise a card is played randomly from the hand. This is because that even if some rules look
plausible, if the hand contains too many cards, then it is unlikely that none of them are legal. So

there is a higher chance of being penalized if No Play is declared.

[10]

(1

(12|

13
14
15
16

17

18

19

20

21

b1

REFERENCES

Abbott, Robert, "The New Eleusis,” Available from Abbott at Box 1175, General Post Office, New
York, NY 10001 ($1.00).

Barto, A. G., J. M. Prager, "Forming Logically Simple Hypotheses in Parallel,” Paper submitted to
IJCALS, University of Massachusetis, Amherst, 1979.

Box, G. E. P., G. M. Jenkins, Time-Serles Analysis: Forcasting and Control, Revised Edition,
Holden-Day, San Francisco, 1976.

Buchanan, B. G., E. A. Feigenbaum, J. Lederberg, A Heuristic Programming Study of Theory For-
mation in Science,” in Proceedings of the Second International Jolnt Conference on
Artificial Intelligence, 1971, pp. 40-48.

Buchanan, B.G., D. H. Smith, W. C. White, R. J. Gritter, E. A. Feigenbaum, J. Lederberg, C.
Djerassi, Journal of the Amerlcan Chemical Soclety 98 (1976) p. 6168.

Buchanan, B. G., E. A. Feigenbaum, "Dendral and Meta-Dendral, Their Applications Dimension,”
Artificial Intelligence 11 (1978) pp. 5-24.

Buchanan, B. G., T. M. Mitchell, R. G, Smith, C. R. Johnson, Jr., "Models of Learning Systems,”
in Encyclopedia of Computer Science and Technology, J. Belzer, A. G. Holzman, and A.
Kent, eds., Marcel Dekker, Inc., New York, 1977. (also available as HPP memo 77.39, Heuristic Pro-
gramming Project, Stanford Universit, Stanford, CA).

Chilausky, R., B. Jacobsen, and R.S. Michalski, "An applicaton of Variable Valued Logic to Induc-
tive Learning of Plant Disease Diagnostic Rules,” in Proceedings of the Sixth Annual Sympo-
sium on Multiple Valued Loglc Logan, Utah, 1976.

Dietterich, Thomas G., R. S. Michalski, "Learning and Generalization of Characteristic Descrip-
tions: Evaluation Criteria and Comparative Review of Selected Methods,” Proceedings of the
Sixth International Joint Conference on Artificlal Intelligence, pp. 223-231, Tokyo, August
1979,

Erman, L. D., V. R. Lesser, "A Multi-level Organization for Problem Solving Using Many, Diverse,
Cooperating Sources of Knowledge,” Advance Papers of the Fourth Internsational Joint
Conference on Artificial Intelligence, MIT, Cambridge, MA, 1975.

Freuder, E., "A Computer System for Visual Recognition Using Active Knowledge,” PhD thesis,
AI-TR-345, The Artificial Intelligence L.aboratory, MIT, Cambridge, Massachusetts, 1976.

Gardner, Martin, "On Playing the New Eleusis, the game that simulates the search for truth,”
Sclentific American, 237, October, 1977, pp 18-25.

Hayes-Roth, F., "Collected Papers on the Learning and Recognition of Structured Patterns”,
Department of Computer Science, Carnegie-Mellon University, Jan. 1975.

Hayes-Roth, F., "Patterns of Induction and Associated Knowledge Acquisition Algorithms,” Depart-
ment of Computer Science, Carnegie-Mellon University, May 1976.

Hayes-Roth, F., J. McDermott, "Knowledge Acquisition from Structure Descriptions”, In Proceed-
ings of the Fifth International Joint Conference on Artificial Intelligence, 1977, pp. 356-
362.

Hayes-Roth, F., J. McDermott, "An Intetference Matching Technique for Inducing Abstractions”,
Communications of the ACM, 21:5, 1978, pp. 401-410.

