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Effieient task performance and ability to predict are two
consequences of induclion (generalization learning).
Because of its import and subtlety, induction is a funda~
mental problem of many felds of study. Recently,
artificial intelligence has begun to focus more sharply on
essential issues and principles underlying generalization
learning. Of the many Al implementations of indue-
tion, the author's probabilisiic learning sysiem PLS is
one of the best evidenced combinations of efficiency,
effectiveness, power, scope, and extensibility. This
paper considers PLS as a paradigm for these qualities
and addresses some issues and principles of practical

mechanized induction.}

1. INTRODUCTION

Efficiency and prediction follow generalization. Gen.
eralization learning or induclion compresses large
.numbers of “similar® objects, polterns, or cvenis into
meaningful classes, categories, or concepls.® Since
generalization means fewer categories to manage, induc-
tion promotes economy of space and time; since categor-
ization merges observed events, attendant concepts
descriptions anticipate similar events (see Figs.1,2).

In terms of both application and theory, induction
is one of the most important problems of srtificial intel-
ligence [Dietterich 82, Michalski 83, Mitchell 85] and
pattern recognition [Fu 80, Watanabe 89].% In an expert
system, for example, computer generalization allows
mechanized knowledge acquisition, and consequently
reduced costs. Present expert systems are prone to
unexpected error, wheress induction would incresse reli-
ability and obviate maintenance: even in its primitive
state, automated induction has outperformed a
knowledge engineering spproach [Michalski 80].

1. This work was supported in part by aa operasting
grant form the Natural Sciences and Engineering Research
Council of Canada.

2. Induction may be examined more formally. Aspects
of induction may be stated more formally. Given a set § of
observed objects, a simple kind of induction is the inference
of a larger set, class, or hypotheais T, such that S C T. Since
T is » generalization it msy not be true; our confidence in T
is called its credibility. This is the most abstract view of in-
duction. i.e. class formation with associsted credibility cri-
terion [Watanabe 69, 72]. (This view even covers creation of

1.1. INHERENT DIFFICULTY

Induction produces regular, coherent classes or con-
cepts. Their discovery and expression requires some
language such as predicate logic [Watanabe 89], seman-
tic networks [Winston 84], [Iframes or schemata
[Delong 83], feature vectors [Duda 73], formal grammars
{Fu 82], etc. The more expressive the language, the
more powerful 2 learning system can be, but the more
difficult the process. Although a great deal of research
has been done, present induction systems are limited in
scope, efficiency, or extensibility [Dietterich 83].

Induction is a difficult problem for a variety of rea-
sons. First, the number of possible generalizations is
large, compared with the number which can be explored
through evaluation or construction of explicit
hypotheses. For example, if a small 10x10 grid of bits
encodes letters of the alphabet, the number of different

classes (hypotheses) is 2712'®], and very few of these are
sensible. The second major difficulty is that noisy and
sparsely distributed data offer little help in distinguish-
ing any hypotheses which are considered. '

1.2. CREDIBILITY AND OTHER CONSTRAINTS

Certain constraints can reduce the combinatorial explo-
sion of hypotheses. A straightforward tactic is simply
to limit the description language without confining its
power too much (e.g. permitting conjunctions but not
disjunctions in logic expressions [Michalski 83]),

As Watanabe showed in his “theorem of the ugly
duckling”, no one classification (hypothesis) is intrinsi-
cally better than any other [Watanabe 69]. In order to
select an appropriate concept, we must rely on some
external criterion. This criterion is the meaningfulness,
quality, or credibilily; it expresses some ascribed
elegance or purpose of a generalization [Watanabe 69|.

structure, which involves concept formation and reconsidera-
tion of what constitutes an object, e.g. first chess pieces, then
“chunks® of knowledge such as attack formations. This pa-
per jusm alludes to structure; more cam be found in
[Rendelt 85a].) The classification view is useful for purposes
such as discovering the difficalty of a generalization problem
or measuring the power of an inductive system.

3. Generalization learning is also a fundamental prob-
lem im philosophy [Christensen 84] and psychology
{Medin 84].
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Figure 1. Deterministic versus x2
probabilistic induction in two

dimeasioaal  feature
Ideally, classes can be peatly
differentiated islo positive and +

space. -
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gegative instances (a). But -

more comuwouly, exceptions +
occur {b). I[n mild cases. these
are just anomalies whose effects
can be recorded using propor-

tions.

