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ABSTRACT 

This paper describes new conceptual and experi­
mental results using the probabilistic learning 
system PLSe, PLS2 is designed ror any task in 
which overall performance can be measured, and 
in which choice or task objects or operators 
influences perrormance, The system can manage 
incremental learning and noisy domains. 

PLS2 learns in two ways. Its lower "percep­
tual" layer clusters data in to economical cells or 
regions in augmented reature space. The upper 
"genetic" level or PLS2 selects successful regions 
(compressed genes) from multiple, parallel cases. 
Intermediate between performance data and task 
control structures, regions promote efficient and 
effective learning. 

Novel aspects or PLS2 include compressed 
genotypes, credit localization and "population 
performance", Incipient principles or efficiency 
and effectiveness are suggested. Analysis of the 
system is confirmed by experiments demonstrat­
ing stability, efficiency, and effectiveness. 

Figure 1. Layered learning system PLS2. The ptru'P­
tua.l learning system PLSI serves as the perrormance 
element (PEl of the gnetie system PLS2. The PE of 
PLSI is some task. PLS2 activates PLSI with ditTeren~ 
knowledge structures (·cumulative region sets") which 
PLS2 continually improves. The basis for improve­
ment. is competition and credit localization. 

1. INTRODUCTION 

The author's probabilistic learning system PLS is 
capable or efficient and effective generalization 
learning in many domains IRe 83a, Re83d, 
Re85al. Unlike other systems [La83, Mit83, 
Mic 83al, PLS can manage noise, and learn incre­
mentally. While it can be used Cor "single con­
cept" learning, like the systems described in 
[Di 821, PLS has been developed and tested in the 
difficult domain or heuristic search, which 
requires not only noise management and incre­
mental learning, but also removal or bias 
acquired during task performance [Re 83al. The 
system can discover optima.l evaluation runctions 
(see Fig. 2). PLS has introduced some novel 
approaches, such as new kinds of clustering. l 
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Figure 2. One use or PLS. In heuristic search, an 
object is a state, and its utility might be the probabil­
ity of contributing to success (appearing on a solution 
path). E.g., for r3t this probability is 1/3. Here the 
pair (r3' P3) is one of three rtgio", which may be used 
to create :to heuristic evaluation function. Region 
characteristics are determined by clustering, 

1. See [Re 831.) ror details and [Re 8Sa, Re 8SbI 
for discussion of PLS's ·conceptual clustering" 
[Mic 83bl which began in [Re 16, Re 111. PLS "utility~ 
of domain objects provides "category cohesiveness" 
(Me 851. [Re SSe) introduces "higher dimensional" clus­
tering which permits creation of structure. Appendix 
A summarizes some of these terms, which will be ex­
panded in later sections of this paper. 



Another successCul approach to adaptation 
is genetic algorithms (GA's). Aside Crom their 
ability to discover global optima, GA's have 
several other important characteristics, including 
stability, efficiency, flexibility, and extensibility 
lHo 75, Ho 811. While the Cull behavior oC genetic 
algorithms is not yet known in detail, certain 
characteristics have been established, and this 
approach compares very Cavorably with other 
methods or optimization lBeSO, BrSl, De 801. 
Because oC their perrormance and potential, GA's 
have been applied to various AI learning tasks 
!ReS3c, SmSO, SmS3J. 

In IRe S3cJ a combination or the above two 
approaches was described: the doubly layered 
learning system FLSt (see Fig.l).2 PLSl, the 
lower level or PLS2, could be considered "percep­
tual"; it compresses goal-oriented inrormation 
(task "utility") into a generalized, economical, 
and userul Corm ("regions" -see Figs. 2, 4). The 
upper layer is genetic, a competition or parallel 
knowledge structures. In lRe83cl, each oC these 
components was argued to improve efficacy and 
efficiency .~ 

This paper extends and substantiates these 
claims, conceptually and empirically. The next 
section gives an example oC a genetic algorithm 
which is oriented toward the current context. 
Section 3 describes the knowledge structure 
(regions) Crom two points or view: PLSI and PLS2. 
Section 4 examines the syn thesis oC these two 
systems and considers some reasons ror their 
efficiency. Sections 5 and 6 present and analyze 
the experimental results, which show the system 
to be stable, accurate, and efficient. The paper 
closes with a brie( summary and a glossary or 
terms used in machine learning and genetic sys­
tems. 

2. For the reader unfamiliar with learning sys­
tem and other terminology, Appendix B provides brief 
explanations_ 

3. PLS2 is applicable to any domain for which 
features and "userulness" or utilitg or objects can be 
de6nedlRe 83d). An object can represent a physical 
entity or an operator over the set or entities. Domains 
can be simple (e.g. "single concept" learning), or com­
plex (e.p;. expert. systems). State-space problems and 
games have been tested in IRe 83a., Re 83d). The PLS 
approach is uniform and can be deterministic or pro­
babilistic. The only real difRculty with a new domain 
is in. constructing reatures which bear a smooth rela.­
tionship to the utility (the system can evaluate and 
screen features presented to it). 

2. GENETIC SYSTEMS: AN EXAMPLE 

This section describes a simple GA, to introduce 
terminology and concepts, and to provide a basis 
ror comparison with the more complex PLS2. 
The reader already Camiliar with GA's may wish 
to omit all but the last part or this section. 

2.1. OptImization 

Many problems can be regarded as runction 
optimization. In an AI application, this may 
mean discovery or a good control structure ror 
executing. some task. The function to be optim­
ized is then som~ measure or task success which 
we may call the performance ..... In the terminol­
ogy or optimization, .... is the objective function. 
In the context or genetic systems, .... is the 
fitness, payoff} or merit.· 

The merit .... depends on some control 
structure, the simplest example oC which is a v.ec­
tor oC weights b = (b l , b2 , ••• , b ). Frequently

l 

the analytic rorm or J.I.( b) is not known, so exact 
methods cannot be used to optimize it (this is the 
case with most AI problems). But what orten ~is 
available (at some cost) is the value oC J.I. ror a 
given control structure. In our example, let us 
suppose that J.I. can be obtained Cor any desired 
value oC b, by testing system perCormance. Ir J.I. 
is a well behaved, smooth Cunction or b, and ir 
there is just one peak in the J.I. surrace, then this 
local optimum is also a global optimum, which 
cau be efficiently discovered using hill climbing 
techniques. However, the behavior oC J.I. is orten 
unknown, and J.I. may have numerous optima; in 
these cases. a genetic adaptive algorithm is 
appropriate. 

