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Efficient luk per/armanee and abi/it., to p"did are two 
consequences or indut:lion (generalization learning). 
Because or its import and subtlety. induetion is a fund ... · 
mental problem or many Belds or study. Recently, 
artificial intelligence has begun to rocus more sbarply on 
essential issues and principles underlying generalization 
learning. or the many AI implementations of indue­
tion. the autbor's pro6a6ili,lie lrarnin, ,."tem PLS iJ 
one or tbe best evidenced combinations of efficiency. 
effectiveness, power. scope, and extensibility. This 
paper considers PLS as a paradigm for these qualities 
and addresses some issues and principles of practical 
mechanized induction.' 

1. INTRODUCTION 

Efftciency and prediction foUow generalization. Gen. 
eraU:ation learnin, or ;Ad.dioa compresses large 

. numbers of "similar" o6jet:l., pattern', or neat. int.o 
meaningful dauu. categorie., or conupt•.2 Since 
generalization means fewer catqories t.o mauge, indue­
tion promotes economy or space and time; since catqor­
iution merges observed events, auendallt concepts 
descriptions anticipate similar events (see Figs. I, 2). 

In terms of both application and theory, induction 
is one of the most important problema 01 artificial intel­
ligence (Dietterich 82. Michalski 83, Mitchell 851 and 
pattern recopition lFu 80, Watanabe 891.' fa aa expert 
system, for example, computer generalisation allows 
mechanized knowledce acquisition, and consequently 
reduced costs. Present expert systems are prone to 
unexpeeted error, whereas induction would increase reli­
ability and obviate maintenance: even in its primitive 
state, automated. inductioll hu outperformed a 
knowledge engio.eerinc approach lMichalski SOl. 

1. This work was Sllpponed ia p.n b, aa operaf.in, 
sran, rorm the Natural Sciencell and En,ineerin, Research 
Council 01 Canada. 

2. Induction may be examiaed more lormall,. Aspectl 
or induc&ioa ma, be stated more lonaally. Gina a se& S of 
observed obj«"" a simple kil1d 01 indue&ioa is die ialerenee 
01 a laller Ht, d .... or ,.".lAc';, T. aueh that S C .T. Sil1ee 
T is a ,enerali,a~a i& ma, 110& be &Rei 0111' coa&dence ia T 
is called j&l cre4i'ili',. This is til, moR a"'nct new ot i.. 
duction. i.e. class lormation wi" UIOC;ated credibilif., cri­
terion [Wat~aabe 80, 721. (This new e'V'CD cOYers creatioD 01 

1.1. INHERENT DIFFICULTY 

Induction produces ret'llar. coberent dasses or con­
cepts. Tbeir discovery and expressioa requires some 
lancuap such as predicate logic [Watanabe 69J. seman­
tic networks [Winston 84). rrames or scbemata 
(Dejong 851. feature vee tors IDuda 73). formal grammars 
IFu 821. etc. The more expressive the language, tbe 
more powerful a learn inc system can be, but the more 
difficult the process. Although a great deal of research 
has been done. present induction systems are limited in 
scope, efBciency, or ex'tensibility (Diettericb 831. 

Induction is & diIBcult problem ror a variety 01 rea. 
sou. Fint, the number or possible generalizations iJ 
lar,e, compared with the number wbicb can be explored 
throueJa evalualioll or coDstructioil or explicit 
hypotheses. For example, it a small lOx 10 grid of bits 
encodes letters or the alphabet, the number of different 

classes (hypotheses) is 27121"1, and very rew or these are 
sensible. The second major difficulty is that noisy and 
spanel, diJtributed. 4ata ofer linle help in distinguish­
ing aa, hypotheses which are considered. 

1.2. CREDIBD..1TY AND OTHER CONSTRAINTS 

Certaia constraiats can reduce the combinatorial explo­
sioB 01 hypotheses. A straightforward tactic iJ simply 
t.o limit the deseriptioD language withoD' confining its 
power too much (e.c. permittinc conjuDc:tions but not 
disjunetioBs in logic expressions [Michalski 831}. 