Figure 2. Constructive induc-
tion. If positive training exam-
ples cannot be delineated using
a few rectangles, the original
attributes (a) may be
transformed into new desetrip-
tions {concepis); then simple
induction is possible {b). Con- v

(v}

cept formation is the hard part.

|

Credibility may be used to evaluate a hypothetical
class or concept; credibility may also be employed to
restrict candidate hypotheses, producing only the more
plausible ones Michalski 83, Rendell 83a, 83a). Credi-
bility provides a means to impose or discover underlying
order, regularity, or structure in desired concepts, and
can promote efficient and effective induction.

Examples of credibility include “simplicity”® of con-
" cept description, “sparseness of 8t to the data [Michal
ski 83], and “invariance” under transformation of task
elements [Ernst 82]. A relaxed form of invariance has
long been used in statistics and pattern recognition, viz.
“similarity” in cluster analysis [Anderberg 73].

1.3. PLS, EFFICACY, AND EFFICIENCY

The author’s scheme involves a special kind of similarity
constraint which utilizes the whole dats environment.
The precise form of this similarity has to do with suc-
cess or ‘“utility” in the performance of some task
[Rendell 83a, 83d, 85b]. This approach, used in the pro-
babélistic learning system PLS, has produced unique
results such as convergence to optimal heuristics
{[Rendell 83a, 83b, 85¢c]. PLS can handle noisy environ.
meants and incremental learning. The system is econom-
ical with regard to both space and time requ:rements
{Rendell 83a, 85¢].

This paper examines some of the underlying res-
sons for the efficiency and effectiveness of PLS. The
pext section explores the representation language used
for objects, concepts, and related information. Section
3 considers some ways of imposing order using informa-
tion structures and examines implications. Section 4
utilizes imposed regularity for efficiency in induction
algorithms. The final section summarizes the main
points. '

2. EFFECTIVE REPRESENTATION

Much of the AI work on generalization lesrning has
been rather simplified, implementing straightforward
kinds of induction, disregardiag uncertainty and noise,
and omitting complex structuring needed for real-world
knowledge acquisition (see the systems described in
[Dietterich 82]). In this section we consider some of
these aspects of knowledge representation for induction.

Generalization learning systems start with objects
or events and produce classes or concepts. Effective sys.
tems also tend to represent inlermediate knouwledge.
Intermediate information is used to create more
knowledge.! Consider for example recording the degree
of assurance that an object belongs to s class: as evi-
dence mounts, a hypothesis is first teatative, then more
credible, and finally well established. This important
information mediates objects and concepts, improving
efficiency and effectiveness [Rendell 85s]. Some forms of
intermediate information will be discussed after the
basic requirements for objects and classes.

2.1. LANGUAGE FORMS

As mentioned earlier, different approaches to generaliza-
tion learning have employed various means to represent
objects and concepts {e.g. logic, semantic nets, ete.).
Though a particular language is usually more natural
than other languages for a given domain, they are alter-
native, rather than unrelated modes of expression. This
is clear in studies of equivalences {Banerji 71. Brach-
mas 83, © Kanal 73, Levesque 84, - Schubert 7o, A

4. One interesting model is discussed in [Lenat ¢}, Ua-
disputed reasons for the power of such systems await further
analysis [Ritchie 84].
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description of am object or concept can usually be
mapped into a corresponding representation in another
language, although there are certain exceptions (for
example feature vectors cannot express structure
without some augmentation}. Perhaps less well appreci-
ated is that naturalness of final expression does not pre-
¢lude intermediate languages. In (act multiple represen-
tations may not only be sensible. but very appropriate
[Fu 82, Rendell 83a]. With this flexibility in mind, we
note that a practical approach to induction may begin
with a feature space description of objects.’

2.2. EXPRESSION OF OBJECTS
An event or object is a vector X = (X, ,Xy,..,X,},
where n is the number of attribules or features x;

describing the data. In vision for example, the set of
attributes might be the light intensity (gray level} for a
total of n squares (pixels) of a grid representing an
image. A grid is expressed as an n-dimensional vector, a
point in feature space. If the problem is to discover
those images which contain some symbol, each veetor
observed becomes a positive or negative instance of the
class. Fig.1 shows a simpler example, where n is oaly 2.