2.•2. Genetic AlgorIthms 

In a GA, a structure or interest, such as a 
weight vector b, is called a phenotype. Fig. 3 
shows a simple example with just two weights, b l 

and b2 - The phenotype is normally coded as a 
string oC digits (usually bits) called the genotype 
B. A single digit is a gene; gene values are 
(lileles. The position or a gene within the geno­
type is given by an index called the locus. 
Depending on the resolution desired, we might 
choose a greater or lesser number or sequential 
genes to code each bi- IC we consider 6 bits to be 

4. "" might also be called the ·utility", but we 
reserve this term for another kind of qua.lity measure 
used by PLSI. 



sufficient, the length or the genotype B will be L 
== 5n bits (see Fig. 3). 

Instead or searching weight space directly 
ror an optimal vector b, a GA' searches gene 
space, which has dimensionality L (gene space is 
Hamming space ir alleles are binary). A GA con­
ducts this search in parallel, using a set or indivi­
dual genotypes called a population or gene pool. 
By comparing the relative merits .... or individuals 
in a population, and by mating only the better 
individuals, a GA performs an inrormed search or 
gene space. This search is conducted iteratively, 
over repeated generations. In each new genera­
tion, there are three basic operations perrormed: 
(1) selection or parents, (2) generation or 
offspring, and (3) replacement or individuals. (1) 
and (2) have been given more attention. Parent 
selection is usually stochastic, weighted in ravor 
or individuals having higher .... values. Offspring 
generation relies on genetic operators which 
modiry parent genotypes. Two natural examples 
are mutation (which alters one allele), and cross­
over (which slices two genotypes at a common 
locus and exchanges segments-see-Fig.3). 

POPULATION 

GellotrPlt B Pllellot,PIt It Meri'll 

0001111110 (3..2) 2.1 
O.t 
0.8 

0011011011 (8,0$) 1.1 
0.1 

(....., I.e 

OFFSPRING 

Child,..ll B Child,..ll It[~~~~ 
0.' 

0001011100~1l0 
~yer 
0001 011100 0010111110 

Figure 3. Simple genetic system. The upper part or 
this diagr:l.m shows & small population or just seven 
individuals. Here the set or char&cteristics (the pAef&()' 
type) is & simple two element vector b. This is coded 
by the genotype B. Each individual is associated with 
its measured merit fJ.. On the basis of their fJ. values, 
pairs of individuals lore stochutically chosen as 
parents ror genetic recombination. Their genotypes 
are modified by crossover to produce two new 
oifsprins· 

tions are performed on them to produce 
offspring, the effect is a combination or 
knowledge retention and controlled search. Hol­
land proved that, using binary alleles, the cross­
over operator, and parent select.ion proportional 
to ...., a GA is K3 times more efficient than 
exhaustive search or gene space, where K is the 
population size [H075, H0811. Several empirical 
studies have verified the computational efficiency 
or GA's compared with alterative procedures ror 
global optimization, and have discovered 
interesting properties or GA's, such as effects or 
varying K. For example, populations smaller 
than SO can cause problems [Br 81, De 801. 

2.3. Application In Heuristic Search 

One AI use is search ror solutions to prob­

lems, or ror wins in games [Ni801. Ii Here we wish 
to learn an evaluation runction H as a combina­
tion or variables Xl' x2 ' ... , xn called attribute8 or 
feature8 (reatures are orten used to describe 
states in search). In the simplest case, H is 
expressed as the linear combination b l Xl + b2 x2 
+ .... + bnxn = b.x, where the bi are weightS to 
be learned. We want to optimize the weight vec­
tor b according to some measure or the perfor­
mance .... when H is used to control search. 

A rational way to define .... (which we shall 
use throughout this paper) is related to the aver~ 
age number D or states or nodes developed in 
solving a set or problems. Suppose D is observed 
ror a population or K heuristic fUDctions Hi 
defined by weight vectors bi . Since the perror­
mance improves with lower values or D, a good 
definition or the merit of Hi (i.e. or bi ) is the r~la-

tive perrormance measure J.I.i :i5 I Dj , where :i5::::1/ 

is the average over the population, i.e. :i5 == E 
Dj I K. This expression or merit could be used to 
assess genotypes B representing weight vectors 
b i , as depicted in Fig.3. 

Instead or this simple genetic approach, 
however, PLS2 employs unusual genotypes and 
operators, some or which relate to PLSI. In the 
remaining sections or this paper, we shall exam­
ine the advantages of the GA reSUlting rrom the 
combination or PLSI with PLS2. 

5. Notice tha.t search ta.kes place both a.t the 
level of the task domain (ror good problem solutions), . Beeause the more sueeessful parents are 
and at the level or the learnins element (tor a. goodselected ror mating, and because limited opera-
control structure H). 
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3. PLS INFORMATION STRUCTURING: 

DUAL VIEWPOINT 


The connection between PLSI perceptual learning 
and PLS2 genetic adaptation is subtle and 
indirect. Basically PLSI deals with object, x 
(which can be just about anything). and their 
relationships to task performance. Let us call 
the userulness or an object x in some task 
domain its utility u( x). 

Since the number or objects is typically 
immense, even vast observation is incomplete, 
and generalization is required ror prediction or u, 
given a previously unencountered x. A 
significan t step in generalization is usually the 
expression or x as a vector or high-level, abstract 
reatures Xl' x2 ' ••• , Xn ' 50 that x really represents 
not just one object, but rather a large number or 
similar objects (e.g. in a board game, x might be 
a vector or reatures such as piece advantage, 
center control, etc.). A rurther step in generali­
zation is to classify or categorize x's which are 

similar ror current purposes:' Since the purpose 
is to succeed well in a task, PLSI classifies x's 
having similar utilities u. 

Class formation can be accomplished in 
several ways, depending on the model assumed. 
If the task domain and reatures permit, objects 
having similar utilities may be clustered in 
feature space, as illustrated in Figs. 2 &: 4, giving 

a "region set" R.7 Another model is the linear 
combination H = b.t or §2. 

