
I

Report No. UIUCDCS-R-85-l2l7

GENETIC PLANS AND THE PROBABILISTIC LEARNING
SYSTEM: SYNTHESIS AND RESULTS

by

Larry Rendell

July 1985

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Avenue
Urbana. Illinois 61801

This work was supported in part by the National Science Foundation

under Grant No. DCR 84-06801 and by an operating grant from the

Natural Sciences and Engineering Research Council of Canada.

This paper will appear in the Proceedings of the International

Conference on Genetic Algorithms and their Applications.

July 24-26. 1985. Carnegie-Mellon University.

GENETIC PLANS AND THE PROBABILISTIC LEARNING SYSTEM:

SYNTHESIS AND RESULTS

Larry Rendell

Department or Computer Science,

University or Illinois at Urbana-Champaign,

1304 West Springfield Avenue, Urbana, Illinois 61801

ABSTRACT

This paper describes new conceptual and experi­
mental results using the probabilistic learning
system PLSe, PLS2 is designed ror any task in
which overall performance can be measured, and
in which choice or task objects or operators
influences perrormance, The system can manage
incremental learning and noisy domains.

PLS2 learns in two ways. Its lower "percep­
tual" layer clusters data in to economical cells or
regions in augmented reature space. The upper
"genetic" level or PLS2 selects successful regions
(compressed genes) from multiple, parallel cases.
Intermediate between performance data and task
control structures, regions promote efficient and
effective learning.

Novel aspects or PLS2 include compressed
genotypes, credit localization and "population
performance", Incipient principles or efficiency
and effectiveness are suggested. Analysis of the
system is confirmed by experiments demonstrat­
ing stability, efficiency, and effectiveness.

Figure 1. Layered learning system PLS2. The ptru'P­
tua.l learning system PLSI serves as the perrormance
element (PEl of the gnetie system PLS2. The PE of
PLSI is some task. PLS2 activates PLSI with ditTeren~
knowledge structures (·cumulative region sets") which
PLS2 continually improves. The basis for improve­
ment. is competition and credit localization.

1. INTRODUCTION

The author's probabilistic learning system PLS is
capable or efficient and effective generalization
learning in many domains IRe 83a, Re83d,
Re85al. Unlike other systems [La83, Mit83,
Mic 83al, PLS can manage noise, and learn incre­
mentally. While it can be used Cor "single con­
cept" learning, like the systems described in
[Di 821, PLS has been developed and tested in the
difficult domain or heuristic search, which
requires not only noise management and incre­
mental learning, but also removal or bias
acquired during task performance [Re 83al. The
system can discover optima.l evaluation runctions
(see Fig. 2). PLS has introduced some novel
approaches, such as new kinds of clustering. l

start

.,

Figure 2. One use or PLS. In heuristic search, an
object is a state, and its utility might be the probabil­
ity of contributing to success (appearing on a solution
path). E.g., for r3t this probability is 1/3. Here the
pair (r3' P3) is one of three rtgio", which may be used
to create :to heuristic evaluation function. Region
characteristics are determined by clustering,

1. See [Re 831.) ror details and [Re 8Sa, Re 8SbI
for discussion of PLS's ·conceptual clustering"
[Mic 83bl which began in [Re 16, Re 111. PLS "utility~
of domain objects provides "category cohesiveness"
(Me 851. [Re SSe) introduces "higher dimensional" clus­
tering which permits creation of structure. Appendix
A summarizes some of these terms, which will be ex­
panded in later sections of this paper.

Another successCul approach to adaptation
is genetic algorithms (GA's). Aside Crom their
ability to discover global optima, GA's have
several other important characteristics, including
stability, efficiency, flexibility, and extensibility
lHo 75, Ho 811. While the Cull behavior oC genetic
algorithms is not yet known in detail, certain
characteristics have been established, and this
approach compares very Cavorably with other
methods or optimization lBeSO, BrSl, De 801.
Because oC their perrormance and potential, GA's
have been applied to various AI learning tasks
!ReS3c, SmSO, SmS3J.

In IRe S3cJ a combination or the above two
approaches was described: the doubly layered
learning system FLSt (see Fig.l).2 PLSl, the
lower level or PLS2, could be considered "percep­
tual"; it compresses goal-oriented inrormation
(task "utility") into a generalized, economical,
and userul Corm ("regions" -see Figs. 2, 4). The
upper layer is genetic, a competition or parallel
knowledge structures. In lRe83cl, each oC these
components was argued to improve efficacy and
efficiency .~

This paper extends and substantiates these
claims, conceptually and empirically. The next
section gives an example oC a genetic algorithm
which is oriented toward the current context.
Section 3 describes the knowledge structure
(regions) Crom two points or view: PLSI and PLS2.
Section 4 examines the syn thesis oC these two
systems and considers some reasons ror their
efficiency. Sections 5 and 6 present and analyze
the experimental results, which show the system
to be stable, accurate, and efficient. The paper
closes with a brie(summary and a glossary or
terms used in machine learning and genetic sys­
tems.

2. For the reader unfamiliar with learning sys­
tem and other terminology, Appendix B provides brief
explanations_

3. PLS2 is applicable to any domain for which
features and "userulness" or utilitg or objects can be
de6nedlRe 83d). An object can represent a physical
entity or an operator over the set or entities. Domains
can be simple (e.g. "single concept" learning), or com­
plex (e.p;. expert. systems). State-space problems and
games have been tested in IRe 83a., Re 83d). The PLS
approach is uniform and can be deterministic or pro­
babilistic. The only real difRculty with a new domain
is in. constructing reatures which bear a smooth rela.­
tionship to the utility (the system can evaluate and
screen features presented to it).

2. GENETIC SYSTEMS: AN EXAMPLE

This section describes a simple GA, to introduce
terminology and concepts, and to provide a basis
ror comparison with the more complex PLS2.
The reader already Camiliar with GA's may wish
to omit all but the last part or this section.

2.1. OptImization

Many problems can be regarded as runction
optimization. In an AI application, this may
mean discovery or a good control structure ror
executing. some task. The function to be optim­
ized is then som~ measure or task success which
we may call the performance In the terminol­
ogy or optimization, is the objective function.
In the context or genetic systems, is the
fitness, payoff} or merit.·

The merit depends on some control
structure, the simplest example oC which is a v.ec­
tor oC weights b = (b l , b2 , ••• , b). Frequently

l

the analytic rorm or J.I.(b) is not known, so exact
methods cannot be used to optimize it (this is the
case with most AI problems). But what orten ~is
available (at some cost) is the value oC J.I. ror a
given control structure. In our example, let us
suppose that J.I. can be obtained Cor any desired
value oC b, by testing system perCormance. Ir J.I.
is a well behaved, smooth Cunction or b, and ir
there is just one peak in the J.I. surrace, then this
local optimum is also a global optimum, which
cau be efficiently discovered using hill climbing
techniques. However, the behavior oC J.I. is orten
unknown, and J.I. may have numerous optima; in
these cases. a genetic adaptive algorithm is
appropriate.

2.•2. Genetic AlgorIthms

In a GA, a structure or interest, such as a
weight vector b, is called a phenotype. Fig. 3
shows a simple example with just two weights, b l

and b2 - The phenotype is normally coded as a
string oC digits (usually bits) called the genotype
B. A single digit is a gene; gene values are
(lileles. The position or a gene within the geno­
type is given by an index called the locus.
Depending on the resolution desired, we might
choose a greater or lesser number or sequential
genes to code each bi- IC we consider 6 bits to be

4. "" might also be called the ·utility", but we
reserve this term for another kind of qua.lity measure
used by PLSI.

sufficient, the length or the genotype B will be L
== 5n bits (see Fig. 3).