Any inductive problem may begin with feature
space descriptions; however, to construct “higher level”

features or concepts, transformation of attributes may .

be necessary (see Fig.2)." Attribute transformation
requires formation of logic descriptions or grammars in
order to represent relationships among objects or
among their parts. We shall return to this topic later in
the paper (see also [Fu 82, Rendell 85a]); for the
present, we disregard cases needing structure alteration,
and describe classes which are quite uniform in the ori-
ginal feature space (as in Fig. 1).
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Figure 3. Rectangular utility classes. Feature space can be
partitioned into rectangles representing similar probabiiity of
occurrence of some event, such as appearance in a solution
te a problem or & win in a game. Effective clustering creates
rectangles whose characteristics match the problem domais.

5. The term “feature space™ is usually associated with
varisbles having linearly ordered ranges. We do not consider

the case of uominal scales, for which the term “event space® !

has been used [Michalski 83]. There have been very many
applications of feature space representations, from sensory
processing to problem solving {Rendell 83a, 85¢, Tou 74},

8. DifBcult induction requiring transformation of attri-
butes is sometimes called “constructive® induction. We shall
term the easier kind “simple”. ’

2.3. REPRESENTATION OF CLASSES

When domain and festures permit. s class has 3 concise
description, as in Fig.3 where the leftmost hyperrectan-
gleris{0=x, < 4) N (0% x, = 2} PLS efficiently
msnipulates these concise expressions. Storing domain
knowledge in modifiable {eature space cells began with
the original probabilistic learning system. PLSL
[Rendell 76. 83a] and continued with substantial exten-
sions in [Coles 84. Rendell 33b, 83c, 84, 85a. 85b, 83¢|.’
Section 3 of this paper will explain how PLS1 clusters
objects into rectangular classes having uniform utility
{e.g- probability of success in a task).

The meaniog is simplest il only two classes are pos-
sible, and an event X is a positive or negative instaace of
a class r {this situation is illustrated in Fig. {a). In most
natural representations, however, there are ‘more than
two categories. One kind of multiple classification
depends on xtility u, the usefulness for some task; for
example u could represent the likelihood that x € r leads
to a desired result (see Fig.3). PLS models this situa-
tion. In one use of PLS, an object x is a state in a prob-
lem or a game, and the utility classes r are probability
classes, i.e. the probability that x will appear in a good
‘solution or wia.. R - . .

2.4. CODING UNCERTAINTY

Real-world situations always involve some degree of
noise or uncertainty: ohservations are often unreliable
and attributes incomplete. In the PLS model of these
situations, positive versus negative instances of a con-
cept are counted, and repeated samplings produce a
probability u = k/t, where k is the number of successes
and t is the sample size (see Figs.1 and 3).% If we
classify sccording to probability, we have as many
categories as probability values (8 in Fig.3). Associated
with each u is some set r of feature values; u can be
consideted the name of class r. In Fig. 3, r is the left-

‘most rectangle, representing probability u(r) = 0.2 of

occurrence of some event E, i.e. u(r) is the conditional
probability Pr(E|r) of E, given that object x €r. In PLS,
the eveat E is some overall goal in a task domain, so
ufr) is measurable. Notice that from one poiat of view,
the potential number of probability classes is the
number of u vslues, while from another point of view,
we have returned to the situation in which there are

7. PLS feature space partitioning is similar to attribute.
valued logic VL, [Michalski 73, 83). PLS implemeats only or-
dinal or interval scales, but uniike VL,, even early versions of
PLS managed noise and learned incrementally in difficult

"domsins [Rendell 78, 83a); extensicns can handle non-

linearity and structuring [Rendell 83b, 83¢, 85b, 85¢], All
PLS systems are efficient. L

8. Al sometimes uses untraditional formalisms for pro-
bability. Stortliffe’s “certainty factor® in MYCIN is noastan«
dard. Mitchell's “degree of match™ in LEX is also probabilis
tic [Miwchell 78]. Any method which incoporates differential
experience is esgenti;lly probabilistic. o



only two classes (success or not). In the latter view, the
feature space representation is a discrete function ufr)
indicating probability of inclusion in the “success”
class?

2.5. AUGMENTING FEATURE SPACES

Probability is one kind of goal-oriented ulility u which
cair be associated with a [eature vector x or feature
space neighborhood r. In the deterministic case, utility
becomes binary, indicating membership in just a single
class. The precise definition of utility is less important
than its abstract use as s measure of quality in the per-

formance of some task; this could be defined variously.!?