It is at this point that a GA like PLS2 can 
aid the learning process. Well performing b's or 
R's may be selected according to their merit ..... 
Note that merit .... is an overall measure or the 
task perrormance, while utility u is a quality 
measure localized to individual objects. 

The question now is what inrormation 
structures to choose ror representing knowledge 
about task utility. For many reasons, PLS incor­
porates the "region set" (Fig. 4), which represents 
domain knowledge by associating an object with 
its utility. We examine the region set rrom two 

6. Here tl) elll"", means fl) form classes, 
categories, or concepts. This is difficult to automate. 

1. PLSl initiated what has become known as 
conceptual clustering - where not just feature values 
are considered, but also predetermined rorms or classes 
(e.g. rectangles), and the whole data environment (e.g. 
utility). See IRe 16, Re 11, Re 831., Re 851., Re 8Sb), and 
also Appendix A. 

points or view: as a. PLSI knowledge structure, 
and as a PLS2 genetic structure. 

XI 

.. 
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.0001 

.2 
.003 

0 .. I 12 ao" XI 

Figure 4. Dual interpretation or a region set R. A 
region set is a partition or reature space (here there 
are 6 regions). Points are clustered into regions 
according to their utility u in some task domain (e.g. u 
- probability or contributing to task success - see 
Fig. 2). Here the u values are shown inside the rectan­
gles. A region R is the triple (r. u,e), where e is the 
error in u. The region set R - {R} serves both as the 
PLSI knowledge structure and as the PLS2 genotype. 
In PLSl, R is a discrete (step) runction expressing vari­
ation of utility u with reatures XI' In PLS2, R is a 
compressed version of the detailed genotype iIlu5tra.ted 
in Fig.S. 

3.1. The RegioD as PLSI Knowledge Strue­
titre 

In a future space representation, an object 

is a vector x = (Xl' X2 ' ••.• Xn }.s In a problem 
or game, the basic object is the slide, frequently 
expressed as a vector of features such as piece 

advantage. center control, mobility. etc.1I Obser­
vations made during the course or even many 
problems or games normally cover just a traction 
or feature space, and generalization is required 
ror prediction. 

In generalization letJrning, objects are 
abstracted to rorm cla88es, categories, or con­
cepts. This may take the rorm or a partition or 
reature space, i.e. a. set or mutually exhaustive 
local neighborhoods called clusters or cell, 
[An 73, Di82J. Since the goal ot clustering in PLS 
is to aid task performance, the basis for generali ­
zation is some measure ot the worth, quality, or 

8. Feature spaces are sometimes avoided because 
they cannot easily express structure. However, alter­
na.tive representations, as normally used, are also 
deficient ror realistic generaliza.tion learning. A new 
scheme mechanizes or a very difficult inductive prob­
lem: reature form.4tion. IRe 83d, Re 85c). 

9. The object or event could just as well be an 
operator to be applied to a state, or a state-opera.tor 
pair. See IRe 83d). 



utility or a state or cell, relative to the task. One 
measure or utility is the probability or contribut­
ing to a solution or win. In Figs. 2,4, probability 
classes are rectangular cells (Cor economy). The 
lertmost rectangle r has probability u = 0.2.10 
The . rectangle r is a category generalizing the 
conditions under which the utility u applies. 

In PLS, a rectangle is associated not just 
with its utility u, but also with the utility error 
e. This expression e or uncertainty in u allows 
quantification or the effect or noise and provides 
an inCormed and concise means Cor weighting 
various contributions to the value oC u during 
learning. The triple R == (r, u, e), called a 
region, is the main knowledge structure Cor PLSI. 
A set R = {R} oC regions defines a partition in 
augmented Ceature space. 

R may be used directly as a (discrete) 
evaluation or heuristic Cunction H == u(r) to 
assess state x Erin search. For example, in 
Fig.4, there are six regions, which differentiate 
states in to six utility classes. Instead oC Corming 
a discrete heuristic, R may be used indirectly. as 
data Cor determining the weight vector b in a 
smooth evaluation Cunction H == b.x (employing 
curve fitting techniques). We shall return to 
these algorithmic aspects oC PLS in §4. 

-. 
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Figure S. Definition oC maximally detailed genotype U. 
U the number oC points in Ceature space is finite and a 
value or the utility is associated with each point, com. 
plete inCormation can be captured in a detailed geno­
type U of concatenated utilities U1 U2 ... uL' Coord.. 
nates could be. linearly ordered as shown here Cor the 
two dimensional case. U is an Cully expanded genotype 
corresponding to the compressed version of Fig. 4. 

,10. This could be expressed in other ways. The 
production rule Corm is r - u. Using logic, r is 
represented: (O S Xl S 4) n (0 S x2 S 2). 

3.2. The Region Set &II Compressed and 
Unrestricted PLSZ Genotype 

Now let us examine these inrormation 
structures trom the genetic viewpoint. The 
weight vector b ot evaluation tunction H could 
be considered a GA phenotype. What might the 
genotype be? One choice, a simple one, was 
described in §2 and illustrated in Fig.3: here the 
genotype B is just a binary coding oC b. A 
different possibility is one that captures exhaus. 
tive inCormation about the relationship between 
utility u and reature vector x (see Fig. 5). In this 
case, the gene ~ould be (x, u). It the number or 
genes is finite, they can be indexed and con­
catenated, to give a very detailed genotype U, 
which becomes a string ot values u 1u2 ••• UL cod­
ing the entire utility surtace in augmented 
feature space. 

This genotype U is unusual in some impor­
tant ways. Let us compare it with the ea'rlier 
example B oC §2 (Fig. 3). B is simply a binary 
'Corm ot weight ~ector b. One obvious difference 
between Band U is that U is more verbose than 
B. This redundancy aspect will be consideied 
shortly. The other important difference between 
B a.nd U is that alleles within B may well interact 
(to express Ceature nonlinearity). but alleles Uj 

within U cannot interact (since the Uj express an 
absolute property oC Ceature vector x. i.e. its util­
ity Cor some task). As explained in the next sec­
tion, this Creedom Crom gene interdependence 
permits localization oC credit.ll 

The detailed genotype U codes the utility 
surtace, which may be very irregular at worst, or 
very smooth at best. This surCace may be locally 
well behaved (it may vary slowly in some 
volumes of reature space). In cases ot local regu­
larity, portions of U are redundant. As shown in 
Fig. 5, PLS2 compresses the genotype U, into the 
region set R (examined in §3.1 trom the PLSI 
viewpoin t). In PLS2, 3. single region R = (r, u. e) 
is a set oC genes, the whole having just one allele 
u (we disregard the genetic coding oC e). Unlike 
standard genotypes, which have a stationary 
locus Cor each gene and a fixed number ot genes, 
the region set has no explicit loci, but rather a 

11. While one of the strengths of a GA is its abil­
ity to mana.ge interaction of variables (by "co­
adapting" alleles), PLS2 achieves efficient and concise 
knowledge representation and acquisition by flexible 
gene compression, and by certa.in other methods exam­
ined later in this paper. 
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variable number of elements (regions), each 
representing a variable number of genes. A 
region compresses gene sets having similar utility 
according to current knowledge. 