A. Watanabe showed in his "theorem of the ugly 
ducklinc". no one dassiJicatioa (hypotbesis) is intrinsi­
cally better thaa aa1 other (Watanabe 891. In order to 
select aa appropriate concept, we must rely on some 
external criterion. This criterion is the meaningfulness. 
quality, GreTedi6;l.'.,.. it expresses some ascribed 
elegance or purpose of a generalization (Watanabe 6QI. 

.truct.1Ut/, which illyolYes cODcep' rOfmatioa ad recollsidera­
tiol. 01 what colWif.utet aa object, e.,. 8m chess pieces, theD 
·ChUDO· of taowled,e such u attack lormation.. This pa­
per j_ alhadell to tUlicture: more caa be roulld io. 
(ReadeR asaJ.) Th. el3.Slillcadoa new is useful lor purposes 
Juch at diKoYeria, the dillicult, 01 a plleraJiuf.ion problem 
or meuariq the power 01 an iDduCf.iYe s)'Stea. 

3. Geaeralbat.ioa learDilll is alao a rudameDtal prob­
lem ia philosoph, IChristellHD 841 aad psychology 
{Media '41. 
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Credibility may be used to e"IIl,.,.te a hypothetical 
class or concept; credibility may also be employed to 
rutrid candidate bypotbeses, producing only tbe more 
plausible ones lMicbalski 83, Rendell 83&, 85a). Credi­
bility provides It. means to impose or discover underlying 
order, regularity, or structure in desired concepts, and 
can promote efficient and efective induction. 

Examples or credibility include "simplicity" or con­
cept description, "sparseness or 6t'" to the data [Micbal­
sid 83), and "invariance· under transrormation or task 
elements [Ernst 82). A relaxed form of invariance has 
long been used in statistics and pattern recognition, viz. 
"similarity" in cluster analysis [Anderberg 731. 

1.3. PLSt EFFICACY, AND EFFICIENCY 

The autbor's scheme involves a special kind of similarity 
constraint whicb utilizes the whole data environment. 
Tbe precise rorm of this similarity has to do with suc­
cess or "utility" in the perrormance or some task 
[RendelI83a. sad, 85bJ. This approach, used in the pr()4 
6a6ili.ti~ learn'1I, .,.Ic. PLS. bas produced unique 
results such as convergence &0 optimal heuristics 
lRendeil 83&, 83b, 8ScJ. PLS can handle noisy environ­
ments and incremental learn inC. The system is econom­
ical with regard to both .pace and time requirements 
[RendeD 83a, 85c1. 

This paper examines some or the underlying re.... 
sons ror tbe effieieacy and· efectivenes. or PLS. The 
next section explores tbe representation lanenage used 
ror objects. concepts, aad related inrormatioa. Section 
3 considers some ways or imposinc order usinC inrorm.... 
tion structures and examines implieations. SectioD t 
utilizes imposed regularity for efficiency in inductioD 
algorithms. The final section summarizes the main 
points, 

even - + 

(b) 
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V2 
V1 

I 
odd even 

t. EFFECTIVE REPRESENTATION 

Much or the AI wort OD generalization learning has 
been ratber simplified, implementing straightrorward 
kinds or induetioD, disregarding uncertainty and noise. 
and omitting complex structuring needed Cor rea.l-world 
knowledge acquisition (see the systems described in 
[Diettericb 821). In tbis section we consider some or 
tbese aspects or knowledge representation for induction. 

Generalization learning systems start with objects 
or events and produce classes or concepts. ElI'ective sys­
tems also tend to represent intermediate #:nou·/edge. 
Intermediate inrormation is used to create more 
knowledge.· Consider ror example recording the degree 
or assurance that an object belongs to a class: as evi­
dence mounts, a hypothesis is lirst tentative, tben more 
credible, and fiDally well establisbed. This important 
information mediates objects and concepts, improving 
efficiency and efectiveness lRendeU 85aJ. Some Corms or 
intermediate inrormation wiD be discussed arter tbe 
basic requirements ror objects and classes. 