Hedrick, C. L., A Computer Program to Learn Production Systems Using a Semantic Net,” PhD.
Thesis, Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pa., 1974.

Hunt, E.B., Experiments in Induction, Academic Press, 1966.

Larson, J., A Multi-Step Formation of Variable Valued Logic Hypotheses,” in Proceedings of the
Sixth International Symposlum on Multiple-Valued Logle, Logan, Utah, 19786.

[22]

[23]

24

25

26

[27]

(28]

|29]

130]

131]

[32}

33

34

35

36

37

39

[40]

Larson, J., and R. S. Michalski, "Inductive Inference of VL Decision Rules,” SIGART Newsletter,
June 1977, pp. 38-44.

Larson, J.; 'Inductive Inference in the Variable Valued Predicate Logic System VL.21 : Methodology
and Computier Implementation’, Rept. No. 869, Dept. of Comp. Sci., Univ. of Ill., Urbana, May
1977.

Lenat, D., "AM: An artificial intelligence approach to discovery in mathematics as heuristic search,”
Comp. Sci. Dept., Rept. STAN-CS-76-570, Stanford University, July 1976.

Michalski, R. S., "Algorithm Aq for the Quasi-Minimal Solution of the Covering Problem,”
Archilwum Automatykil i Telemechaniki, No. 4, Polish Academy of Sciences, 1969 {in Polish).

Michalski, R.5., "A Variable-Valued Logic System as Applied to Picture Description and Recogni-
tion,” in Proceedings of the IFIP Working Conference on Graphlc Languages, Vancouver,
Canad_a, 1972,

Michalski, R. S., "Conversion of Normal Forms of Switching Functions into Exclusive-Or-
Polynomial Forms,” Archiwem Automatyki i Telemachaniki, No. 3, Polish Academy of Sciences,
1971a (in Polish}.

Michalski, R. S., "DISCOVERING CLASSIFICATION RULES USING VARIABLE-VALUED
LOGIC SYSTEM VL1,” Advance Papers of the Third International Joint Conference on Artificial
Intelligence, Stanford University, Stanford, CA, ppl162-172.

Michalski, R.S. "Pattern Recognition as Knowledge-Guided Induction,” Rept. 927, Dept. of Comp.
Sci., Univ, of Ill. Urbana, 1978.

Michalski, R. §., J. Larson, "SELECTION OF MOST REPRESENTATIVE TRAINING EXAM-
PLES AND AN INCREMENTAL GENERATION OF VL1 HYPOTHESES: the underlying metho-
dology and description of programs ESEL and AQ11,” Report No. 867, Department of Computer
Science, University of Illinois, Urbana, May 1978.

Michalski, R. §., "Variable-valued logic and its application to pattern recognition and machine
learning,” In Computer Science and Multiple-Valued Logle, ed. D. C. Rine, North-Holland,
1977, pp. 506-534.

Michalski, R. 8., "VARIABLE-VALUED LOGIC: System VL1,” 1974 International Symposium
on Multiple-Valued Logle, West Virginia University, Morgantown, West Virginia, May 29-31,
1974,

Michie, D., "Measuring the Knowledge-Content of Programs,” University of Illinois, Department of
Computer Science Report UIUCDCS-R-76-786, May 1976.

Michie, D., "New Face of Al,” Experimental Programming Repts.: No. 33, MIRU, Univ. of Edin-
burgh, 1977.

Schwenzer, G. M., T. M. Mitchell, "Computer-assisted Structure Elucidation Using Automatiically
Acquired Carbon-13 NMR Rules,” in ACS Symposium Series, No. 54, 'Computer-assisted Structure
Elucidation,’ D.H. Smith (ed), 1977.

Soloway, E., E. M. Riseman, "Knowledge-Directed Learning,” in "Proceedings of the Workshop on
Pattern Directed Inference Systems,” SIGART Newsletter, June 1977, pp 49-55.