4. KNOWLEDGE ACQUISITION: 
SYNERGIC LEARNING ALGORITHMS 

In this section we examine how R is used to pr~ 
vide barely adequate information about the util­
ity surface. This compact representation results 
in economy or both space and time, and in 
effective learning. Some reasons for this power 
are considered. 

The ultimate purpose of PLS is to discover 
utility classes in the form of a region set R. This 
knowledge structure controls the primary task: 
for example, in heuristic search, R = {R} = 
{( r, u, e)} defines a discrete evaluation function 

H(r) = u. 

The ideal R would be perfectly accurate 
and maximally compressed. Accuracy of utility 
u determines the quality of task performance. 
Appropriate compression of R characterizes the 
task domain concisely but adequately (see 
Figs. 3,4), saving storage and time, both during 
task performance and during learning. 

These goals of accuracy and economy are 
approached by the doubly layered learning sys­
tem PLS2 (Fig. I). PLSI and PLS2 combine to 
become effective rules Cor generalization (induc­
tion), specialization (differentiation), and reorgan­
ization. The two layers support each other in 
various ways: for example PLS2 stabilizes the per­
ceptual system PLSl, and PLSI maintains gen~ 
type diversity of the genetic system PLS2. In the 
following we consider details, first Crom the 
standpoint of PLSl, then from the perspective of 
PLS2. 

4.1. PLS1 Revision and Differentiation 

Even without a genetic component, PLSI is 
a Hexible learning system which can be employed 
in noisy domains requiring incremental learning. 
It can be used for simple concept learning like 
the systems in [Di821, but most experiments have 
involved state space problem solving and. game 

playing.12 Here we examine PLS in the context of 

. 12. These experiments have led to unique results 
such as discovery of locally opt.imal evaluat.ion rune­
tions (see [Re 8310, Re 83d/). 

these difficult tasks. 

As described in §3.1, the main PLSI 
knowledge structure is the region set R = 
{(r,u,en· Intermediate between basic data 
obtained during search, and a general heuristic 
used to control search, R defines a feature space 
augmented and partitioned by u and e. Because 
R is improved incrementally, it is called the 
cumulative region set. PLSI repeatedly performs 
two basic operations on R. One operation is 
correction or revision (of utility u and error e), 
and the other is specialization, differentiation, or 
refinement (of feature space cells r). These 
operators are detailed in [Re83a, Re83dl; here 
we simply outline their effects and note their lim­
itations. 

Revision of u and e. For an established 
region R == (r,u,e) E R, PLSI is able to modify u 
and to decrease e by using n~w data. This is 
accomplished in a rough fashion, by comparing 
established values within all rectangles r with 
fresh values within the same r. It is difficult or 
impossible to learn the "true" values of u, sin.ce 
data are acquired during performance of ha}d 
tasks, and these data are biased in unknown 
ways because of nontrivial search. 

Refinement or R. Alternately perrorming 
then learning, PLSI acquires more and more 
detail about the nature of variation of utility u 
with features. This inrormation accumulates in 
the region set R = {R} == {( r, u, e n, where the 
primary effect of clustering u is increasing resolu­
tion of R. The number, sizes, and shapes of rec­
tangles in R reflect current knowledge resolution. 
As this differentiation continues in success.ive 
iterations of PLS1, attention focuses on more use­
Cui parts or feature space, and heuristic power 
improves. 

Unfortunately, so does the likelihood of 
error. Further, errors are difficult to quantify 
and hard to localize to individual regions. 

In brief, while the incremental learning or 
PLSI is powerful enough to learn locally optimal 
heuristics under certain conditions, and while 
PLSI feedback is good enough to control and 
correct mild errors, the reedback can become 
unstable in unfavorable situations: instead of 
b~ing corrected, errors can become more pr~ 
nounced. Moreover, PLSI is sensitive to parame­
ter settings (see Appendix B). The system needs 
support. 

http:playing.12


4.2. PLS2 Genetic Operator. 

Qualities missing in PLSI can be provided 
by PLS2. As §4.1 concluded, PLSl, with its single 
region set, cannot discover accurate values or 
utilities u. PLS2, however, maintains an entire 
population or region sets, which means that 
several regions in all cover any given reature 
space volume. The availability or comparable 
regions ultimately permits greater accuracy in u, 
and brings other benefits. 

As §3.2 explained, a PLS2 genotype is the 
region set R = {R}, and each region R = 
(r, u, e) E R is a compressed gene whose allele is 
the utility u. Details or an early version or PLS2 
are given in IRe 83cJ. Those algorithms have 
been improved; the time complexity or the opera­
tors in recent program implementations is linear 
with population 'size K. The rollowing discussion 
outlines the overall effects and properties or the 
various genetic operators (compare to the more 
usual GA or §2). 

K-sexual mating is the operator analo­
gous to crossover. Consider a population {R} or 
K different region sets R. Each set is composed 
or a number or regions R which together cover 
reature space. A new region set R' is rormed by 
selecting individual regions (one at a time) rrom 
parents R, with probability proportional to merit 
J.I. (merit is the perrormance or R defined at the 
end or §2). Selection or regions rrom the whole 
population or region sets continues until the 
reature space cover is approximately the average 
cover or the parents. This creates the offspring 
region set R' which is generally not a partition. 

Gene reorganization. For economy or 
storage and time, 'the offspring region set R' is 
repartitioned so that regions do not overlap in 
reature space. 

