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Abstract

A system for learning concept descriptions incrementally is described and 1l-
lJustrated by a series of experiments in the domains of insect classification,
chess endgames and plant disease diaghosis. The system employs a full-memory
learning method that incrementally improves hypotheses, but does not forget
facts. -The method is used to form both characteristic descriptions, which de-
scribe a concept in detail, and discriminant descriptions, which specify only
properties needed to distinguish a given concept from a given set of other
concepts. Experimental results show the advantages of inducing and maintain-
ing only characteristic descriptions during learning and creating discriminant

descriptions from them when a classification decision is necessary.
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] INTRODUCTION
Research in the area of concept learning from examples has been concerned

mainly with methods for single step, or non-incremental, learning. Such meth-

ods can effectively and efficiently induce good descriptions from a given set
of examples and, optionally, counter-examples (for example [2,6,7,18]). These
methods cannot modify concept descriptions which are contradicted by new exam-
ples, but must re-learn the descriptions from scratch. In contrast, incremen-
tal learning methods modify concept descriptions to accomodate new learning

events [13,22}.

When we observe human learning we clearly see that it is incremental. Peo-
ple learn concept descriptions from facts and incrementally refine those de-
scriptions when new facts or observations become available. Newly gained in-
formation is used to refine knowledge structures and models, and rarely causes

a reformulation of all the knowledge a person has about the subject at hand.

There are two major reasons why humans must learn incrementally:

1. Sequential flow of information. A lhuman typically receives information
in steps and must learn to deal with a situation long before all the
information about it is available. When new information does become
available, there 1is rarely time to reformulate everything known about
all the involved concepts.

2. Limited memory and processing power. Péople cannot store and have easy
access to all the information they have been exposed to. They seem to
store only the most prominent facts and generalizations, then modify

the generalizations when new facts are available.
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This paper describes a method for automated learning of concept descrip-
tions from examples which is novel in its use of facts and of concept descrip-
tions. We assume that in practical machine learning systems, only the first
of the above constraints is important and that the second may be ignored. The
fact that information arrives sequentially cannot be changed, as it reflects
the nature of the world. On the other hand, storing and retrieving large
amounts of information is not difficult for modern computers, We therefore

investigate a full-memory incremental learning system which modifies concept

descriptions to accomodate new information, but does not forget facts.

A concept description can be assigned a type based on two factors: purpose
and form. A description's purpose is either to characterize orv to discriminate
[8]. A characteristic description of a conéept is very specific and tries to
capture all the known properties of the concept. Such a description is useful
for building a detailed model of the concept and for teaching someone about
the concept. On the other hand, discriminant descriptions are used to distin-
guish one concept from a given set of other concepts and contain only those
properties qf’ the concept which are necessary to make such distinctions.
Characteristic descriptions attempt to distinguish a given concept not just
from a known set of other concepts but from gny other concepts. Thus, dis-
criminant descriptions are dependent on the class of concepts under considera-
tion while characteristic descriptions are not. In short, characteristic de-
scriptions are used to describe and discriminant descriptions are used to
discriminate. Section Two gives more details and presents a classification of

different types of descriptions.
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The form of a concept description 1s directly dependent on the description
language used. In the variable-valued logic used in this paper (see next sec-
tion), a description may be either conjunctive or disjunctive. We therefore
distinguish between four types of description: characteristic conjunctive
(CC), characteristic disjunctive (CD), discriminant connjunctive (DC), and

discriminant disjunctive (DD).

People are able to learn and use many different types of concept descrip-
tions. Further, the type of description a human uses may depend on the situ-
ation. The learning method described here can also be used to form several
description types; these may be used in different ways when learning incremen-
tally. We describe experiments designed to test the effectiveness of the new

learning method over different description types in different domains.

Section 2 describes the problem area and introduces the relevaﬁt ferminol-
ogy. Section 3 describes the new learning methods as they are currently im-
plemented, and presents some possible extensions. Section 4 describes experi-
ments designed to test the learning methods and Section 5 presents the results
of these experiments. Finally, Section 6© discusses the implications of the

results and some directions for future research.