Soloway, E., "Learning = Interpretation + Generalization: a case study in knowledge-directed
learning,” PhD Thesis, COINS TR 78-13, University of Massachusetts, Amherst, MA., 1978.

Vere, 5.A., "Induction of Concepts in the Predicate Calculus,” In Advance Papers for the
Fourth International Joint Conference on Artiflclal Intelligence, 1975.

Vere, S. A., "Induction of Relational Productions in the Presence of Background Information,” In
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, MIT,
Cambridge, MA., 1977.

Vere, S. A., "Inductive Learning of Relational Productions”, in Pattern-Directed Inference Sys-
tems, D.A. Waterman and F. Hayes-Roth {eds), Academic Press, 1978.

41

42

43

%3

Vere, S. A, *Maultilevel Counterfactuals for Generalizations of Relational Concepts and Produc-
tions,” Department of Information Engineering, University of lllincis, Chicago Circle, 1978.

Waterman, D. A., "Serial Pattern Acquisition: A Production System Approach,” working paper No.
286, Department of Psychology, Carnegie Mellon University, Pittsburgh, Penn., 1975.

Winograd, T., Understanding Natural Language PhD thesis, Academic Press, 1972,

54

APPENDIX I

Input Grammar for Interactive SPARC/E(V.2) Commands

This grammar describes the valid syntax of all commands and rules typed in the Interactive Mode.
The following diflerences should be noted between this grammar and that of VLQ]' Firstly, this grammar
permits functions and operators in the reference of a selector. The function may have an optional unary
minus sign in front of it. Secondly, this grammar permits all selectors to use relations such as >=, <>,

<, ete,

1 session ::= commandlist

2 commandlist ::= command
3 | commandlist ; command

4 command ;= HELP

5 INDUCE

6 EVAL

7 PLAY

8 Q

9 | CARD cardlist : ID

10 | UNCARD

11 | LIST listitem

12 RULE vi2rule

13 DELETE cardlist

14 MINE cardlist

15 STRATEGY ID

16 - | KILL NUMBER

17 DEFINE ID defdomain = deflist
18 | ADVICE advice |
19 J* empty */

20 cardlist ::= SYCARD

21 | cardlist SYCARD

22 listitem ::= MINE

23 | STRATEGY

24 | ADVICE

25 | RULE

26 | ID /* for other options */

27 v12rule ::= segdefin ruledefn

28 segdefn ::= ID == simpleconjunct : /* ID must be 'string’ */
29 | /> empty */

30 ruledefn ::= dcrule

31 | periodicrule
32 derule ::= conjunct
33 | derule V conjunct

34 periodicrule ;:= PERIOD (sconjunctlist }

35 sconjunctlist ::== simpleconjunct
36 | sconjunctlist , simpleconjunct

37 conjunct ::= simpleconjunct

38 | simpleconjunct =>> simpleconjunct
39 simpleconjunct ::= selector
40 | simpleconjunct selector

41 selector ::= | referee rop reference |
42 referee ::== ID (varlist)

43 varlist == ID

44 | varlist , ID

45 rop = =

46 <>

47 o> =

48 _ < ==

49 >

50 <

51 reference ;= value

52 | sign ID { varlist) moreref
53 value ::= valuelist

54 | NUMBER .. NUMBER

50 valuelist ::== valueentry

56 | valuelist , valueentry

57 sign ;1= -

58 | [/*empty */

59 valueentry ::= NUMBER

60 | VALUE [* a defined reference value */
61 op = +

62 |-

63 | +-

64 moreref ::= op value

65 |

66 defdomain ::= (ID , NUMBER)
67 | (ID)