2.1. LANGUAGB FORMS 

ItA mentioned earlier, difl'erent approacbes to generaliztl.­
tioa learning bave employed various means to represent 
objects and concepts (e.g, logic, semantic nets, etc.). 
Tbough .. particular language is usually more natural 
than otber languages ror a given domain, tbey are alter­
native, rather thaa unrelated modes of expression. Tbis 
is clear la studies of equivalences [Banerji i1. Sracb· 
man 83, ". Kanal 72, Levesque 84, . Schubert ;t'.: A 

4. Oae interestiDg model is discussed in ILt'Ilat s II. r 0­
disputed nuons for the power or such systems a.wai\ fnrtht'r 
all&l7Iis (Rif:t'.hie 84J., ' 

http:6a6ili.ti
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description or an object or concept can usually b. 2.3. REPRESENTATION OF CLASSES 
m3pped into a corresponding representation in another 
languge. although there are certain exceptions (ror 
eX3mple rcature vectors cannot express structure 
without some augmentation). Perhaps less well appreci­
:lLed is that naturalness or final expression does not pre­
clude intermediate languages. In ract multiple represen· 
t:ltions may not only be sensible. but very appropriate 
IFu 82. Rendell 85aj. Witb this ftexibility in mind, we 
note tbat a practical approach to induction may begin 

with a future 'pact description o( objects.' 

2.2. EXPRESSION OF OBJECTS 

An event or object is a vector x = (x l' x:: ' ... IX. ), 

wbere n is the numher o( att""t" or f,aluru x i 

describing the data. In villion (or example. tbe set or 
attributes might be tbe light intensity (gray level) (or a 
total ot n squares (pixelsl ot a grid representing an 
irn:age. A grid is expressed as an n·dimensional vector, a 
point in 'eature space. It the problem is to dillcover 
those images wbich contain some symbol, each vector 
observed becomes a positive or negative instance o( the 
d3.Ss. Fig. 1 shows a simpler example, wbere n ill only 2. 

Any inductive problem may besm with (eature 
space descriptions; however, to construd "bigber level" 
teatures or concepts, transformatioa of attributes may . 

be necessary (see Fig.2).· Attribute transrormatiaa 
requires formation or logic descriptions or grammars ia 
order to represent relationships among objects or 
among their parts. We shall return to this topic later ia 
the paper (see also [Fu 82, ReadeJl85a)); ror the 
present, we disregard cases needing structure a1teratiQn, 
and describe classes whicb are quite uniform in tbe ori­
ginal feature space (as in Fig. 1). 

4 
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Figure 3. Rectallialar utili', elaaet. Fea'W'e space eall be 
pnrtitioDed illto rt'C....,la reprnelllilli similar probabilit,. or 
cx:eurrellt'e 01 some eyell'. sueh u appearaDee ill a sola'ioll 
to ~ problem or a will ill a lame. Elective e1aswriDI ereates 
R'(I :lDgll." ... bOR t'h:vaetf'nsties makll tile problem domaill. 

S. The wrm -Ieature space- is Dull,. uaoeiateci wj,b 
variables havill, lillearl,. ordered nllps. We do 1l0" (ouider 
the eue 01 !lomilla! seala. lor whieh tbe wrm -nell' .pace" . 
hu beea used [Miehalski 83J. There haYe be!!'1l Ve'r'l mall,. 
applit'atiou 01 IUl.are space r!!'preseDt.tiou, from selllO", 
prcx:essill, to problem soh-jill (Relldell83a. 8Se, Tou 7 ..J. 

O. Dilleult illduetioll requirilll 'nllslormatioll o( attri­
botes is sometimes oiled "eoutrae\ive- illdut'tioll. We shall 
term the !!'asier iilld "simple-. . 

Wben domain and 'eatures permit. a dass hu 3. ('oQt'ise 
description, as in Fig.3 where tbe lertmost h,purut411' 
gle r ill (0 :s x I :s -&1 n (0 :s x: :s 21. PLS efficiently 

manipulates tbese concille expression.. Storing domain 
knowled,e in motiifiab/e feature space cells began witb 
the original probabililltic learning systt'm. PLSI. 
[RendeD i8. 83al and continued with substantial exteD­

sions ill ICoies 84. Rendell 83b, 83c, 84. 8Sa. 8Sb. 8.5cl.~ 
Section 3 of thill paper will explain how PLSI clusters 
objects into rectangular duses having uniform utility 
(e.g. probability ot success in a task I. 