2 TERMINOLOGY AND DEFINITIONS

This paper deals with that subset of learning from examples known as symbolic
concept acquisition [8]. Givens are observational statements which describe
objects (situations, events, etc.) that have been pre-classified by a teacher.
From these, the learning system is to induce a concept recognition rule. If
an object satisfies this rule then it is considered an instance of £he corre-

sponding concept (class).
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Attribute

Throughout this paper, we assume that all objects and concepts are described

in terms of a finite numbetr of discrete attributes (variables). Each attri-
bute is assigned a finite domain from which it draws values and a type that
characterizes the stiucture of the domain. In this study, we distinguish only
between two types of attributes: nominal and linear. Nominal attributes have
domains where there is no ordering on the“:;iﬁés (e.g., "color") while linear

attributes have domains in which the wvalues are linearly ordered (e.g.,

"length").
Event

An event is a symbolic description of an object. 1In this work, an event 1is
represented as a vector of attribute values and is associated with a single
concept (class). We assume that each event specifies exactly one legal value
for every attribute. If an event is used in the learning phase, the event is
called a training (learning) event. If it is used for testing, then it is

called a testing event.

Selector

A selector is a relational statement of the form {x # R] where x is an at-
tribute, # is a relation (one of 2, >, =, <, £} and R is a subset of the do-
main of x. The selector [x # R] is said to be satisfied by the event e if the
value of the attribute x in e has relation # with at least one of the values

in R,
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Complex

A complex is the logical product (conjunction) of selectors. A complex is
satisfied by an event 1f every selector in the complex is satisfied by the

event.
Concept Description

A concept description 1s assumed to be a disjunction of complexes. A descrip-
tion is satisfied by (covers) an event if at least one complex of the disjunc-

tion is satisfied.

Decision Rule

& decision rule 1s an assertion of the form D ::> C. Here, D is a concept
description and C is a class {concept} and ::> denotes the class assignment
operator. D can therefore be viewed as an hypothesis describing €. The rule
above can be interpreted as "If an event satisfies description D, then the

event is an instance of concept C."
Star

The stgr of an event e against the set of events F, denoted G(e|F), is the set
of all maximal under inclusion complexes satisfied by the event e and not sat-
isfied by any event in the set F. Informally, a star is the set of all maxi-

mally general concepts which consistently characterize a given example.

jay
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Completeness, Consistency and Description Types

A concept description learned from examples is compfete 1f it is satisfied by
all learning events which are known instances of that concept. A description
is consistent if it is not satisfied by any learning event which is an in-
stance of any other concept. Inh [8]‘, Michalski defined a characteristic de-
scription as an expression that satisfies the completeness condition or the
logical product of suéh expressions while a discriminant description is an ex-
pression that satisfies the completeness and consistency conditions or the
logical disjunction of such expressions. Ideally, a learning system would
learn the maximal characteristic description and the minimal discriminant de-
scription. In this section we will make a further distinction between con-
junctive and disjunctive characteristic descriptions. A characteristic con-
cept description is either a single conjunct listing the. common properties of
all learning instances of that concept or a disjunction of conjuncts which
splits the learning instances of the concepts into subclasses. A characteris-
tic disjunctive (CD) description should contain the minimum number of dis-

juncts and each disjunct should be as specialized (i.e., long) as poassible.
Note that the disjuncts in a CD description may not be disjoint and that the

completeness condition still must hold.

3 METHODS AND IMPLEMENTATION

This section describes in detail the methods developed to learn descriptions
incrementally from examples. Section 3.1 presents a very brief sketch of the
AQ algorithm (see [6,7]), as it 1s the base on which the method is built.

Section 3.2 describes the modifications necessary to make AQ work incremen-
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tally with full memory and introduces an implementation of this method in the

—-

GEM program. Finally, section 3.3 discusses a way to make GEM produce charac-

teristic type descriptions.
3.1 The AQ Algorithm

The AQ algorithm was conceived as a guasi-minimal solution to the general cov-
ering problem [5]. It has subsequently been recognized as applicable to the
problem of inductive inference. This problem can be characterized as follows:
Given: A set of positive events E' belonging to the class for which a
description is to be formed, and a set of negative events E belonging to

other classes.

Produce: A description H that is satisfied by {(covers) all the events

p + . - s -
in E and none of the events in E .