Instead or searching weight space directly
ror an optimal vector b, a GA' searches gene
space, which has dimensionality L (gene space is
Hamming space ir alleles are binary). A GA con­
ducts this search in parallel, using a set or indivi­
dual genotypes called a population or gene pool.
By comparing the relative merits or individuals
in a population, and by mating only the better
individuals, a GA performs an inrormed search or
gene space. This search is conducted iteratively,
over repeated generations. In each new genera­
tion, there are three basic operations perrormed:
(1) selection or parents, (2) generation or
offspring, and (3) replacement or individuals. (1)
and (2) have been given more attention. Parent
selection is usually stochastic, weighted in ravor
or individuals having higher values. Offspring
generation relies on genetic operators which
modiry parent genotypes. Two natural examples
are mutation (which alters one allele), and cross­
over (which slices two genotypes at a common
locus and exchanges segments-see-Fig.3).

POPULATION

GellotrPlt B Pllellot,PIt It Meri'll

0001111110 (3..2) 2.1
O.t
0.8

0011011011 (8,0$) 1.1
0.1

(....., I.e

OFFSPRING

Child,..ll B Child,..ll It[~~~~
0.'

0001011100~1l0
~yer
0001 011100 0010111110

Figure 3. Simple genetic system. The upper part or
this diagr:l.m shows & small population or just seven
individuals. Here the set or char&cteristics (the pAef&()'
type) is & simple two element vector b. This is coded
by the genotype B. Each individual is associated with
its measured merit fJ.. On the basis of their fJ. values,
pairs of individuals lore stochutically chosen as
parents ror genetic recombination. Their genotypes
are modified by crossover to produce two new
oifsprins·

tions are performed on them to produce
offspring, the effect is a combination or
knowledge retention and controlled search. Hol­
land proved that, using binary alleles, the cross­
over operator, and parent select.ion proportional
to, a GA is K3 times more efficient than
exhaustive search or gene space, where K is the
population size [H075, H0811. Several empirical
studies have verified the computational efficiency
or GA's compared with alterative procedures ror
global optimization, and have discovered
interesting properties or GA's, such as effects or
varying K. For example, populations smaller
than SO can cause problems [Br 81, De 801.

2.3. Application In Heuristic Search

One AI use is search ror solutions to prob­

lems, or ror wins in games [Ni801. Ii Here we wish
to learn an evaluation runction H as a combina­
tion or variables Xl' x2 ' ... , xn called attribute8 or
feature8 (reatures are orten used to describe
states in search). In the simplest case, H is
expressed as the linear combination b l Xl + b2 x2
+ + bnxn = b.x, where the bi are weightS to
be learned. We want to optimize the weight vec­
tor b according to some measure or the perfor­
mance when H is used to control search.

A rational way to define (which we shall
use throughout this paper) is related to the aver~
age number D or states or nodes developed in
solving a set or problems. Suppose D is observed
ror a population or K heuristic fUDctions Hi
defined by weight vectors bi . Since the perror­
mance improves with lower values or D, a good
definition or the merit of Hi (i.e. or bi) is the r~la-

tive perrormance measure J.I.i :i5 I Dj , where :i5::::1/

is the average over the population, i.e. :i5 == E
Dj I K. This expression or merit could be used to
assess genotypes B representing weight vectors
b i , as depicted in Fig.3.

Instead or this simple genetic approach,
however, PLS2 employs unusual genotypes and
operators, some or which relate to PLSI. In the
remaining sections or this paper, we shall exam­
ine the advantages of the GA reSUlting rrom the
combination or PLSI with PLS2.

5. Notice tha.t search ta.kes place both a.t the
level of the task domain (ror good problem solutions), . Beeause the more sueeessful parents are
and at the level or the learnins element (tor a. goodselected ror mating, and because limited opera-
control structure H).

3

3. PLS INFORMATION STRUCTURING:

DUAL VIEWPOINT

The connection between PLSI perceptual learning
and PLS2 genetic adaptation is subtle and
indirect. Basically PLSI deals with object, x
(which can be just about anything). and their
relationships to task performance. Let us call
the userulness or an object x in some task
domain its utility u(x).

Since the number or objects is typically
immense, even vast observation is incomplete,
and generalization is required ror prediction or u,
given a previously unencountered x. A
significan t step in generalization is usually the
expression or x as a vector or high-level, abstract
reatures Xl' x2 ' ••• , Xn ' 50 that x really represents
not just one object, but rather a large number or
similar objects (e.g. in a board game, x might be
a vector or reatures such as piece advantage,
center control, etc.). A rurther step in generali­
zation is to classify or categorize x's which are

similar ror current purposes:' Since the purpose
is to succeed well in a task, PLSI classifies x's
having similar utilities u.

Class formation can be accomplished in
several ways, depending on the model assumed.
If the task domain and reatures permit, objects
having similar utilities may be clustered in
feature space, as illustrated in Figs. 2 &: 4, giving

a "region set" R.7 Another model is the linear
combination H = b.t or §2.

It is at this point that a GA like PLS2 can
aid the learning process. Well performing b's or
R's may be selected according to their merit
Note that merit is an overall measure or the
task perrormance, while utility u is a quality
measure localized to individual objects.

The question now is what inrormation
structures to choose ror representing knowledge
about task utility. For many reasons, PLS incor­
porates the "region set" (Fig. 4), which represents
domain knowledge by associating an object with
its utility. We examine the region set rrom two

6. Here tl) elll"", means fl) form classes,
categories, or concepts. This is difficult to automate.

1. PLSl initiated what has become known as
conceptual clustering - where not just feature values
are considered, but also predetermined rorms or classes
(e.g. rectangles), and the whole data environment (e.g.
utility). See IRe 16, Re 11, Re 831., Re 851., Re 8Sb), and
also Appendix A.

points or view: as a. PLSI knowledge structure,
and as a PLS2 genetic structure.

XI

..

I

0

.001
.0001

.2
.003

0 .. I 12 ao" XI

Figure 4. Dual interpretation or a region set R. A
region set is a partition or reature space (here there
are 6 regions). Points are clustered into regions
according to their utility u in some task domain (e.g. u
- probability or contributing to task success - see
Fig. 2). Here the u values are shown inside the rectan­
gles. A region R is the triple (r. u,e), where e is the
error in u. The region set R - {R} serves both as the
PLSI knowledge structure and as the PLS2 genotype.
In PLSl, R is a discrete (step) runction expressing vari­
ation of utility u with reatures XI' In PLS2, R is a
compressed version of the detailed genotype iIlu5tra.ted
in Fig.S.

3.1. The RegioD as PLSI Knowledge Strue­
titre

In a future space representation, an object

is a vector x = (Xl' X2 ' ••.• Xn }.s In a problem
or game, the basic object is the slide, frequently
expressed as a vector of features such as piece

advantage. center control, mobility. etc.1I Obser­
vations made during the course or even many
problems or games normally cover just a traction
or feature space, and generalization is required
ror prediction.