Controlled mutatIon. Standard muta­
tion operators alter an allele randomly. In con­
trast, the PLS2 operator analogous to mutation 
changes an allele according to evidence arising in 
the task domain. The controlled mutation 
operator ror a region set R = ({ r, u, e)} is the 
utility revision operator or PLSI. As described in 
§4.1, PLSI modifies the utility u ror each reature 
space cell r. 

Genotype expansion. This operator is 
also provided by PLSI. RecaJ.1 the discussion or 
§3.2' about the economy resulting rrom compress­
ing genes (utility-reature vectors) into a region 

set R. The refinement operator was described in 
§4.1. This feature space refinement amounts to 
an expansion or the genotype R, and is carried 
out when data warrant th.e discrimination. 

Both controlled mutation and genotype 
expansion promote genotype diversity. Thus 
PLSI helps PLS2 to avoid premature convergence, 
a typical GA problem [Br 81, Ma84J. 

4.3. Eft'eetivenes8 and EfRelency 

The power or PLS2 may be traced to cer­
tain aspects or the perceptual and genetic algo­
rithms just outlined. Some existing and emerg­
ing principles or effective and efficient learning 
are briefty discussed below (see also IRe 85a, 
Re85b, Re85cl). 

Credit localization. The selection or 
regions ror K-sexual mating may use a single 
merit value J.I. ror each region R within a given 
set R. However, the value or J.I. can just as well 
be localized to single regions within R, by com­
paring R with similar regions in other sets. Since 
regions estimate an absolute quantity (ta.$­
related utility) in their own volume or reature 
space, they are independent or each other. Thus 
credit and blame may be assigned to reature 
space cells (i.e. to gene sequences). 

Assignment or credit to individual regions 
within a cumula.tive set R is straightforward, but 
it would be difficult to do directly in the final 
evaluation runction H, since the components or 
H, while appropriate ror perrormance, omit inror­
mation relevant to learning (compare 
Figs. 2, 4).13 . 

Knowledge mediation. Successrul sys­
tems tend, to employ inrormation structures 
which mediate data objects and the ultimate 
knowledge rorm. These mediating structures 
include means to record growing assurance or 
tentative hypotheses. 

When used in heuristic search, the PLS 
region set media.tes large numbers or states and a 

13. There are various possibilities tor the evalua­
tion function H, but all contain less useful information 
than their determinant, the region set R. The sim­
plest heuristic used in IRe 83a, Re S3d) is H - b.r, 
where b is a vector or weights tor the feature vector r. 
(This linear combination is used exclusively in experi­
ment.s to be described in §S.) The value or b is found 
using regions as data in linear regression IRe 83a, 
Re83b). 
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very concise evaluation runction H. Retention 
and continual improvement of this mediating 
structure relieves the credit assignment problem. 
This view is unlike that of IOi8l, p.14, Oi82J: 
learning systems often attempt to improve the 
control structure itself, whereas PLS acquires 
knowledge efficiently in an appropriate structure, 
and utilizes this knowledge by compressing it 
only temporarily for performance. In other 
words, PLS does not directly search rule space for 
a good H, but rather searches for good cumula­
tive regions from which H is constructed. 

Full but controlled use ot every datum. 
Samuel's checker player permitted each state 
encountered to influence the heuristic H, and at 
the same time no one datum could overwhelm 
the system. The learning was stochastic: botb 
conservative and economic. In tbis respect PLS2 
is similar (altbougb more automated). 

Schemata In learnins systems and 
genetic algorithms. A related efficiency in 
botb Samuel's systems and PLS is like the scbe­
mata concept in a GA. In a GA, a single indivi­
dual, coded as a genotype (a string of digits), 
supports not only itself, but also all its sub­
strings. Similarly, a single state arising in heuris­
tic search contains information about every 
reature used to describe it. Thus each state can 
be used to appraise and weight each reature. 
(The effect is more pronounced when a state is 
described in more elementary terms, and combi­
nations of primitive descriptors are assessed - see 
\Re85c]). 

5. EXPERIMENT ANJ) ANALYSIS 

PLS2 is designed to work in a cbanging environ­
ment of increasingly difficult problems. This sec­
tion describes experimental evidence of effective 
and efficient learning. 

5.1. Experimental Conditions 

Tame teatures. The features used for 
these experiments were the rour or IRe83aJ. The 
relationship between utility and tbese reatures is 
rairly smooth, so the full capability or a GA is not 
tested, although the environment was dynamic. 

Definition ot merit .... As §4 described, 
PLS2 choses regions from successful cumulative 
sets and recombines them into improved sets. 
For the experiments reported bere, the selection 
criterion was tbe global merit J.I., i.e. the perfor­

mance of a whole region set, without localization 
of credit to individual regions. Tbis measure J.I. 
was the average number of nodes developed 0 in 
a training sample of 8 fifteell puzzles, divided 
into the mean of all such averages in a popula­

tion of K sets, i.e. J.I. == 0/0, where 0 is the 
average over tbe population (0 == E OJ / K). 

Chanslns environment. For these exper­
iments, successive rounds of training were 
repeated in incremental learning over several 
iterations or generations. The environment was 
altered in successive generations; it was specified 
as problem difficulty or depth d (defined as tbe 
number of moves rrom the goal in sample prob­
lems). As a sequence of specifications of problem 
difficulty, tbis becomes a training difficulty vector 
d== (dl' d2 , ••• , dn). 

Here d was static, one known to be a good 
progression, based on previous experience· witb 
user training IC084}}4 In tbese experiments, d 
was always (8,1'4,22,50, #, #, ... ). An integer 
means random production of training problems 
subject to this difficulty constraint, wbile "':II" 
demands production of fully random training 
instances. 

5.2. Discussion 

Before we examine the experiments them­
selves let us consider potential differences 
between PLSI and PLS2 in terms of their 
effectiveness and efficiency. We also need a cri­
terion for assessing differences between the two 
systems. 

Vulnerablllty ot PLSI. With population' 
size K = 1, PLS2 degenerates to tbe simpler PLSI. 
In this case, static training can result in utter 
failure, since the process is stochastic and various 
tbings can go wrong (see Appendix B). The 
worst is railure to solve any problems in some 
generation, and consequent absence or any new 
inrormation. If the control structure H is tbis 
poor, it will not improve unless tbe ract is 

14. PLS &nd similar systems ror problems a.nd 
games are sometimes neither rully supervised nor rully 
unsupervised. The original PLSl was intermediate in 
this respect. Training problems were selected by a hu­
man, but trom each training instance, a multitude or 
individual nodes for learning are generated by the sys­
tem. Each node can be considered a separate example 
tor concept learning [Re 83dJ. ICo 84) describes experi­
ments with an automated trainer. 
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detected and problem difficulty is reduced (i.e. 
dynamic training is needed). 