A simplified wversion of the AQ algorithm applied to this problem randomly
selects a seed event from a given class and generates the star for this seed.
During star generation, the seed is generalized against different negative
events. The results of these generalizations are intersected together to form
a partial star. For efficiency reasons [4], the partial star is reduced by
selecting from it the most preferred complexes as determined by a user gener-
ated preference criterion. Once the reduced star is completed, the best com-
plex in it is selected using the same criterion. The positive events covered
by this complex are removed from the list of events to be covered, a new seed
is selected from the remaining positive events and the process repeated.
Stars are generated until there are no positive events left to cover; the

disjunction of the generated complexes is a solution to the problem.
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The preference criterion mentioned above is called the LEF (lexicographical
evaluation functional). A LEF consists of an ordered set of‘criterion?toler-
ance pairs. A criterion specifies a metric to be used in judging complexes
and a tolerance specifies the estimated relative error in that metric. When
selecting the best complex from a list of complexes, AQ orders the complexes
based on the first criterion. Complexes that are within the first tolerance
of the best complex are ordered by the second criterion, and so on. The LEF

provides a means of manipulating the types of descriptions produced by A0 (see

Section 3.3).

3.2 Incremental Learning with AQ

This section discusses extensions to the AQ algorithm which permit it to form
descriptions incrementally [1]. As shown in Figure 1, the modified algorithm
must be able to apply inference rules to either training examples alone or to
training examples and rules. Figure 2 shows a schematic version of the rule-
modification process. The incremental method must be able to both specialize

a rule so that it no longer covers a negative event and generalize a rule so

that it covers a new positive event.

The incremental version of AQ begins by checking each old rule against the
hew events. It first determines whether any complex in these rules must be
specialized. If some complex covers events which it should not, a modified

version of AQ is invoked. The modified AQ procedure is characterized below:

: L + : -
Given: A set of positive events E , a set of negative events E and a

subset of the event space, SES.
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Produce: A description H, logically contained in SES, such that H cov-

X + . _
ers all the events in E and none of the events in E .

This is accomplished using the normal star generation technique, exXcept that

the first partial star is intersected with SES,

50, to specialize a complex, incremental AQ calls the modified algorithm

with the following arguments:

E : all positive events (both old and new) covered by the old complex.

E : the new negative events covered by the old complex.

SES5 : the old complex.

The result is one or more new complexes, all contained in the original com-
plex, which cover all the positive events that the original did and none of

the new negative events. This is the desired specialization.

Once all rules have been specialirzed, they are re-generalized to cover new
positive events. This is done using the standard AQ method, except that the

original rules are used as seeds. The result of this second step is a rule

which correctly covers beth old and new events.

The potential danger here is that the time spent finding every positive
event covered by a complex during the specialization step will negatelany time
gain caused by the retention of old rules. Further, it is possible that the
specialization process will produce unduly complex rules by splitting con-

juncts into disjuncts. The experiments described in section 4 were designed

to address these issues.

i0
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The incremental version of AQ'has been implemented in Pascal for efficiency
reasons. The program, called GEM (Generalization of Examples by Machine)
consists of approximately 3500 lines of code. All input to GEM is in the form
of relational tables, allowing the progfam to interact with the QUIN rela-

tional database system [21].

3.3 Producing Characteristic Descriptions with GEM

The LEF (Section 3.1) used by GEM to choose the best complex in a star can be
used to manipulate the type of description learned. Typically, the first cri-
terion in the LEF is based on the number of positive events covered by the
complex. The second criterion (used to break ties in the first) may be based
on the length-of the complexes. If the criterion requires that the best com-
plex 1s the shortest, then GEM will produce discriminant descriptions. If the
criterion requires that the best complex is the longest, the result is a more
detailed, characteristic type of description. Since the program must some-
times create disjunctions in order to cover all positive events, the result of
learning is a CD or DD descriptions (although conjunctive descriptions éan re-
sult). Two issues must be addressed: how good are these descriptions and what

is the best way to use each type in learning?

The quality of a concept description depends on its performance and its
comprehensibility. Both characteristic and discriminant descriptions should
perform well when tested on previously uncbserved events. A good discriminant
description will also be easy to use (i.e, brief) while a good characteristic
description will be detailed yet easy to understand. The comprehensibility of

a description is obviously a subjective matter, but it is very important. If,

.
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for example, the descriptions are to be used in an expert system, the domain

expert must be able to understand the results of learning.