In generalization letJrning, objects are
abstracted to rorm cla88es, categories, or con­
cepts. This may take the rorm or a partition or
reature space, i.e. a. set or mutually exhaustive
local neighborhoods called clusters or cell,
[An 73, Di82J. Since the goal ot clustering in PLS
is to aid task performance, the basis for generali ­
zation is some measure ot the worth, quality, or

8. Feature spaces are sometimes avoided because
they cannot easily express structure. However, alter­
na.tive representations, as normally used, are also
deficient ror realistic generaliza.tion learning. A new
scheme mechanizes or a very difficult inductive prob­
lem: reature form.4tion. IRe 83d, Re 85c).

9. The object or event could just as well be an
operator to be applied to a state, or a state-opera.tor
pair. See IRe 83d).

utility or a state or cell, relative to the task. One
measure or utility is the probability or contribut­
ing to a solution or win. In Figs. 2,4, probability
classes are rectangular cells (Cor economy). The
lertmost rectangle r has probability u = 0.2.10
The . rectangle r is a category generalizing the
conditions under which the utility u applies.

In PLS, a rectangle is associated not just
with its utility u, but also with the utility error
e. This expression e or uncertainty in u allows
quantification or the effect or noise and provides
an inCormed and concise means Cor weighting
various contributions to the value oC u during
learning. The triple R == (r, u, e), called a
region, is the main knowledge structure Cor PLSI.
A set R = {R} oC regions defines a partition in
augmented Ceature space.

R may be used directly as a (discrete)
evaluation or heuristic Cunction H == u(r) to
assess state x Erin search. For example, in
Fig.4, there are six regions, which differentiate
states in to six utility classes. Instead oC Corming
a discrete heuristic, R may be used indirectly. as
data Cor determining the weight vector b in a
smooth evaluation Cunction H == b.x (employing
curve fitting techniques). We shall return to
these algorithmic aspects oC PLS in §4.

-.

I,

Figure S. Definition oC maximally detailed genotype U.
U the number oC points in Ceature space is finite and a
value or the utility is associated with each point, com.
plete inCormation can be captured in a detailed geno­
type U of concatenated utilities U1 U2 ... uL' Coord..
nates could be. linearly ordered as shown here Cor the
two dimensional case. U is an Cully expanded genotype
corresponding to the compressed version of Fig. 4.

,10. This could be expressed in other ways. The
production rule Corm is r - u. Using logic, r is
represented: (O S Xl S 4) n (0 S x2 S 2).

3.2. The Region Set &II Compressed and
Unrestricted PLSZ Genotype

Now let us examine these inrormation
structures trom the genetic viewpoint. The
weight vector b ot evaluation tunction H could
be considered a GA phenotype. What might the
genotype be? One choice, a simple one, was
described in §2 and illustrated in Fig.3: here the
genotype B is just a binary coding oC b. A
different possibility is one that captures exhaus.
tive inCormation about the relationship between
utility u and reature vector x (see Fig. 5). In this
case, the gene ~ould be (x, u). It the number or
genes is finite, they can be indexed and con­
catenated, to give a very detailed genotype U,
which becomes a string ot values u 1u2 ••• UL cod­
ing the entire utility surtace in augmented
feature space.

This genotype U is unusual in some impor­
tant ways. Let us compare it with the ea'rlier
example B oC §2 (Fig. 3). B is simply a binary
'Corm ot weight ~ector b. One obvious difference
between Band U is that U is more verbose than
B. This redundancy aspect will be consideied
shortly. The other important difference between
B a.nd U is that alleles within B may well interact
(to express Ceature nonlinearity). but alleles Uj

within U cannot interact (since the Uj express an
absolute property oC Ceature vector x. i.e. its util­
ity Cor some task). As explained in the next sec­
tion, this Creedom Crom gene interdependence
permits localization oC credit.ll

The detailed genotype U codes the utility
surtace, which may be very irregular at worst, or
very smooth at best. This surCace may be locally
well behaved (it may vary slowly in some
volumes of reature space). In cases ot local regu­
larity, portions of U are redundant. As shown in
Fig. 5, PLS2 compresses the genotype U, into the
region set R (examined in §3.1 trom the PLSI
viewpoin t). In PLS2, 3. single region R = (r, u. e)
is a set oC genes, the whole having just one allele
u (we disregard the genetic coding oC e). Unlike
standard genotypes, which have a stationary
locus Cor each gene and a fixed number ot genes,
the region set has no explicit loci, but rather a

11. While one of the strengths of a GA is its abil­
ity to mana.ge interaction of variables (by "co­
adapting" alleles), PLS2 achieves efficient and concise
knowledge representation and acquisition by flexible
gene compression, and by certa.in other methods exam­
ined later in this paper.

6

http:certa.in
http:credit.ll

variable number of elements (regions), each
representing a variable number of genes. A
region compresses gene sets having similar utility
according to current knowledge.

4. KNOWLEDGE ACQUISITION:
SYNERGIC LEARNING ALGORITHMS

In this section we examine how R is used to pr~
vide barely adequate information about the util­
ity surface. This compact representation results
in economy or both space and time, and in
effective learning. Some reasons for this power
are considered.

The ultimate purpose of PLS is to discover
utility classes in the form of a region set R. This
knowledge structure controls the primary task:
for example, in heuristic search, R = {R} =
{(r, u, e)} defines a discrete evaluation function

H(r) = u.

The ideal R would be perfectly accurate
and maximally compressed. Accuracy of utility
u determines the quality of task performance.
Appropriate compression of R characterizes the
task domain concisely but adequately (see
Figs. 3,4), saving storage and time, both during
task performance and during learning.

These goals of accuracy and economy are
approached by the doubly layered learning sys­
tem PLS2 (Fig. I). PLSI and PLS2 combine to
become effective rules Cor generalization (induc­
tion), specialization (differentiation), and reorgan­
ization. The two layers support each other in
various ways: for example PLS2 stabilizes the per­
ceptual system PLSl, and PLSI maintains gen~
type diversity of the genetic system PLS2. In the
following we consider details, first Crom the
standpoint of PLSl, then from the perspective of
PLS2.

4.1. PLS1 Revision and Differentiation

Even without a genetic component, PLSI is
a Hexible learning system which can be employed
in noisy domains requiring incremental learning.
It can be used for simple concept learning like
the systems in [Di821, but most experiments have
involved state space problem solving and. game

playing.12 Here we examine PLS in the context of

. 12. These experiments have led to unique results
such as discovery of locally opt.imal evaluat.ion rune­
tions (see [Re 8310, Re 83d/).

these difficult tasks.

As described in §3.1, the main PLSI
knowledge structure is the region set R =
{(r,u,en· Intermediate between basic data
obtained during search, and a general heuristic
used to control search, R defines a feature space
augmented and partitioned by u and e. Because
R is improved incrementally, it is called the
cumulative region set. PLSI repeatedly performs
two basic operations on R. One operation is
correction or revision (of utility u and error e),
and the other is specialization, differentiation, or
refinement (of feature space cells r). These
operators are detailed in [Re83a, Re83dl; here
we simply outline their effects and note their lim­
itations.

Revision of u and e. For an established
region R == (r,u,e) E R, PLSI is able to modify u
and to decrease e by using n~w data. This is
accomplished in a rough fashion, by comparing
established values within all rectangles r with
fresh values within the same r. It is difficult or
impossible to learn the "true" values of u, sin.ce
data are acquired during performance of ha}d
tasks, and these data are biased in unknown
ways because of nontrivial search.