Even without this catastrophe, PLSI per~ 
rorms with varying degrees or success depending 
on the sophistication of its training and other 
factors (explained in Appendix B). With minimal 
human guidance, PLSI always achieves a good 
evaluation function H, although not always an 
optimal one. With static training, PLSI succeeds 
reasonably about half the time. 

Stability ot PLS2. In contrast, one would 
expect PLS2 to have a much better success rate. 
Since PLSI is here being run in parallel (Fig. 1). 
and since PLS2 should reject hopeless cases (their 
....·s are small), a complete catastrophe (all H's 
railing) should occur with probability p :sa qK, 
where q is the probability or PLSI failure and K 
is population size. It q is even as large as one 
hair, but K is 7 or more, the probability p or 
catastrophe is less than 0.01. 

Cost versus benefit: a measure. Failure 
plays a part in costs, so PLS2 may have an 
advantage. The ultimate criterion for system 
quality is cost effectiveness: is PLS2 worth its 
extra complexity? Since the main cost is in task 
performance (here solving). the number of nodes 
developed 0 to attain some performance is a 
good measure of the expense. 

If training results in catastrophic failure, 
however, all effort is wasted, so a better measure 
is the expected cost O/p, where p is the probabil­
ity of success. For example, if 0 = 500 for 
viable control structures, but the probability or 
finding solutions is only ~ then the average cost 
or useful inrormation is 500/ ¥.a = 1000. 

To extend this argument, probability p 
depends on what is considered a success. Is suc­
cess the discovery or a. perfect evaluation func~ 
tion H, or is perrormance satisfactory ir D 
departs from optimal by no more than 25%? 

5.3. Results 

Table I shows performances and costs with 
various values of K. Here p is estimated using 
roughly 36 trials or PLSI in a PLS2 context (ir K 
= I, 36 distinct runs; ir K = 2, 18 runs; etc.). 
Since variances in 0 are high, perrormance tests 
were made over a random sample of 50 puzzles. 
This typic~lly gives 95% confidence or 0 ::t: 40. 

Accuracy ot learning. Let us first com­
pare results or PLSI versus PLS2 ror four different 
success criteria. We consider the learning to be 
successrul ir the resulting heuristic H approaches 
optimal quality ·within a given margin (of 100%, 
50%,25%, and 10%). 

Columns two to five in the table (the 
second group) show the proportion or H's giving 
perrormance 0 within a specified percentage or 
the best known 0 (the best 0 is around 350 
nodes for the rour features used). For example, 
the last row or the tal?le shows that, or the 36 
individual control structures H tested in (two 
different) populations or size 19, all 36 were 
within 100% or optimal 0 (column two). T:his 
means that all developed no more than 700 nodes­
berore a solution was round. Similarly. column 
five in the last row shows that 0.21 or the 3ti H's, 
or 8 of them. were within 10%, i.e. required no 
more than 385 nodes developed. 

Cost ot accuracy. Columns ten and 
eleven (the two rightmost columns of the fourth 
group) show the estimated costs or achieving per­
rormance within 100% and within 10% or 
optimum. respectively. The values are based on 
the expected total number or nodes required (i.e. 
O/p), with adjustments in favor of PLSI for extra 
PLS2 overhead. (The unit is one thousand nodes 
developed'.) As K increases, the cost of a given 
accuracy first increases. Nevertheless, with just 
moderate K values, the genetic system becomes 
cheaper, particularly for an accuracy or 10%. 
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The expected cost benefit is not the only PLS2, and traditional optimization. In [Re811, 
advantage of PLS2. PLSI was found considerably more efficient than 

Average performance, best perfor­
mance, and population performance. Con­
sider now the third group of columns in Table I. 
The sixth column gives the average D for all H's 
in the sample (of 36). The seventh column gives 
Db for the best Hb in the sample. These two 
measures, average and best performance, are 
often used in assessing genetic systems lBr 811. 
The eighth column, however, is unusual; it indi­
cates the population performance D-p resulting 
when all regions from every set in the popUlation 
are used together in a regression to determine 
~. This is sensible because regions are indepen­
dent and estimate the utility, an absolute quan­
tity (lRe83cj. cr lBr81, H075J). 

Several trends are apparent in Table I. 
First, whether the criterion is 100%, 50%, 25%, 
or 10% of optimum (columns 2.5), the proportion 
of good H's increases steadily as population· size 
K rises. Similarly, average, best, and popUlation 

performance measures 0, Db and Dp (columns 6­
8) also improve with K. Perhaps most important 
is that the population performance Dp is so reli­
ably close to best, even with these low K values. 
This means that the whole population of regions 
can be used (for Hp) without independent 
verification or performance. In contrast, indivi­
dual H's would require additional testing to dis­
cover the best (column 7), and the other alterna­
tive, any H, is likely not as good as Hp (columns 
6 and 8). Furthermore, the entire population of 
regions can become an accurate source or mas­
sive data for deterlllining an evaluation function 
capturing feature interaction [Re83bJ. 

This accuracy advantage of PLS2 is illus­
trated in the final column or the table, where, ror 
a constant cost, rough estimates are given, of the 
expected error in population performance Dp 
relative to the optimal value. 

It is interesting that such small populations 
improve performance markedly; usually popula­
tion sizes are 50 or more. 

D. EFFICIENCY AND CAPABILITY 

Based on these empirical observations for PLS2, 
on other comparisons for PLSl, and on various 
conceptual differences, general properties of three 
competing methods can be compared: PLSl, 

standard optimization, and the suggestion was 
made that PLSI made better use of available 
information. By studying such behaviors and 
underlying reasons, we should eventually identify 
principles or efficient learning. Some aspects are 
considered below. 