There are many ways to use different concept description types in learning.
The most obvious way is to simply form the type of description-desired at
whatever time it is needed. Another possiblity is to incrementally learn only
characteristic descriptions. This methed is attractive for two treasons.
First, characteristic descriptions are more specific than disctriminant de-
scriptions; a specific description contains more information about what is
being learned and is less likely to be over-generalized. Second, since GEM
can induce over descriptions as well as over events, it may be possible to in-
duce good discriminant descriptions from characteristic descriptions. This
second induction step should be very fast, and will allow us to use whichever
description type is most appropriate. The question remains as to the quality

of discriminant descriptions produced in this way.

4 EXPERIMENTS
In order to test the new incremental learning methodology, three application

domains with differing properties were chosen. These domains (described in
section 4.1) varied in size, in type of attributes and in the degree to which
events represented real world objects or situations. This range of problems
provides a basis for our tentative conclusions about the effectiveness of the
learning methodology. An experimenf, to be repeated in all three problem
areas, was designed with the following goals in mind:

1. To compare the usefulness of different description types produced by

the new incremental learning method.

12
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2. Te discover wvhether the method of inducing discriminant descriptions

from characteristic ones produces simple discriminant descriptions that
will perform well.

3. To see whether the incremental learning algorithm described in section

3.2 avoids the potential problems in learning with full memory.
4.1 Problems

The first problem was the classification of different species of Stenonema
mayfly nymphs [3] based on the use of attributes for describing an individual
insect's appearances. Seven species of Interpunctatum group nymphs were de-
scribed in terms of seven attributes, giving a total event space size on the

order of 106 possible descriptions. Ten different examples of each species

were available.

The second application area was the King-Pawn-King black-to-move chess end-
game, where the pawn's side is white. Here, examples were described in terms
of 31 boolean attributes [17]; each example actually covered several legal KPK
positions. That is, the input examples are generalized representations of thg
actual board positions. The examples were correctly classified (by a search
program} into Won for the pawn's side or Dprawn. A total of 1901 attribute
vecteors sufficed to represent the entire event space {which has on the order
of 105 positions) since onhe attribute vector represents many positions and a

large portion of the attribute space consists of illegal, impossible or symme-

trical positions [17].

The largest application area was the soybean disease diagnosis domain

[10,11}. Diseased soybean crops were described in terms of 50 attributes.
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Attribute domains ranged in size from two to eleven values, meaning that ap-
proximately 103D attribute vectors were possible. The event set consisted of
examples of 17 different soybean diseases common in Illinois:; there were 17
different examples of each disease. The data used for these experiments dif-

fered from that described in [10]. For the current experiments, fifteen more
attributes were used and two new diseases were added to the data. The entire

example set was also revised and updated.

4.2 Experimental Method

To determine the quality and the usefulness of the full memory incremental
learning method, an experiment was devised to simulate rule base development.
In each problem area, all the available events were split randomly into two
groups, training events and testing events. The basic learning method was to
provide GEM with successive sets of new training events, so as to simulate
rule base refinement. At each step of the process, the induced rules were

tested on all available testing events.

In each domain, the incremental learning process started with about 20% of
the available learning events. Using this learning set, decisions rules were
formed. Aan enhanced set of learning events was created by adding a random
number of learning events of each class to the original learning set. The en-
hanced event set and the rules induced during the first step were input to
GEM, which then produced refined rules. The learning set was again enhanced,

and new rules produced. This process was repeated until no learning events

remained.

14
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In the mayfly nymph domain, for example, there are seven classes and a to-
tal of 5 available learning events per class. The initial leatning set was
seven events, 1 per class. From these seven events, rules were induced.
Then, seven random ﬁumbers were generated, one for each class. The results of
this process are shown in Figure 3. For class Stenonema carolino the random
number was 0.32. There were four events remaining in this class, so one exam-
ple (4 x 0.32 = 1.28, rounded to 1.0) of a Stencnema carolino mayfly nymph
was added to the learning set. For this second learning step, a total of
seven events were added. So, 14 events were available to GEM for this step,
seven old events and seven new ones. These events and the seven rules induced

during the first step were used to form new rules.