Associating utility with features is equivalent to
extending or augmenling feature space; coordinates are
added to give (x,u} or {r,u). As well as utility u, vari
ous other kinds of information can be identified with x
or r. One example is the error in u [Rendell 83a]. This
association of appropriate information with r is one step
in overcoming the structure limitations of pure leature
space approaches. We can use sugmented feature space
representations to create expressions in other represen-
tation languages which express structure but cannot
easily be used to derive it [Rendell 85s].

Augmented feature spaces can be used to represent
intermediste knowledge structures {information derived
by a learning system for its own ase), as well as the final
products of the inductive process {classes or concepts).
Augmented feature spaces ¢an support & mechanism to
derive higher-level, structurally-oriented represents-
tions. . ’

Unlortunately, choosing effective representations is
only part of the solution to automated induction -
efficient manipulation is also required. Intuitively, it is
apparent thst effective representation and efficient
manipulation are closely related to the degree of “pre-
existing” or “natural® regularity. The lollowing section
examines the relationship between this pair of critical
issues.

3. SOURCES OF ORDER

Learning systems always generalize partly on the basis
of pre-existing knowledge (they always are somewhat
“model-driven™, they use domain knowledge). This
knowledge may be expressed in s variety of forms: as
information structures, as algorithms, or as control
structures for algorithms. These various factors deter-

9. Aa application of this appears in {Rendell 83a, 85¢|.
There, an object x represents a state in a problem or a game,
and “success” means leading to discovery of a good solution
or of a win. {f x falls within a rectangle r, then the function
u{r) == H(x) may be used a3 an evaluation function or heurss-
tic for state-space search to assess state x.

10. An alternative definition for utility in problem solv-
ing is the estimated solution path length. In simple concept
learning, utility is the sign of the training instance,

mine the cost, power, and difficulty of induction. For
example. if attributes are ordinal features. and if thexe
leatures affect utilities smoothly. generalization is easicr
{see Fig.1). In the following. we consider some kinds of
regularity which may be imposed on data. classes. and
domains.

A rational basis for guiding induction and creating
order is the utility. Since utility is the essence of task
performance, it should regulate class formation and
underlie information structures. Structures use attri-
bute vectors, so attributes influence order or regularity.

3.1. FEATURE QUALITY

The overriding determiner of regularity is the attributes
describing objects. There are related two ways in which
attributes may aid induction: one involves the amouat
of detail they describe, the grain size (data compres-
sion), and the other has to do with the regularity they
impose, the wiility coherence.

Grain Size (Originsl Data Compression). As
suggested by Fig. 2, attributes have greater or lesser
degrees of abstraction. In a game such as checkers,
low-level, primitive attributes give contents of indivi-
dual squares, while Aigh-level, abstract features summar-
ize properties relevant to winning (e.g. “piece advan-
tage”, “mobility”, “center control”, etc.). Depeading on
attributes, one point in fleature space may represent
more than one case, If the attributes are primitive, a
feature space representation will compress the data very
little or not at all, and the space may be very large (e.g.

about 102 for checkers). On the other hand, if attri-
butes are high-level, the feature space will contain con-
siderably fewer points than there are primitive objects,
and consequently induction will be easier, since order is,
then inherent in compressed feature vector descriptions.
A leature vector compacts data having common or simi-
lar wtility.

Utility Coherence (Uniformity or Smooth-
ness). Another means of providing order for integrat-
ing events into classes depends oa the relationships
between utility and features. To simplify in an exam-
ple, suppose utility is binary, and indicates class
membership. Fig.2 shows two different patterns of just
one “concept” {two classes, positive and negative).!!
These two patterns have different degrees of regularity.
For a simple concept description, either situation in
Fig.1 needs only a straightforward partition of feature

11. When events are specified as positive and negative
examples (training instances) of a concept, the learning is su-
pervised. This corresponds to the definition of simple induc-
tion stated in Footnote 2: a set S of events is given. of which
S, CS are positive examples, and §_ C 5 are gegative, From
these, a supervised learging system must form a class T
such tha¢ §, CT,,and T, N S_= 9. T, is the general class
of concept. In unsupervised learning the aumber of classes is
oot Xnown, nor is their meaning. Lack of supervision makes
induction more difficult. :
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space, while Fig.2 requires formation of the intermedi.
ate concept of ~evenness”. The situations of Fig. | allow
elcmentary methods of class formation: these include
discovery of parameters in linear diseriminant functions.
“or insertion of partitions in feature space clustering
{Tou 74]. However, mechanized structuring is very
difficult, and no general and tractable methods exist.
The simple {easier) kind of induction has also been
called seleclive, and the other, whereby abstract con-
cepts or features are created, is construclive [Michal
ski 83|, the problem of new terms [Dietterich 82|, or con-
ceptual knowledge acquisition [Rendell 85¢].