50

68 | J* empty */
69 deflist ::= def

70 | deflist , def

71 def ::= defvalue simpleconjunct

72 defvalue ::= ID

73 | NUMBER

74 advice ;= PARAMETERS params
75 SEGMENTS sconjunctlist
76 PLAUS plauslist

77 DOMAIN domainlist

78 ID tokenhst

79 tokenlist ::= token

80 | tokenlist token

81 token ::=ID

82 | NUMBER

83 params ::= param

84 | params , param

85 param :;= - parml
86 | parml

87 parml ;.= NUMBER
88 | NUMBER (NUMBER) /* cost with tolerance */

89 plauslist ::= plaus
90 { plauslist , plaus

91 plaus ;= ID = NUMBER

92 domainlist ::= domain
93 | domainlist , domain

94 domain ;= ID = SYID

o7

APPENDIX II

Interactive Eleusis Commands

Here is a synopsis of the user commands for the Interactive Eleusis, which can be entered through
the entry number 9 of the Top Level Menu. The commands can be broken down into five categories: lay-

out management, managing the hand, managing the rule base, the learning element, and the performance
element. The command input to the Eleusis program is free-format. Each command must be terminated

by a semi-colon. When the program is ready for a command, it types:

eleusis tool ready (nnn ms)

where nnn is the number of milliseconds required for the previous step. If a command is not yet ter-
minated (e.g. missing its ’;’), the program just prompts with a question mark. In the descriptions below,

optional entries are placed in brackets.
Layout Management Commands

clard]

The card command adds a string of cards to the layout. One card command should be used for each

turn of a player in the game. The syntax of the command is:
c[ard] cardlist : judgment;

where cardlist is a list of cards of the form '2' or 'qs' separated by spaces. Judgment indicates the

dealer’s judgment concerning the correctness of the play: 'y’ indicates the cards are correct, 'n’ indicates

the cards are incorrect.
u[ncard)

The uncard command is the reverse of the card command. It removes from the layout the string of
cards added by the most recent card command. It may be used repeatedly to undo several card com-

mands.
list layout

This command lists the layout horizontally along the page. The first card played is in the upper left-hand
column. The correct cards (mainline) are laid from left to right. The incorrect cards are listed across the
page below the correct card which they followed. Negative string plays {a string of cards declared to con-

tain an error) are listed in parentheses.

Hand Manngement Commands

m [ine}

The mine command (or hand, a synonym) adds cards to the player’s hand. The cards are simply listed

after the command separated by spaces:

mine ac 6s 9d je 10c¢ gs;

dlelete]

The delete command removes cards from the player’s hand. The cards are simply listed after the com-

mand.

delete ke 2c;

b9
list m[ine]

Use list mine to list the contents of your hand. See the section on the performance element below for an
interpretation of the cards vs. rules matrix that is printed in the listing. The cards in the hand are listed

along the lelt-hand column.
Rule Management Commands

rlule]

The rule command permits the user to enter a rule in VLQQ' Refer to the grammar in appendix I for

details concerning rule syntax. An example of a rule command is:
rule period({ [color(card0)=red], {color(card1)=black]});

Of course the rule can go on for more than one line. It is terminated by the ’;’. When a rule is entered, it
is immediately checked to see if it is consistent with the layout. This invokes the Critic function of the

Eleusis program. A line will be printed indicating whether or not the rule is consistent with the layout. If

the rule is inconsistent, some information concerning the source of the inconsistency is also printed. Then

the rule is added to the VL22 rule base. The rule base is used by the performance element (see below).
i[nduce]

The induce command discovers reles that deseribe the layout and adds those rules to the rule base. Most

of the relevant information is listed under the learning element below.
list r{ules]

Use list rules to see the rules (and their assigned numbers) in the rule base. Rules remain in the rule
base until deleted by the klll command. Each rule is assigned a number. The number is used in the list

hand printout, and it is used to report information concerning the rule during the rule evaluation process.

60
k{ill]

The kill command serves to delete rules from the VL.22 rule base. Often a bad rule gets into the rule
base, usually the result of an induce command. To delete poor and implausible rules, a kill command

may be used. The kill command accepts one number, the number of a rule to be deleted:
kill 5;

This deletes rule number 5. No acknowledgment is printed. In order to determine the numbers

corresponding to the rules, use the list rules command.