At each step in the incremental learning process four rule types were
formed:
1. & control set of discriminant rules formed using the single-step ver-
sion of AQ.
2. A set of discriminant rules formed in&rementally.
3. A set of characteristic rules formed incrementally.
4. A set of discriminant rules induced from the characteristic rules,
above.
All three discriminant rule sets were tested against all available testing
events. In each domain, the entire experiment was repeated with different
combinations of learning and testing events. The results of these experiments

are summarized in the next section.

15
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S5 EXPERIMENTAL RESULTS
Thtee facets of rule induction were measured. First, the rule induction time
was estimated based on the CPU time used by GEM in forming the rules. Aall re-
sults are for a Pascal version of the GEM program running under the 4.2bsd
version of the UNIX operating system on a VAX 11/780. Second, rule comprehen-
sibility was measured. A rule's complexity, assumed to be the inverse of its
comprehensibility, was defined as the sum of the number of selectors, number
of different attributes and number of complexes in the rule. The complexity
of a set of rules is the average of the complexities of the members. Third,
the performance of the rules was estimated. Rules were tested using the ATEST
program and testing examples set aside for the purpose (see [20] for a de-
scription of ATEST and a discussion of the issues involved in rule evalua-

tion).

5.1 Mayfly nymph recognition

Figure 4 shows the CPU time used by GEM to induce three different types of
discriminant rules for identifying Stenonema mayfly nymphs. As expected, in-
ducing DD descriptions from CD descriptions took very little time {less than 1
second of CPU time in every case). The incremental method created descrip-

tions in considerably less time than the single-step method.

Figure 5 shows the complexity of all four rule types at each stage of the
learning process. The complexity of the discriminant rules induced incremen-
tally rose at every step, undoubtedly due to the specialization of complexes.
There was little difference between the characteristic rules and the discrimi-
nant rules induced from them. The second repitition of the experiment, using

different learning events, produced more complex characteristic rules and sim-

pler discriminant ones.

16
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The performance of the three discriminant rule types is compared in Figure

6. In this domain, almost all misclassifications took place because several
descriptions were satisfied by a testing event. Therefore, the DD descrip-
tions induced from CD descriptions were too general in the tests shown in Fig-
ure 6. A repetition of the experiment produced CD descriptions from which
better DD descriptions were induced. Typical descriptions in this domain are

shown in Figure 7.

5.2 Chess endgame position classification

In the chess endgame problem area, it was not possible to generalize the char-

acteristic descriptions produced by GEM. For this reason, Figures 8-10 com-
pare the two types of discriminant rules and the characteristic rules. Figure
8 shows that the incremental method saved a considerable amount of induction

time in this domain.

Figure 9 compares the complexity of the three rule types over the course of
the learning frocess. Characteristic and discriminant descriptions differed
very little overall. This, and GEM's inability to generalize the long de-
scriptions, is probably due to the nature of the attributes used to describe
events. Since each input vector is really a generalization of several actual
chess positions, one event may not generalize easily to cover another. This
hypothesis is partially borne out by the fact that the descriptions produced
were very disjunctive, containing an average of twenty complexes each. Each
of these complexes would be highly specialized {(i.e., characteristic) by na-

ture, and therefore impossible to generalize.

17
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Figure 10 shows the performance of all three description types. Unsurpris-
ingly, the choice of learning events was very important in this domain. Two
rules sets were produced by induction ever two learning sets of exactly the
same size, vet the rules were more than 90% correct during the run shown and
about 50% correct during the other. This suggests that events of a given
class appear in many distinct regions of the event space, and explains the
highlf disjunctive nature of descriptions in this domain. If learning events
are taken from only a few of the regions, then rule performance will be poor.
1f, howéver, the learning events contain elements from almost all the regions,
the rules should have relatively good performance. This hypothesis suggests
that the better rules should have a larger number of cr:;nmplexes than the
poorer. This was indeed the case -- the good rules had, on the average, al-
most twice as many complexes as the poorer rules. It should be noted that
this effect would probably not have been observed if a chess expert had chosen

the examples. Typical descriptions for this domain are shown in Figures

11-12.

5.3 Soybean disease diagnosis

The results for the soybean disease problem are summarized in Figures 13-15.
The event space for this problem was by far the largest of the three, so rule
induction took considerably longer. The time saved by using the incremental

method was considerable. Again, inducing DD descriptions from CD descriptions

took very little time.