The significant differences between selective and
constructive induction become apparent in a more con-
crete example such as checkers, where high-level
features { “picce advantage”, “center control”, etc.) take
the roles of the coordinates in Fig. 1. Here the basis for
classification (utility) might be multivalued {perhaps
indieating likelihood of a win). Utility varies only gra-
dually with high-level features. In contrast, if the attri-

butes are not abstract, but primitive (e.g. the contents -

of individual checkerboard squares), then utility is very
irregular (much worse than Fig.2 suggests). Here, con-
cepts such as piece advantage would have to be created
before straightforward partitioning algorithms could be
effective.

3.2. REGULARITY & INDUCTIVE DIFFICULTY

If constructive induction is required, it too can be of
varying degrees of difficulty. Symmetries like the one of
Fig.2 can be more or less complex, and as the complex-
ity of a concept increases, so does the complexity of the
language needed to describe it {e.g. full predicate logic).
When disorder (entropy) is so bad that utility patterns
are completely random, mo generalization cam occur
which is reliable for any other case.

In practice, however, any interesting real-world
situation exhibits some degree of commonality. This
regularity appears not only across instances of a prob-
lem (e.g. all checker games)}, but also across problems of
a class {e.g. all board games). In other words, induction
requires classification, not only at the event level, but
also at the level of the domain. As an example of the
latter, utility is often invariant or similar uader transia.
tion, rotatiom, ete. (these apply in divergent domains,
{from board games to vision).

In summary, there are many kinds and degrees of

regularity. They can be captured by data structuring,
concept structuring, and domain structuring. In the

following section we shall examine how structured infor- -

mation may be converted into efficiency in algorithms;
we shall also consider some ideas for avoiding loss of
power,

4. DYNAMICS OF ORDER

This section of the paper examines algorithmic aspects
of induction, using PLS as 3 paradigm. Details of the
induction methods. and other aspects of PLS may be
found in [Coles 84, Rendell 83b. 83¢c. 84, 385a. 85b. 83¢|.

4.1. EFFICIENCY IN SIMPLE INDUCTION

Let us coasider some reasons for the efficiency of gen-
eralization algorithms used by the simpler systems PLSI
and PLS? (which we shall collectively refer to as PLS2).
PLS2 can be used in situations where some ufility u can
be defined. This covers a large class of problems. For
example, u can simply indicate class membership (for
single concept learning), or u can measure desirability
for some performance task. Recall from Sections 2.3 and
2.4 that u is a property of a feature vector x or rectan-
gle r (where r is aligned with feature space axes).

The form of the inductive hypotheses in PLS? is
“rectangle r has utility u”. A perfect learning system
would generate rectangles r of just the right sizes, so
that r's would be of small extent in volumes of the
space where utility vazies rapidly, but r's would other-
wise be large {causing various efficiencies). Each (r u)
pair would be perfectly accurate. .. .. .. ..

PLS2 attempts to approach this ideal by several
forms of incremental feedback, credit assignment, and
credit localization. While the system is complex, it is
essentially a set of utility class rewriting rules for pairs
(r,u). One rule alters u (effectively moving r to a
different class. Other operators adjust rectangles; these
rules include forming, refining (specializing], merging
{generslizing), and recombining, so that the feature
space partition is iteratively improved during task per-
formaance.