Refinement or R. Alternately perrorming
then learning, PLSI acquires more and more
detail about the nature of variation of utility u
with features. This inrormation accumulates in
the region set R = {R} == {(r, u, e n, where the
primary effect of clustering u is increasing resolu­
tion of R. The number, sizes, and shapes of rec­
tangles in R reflect current knowledge resolution.
As this differentiation continues in success.ive
iterations of PLS1, attention focuses on more use­
Cui parts or feature space, and heuristic power
improves.

Unfortunately, so does the likelihood of
error. Further, errors are difficult to quantify
and hard to localize to individual regions.

In brief, while the incremental learning or
PLSI is powerful enough to learn locally optimal
heuristics under certain conditions, and while
PLSI feedback is good enough to control and
correct mild errors, the reedback can become
unstable in unfavorable situations: instead of
b~ing corrected, errors can become more pr~
nounced. Moreover, PLSI is sensitive to parame­
ter settings (see Appendix B). The system needs
support.

http:playing.12

4.2. PLS2 Genetic Operator.

Qualities missing in PLSI can be provided
by PLS2. As §4.1 concluded, PLSl, with its single
region set, cannot discover accurate values or
utilities u. PLS2, however, maintains an entire
population or region sets, which means that
several regions in all cover any given reature
space volume. The availability or comparable
regions ultimately permits greater accuracy in u,
and brings other benefits.

As §3.2 explained, a PLS2 genotype is the
region set R = {R}, and each region R =
(r, u, e) E R is a compressed gene whose allele is
the utility u. Details or an early version or PLS2
are given in IRe 83cJ. Those algorithms have
been improved; the time complexity or the opera­
tors in recent program implementations is linear
with population 'size K. The rollowing discussion
outlines the overall effects and properties or the
various genetic operators (compare to the more
usual GA or §2).

K-sexual mating is the operator analo­
gous to crossover. Consider a population {R} or
K different region sets R. Each set is composed
or a number or regions R which together cover
reature space. A new region set R' is rormed by
selecting individual regions (one at a time) rrom
parents R, with probability proportional to merit
J.I. (merit is the perrormance or R defined at the
end or §2). Selection or regions rrom the whole
population or region sets continues until the
reature space cover is approximately the average
cover or the parents. This creates the offspring
region set R' which is generally not a partition.

Gene reorganization. For economy or
storage and time, 'the offspring region set R' is
repartitioned so that regions do not overlap in
reature space.

Controlled mutatIon. Standard muta­
tion operators alter an allele randomly. In con­
trast, the PLS2 operator analogous to mutation
changes an allele according to evidence arising in
the task domain. The controlled mutation
operator ror a region set R = ({ r, u, e)} is the
utility revision operator or PLSI. As described in
§4.1, PLSI modifies the utility u ror each reature
space cell r.

Genotype expansion. This operator is
also provided by PLSI. RecaJ.1 the discussion or
§3.2' about the economy resulting rrom compress­
ing genes (utility-reature vectors) into a region

set R. The refinement operator was described in
§4.1. This feature space refinement amounts to
an expansion or the genotype R, and is carried
out when data warrant th.e discrimination.

Both controlled mutation and genotype
expansion promote genotype diversity. Thus
PLSI helps PLS2 to avoid premature convergence,
a typical GA problem [Br 81, Ma84J.

4.3. Eft'eetivenes8 and EfRelency

The power or PLS2 may be traced to cer­
tain aspects or the perceptual and genetic algo­
rithms just outlined. Some existing and emerg­
ing principles or effective and efficient learning
are briefty discussed below (see also IRe 85a,
Re85b, Re85cl).

Credit localization. The selection or
regions ror K-sexual mating may use a single
merit value J.I. ror each region R within a given
set R. However, the value or J.I. can just as well
be localized to single regions within R, by com­
paring R with similar regions in other sets. Since
regions estimate an absolute quantity (ta.$­
related utility) in their own volume or reature
space, they are independent or each other. Thus
credit and blame may be assigned to reature
space cells (i.e. to gene sequences).

Assignment or credit to individual regions
within a cumula.tive set R is straightforward, but
it would be difficult to do directly in the final
evaluation runction H, since the components or
H, while appropriate ror perrormance, omit inror­
mation relevant to learning (compare
Figs. 2, 4).13 .

Knowledge mediation. Successrul sys­
tems tend, to employ inrormation structures
which mediate data objects and the ultimate
knowledge rorm. These mediating structures
include means to record growing assurance or
tentative hypotheses.

When used in heuristic search, the PLS
region set media.tes large numbers or states and a

13. There are various possibilities tor the evalua­
tion function H, but all contain less useful information
than their determinant, the region set R. The sim­
plest heuristic used in IRe 83a, Re S3d) is H - b.r,
where b is a vector or weights tor the feature vector r.
(This linear combination is used exclusively in experi­
ment.s to be described in §S.) The value or b is found
using regions as data in linear regression IRe 83a,
Re83b).

'1

very concise evaluation runction H. Retention
and continual improvement of this mediating
structure relieves the credit assignment problem.
This view is unlike that of IOi8l, p.14, Oi82J:
learning systems often attempt to improve the
control structure itself, whereas PLS acquires
knowledge efficiently in an appropriate structure,
and utilizes this knowledge by compressing it
only temporarily for performance. In other
words, PLS does not directly search rule space for
a good H, but rather searches for good cumula­
tive regions from which H is constructed.

Full but controlled use ot every datum.
Samuel's checker player permitted each state
encountered to influence the heuristic H, and at
the same time no one datum could overwhelm
the system. The learning was stochastic: botb
conservative and economic. In tbis respect PLS2
is similar (altbougb more automated).

Schemata In learnins systems and
genetic algorithms. A related efficiency in
botb Samuel's systems and PLS is like the scbe­
mata concept in a GA. In a GA, a single indivi­
dual, coded as a genotype (a string of digits),
supports not only itself, but also all its sub­
strings. Similarly, a single state arising in heuris­
tic search contains information about every
reature used to describe it. Thus each state can
be used to appraise and weight each reature.
(The effect is more pronounced when a state is
described in more elementary terms, and combi­
nations of primitive descriptors are assessed - see
\Re85c]).

5. EXPERIMENT ANJ) ANALYSIS

PLS2 is designed to work in a cbanging environ­
ment of increasingly difficult problems. This sec­
tion describes experimental evidence of effective
and efficient learning.

5.1. Experimental Conditions

Tame teatures. The features used for
these experiments were the rour or IRe83aJ. The
relationship between utility and tbese reatures is
rairly smooth, so the full capability or a GA is not
tested, although the environment was dynamic.

Definition ot merit As §4 described,
PLS2 choses regions from successful cumulative
sets and recombines them into improved sets.
For the experiments reported bere, the selection
criterion was tbe global merit J.I., i.e. the perfor­

mance of a whole region set, without localization
of credit to individual regions. Tbis measure J.I.
was the average number of nodes developed 0 in
a training sample of 8 fifteell puzzles, divided
into the mean of all such averages in a popula­

tion of K sets, i.e. J.I. == 0/0, where 0 is the
average over tbe population (0 == E OJ / K).