Traditional optimization versus PLSI. 
First, let us consider efficiency of search ror an 
optimal weight vector b in the evaluation func­
tion H = b.t. One good optimization method is 
response surface fitting (RSF). It can discover a 
local optimum in 'weight space by measuring and 
regressing the response (here number or nodes 
developed D) for various values of b. RSF util­
izes just a single quantity (i.e. D) for every prob­
lem solved. This seems like a small amount of 
information to extract from an entire search, 
since a typical one may develop hundreds -or 
thousands of nodes, each possibly containing 
relevant inrormation. In contrast to this tradi­
tional statistical approach, PLSl, like [Sa63, 
530671, uncovers knowledge about every featute 
from every node {see §4.3}. PLSl, then, might be 
expected to be more efficient than RSF. Experi­
ments veriry this [Re811. 

TraditIonal optImizatIon versus PLS2. 
As shown in §5, PLS2 is more efficient still. We 
can compare it, too, with RSF. The accuracy or 
RSF is known to improve with \IN, where N is 
the number of data (here the number or or prob­
lems solved). As a. first approximation, a parallel 
method like PLS2 should also cause accuracy to 
increase with the square root of the number or 
data, although the data are now regions instead 
of D values. If roughly the same number of 
regions is present in each individual set R or a 
population of size K, accuracy must therefore 
improve as V'K. Since ea.ch of these K structures 
requires N problems in training, the accuracy or 
PLS2 should increase as VN, like RSF. 

Obviously, though, PLS2 involves much 
more than blind parallelism: a genetic algorithm 
extracts accurate knowledge and dismisses 
incorrect (unfit) information. While it is impossi­
ble for PLSI alone, PLS2 can refine merit by 
localizing credit to individual regions IRe 83cJ. 
Planned experiments with this should show 
further increases in efficiency since the additional 
cost is small. Another inexpensive improvement 

10 




will attempt to reward good regions by decreas­
ing their estimated errors. Even without these 
refinements, PLS2 retains meritorious regions 
(§4), and should exhibit accuracy improvement 

better than v'N. Table I suggests this. 

PLS2 verSU8 PLS2. As discussed in §4.1 
and Appendix 8; PLSI is limited, necessitating 
human tuning for optimum performance. In con­
trast, the second layer learning system PLS2 
requires little human intervention. The main 
reason is that PLS2 stabilizes knowledge 
automatically, by comparing region sets and 
dismissing aberrant ones. Accurate cumulative 
sets have a longer lifetime. 

This ability to discriminate merit and 
retain successful data will likely be accentuated 
with the localiza:tion of credit to individual 
regions (see §4.2). Another improvement is to 
alter dynamically the error of a region (estimated 
by PLSl) as a function of its merit (found by 
PLSZ). This will have the effect of protecting a 
good region from imperfect PLSI utility revision; 
once some parallel PLSI has succeeded in discov­
ering an accurate value, it will be more immune 
to damage. A fit region will have a very long 
liCespan. 

Inherent difference. in capabillty. RSF, 
PLS I, and PLS2 can be characterized differently. 
From the standpoint of time costs: given a chal­
lenging requirement such as the location of a 
local optimum within 10%, the ordering of these 
methods in terms of efficiency is RSF S PLSI S 

PLS2. In terms of capability, the same relation­
ship holds. RSF cannot handle feature interac­
tions without a more complex model (which 
would increase its eost drastically). PLSl, on the 
other hand, can provide some performance 
improvement using piecewise linearity, with little 
additional cost IRe 83bj. PLS2 is more robust 
than PLSI. While the original system is some­
what sensitive to training and parameters, PLS2 
provides stability using competition to overcome 
deficiencies, obviate tuning, and incre:lSe accu­
racy, all at once. PLS2 buffers inadequacies 
inherent in PLSI. Moreover, PLS2, being geneti­
cally based, may be able to handle highly 
interacting reatures, and discover global optima 
IRe 83cJ. This is very costly with RSF and seems 
inreasible with PLSI alone. 

7. SUMMARY AND CONCLUSIONS 

PLS2 is a general learning system IRe 8330, 
Re83dj. Given a set of user-defined features and 
some measure of the utility (e.g. probability of 
success in task perrormance), PLS2 forms and 
refines an appropriate knowledge structure, the 
cumulative region 8et R, relating utility to 
reature values, and permitting noise manage­
ment. This economical and Oexible structure 
mediates data objects and abstract heuristic 
knowledge. 

Since individual regions of the cumulative 
set R are independent or one another, both credit 
localization and feature interaction are possible 
simultaneously. Separating the task control 
structure H from the main store of knowledge R 
allows straightforward credit assignment to this 
determinant R or H, while H itseIr may incor­
porate reature nonlinearities without being 
responsible ror them. 

A concise and adequate embodiment or 
current heuristic knowledge, the cumulative 
region set R was originally used in the learni" 
system PLSI [Re83aJ. PLSI is the only system. 
shown to discover locally optimal evaluation 
functions in an AI context. Clearly superior to 
PLSI, its genetic successor PLS2 has been shown 
to be more stable, more accurate, more efficient, 
and more convenient. PLS2 employs an unusual 
genetic algorithm having the cumulative set R as 
a compressed genotype. PLS2 extends PLS1's lim­
ited operations or revision (controlled mutation) 
and differentiation (genotype expansion), to 
include generalization and other rules (K-sexual 
mating and genotype reorganization). Credit 
may be localized to individual gene sequences. 

These improvements may be viewed as 
effecting greater efficiency or as allowing greater 
capability. Compared with a traditional method 
or optimization, PLSI is more efficient IRe 8Sal, 
but PLS2 does even better. Given a required 
accuracy, PLS2 locates an optimum with lower 
expected cost. In terms of capability, PLS2 insu­
lates the system rrom inherent inadequacies and 
sensitivities or PLSI. PLS2 is much more stable 
and can use the whole population or regions reli­
ably to create a highly inrormed heuristic (this 
population performance is not meaningrul in 
standard genetic systems). This availability or 
massive data has important implications ror 
reature interaction IRe83bl. 
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Additional refinements of PLS2 may Curther 
increase efficiency and power. These include 
reward ing meritorious regions so they become 
immune to damage. Future experiments will 
investigate nonlinear capability» ability to dis­
cover global optima, and efficiency and 
effectiveness of localized credit assignment. 