Figure 14 shows the complexity of the four description types over the
learning process. As expected, the characteristic descriptions were the most

complex. The DD descriptions induced from CD descriptions were more complex

than DD descriptions induced directly from examples.

18
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All of the discriminant rules performed well, as shown in Figure 13. In
comparison, the most recent rules written by plant pathologists were about 80%
correct for these testing events. These results are similar to earlier re-
sults in the same domain [9,17]. Typical descriptions for this domain are

shown in Figure 16.

6 SUMMARY
The experimental results are summarized below in terms of the goals set forth
in Section 4:

1. The relative quality of the various description types varied widely
with the domain. In the mavfly nypmph recognition domain, the incre-
mentally learned descriptions performed poorly compared to the single
step descriptions (83% correct compared to 60%). In the chess endgame
domain they performed at about the same level (98% to 96%) and in the
soybean disease diagnosis domain the incrementally learned 1ules per-
formed slightly better (88% to 82%). Overall, incrementally learned
discriminant disjunctive descriptions were slightly more complex than
descriptions formed in a single step. Characteristic disjunctive de-
scriptions were even more complex, as expected, but were unfortunately
also more disjunctive (averaging six complexes per description over the
three domains compared to four complexes per description for discrimi-
nant disjunctive).

2. The discriminant disjunctive descriptions formed from characteristic
disjunctive descriptions performed better than the discriminant dis-
junctive descriptions learned from examples in two of the three do-

mains. Overall, the performance of these descriptions was about four

19
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percent better than that of the discriminant disjunctive descriptions
induced from examples. Unfortunately, inducing discriminant disjunc-
tive descriptions from characteristic disjunctive makes the discrimi-
nant disjunctive description more complex (the average complexity of
indirectly induced descriptions was 58, compared to 41 for descriptions
induced directly from examples).

3. Both incremental methods were significantly faster than single step
leatrning (between two and five times as fast overall). Summing over
all experiments in all domains, the single step method took approxi-
mately 4.2 x 103 CPU minutes, the incremental method took 0.7 X 103 CPU

minutes and the characteristic disjunctive to discriminant disjunctive

incremental method took 2.6 X 10J CPU minutes.

The success of the full memory incremental learning method was obvious. In
all the application areas, GEM took considerably less time to form rules when
it had old rules to modify. The rules produced using the the incremental
method were slightly more complex and performed slightly less well than those
produced in a single step, but the time saved was large and the differences in
performance and complexity were small. The method of inducing discriminant
disjunctive descriptions from characteristic disjunctive descriptions proved
workable, but produced more complex rules. This may have been due to the na-

ture of the characteristic descriptions produced by GENM.

The incremental method could be further enhanced by simplifying both the
specialization and generalization steps using the refunion operator. That is,
a complex could be simplified by taking the union of the events it covers.

New positive events could be covered by taking the union of the events and

20
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some complex., The method currently used could serve as a back-up, invoked
only when refunion produces a complex which does not satisfy specified con-

straints.

The characteristic descriptions produced by GEM were sometimes unattractive
because they were long and disjunctive. A combination of two factors was re-
‘sponsible: the individual concepts in each domain tended to be divided into
sub-parts and GEM always produces consistent gnd complete descriptions. For-
mally (see Section 2), characteristic descriptions are not necessarily consis-
tent. Nevertheless, discriminant descriptions induced from these characteris-

tic descriptions were often quite good.

A simple method could be used to produce conjunctive descriptions. If the
disjuncts in a characteristic disjunctive concept ﬁescription produced by GEM
correspond to subclasses, a tree-structured concept description could be
formed in the following way:

1. Induce a characteristic disjunctive description incrementally from ex-

amples.

2. Treat each disjunct as a separate class within the concept and induce a

descriptidn to characteri#e each subclass.

Another possibility is to use a conceptual clustering method such as that de-

scribed in [15] to divide each class into subclasses.