Chanslns environment. For these exper­
iments, successive rounds of training were
repeated in incremental learning over several
iterations or generations. The environment was
altered in successive generations; it was specified
as problem difficulty or depth d (defined as tbe
number of moves rrom the goal in sample prob­
lems). As a sequence of specifications of problem
difficulty, tbis becomes a training difficulty vector
d== (dl' d2 , ••• , dn).

Here d was static, one known to be a good
progression, based on previous experience· witb
user training IC084}}4 In tbese experiments, d
was always (8,1'4,22,50, #, #, ...). An integer
means random production of training problems
subject to this difficulty constraint, wbile "':II"
demands production of fully random training
instances.

5.2. Discussion

Before we examine the experiments them­
selves let us consider potential differences
between PLSI and PLS2 in terms of their
effectiveness and efficiency. We also need a cri­
terion for assessing differences between the two
systems.

Vulnerablllty ot PLSI. With population'
size K = 1, PLS2 degenerates to tbe simpler PLSI.
In this case, static training can result in utter
failure, since the process is stochastic and various
tbings can go wrong (see Appendix B). The
worst is railure to solve any problems in some
generation, and consequent absence or any new
inrormation. If the control structure H is tbis
poor, it will not improve unless tbe ract is

14. PLS &nd similar systems ror problems a.nd
games are sometimes neither rully supervised nor rully
unsupervised. The original PLSl was intermediate in
this respect. Training problems were selected by a hu­
man, but trom each training instance, a multitude or
individual nodes for learning are generated by the sys­
tem. Each node can be considered a separate example
tor concept learning [Re 83dJ. ICo 84) describes experi­
ments with an automated trainer.

8

detected and problem difficulty is reduced (i.e.
dynamic training is needed).

Even without this catastrophe, PLSI per~
rorms with varying degrees or success depending
on the sophistication of its training and other
factors (explained in Appendix B). With minimal
human guidance, PLSI always achieves a good
evaluation function H, although not always an
optimal one. With static training, PLSI succeeds
reasonably about half the time.

Stability ot PLS2. In contrast, one would
expect PLS2 to have a much better success rate.
Since PLSI is here being run in parallel (Fig. 1).
and since PLS2 should reject hopeless cases (their
....·s are small), a complete catastrophe (all H's
railing) should occur with probability p :sa qK,
where q is the probability or PLSI failure and K
is population size. It q is even as large as one
hair, but K is 7 or more, the probability p or
catastrophe is less than 0.01.

Cost versus benefit: a measure. Failure
plays a part in costs, so PLS2 may have an
advantage. The ultimate criterion for system
quality is cost effectiveness: is PLS2 worth its
extra complexity? Since the main cost is in task
performance (here solving). the number of nodes
developed 0 to attain some performance is a
good measure of the expense.

If training results in catastrophic failure,
however, all effort is wasted, so a better measure
is the expected cost O/p, where p is the probabil­
ity of success. For example, if 0 = 500 for
viable control structures, but the probability or
finding solutions is only ~ then the average cost
or useful inrormation is 500/ ¥.a = 1000.

To extend this argument, probability p
depends on what is considered a success. Is suc­
cess the discovery or a. perfect evaluation func~
tion H, or is perrormance satisfactory ir D
departs from optimal by no more than 25%?

5.3. Results

Table I shows performances and costs with
various values of K. Here p is estimated using
roughly 36 trials or PLSI in a PLS2 context (ir K
= I, 36 distinct runs; ir K = 2, 18 runs; etc.).
Since variances in 0 are high, perrormance tests
were made over a random sample of 50 puzzles.
This typic~lly gives 95% confidence or 0 ::t: 40.

Accuracy ot learning. Let us first com­
pare results or PLSI versus PLS2 ror four different
success criteria. We consider the learning to be
successrul ir the resulting heuristic H approaches
optimal quality ·within a given margin (of 100%,
50%,25%, and 10%).

Columns two to five in the table (the
second group) show the proportion or H's giving
perrormance 0 within a specified percentage or
the best known 0 (the best 0 is around 350
nodes for the rour features used). For example,
the last row or the tal?le shows that, or the 36
individual control structures H tested in (two
different) populations or size 19, all 36 were
within 100% or optimal 0 (column two). T:his
means that all developed no more than 700 nodes­
berore a solution was round. Similarly. column
five in the last row shows that 0.21 or the 3ti H's,
or 8 of them. were within 10%, i.e. required no
more than 385 nodes developed.

Cost ot accuracy. Columns ten and
eleven (the two rightmost columns of the fourth
group) show the estimated costs or achieving per­
rormance within 100% and within 10% or
optimum. respectively. The values are based on
the expected total number or nodes required (i.e.
O/p), with adjustments in favor of PLSI for extra
PLS2 overhead. (The unit is one thousand nodes
developed'.) As K increases, the cost of a given
accuracy first increases. Nevertheless, with just
moderate K values, the genetic system becomes
cheaper, particularly for an accuracy or 10%.

TUr.a 1. COSTS .". PlUOll.l4AlICQ at GUllU>l'lOIi 5.

'op.
11..

I

,roportio" SaUafyift,
S~ec••• Criteri.oft

(pro.aity to opU••1 Dj
100' SO, 15' 10'

....ft Moda. ts..alo P4td
IR4n..... S4.pl_ o(Sal

"'" .eu '~.II ~

eoat, .al'
In,U"• .su41 II
110' nodee)

la,."te.s Con
of One II IUtUn

lQot lot

.. hclot••nce
Ro~qb taU..t.

(for coat,-.xlO:t)

1
4
7

11
15
19

.47 .2. .12 .04

.69 .11 .19 .Ol

.n .41 .n .01
1.00 .51 .19 .11
1.00 .n .il .14
1.00 .71 .61 .21

..i54 115 -
511 III 40'
511 117 195
507 1.. 197
450 110 390
451 148 161

12.5
11.4
11.1
18.1
19.2
19.1

26.6 lU
25.2 580
22.7 III
11.7 170
19.2 117
19.7 ,.

lit
lot
lot
12'
9\
1.

g

The expected cost benefit is not the only PLS2, and traditional optimization. In [Re811,
advantage of PLS2. PLSI was found considerably more efficient than

Average performance, best perfor­
mance, and population performance. Con­
sider now the third group of columns in Table I.
The sixth column gives the average D for all H's
in the sample (of 36). The seventh column gives
Db for the best Hb in the sample. These two
measures, average and best performance, are
often used in assessing genetic systems lBr 811.
The eighth column, however, is unusual; it indi­
cates the population performance D-p resulting
when all regions from every set in the popUlation
are used together in a regression to determine
~. This is sensible because regions are indepen­
dent and estimate the utility, an absolute quan­
tity (lRe83cj. cr lBr81, H075J).

Several trends are apparent in Table I.
First, whether the criterion is 100%, 50%, 25%,
or 10% of optimum (columns 2.5), the proportion
of good H's increases steadily as population· size
K rises. Similarly, average, best, and popUlation

performance measures 0, Db and Dp (columns 6­
8) also improve with K. Perhaps most important
is that the population performance Dp is so reli­
ably close to best, even with these low K values.
This means that the whole population of regions
can be used (for Hp) without independent
verification or performance. In contrast, indivi­
dual H's would require additional testing to dis­
cover the best (column 7), and the other alterna­
tive, any H, is likely not as good as Hp (columns
6 and 8). Furthermore, the entire population of
regions can become an accurate source or mas­
sive data for deterlllining an evaluation function
capturing feature interaction [Re83bJ.