This paper has quantitatively affirmed some 
principles believed to improve efficiency and 
effectiveness of learning (e.g. credit localization). 
The paper has also considered some simple but 
little explored ideas for realizing these capabili­
ties (e.g. Cull but controlled use of each datum). 
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APPENDIX A. GLOSSARY OF TERMS 

Clustering. Cluster analysis has long been 
used as a tool for induction in statistics and pat­
tern recognition [An 73J. (See "induction".) 
Improvements to basic clustering techniques gen­
erally use more than just the reatures of a datum 
([An 73, p.194] suggests "external criteria"). 
External criteria in !Mi83, Re76, Re83a, Re8Sb] 
involve prior specification or the forms clusters 
may take (this has been called "conceptual clus­
tering" [Mi831). Criteria in [Re76, Re83~, 
Re 8Sb! are based on the data environment (see 

"utility") below)}3 This paper uses clustering to 
create economical, compressed genetic structures 
(genotypes). 

Feature. A feature is an attribute or pro­
perty of an object. Features are usually quite 
abstract (e.g. "center control" or "mobility") in a 
board game. The utility (see below) varies 
smoothly with a feature. 

Genetic algorithm. In a GA, a the char­
acter of an individual of a population is called a 
phenotype. The phenotype is coded as a string or 
digits called the genotype. A single digit is a 
gene. Instead of searching rule space directly 
(compare "learning system"), a GA searches gene 
space (i.e. a GA searches for good genes in the 
population of genotypes). This search uses the 
merit 1.1. of individual genotypes, selecting the 
more successrul individuals to undergo genetic 
operations ror the production of offspring. See 
§2 and Fig. 3. 

Induction. Induction or generalization 
learning is an important means for knowledge 
acquisition. Information is actually created, as 
data are compressed into classes or categories in 
order to predict ruture events efficiently and 
effectively. Induction may create feature space 
neighborhoods or clusters. See "clustering" and 
§4.1. 

Learning System. Buchanan et 301. 
present a general model which distinguishes com­
ponents of a learning system [Bu 78]. The perfor­
mance element PE is guided by a control struc­
ture H. Based 00 observation or the PE, the cri­
tic assesses H, possibly localizing credit to parts 
or H [Bu 78, Di811. The learning element LE uses 
this information to improve H, ror the next 
round or task performance. Layered systems 
have multiple PE's, critics, and LEts (e.g. PLS2 
uses PLS1 as its PE -see Fig. 1). Just as a PE 
searches ror its goal in problem space, the LE 
searches in rule space [Di82J for an optimal H to 
control the PE. 

To racilitate this higher goal, PLS2 uses an 
intermediate knowledge structure which divides 
feature space into regions relating feature values 
to object utility [Re83d] and discovering a useful 
subset or features (d [Sa63j). In this paper, the 
control structure H is a linear evaluation func­

15. A new learning system IRe 85cJ introduces 
higher-dimensional clustering for creation or structure. 
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tion INi801, and the "rules" are feature weights 
for H. Search for accurate regions replaces direct 
search of rule space; i.e. regions mediate data 
and H. As explained in §3, sets or regions 
become compressed GA "genotypes". See also 
"genetic algorithms", "PLS", "region", and Fig. 1. 

Merit po. Also called payoff or fitness, this 
is the measure used by a genetic algorithm to 
select parent genotypes for preferential reproduc­
tion of successful individuals. Compare "utility", 
also see "genetic algorithms". 

Object. Objects are any data to be gen­
eralized into categories. Relationships usually 
depend on task domain. See "utility". 

PLS. The probabilistic learning system 
can learn what are sometimes called "single con­
cepts" [Di821, bu(PLS is capable of much more 
difficult tasks, involving noise management, 
incremental learning, and normalization of biased 
data. PLSI uniquely discovered locally optimal 
heuristics in search [Re 83al, and PLS2 is the 
effective and efficient extension examined in this 
paper. PLS manipulates "regions" (see below). 
using various inductive operations described in 
§4. 

Region or Cell. Depending on one's 
viewpoint. the region is PLS's basic structure for 
clustering or for the genetic algorithm. The 
region is a compressed representation or a utility 
surface in augmented feature space; it is also a 
compr~ssed genotype representing a utility func­
tion to be optimized. As explained in [Re83dj, 
the region representation is fully expressive, pro­
viding the features are. See §3 and Figs. 3 & 4. 

Utillty u. This is any measure of the use­
fulness of an object in the performance of some 
task. The utility provides a link between the 
task domain and PLS generalization algorithms. 
Utility can be a probability. as in Fig. 2. Com­
pare merit. See § 1,3. 

APPENDIX B. PLSI LIMITATIONS 

PLSI alone is inherently limited. The problems 
relate to modification or the main knowledge 
structure, the cumulative region set R == 
{(r,u,e)}. As mentioned in §4.1, R undergoes 
two basic alterations. PLSI gradually changes 
the meaning of an established feature space rec­
tangle r by updating its associated utility u 
(along with u's error e). PLSI also incrementally 

refines the feature space, as rectangles r are con­
tinually split. 

Both of these modifications (utility revision 
and region refinement) are largely directed by 
search data, but the degree to which newer inCor­
mation affects R depends on various choices or 
system parameters [Re 83al. System parameters 
influence estimates or the error e, and determine 
the degree or region refinement. These, in turn, 
affect the relative importance or new versus esta­
blished knowledge. 

Consequently, values of these parameters 
influence task performance. For example, there 
is a tradeoff between utility revision and region 
refinement. If regions are refined too quickly. 
accuracy suffers (this is theoretically predictable). 
If, instead, utility revision predominates, regions 
become inert (their estimated errors decline), but 
sometimes incorrectly.10 

There are several other problems, including 
difficu Ities in train ing, limitation in the utility 
revision algorithm, and inaccurate estimation or 
various errors. As a result, utility estimatiolls 
are imperfect, and biased in unknown ways. 

Together, the above uncertainties and sen­
sitivities explain the failure or PLSI always to 
locate an optimum with static training (Table I). 
The net effect is that PLSI works fairly well with 
no parameter tuning and unsophisticated train­
ing, and close to optimal with mild tuning and 
informed training [C0841. as long as the features 
are well behaved. 

By nature, however, PLSI requires features 
exhibiting no worse than mild interactions. This 
is a serious restriction, since reature nonlinearity 
is prevalent. On its own, then, PLSI is inherently 
limited. There is simply no wily to learn utility 
accurately unless the effects or differing heuristic 
functions H are compared, as in PLS2. 
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