A more difficult extension to the method would use partial memory and ex-
ceptions [16]. A partial memory incremental learning system would have to be
abie to recognize and remember "important" events. Something like this is
done by ID3 [18], which remembers one event in each parcel of events that con-

tributed to rule formation. A true partial memory incremental learning system
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will need some criteria recoghizing importance. Exception events which vio-
late the consistency of conjunctive characteristic descriptions are interest-
ing candidates. The method would have to form a characteristic conjunctive

description while creating as few exception events as possible.

Unless a database of examples is excessively large, the full memory incre-
mental learning method provides the best way to induce reliable concept de-
scriptions. .Fcr three real world problems, the full memory method took con-
siderably less time and no more memory than the single step method (which must
have all the events in memory anyway). Further, it appears that the best way
to learn incrementally is to maintain characteristic descriptions of classes.
Such descriptions are more appealing to humans than terse, disjunctive de-
scriptions. The results here show that characteristic type descriptions also
contain enough information that good discriminant descriptions may be induced

from them in a very short amount of time.
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Captions for Figures

Fig. 1 - The initial steps in an incremental learning process.
Fig. 2 - A schematic view of rule modification.

Fig. 3 - Event selection for the second learning step in the Stenonema mayfly

nymph domain.

Fig. 4 - CPU time to induce four description types for identification o f may-

fly nymplhs.

Fig. 5 - Complexity of four description types for identification of mayfly

nymphs.

Fig. 6 - Performance of three description types for identification of mayfly

nymphs.

Fig. 7 - Examples of different description types for the class Stenonema car-

ofing in the mayfly nymph domain.

Fig. 8 - CPU time to induce three description types for classification of KPK

endgame positions.

Fig. 9 - Complexity of three description types for classification of KPK end-

game positions.

Fig. 10 - Performance of three description types for classification of KPK

endgame positions.
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Fig. 11 - Typical characteristic description for the class Won for white in

the KPK chess endgame domain.

Fig. 12 - Typical discriminant description for the class Won for white 1n the

KPK chess endgame domain.

Fig. 13 - CPU time to induce three description types for soybean disease diag-

nosis.

Fig. 14 - Complexity of four description types for soybean disease diagnosis.

Fig. 15 - Performance of three description types for soybean disease diagno-

sis.

Fig. 16 - Examples of different description types for the class Alternaria

Leaf Spot in the soybean disease diagnosis domain.
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Characteristic description :

[maxilta_crown_spines = 10][maxilla_Jateral_setae == 21,26,28,30|[inner_canine_teeth = 2]
[outer_canine_teeth == 7..8|[terga_dark posterior_margins = abscat]

Discriminant description induced from characteristic description :

|maxilla_crown_spines = 10}[inner_canine_teeth = 2}[terga_dark_posterior_margint = absent]

Discriminant deacription induced from examples :

|terga_mid_dorsal_pale_streaks = absent]

Figure 7.
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Characteristic description:
[precipitation = above_normal|{temperatere = normal..above_porm - |{severity = miner..potentially_severe|
[condition_of_leaves == abnormal| [leaf_spot_colar = brown]
[leaf_spat_growth = scattered_witk_concentric_rings,necrosia_across_veins][ieaf_spot_size == greater_than_eighth_inch]
[shot_holing = present|[position_of _afected_ Jeaves == scattered_on_plant]

Icondutlon _of Jeaves_below_affected _Jeaves = unafected)[stem_cankers = does_not_apply} |[fruit_spots = colored_spots]

Discriminant description induced from characteristic description:
[leaf_spot_color = brownljleal_spot_growth = scattered with_concentric_ringa, necrosis_across_veinsj

|position_of _affected Jeaver = acatiered_on_plant|{fruit_spota = colored_spots}

Discriminant description induced from exomples:

[leaf_spot_growth = scattered_with_concentric_rings,necrosis_across_veins]

Description written by domain expert:

lleaf_spot_growth = acattered_with_concentric_rings]:0.50

[time_of _occurrenee = augnnt..oc:-ober][nhot_huling == present|:0.50
[leaf_rpot_size = grea.t;_tha.n_eighth_jnchl:O.-!S
[time_of occurrence = angnst..octuber[[fmit_po:s = dizeased][fruit_spots == colored_spots]:0.10
[accd_discalnration;ulnr = black]:0.05
fleaf_spot_margins ; water_soaked]:0.05
+

[yellow _Jeaf_spot_halos == absent}:0.05

Figure 16.