The Performance Element

s[trategy]

The strategy used by the program is entered using the strategy command. This strategy is used by the
play command to choose a card from the hand to play. There are two strategies. The conservative
strategy directs play to select the card which is legal under the largest number of rules in the rule base.
The diseriminant strategy directs play to select a card which will discriminate between the rules listed
in the VL22 rule base. play attempts to slelect a card which is covered by approximately half of the
rules. It is wise to play diseriminant early in the game, and conservative after the first 30 cards have

been played.
e[valuate]

The evaluate command instructs the program to evaluate each rule in the rule base to determine what
cards are currently playable under that rule. This information is then used to determine which cards

currently in the player’s hand are playable under each rule. This information can be printed out using

the list hand command. list hand prints a matrix of cards in the hand versus rules in the rule base. A

'y’ indicates that the card on that row is legal according to the rule in that column. The columns are

o1

sumbered according to the rule numbers of the rules in the rulebase (See Chapter 4).

pllay]

The play command instructs the program to choose a card to play according to the current strategy. See
the strategy description above for details of how the selection is made. The program makes the selection
based on the most recent evaluate command. Thus, one should always precede a play command by an
evaluate. If no card in hand is playable, No Play will be considered. After a card is played, the program
will asked about the decision being made, and if the card played is a negative card, the penaliy cards to

be added to its hand.

The Learning Element

The learning element is the most complicated part of the program to use. The user must set up a
collection of parameters which delimit the space of possible rules., When an Induce command i5 given,
the program searches this space for plausible rules describing the main line. We shall examine the param-

eters from the perspective of the layers.

Layer 4 parameters

deffine]

define may be used to add new descriptors to the program. The program initially only has knowledge of

sult, value, and length . To add color to the program, we would type:

define color (nominal, 50) =
red [suit(card0)=diamonds, hearts],

black |suit{card0)==spades, clubs);

82

To add value modulo 2 to the program, we would type:

define valmod2 (clinear, 50) =
0 {value{card0)=2,4,6,8,10,12],

1 [value{card0)=1,3,5,7,9,11,13);

The variables must be limited to 10 characters (only the first 10 characters are used). The notations
nominal sud clinear define the domain type of the variable. The §0 gives the plausibility for this vari-
able (see below). After the == sign, we give a iist of value-complex pairs separated by commas . Each
value {either a symbol or a number) is defined by the VL22 complex which follows it. The complex may
use any variables previously defined. The dummy variables used in the complex (in this case card0)

determine what this new variable will be applied to (i.e. cards or strings).

Level 3 Parameters

a[dvice] seg[mentation]

This command gives a list of all segmentation conditions the program should examine. As indicated in
the diagram above, the null segmentation (left-most branch) is always investigated. Additional segmenta-

tions may be added by typing:

a seg [color(card0)=color(card1}],

[value{card0)=value(card1}+ 1};

All segmentation conditions are selectors which kave a variable in the reference. The segmentation condi-
tion must express the difference between two variables. A segmentation condition may have more than
one selector in it. Segmentation conditions must apply to cards not strings. The segmentation conditions

given by each A seg command completely replace the previous segmentation list.

a segplaus

This controls pruning of unpromising segmentations. After each segmentation has been performed on the
layout, it must satisfy two tests. First, the segmented layout must have at least <minsegplaus> number
of events in it. Second, the segmented layout must have no more than <maxsegplaus>*<size of unseg-

meanted layout>> /100 events in it. The <minsegplaus> and <maxsegplaus> parameters are given as:

a segplaus < minsegplaus> <maxsegplaus>

Level 2 Parameters

a models

This command tells level 2 and level 1 which models to investigate. The possible models are dnf,

decomp, and periodie. They are always investigated in that order. Example:

a models periodic decomp;