Here we shall consider just one rule reﬂnement {i.e.
specislization, differentiation). Reflnement employs a
special kind of clustering which examines contextual
information. A rectangle r is tentatively split in two,
and the split becomes permanent if it is “better than™
other tentstive refinements, and if the split is “good
enough”. These decisions depend on the stility diver-
gence in the two subrectangles. Utility divergence is
measured as the variation of utility in feature space,

sccounting for observation error.!* This is appropriate
since utility is uséd to guide task performuce Utility
divergence results in sunphclty and ‘ﬂt" as & conse-
gquence of xod d:rectednm (compa:e mth Michal-
ski 83)). :

12. In more precise detul. Tho cntetton lor splntm; in-
volves a dissimilarity (distance) measure d and u, are
the two utilities for a tentative d;cl;otony, ant‘ ¢, and ¢,
their errors, then d == [logu, -—!ogu,! -Iog{t,c.) This dis
tapce is computed for all boundary insertions pmlle! o any
featare space axis. If the largest d is positive, the
corresponding split is retsined. The procesms repeated until
additional refinement is unwarranted by the data (usntild =
0). Notice that larger d means more assured dissimilarity.

: \‘




This splitting scheme has several efficiencies. One
is that a rectangle is economically stored [just two
feature vectors specify the extreme corner points).
Second, rectangles compress objects into fewer
categories (utility classes). Because few rectangles are
required. PLS2 makes efficient use of both storage space
and processing time. Finally, the generation of rectan-
gles is inexpensive because of the small number of
dichotomies to be tested. The time complexity of the
splitting algorithm is kam, where k is the number of
ohjects observed, n is the dimensionality of the feature

* space, and m is the number of rectangles {utility classes) -

formed.

Like clustering (refinement), PLS2's other utility
class rewriting rules for {{r.u)} are also efficient.
{These rules include u modification, r generalization,
and r recombination.)

The overall scheme can be considered an improve.
ment of signature tables {Samuel 87]. Both approaches
use feature space rectangles to represent heuristic
knowledge, but in PLS52 more koowledge is auto-
nomously acquired. Instead of having the user compress
feature ranges and dimensionality, PLS2 and the data
determine sizes, shapes, and effective dimeasionality of
feature space rectangles.

PLS2 and most other systems for generalization
learning perform simple induction, where variation of
utility with attributes is gradual, and feature space can
be meaningfully partitioned by insertion of a few boun-
daries {see Fig. | and Section 3.1).

4.2. EFFICIENT CONSTRUCTIVE INDUCTION

The great majority of realistic inductive problems
require discovery of new and appropriate object descrip-
tions, Constructive induction is required when the vari
ation of utility with original attributes is drastic (e.g.
consider Fig.2 or the 32 attributes e, , defined as the
contents of individual squares of a checker board).
realistic constructive induction has beep tractably
mechanized, althouzgh some limited algorithms have
been devised [Ernst 82, Michalski 83, Rendell 85a].

A new system PL50 addresses a hard problem of

constructive induction: mechanized creation of high-
level features from very detailed, elementary attributes
or primitives (e.g. the e; above). PLSO breaks down the

problem into several levels, each with a reduced time
complexity [Rendell, 85a]. The system naturally unites
representations ({eature spaces, logic descriptions, and
formal grammars) as a consequence of its multi-layer
design. PLSO requires little background knowledge, and
the approach is quite general,

Instead of clustering entire feature spaces. PL0
examines appropriate primitive subspaces. The system
alligns patterns of utility similarity -- that is: utility sur-
faces, not utility values are clustered. PLSO can incre-
mentally construct teatative components for high level
features. More structured elements are created from
these compouents after they have been validated
(attained some credibility). Gradually structures
emerge to become abstract features.

Just as traditional clustering is an effective and
efficient means for selective induction, this scheme for
constructive induction introduces more general tech-
niques for economical use of searce information. These
techniques include layered information compression
resulting in s “divide and conquer™ approach, and sub-
tle overlaying of data for simultaneous strengthening of
inference and discovery of structure. A complet form
of regularity is induced. : ‘

5. SUMMARY

Generalization learning systems attempt the difficult
problem of induction, i.e. the creation of classes or con-
cepts from data. Powerful induction systems tend to
possess certain characteristics, each of which contri-
butes to efficiency and effectiveness:- . : .-

® [ntermediate information structures are used to gen-
erate layers of more abstract knowledge.

@ This mediating knowledge includes probabilistic infor-
mation (although it may be disguised}, whose purpose is
to overcome noise and make maximal use of sparse
data.

® Scarce and uonreliable data are nevertheless used
incrementally to increase credibility of tentative
hypotheses.

® Credibility measures and other constraints are fexibly
employed, not only to test generated hypotheses, but
also to guide their formation.

® Knowledge representations are dynamically and
appropriately selected; these representations are restric-
tive enough to aid efficiency, yet expressive enough to
learn structure in observed events.
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