This accuracy advantage of PLS2 is illus­
trated in the final column or the table, where, ror
a constant cost, rough estimates are given, of the
expected error in population performance Dp
relative to the optimal value.

It is interesting that such small populations
improve performance markedly; usually popula­
tion sizes are 50 or more.

D. EFFICIENCY AND CAPABILITY

Based on these empirical observations for PLS2,
on other comparisons for PLSl, and on various
conceptual differences, general properties of three
competing methods can be compared: PLSl,

standard optimization, and the suggestion was
made that PLSI made better use of available
information. By studying such behaviors and
underlying reasons, we should eventually identify
principles or efficient learning. Some aspects are
considered below.

Traditional optimization versus PLSI.
First, let us consider efficiency of search ror an
optimal weight vector b in the evaluation func­
tion H = b.t. One good optimization method is
response surface fitting (RSF). It can discover a
local optimum in 'weight space by measuring and
regressing the response (here number or nodes
developed D) for various values of b. RSF util­
izes just a single quantity (i.e. D) for every prob­
lem solved. This seems like a small amount of
information to extract from an entire search,
since a typical one may develop hundreds -or
thousands of nodes, each possibly containing
relevant inrormation. In contrast to this tradi­
tional statistical approach, PLSl, like [Sa63,
530671, uncovers knowledge about every featute
from every node {see §4.3}. PLSl, then, might be
expected to be more efficient than RSF. Experi­
ments veriry this [Re811.

TraditIonal optImizatIon versus PLS2.
As shown in §5, PLS2 is more efficient still. We
can compare it, too, with RSF. The accuracy or
RSF is known to improve with \IN, where N is
the number of data (here the number or or prob­
lems solved). As a. first approximation, a parallel
method like PLS2 should also cause accuracy to
increase with the square root of the number or
data, although the data are now regions instead
of D values. If roughly the same number of
regions is present in each individual set R or a
population of size K, accuracy must therefore
improve as V'K. Since ea.ch of these K structures
requires N problems in training, the accuracy or
PLS2 should increase as VN, like RSF.

Obviously, though, PLS2 involves much
more than blind parallelism: a genetic algorithm
extracts accurate knowledge and dismisses
incorrect (unfit) information. While it is impossi­
ble for PLSI alone, PLS2 can refine merit by
localizing credit to individual regions IRe 83cJ.
Planned experiments with this should show
further increases in efficiency since the additional
cost is small. Another inexpensive improvement

10

will attempt to reward good regions by decreas­
ing their estimated errors. Even without these
refinements, PLS2 retains meritorious regions
(§4), and should exhibit accuracy improvement

better than v'N. Table I suggests this.

PLS2 verSU8 PLS2. As discussed in §4.1
and Appendix 8; PLSI is limited, necessitating
human tuning for optimum performance. In con­
trast, the second layer learning system PLS2
requires little human intervention. The main
reason is that PLS2 stabilizes knowledge
automatically, by comparing region sets and
dismissing aberrant ones. Accurate cumulative
sets have a longer lifetime.

This ability to discriminate merit and
retain successful data will likely be accentuated
with the localiza:tion of credit to individual
regions (see §4.2). Another improvement is to
alter dynamically the error of a region (estimated
by PLSl) as a function of its merit (found by
PLSZ). This will have the effect of protecting a
good region from imperfect PLSI utility revision;
once some parallel PLSI has succeeded in discov­
ering an accurate value, it will be more immune
to damage. A fit region will have a very long
liCespan.

Inherent difference. in capabillty. RSF,
PLS I, and PLS2 can be characterized differently.
From the standpoint of time costs: given a chal­
lenging requirement such as the location of a
local optimum within 10%, the ordering of these
methods in terms of efficiency is RSF S PLSI S

PLS2. In terms of capability, the same relation­
ship holds. RSF cannot handle feature interac­
tions without a more complex model (which
would increase its eost drastically). PLSl, on the
other hand, can provide some performance
improvement using piecewise linearity, with little
additional cost IRe 83bj. PLS2 is more robust
than PLSI. While the original system is some­
what sensitive to training and parameters, PLS2
provides stability using competition to overcome
deficiencies, obviate tuning, and incre:lSe accu­
racy, all at once. PLS2 buffers inadequacies
inherent in PLSI. Moreover, PLS2, being geneti­
cally based, may be able to handle highly
interacting reatures, and discover global optima
IRe 83cJ. This is very costly with RSF and seems
inreasible with PLSI alone.

7. SUMMARY AND CONCLUSIONS

PLS2 is a general learning system IRe 8330,
Re83dj. Given a set of user-defined features and
some measure of the utility (e.g. probability of
success in task perrormance), PLS2 forms and
refines an appropriate knowledge structure, the
cumulative region 8et R, relating utility to
reature values, and permitting noise manage­
ment. This economical and Oexible structure
mediates data objects and abstract heuristic
knowledge.

Since individual regions of the cumulative
set R are independent or one another, both credit
localization and feature interaction are possible
simultaneously. Separating the task control
structure H from the main store of knowledge R
allows straightforward credit assignment to this
determinant R or H, while H itseIr may incor­
porate reature nonlinearities without being
responsible ror them.

A concise and adequate embodiment or
current heuristic knowledge, the cumulative
region set R was originally used in the learni"
system PLSI [Re83aJ. PLSI is the only system.
shown to discover locally optimal evaluation
functions in an AI context. Clearly superior to
PLSI, its genetic successor PLS2 has been shown
to be more stable, more accurate, more efficient,
and more convenient. PLS2 employs an unusual
genetic algorithm having the cumulative set R as
a compressed genotype. PLS2 extends PLS1's lim­
ited operations or revision (controlled mutation)
and differentiation (genotype expansion), to
include generalization and other rules (K-sexual
mating and genotype reorganization). Credit
may be localized to individual gene sequences.

These improvements may be viewed as
effecting greater efficiency or as allowing greater
capability. Compared with a traditional method
or optimization, PLSI is more efficient IRe 8Sal,
but PLS2 does even better. Given a required
accuracy, PLS2 locates an optimum with lower
expected cost. In terms of capability, PLS2 insu­
lates the system rrom inherent inadequacies and
sensitivities or PLSI. PLS2 is much more stable
and can use the whole population or regions reli­
ably to create a highly inrormed heuristic (this
population performance is not meaningrul in
standard genetic systems). This availability or
massive data has important implications ror
reature interaction IRe83bl.

11

Additional refinements of PLS2 may Curther
increase efficiency and power. These include
reward ing meritorious regions so they become
immune to damage. Future experiments will
investigate nonlinear capability» ability to dis­
cover global optima, and efficiency and
effectiveness of localized credit assignment.

This paper has quantitatively affirmed some
principles believed to improve efficiency and
effectiveness of learning (e.g. credit localization).
The paper has also considered some simple but
little explored ideas for realizing these capabili­
ties (e.g. Cull but controlled use of each datum).

REFERENCES

IAn 731 Anderberg, M.R., Clu,ter A1IIIly,i, for Applica·
tio,,,, Academic Press, 1973.

[Be 801 Bethke, A.D., Genetic algon'thm, a, function
optimizerl, Ph.D. Thesis, University of Michigan, 1980.

[Br 811 Brindle, A., Genetic algorithms for Cunction
optimization, C.S. Department Report TR81·2 (PhD
Dissertation), University or Alberta, 1981.