This tells the program to investigate only the decomposition and periodic models. Each a models com-

mand completely replaces the previous setting of the models list.

a lookback

For the decomp and dnf models, the possible settings from the lookback parameter are determined by

the a lookback command. The command provides two numbers, 2 minimum 2nd 2 maximum lookback:

a lookback 0 2;

To set lookback for periodic rules use:

a ploockhback

64

This gives the minimum and maximum lookbacks for periodic rules. Recall that a lookback in z periodic

rule looks back to the prior occurrences of each phase, not on a card by card basis.
a phase
This determines the possibilities for the number of phases to be examined for periodic rules. It is given
as:
a phase <min>» <max>

<min> must be at least 1.

Layer 1 parameters

The layer 1 parameters difler for each model. First we list the parameters applicable to the decom-

position model, then to the dnf model. The periodic model has no additional parameters at this layer.
a complex

This is a general parameter which applies to both the dnf and decomposition models. It indicates, for
dnf, the maximum number of complexes that can appear in the solution. If the Aq algorithm has not
found a solution before it reaches this quota, it gives up. For the decomposition algorithm, it indicates
“the maximum number of variables to be decomposed on (i.e. the maximum number of selectors to appear

on the left-hand side of each if-then rule). It is specified as:

a complex 4;

a dec

This command specifies the parameters for the decomposition functional sort. See the body of this report

85

for the meanings of the cost functions. They are entered in order of evaluation, with tolerances in

parentheses;

a dec 1{20),2,-3,4;

This specifies that cost functior 1 is to be applied, with a tolerance of 20%5. Then cost function 2 will be
used. Then cost function 3 will be used, but first its value will be negated. Finally cost function 4 will be

used to resolve ties still existing after the first three cost functions have been applied.

a decgen

This determines when the best trial decomposition is selected. If decgen is 0, the selection takes place
immediately after the references are unioned. If decgen is 1, the references are generalized according to
domain specific rules of generalization, and then the best decomposition is selected. If decgen is 2, over-

lapping selectors are removed, and then the best decomposition is selected. Example:

a decgen 1;

This is the recommended value for this parameter. If deegen is 2 and the rule does not it the decomposi-
tion model, the program tends to run out of memory space. For the dnf model, the following parameters

may be used:
aaq

This sets the Aq cost functional. The cost functions and their meanings are:

(1) Number of new events {events not covered by any previous star) covered by this complex in the set

of positive examples.

(2) Total number of positive examples covered by this complex.

(3) Total number of negative examples covered by this complex.
(4) Number of non-irrelevant selectors in this complex.

(5) Sum of the costs of the non-irrelevant selectors in this complex. The cost of a selector is the plausi-

bility of its variable subtracted from 100.

(6) Number of non-irrelevant selectors that this complex has in common with the last complex on the
mq. This function is used to encourage the discovery of symmetric descriptions.

The cost functional is specified in the same way as the decomposition cost function above:

aq 4(30),~-1,3,-6;

a2 agmax

This sets the maxstar parameter for the Aq algorithm:

3 agmax 6;

There is one other general set of parameters which control the adjustment phase of layer 1. These control

the performance of the agstar procedure when it is called during the adjustment phase:

a ad}

This enters the adjustment cost functional. The cost functions are the same as for the Aq cost functions

ahove.

a adjmax

This sets the maxstar parameter for the adjustment process. It is entered in the same manner as a

aqmax.

87

The learning element is invoked by using the Induce command. New rules are discovered and
added to the rule base. When the Induce command is completed, it executes a list rules command

automatically.

To list the various settings of these parameters, use the list advice command. Also note that there
are paralle]l settings for the lookback, plookback, phase, and models advice parameters for use with

segmented rules,

For a list of legal commands, type h[elp). To exit the program, type 'q'.

APPENDIX III

Official Rules of the Game Eleusis

A. Eleusis can have 4 to 8 players.
B. procedure of playing eleusis

1. The dealer records the secret rule in unambiguous language on a sheet
of paper that is put aside for future confirmation.

2. The dealer shuffles the double deck and deals 14 cards to each player.

3. The dealer places a single card called starter at the extreme left
of the table.

4. A play consists of placing one or more cards on the table. To play a
single card, the player takes a card form his hand and show it to
everyone. If according to the rule the card is playable, the dealer
says Right The card is then placed to the right of the starter card
on the main line.

5. If the card fails to meet the rule, the dealer says Wrong In this
case, the card is placed directly below the last card played, the side
lines.

6. If a player displays a wrong card, the dealer gives him two more cards
as a penalty.

7. A player may play a string of cards at once by overlapping them to

preserve order and shows them to everyone, the dealer says Right if

¢9

all the cards conform to the rule or say Wrong if one or more cards
are wrong. If the dealer says Right, the entire string is put in the
main line as if the cards in the string were individually played. If
the dealer says Wrong, the entire string is goes below the last card
played and the player is dealt twice as many cards as there are in the
string.

8 NO PLAY
If a player think that he knows the secret rule but finds no card that

can legally played, he may declare No play In this case, he shows

his hand to everyone.

a. If the dealer says Right, there are two cases.
If his hand contains fewer than 5 cards, the cards are returned
to the deck and the round ends. If his hand contains more than 4
cards, his cards are put back to the deck and he is dealt a fresh
hand with four fewer cards.

b. If the dealer says Wrong, the dealer takes one of his correct

cards and puts it on the main line. The player keeps the rest of

his hand and, as a penalty, is dealt five more cards.

9. After 30 cards have been played, players are expelled from the round
if they make a wrong play. An expelled player is given the usual
penalty cards for his final play and keeps his hand for scoring later.

10. The dealer changes after each round.

C. Scoring

70

1. The greatest number of card held by anyone is called high count
Each player subtracts the number of cards in his hand form the high
count. The difference is his score. If he has no cards, he gets a
bonus of 4 points.

2. The dealer’s score equals the highest score of any player.

3. Each player adds his scores for all the rounds played plus 10 more
points if he has not been a dealer. This compensates for the fact

that the dealers tend to have higher than average scores.

BIBLIOGRAPHIC DATA 1. Report Na. 2

3. Recipient’s Accession No.

SHEET UIUCDCS~F~85-941
4, Title and Subtitle .

SPARC/E(V.2)

An Eleusis Rule Generator and Game Player

5. Report Date
March, 1985

8.

v Aubens)e Michalski, Heedong Ko, Kaihu Chen

0.

8. gcrforrning Organization Rept.

9. Performing Organization Name and Address

Department of Computer Science
University of Illinois
Urbana-Champaign, Illinois

10. Project/Task/Work Unit No.

11. Contract/Grant No.

NSF DCR 84-06801

12. Spoasoring Organization Name and Address

National Science Foundation
Washington, D. C.

13. Type of Report & Period
Covered

14.

15. Supplementary Notes

14. Abstraces

an actual game and competes with human plavers.

of forming hypothesis in the domain of a card game Eleusis.

Process prediction is a form of inductive inference where hypothesis
is formed not only from the description of observations but also from the
order of the observations. The program reported here, SPARC/E(V.2), is capable
The program also

provides user-friendly interface that allows the program to participate in

17. Key Words and Document Analysis. 17a. Descriptors

Eleusis.

17b. ldentifiers/Open-Ended Terms

17e. COSATI Field/Group

Sequential process prediction, model driven learning, inductive learning,

18. Availability Statement

9. Security Class (This
Report)

ﬁﬂ%ﬁﬂﬂED
» Securty Class (This

21. No. of Pages
75

Page
%JNCLASS[F[ED

22, Price

FORM NTIS 38 (10-70)

USCOMM-0OC 40329-P71