[Bu 78) Buchanan, B.G., Johnson, C.R., Mitchell,
T.M., and Smith, R.G., Models or learning systems, in
Belzer, J. (Ed.), Encyclopedia of Computer Seience and
Technology 11 (1978), 251.

[Co 84] Coles, D. and Rendell, L.A., Some issues in
training learning systems and an autonomous design,
Proc. Fifth Bienn.ial Conference of the Ctl1IIIdian
Societgfor Computtltional Studiu of Intelligence, 1984.

[De 801 Dejong, K.A., Adaptive system design: A
genetic approach, IEEE Tranlllction, on Sg,tem"
Man, and Cybernetic, SMC·10, (1980),566-574.

[Di81] Dietterieh, T.G. and Buchanan, B.G., The role
of the critic in learning systems, Stanford University
Report STAN·CS-81-891, 19S1.

(Oi 821 Dietterich, T.G., London, B., Clarkson, K., and
Dromey, G., Learning and inductive inCerence, STAN·
CS-82·913, Stanford University, also Chapter XlV of
Tke Handbook of Artificial Intelligence, Cohen, P.R.,
and Feigenbaum, E.A. (Ed.), Kaufmann, 1982.

[H07S) Holland, J.H., Adtlptatioll ill Natural all"
Artificial Sg,tem" University of Michigan Press, 1975.

[H080) Holland, J.H., Adaptive algorithms for discov­
ering and using general patterns in growing knowledge
bases, Inti. Journal on Poliey Analy", tlnd Infofflution
Sg,tem, 4, 2 (1980), 217-240.

[Ho 811 Holland, J.H., Genetic algorithms and adapta­
tion, Proc. NATO Ad.,. Ru. In,t. Adapt;.,e Control of

Ill·defined Sy,tem" 1981.

[H0831 Holland, J.H., Escaping brittleness, Prot:.
Second International Machine Learning Workdop,
1983, 92-95.

[La83J Langley, P., Bradshaw, G.L., and Simon, H.A.,
Rediscovering chemistry with the Bacon system, in
Michalski, R.S., Carbonell, lG., and Mitchell, T.M.
(Ed.), Machine Lurning: An Artificial Intelligence
Approach, Tioga, 1983, 307-329.

lMa 84J Mauldin, M.L., Maintaining diversity in
genetic search, Proc. Fourth National Conference on
Artificial Intelligence, 1984, 247·250.

lMe 851 Medin, D.L. and Wattenmaker, W.O.,
Category cohesiveness, theories, and cognitive archeol·
ogy (as yet unpublished manuscript), Dept. of Psychol­
ogy, University or Illinois at Urbana Champaign, 1985.

lMit 8330) Michalski, R.S., A theory and methodology
or inductive learning, Artificial Intelligence eo; 2
(1983), 111-161; reprinted in Michalski, R.S. et 301 (Ed.),
Machine Lurning: An Artificial Intelligence Approaeh,
Tioga, 1983,83-134.

lMic 83b) Michalski, R.S. and Stepp, R.E., Learni~g
from observation: Conceptual clustering, in Michalski,
R.S. et al (Ed.), Machine Lurning: An Artificial Intel·
ligence Approach, Tioga, Hl83, 331·363.

IMit83) Mitchell, T.M., Learning and problem solving,
Proc. Eight,. International Joint Conference on
Artificial Intelligence, 1983, 1139·1151.

INi 801 Nilsson, N.J., Princip/u of Artificial Intelli·
gena, Tioga, 1980.

IRe 761 Rendell, L.A., A method Cor automa.tic genera·
tion of heuristics ror state·space problems, Dept of
Computer Science CS-76-10, University of Waterloo,
1976.

IRe 77) Rendell, L.A., A locally optimal solution or the
fifteen puzzle produced by an automatic evaluation
function generator, Dept of Computer Science CS-77­
36, University of Waterloo, 1977.

IRe 811 Rendell, L.A., An adaptive plan for sta.te·spa.ce
problems, Dept of Computer Science CS-81-13, (PhD
thesis), University of Waterloo, 1981.

IRe 83al Rendell, L.A., A new basis for state·space
learning systems and a successful implementa.tion,
Artificial Intelligence eo (1983), 4, 369-392.

IRe 83bl Rendell, L.A., A learning system which
accommodates feature interactions, Proc. Eighth flater·
Jl.4tional Joint Conference on Artificial Intelligence,
1983, 469-472.

http:sta.te�spa.ce

[Re 83cJ Rendell, L.A., A doubly layered, genetic
penetrance learning system, Proe. Third Na.tional
Conference on Artificial Intelligence, 1983, 343-347.

[Re 83d) Rendell, L.A., Conceptual knowledge acquisi­
tion in search, University or Guelph Report CIS-83-15,
Dept. or Computing and Inrormation Science, Guelph,
Cana.da, 1983 (to appear in Bolc, L. (ed.), Knowledge
Ba,ed Learning Sy,tem" Springer-Verl3.g).

[Re 85aJ Rendell, L.A., Utility patterns as criteria ror
efficient generalization learning, Proc. 1985 Conference
on Intelligent Sy,tem, and Maeh.inu, (to appear). 1985.

[Re 85bJ Rendell, L.A., A scientific approach to
applied induction, Proc. 1985 International Machine
Learning Workshop, Rutgers University (to appear),
1985.

IRe 85cJ Rendell, L.A., Substantial constructive induc­
tion using layered inrormation compression: Tractable
reature rormation in search. Proe. Ninth International
Joint Conference on Artificial Intelligence, (to appear).
1985.

[Sa 631 Samuel, A.L., Some studies in machine learn­
ing using the game of checkers, in Feigenbaum, E.A.
and Feldman. J. (Ed.), Computer, and TAought,
McGraw-Hill, 1963,11-105.

[Sa 67l Samuel, A.L., Some studies in machine learn­
ing using the game or checkers II - recent progress,
IBM J. Re,. and Develop. 11 (1967) 601-617.

ISm 801 Smith, S.F., A learning system based on
genetic adaptive algorithms. PhD Dissertation, Univer­
sity or Pittsburgh, 1980.

ISm 831 Smith. S.F., Flexible learning of problem solv­
ing heuristics through adaptive search, Proc. EightA
International Joint Oon/erence on Artificial Intelli­
gence, 1983, 422-425.

APPENDIX A. GLOSSARY OF TERMS

Clustering. Cluster analysis has long been
used as a tool for induction in statistics and pat­
tern recognition [An 73J. (See "induction".)
Improvements to basic clustering techniques gen­
erally use more than just the reatures of a datum
([An 73, p.194] suggests "external criteria").
External criteria in !Mi83, Re76, Re83a, Re8Sb]
involve prior specification or the forms clusters
may take (this has been called "conceptual clus­
tering" [Mi831). Criteria in [Re76, Re83~,
Re 8Sb! are based on the data environment (see

"utility") below)}3 This paper uses clustering to
create economical, compressed genetic structures
(genotypes).

Feature. A feature is an attribute or pro­
perty of an object. Features are usually quite
abstract (e.g. "center control" or "mobility") in a
board game. The utility (see below) varies
smoothly with a feature.

Genetic algorithm. In a GA, a the char­
acter of an individual of a population is called a
phenotype. The phenotype is coded as a string or
digits called the genotype. A single digit is a
gene. Instead of searching rule space directly
(compare "learning system"), a GA searches gene
space (i.e. a GA searches for good genes in the
population of genotypes). This search uses the
merit 1.1. of individual genotypes, selecting the
more successrul individuals to undergo genetic
operations ror the production of offspring. See
§2 and Fig. 3.

Induction. Induction or generalization
learning is an important means for knowledge
acquisition. Information is actually created, as
data are compressed into classes or categories in
order to predict ruture events efficiently and
effectively. Induction may create feature space
neighborhoods or clusters. See "clustering" and
§4.1.

Learning System. Buchanan et 301.
present a general model which distinguishes com­
ponents of a learning system [Bu 78]. The perfor­
mance element PE is guided by a control struc­
ture H. Based 00 observation or the PE, the cri­
tic assesses H, possibly localizing credit to parts
or H [Bu 78, Di811. The learning element LE uses
this information to improve H, ror the next
round or task performance. Layered systems
have multiple PE's, critics, and LEts (e.g. PLS2
uses PLS1 as its PE -see Fig. 1). Just as a PE
searches ror its goal in problem space, the LE
searches in rule space [Di82J for an optimal H to
control the PE.

To racilitate this higher goal, PLS2 uses an
intermediate knowledge structure which divides
feature space into regions relating feature values
to object utility [Re83d] and discovering a useful
subset or features (d [Sa63j). In this paper, the
control structure H is a linear evaluation func­

15. A new learning system IRe 85cJ introduces
higher-dimensional clustering for creation or structure.

13

tion INi801, and the "rules" are feature weights
for H. Search for accurate regions replaces direct
search of rule space; i.e. regions mediate data
and H. As explained in §3, sets or regions
become compressed GA "genotypes". See also
"genetic algorithms", "PLS", "region", and Fig. 1.

Merit po. Also called payoff or fitness, this
is the measure used by a genetic algorithm to
select parent genotypes for preferential reproduc­
tion of successful individuals. Compare "utility",
also see "genetic algorithms".

Object. Objects are any data to be gen­
eralized into categories. Relationships usually
depend on task domain. See "utility".

PLS. The probabilistic learning system
can learn what are sometimes called "single con­
cepts" [Di821, bu(PLS is capable of much more
difficult tasks, involving noise management,
incremental learning, and normalization of biased
data. PLSI uniquely discovered locally optimal
heuristics in search [Re 83al, and PLS2 is the
effective and efficient extension examined in this
paper. PLS manipulates "regions" (see below).
using various inductive operations described in
§4.

Region or Cell. Depending on one's
viewpoint. the region is PLS's basic structure for
clustering or for the genetic algorithm. The
region is a compressed representation or a utility
surface in augmented feature space; it is also a
compr~ssed genotype representing a utility func­
tion to be optimized. As explained in [Re83dj,
the region representation is fully expressive, pro­
viding the features are. See §3 and Figs. 3 & 4.

Utillty u. This is any measure of the use­
fulness of an object in the performance of some
task. The utility provides a link between the
task domain and PLS generalization algorithms.
Utility can be a probability. as in Fig. 2. Com­
pare merit. See § 1,3.

APPENDIX B. PLSI LIMITATIONS

PLSI alone is inherently limited. The problems
relate to modification or the main knowledge
structure, the cumulative region set R ==
{(r,u,e)}. As mentioned in §4.1, R undergoes
two basic alterations. PLSI gradually changes
the meaning of an established feature space rec­
tangle r by updating its associated utility u
(along with u's error e). PLSI also incrementally

refines the feature space, as rectangles r are con­
tinually split.

Both of these modifications (utility revision
and region refinement) are largely directed by
search data, but the degree to which newer inCor­
mation affects R depends on various choices or
system parameters [Re 83al. System parameters
influence estimates or the error e, and determine
the degree or region refinement. These, in turn,
affect the relative importance or new versus esta­
blished knowledge.

Consequently, values of these parameters
influence task performance. For example, there
is a tradeoff between utility revision and region
refinement. If regions are refined too quickly.
accuracy suffers (this is theoretically predictable).
If, instead, utility revision predominates, regions
become inert (their estimated errors decline), but
sometimes incorrectly.10

There are several other problems, including
difficu Ities in train ing, limitation in the utility
revision algorithm, and inaccurate estimation or
various errors. As a result, utility estimatiolls
are imperfect, and biased in unknown ways.

Together, the above uncertainties and sen­
sitivities explain the failure or PLSI always to
locate an optimum with static training (Table I).
The net effect is that PLSI works fairly well with
no parameter tuning and unsophisticated train­
ing, and close to optimal with mild tuning and
informed training [C0841. as long as the features
are well behaved.

By nature, however, PLSI requires features
exhibiting no worse than mild interactions. This
is a serious restriction, since reature nonlinearity
is prevalent. On its own, then, PLSI is inherently
limited. There is simply no wily to learn utility
accurately unless the effects or differing heuristic
functions H are compared, as in PLS2.

ACKNOWLEDGEMENTS

1 would like to thank Dave Coles for his lasting
enthusiasm during the development, implementa­
tion and testing of this system. 1 appreciate the
helpful suggestions 'from Chris Matheus, Mike
Mauldin, and the Conference Reviewers.

16. Although system parameters are given by
domain-independent statistical ana.lysis, tuning these
parameters nevertheless improves performance in some
cases. (This is not required in PLS2.)

14

http:incorrectly.10

BIBLIOGRAPHIC DATA 1. Report No. 3. Recipient's Accession No.
SHEET 1 UIUCDCS-R-85-l2l7
4. T ide and Subtitle 5. Report Date

July 1985GENETIC PLANS AND THE PROBABILISTIC LEARNING SYSTEM:
6.SYNTHESIS AND RESULTS

7. A uthor(s)

Larry Rendell
8· Performing Organization Repe.

No.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Dept. of Computer Science
University of Illinois
1304 W. Springfield
Urbana, IL 61801

1t. Contract/Granr No.

12. Sponsoring Organization Name and Address 13. Type of Report & Period

Natural Sciences and Engineering National Science Foundation Covered

Research.Council of Canada Washington, DC
200 Kent Street - l~.

Ottawa, Canada KIA lR5
15. Supplemenrary Notes

16. Absrracts

This paper describes new conceptual and experimental results using the
probabilistic learning system PLS2. PLS2 is designed for any task in which
overall performance can be measured, and in which choice of· task objects or
operators influences performance. The system can manage incremental learning
and noisy domains.

PLS2 learns in two ways. Its lower '''perceptual'' layer clusters data into
economical cells or regions in augmented feature space. The upper "genetic" level
of PLS2 selects successful regions (compressed genes) from multiple, parallel cases.
Intermediate between performance data and task control structures, regions promote
efficient and effective learning.

Novel aspects of PLS2 include compressed genotypes, credit localization and
"population performance." Incipient principles of efficiency and effectiveness
are suggested. Analysis of the system is confirmed by experiments demonstrating
stability, efficiency, and effectiveness.

17. Key Words

machine learning
inductive inference
conceptual clustering
genetic algorithms

17b. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

18. Availability Statement 19•. Security Class (This 21. No. of Pages

Re-rr:f.'ASSIFIFn
20. Security Class (This

Page
UNCLASSIFIED

15
22. Price

FORM NTIS- 311 110-701 USCOMM-OC 403ZQ·P71