The meanin, ill simplest it only two classes are pos­
sible, and an event x is a poSitive or negative instance ot 
a class r (this situation is illustrated in Fig. la,. In most 
natural representatioDs, however, there are 'more tbaD 
two catezories. One kind of multiple' dassifi(,3.tion 
depends on _tilit, u, the usefulness for some task: tor 
example Q could represent the Iikelibood tbat J: Er leads 
to a desired result (see Fig. 3). PLS models tbill situ&­
tioa. la one use or PLS, an object lit is a state in a prob­
lem or a pme, and the utility dasses r are probability 
dasses, i.e. .the probability that x will appear in a good 
solution or wiD. 

2.4. CODING VNCERTAINTY . . 
ReaJ....orld situatioal always involve some degree of 
noise or uncertainty: observatiollJ are orten unreliable 
and auributes incomplete. fa the PLS model ot these 
situatiollS, positive versos negative instances ot a con· 
cept are counted, and repeated samplings produce a 
pro...ilil, u - kIt, where k is the Dumber of successes 
and t ia tbe sample .ize (see Figs. 1 and 3~.· II we 
cla.ssil'1 ac:cordin, to probability, we bave as many 
cateaories as probability values (8 ia Fig.3). Associated 
witla ..ell II ia some set r of feature values; u ('an be 
collJiclered tbe name of class r. Ia Fig.3, r is the left· 
'most rectanpe, representiDg probability u(r) - 0.2 or 
occurrence of some event E, i.e. u(r) is the cODditional 
probability Pr{Elr) of E, given tbat object x Er. In PLS. 
tbe tveDt E is some oYerall COal in a task domain, so 
u(r) is measurable. Notice that rrom one point or view, 
tbe potential number of probabiUty dasses is the 
number of Q va.lues, wbile rrom anotber point or view, 
we have returned to tbe situation in wbich tbere are 

7. PLS reature 'pace partitioninl is .imilar to attribut~ 
Yalaed Iocie VL, (Miehalski 73, 83). PLS implemeat, oaly or­
diaal or iDW"a1 seales, bu' ulllike VL1, enll early venioDs or 
PLS a ..aled 1l0ise aad learDed illeremeatall,. ill di8iC'IlIL 
domai.. [RelldeU 78, 83.1: exwllsio.. eall balldle 000­

lieed,. aad "rueturilll [Relldell 83b. 8:Jc. 85b. 8k). .-\11 
PLS SJHem, are elldeDt. , 

I. AI .,meuma uses QIlt.radi"iolla! lormalis.s ror pro­
babili&7. Stortlile', -eertain", lactor- ill MYC~is IlOllnall­
dard. Mikhell', -de,," 01 makh- ill LEX is also probabilis­
tie (MikbeU 781. All,. method whieh illeoponta dilreR'otial 
experiellee is ~Iltiall,. probabilistie. 



only two classes (success or noq. In the latter view. the 
feature space representation is a discrete function ufr) 
indicating probability of inelusion in the ~success" 

clMS.O 

2.$. AUGMENTING FEATURE SPACES 

Probability is one kind of goal-oriented alilit, u which 
cail be associated with a feature vector x or feature 
space neighborhood r. In the deterministic ease, utility 
becomes binary. indicating membership in just a single 
clMs. The precise deftnition or utility is less important 
than its abstract use as II. measure or quality in the per­
rormanee or some task; this eould be defined variously.IO 

Associating utility with features is equivalent to 
extending or augmcltt;n, feature space; coordinates are 
added to gi"e (x, ut or (r. u) ...\.s weU as utility u. var" 
ous other kinds or inrormation can be identified with x 
or r. One example is the error in u {Rendell 83al. This 
association or appropriate inrormatioll with r is one step 
in overcoming the structure Iimi~ations or pure reature 
space approaches. We can use augmented reature space 
representations to create expressions in other represen­
tation languages which express structure but cannot 
easily be used to derive it [RendeU Sial. 

Augmented reature spaces caa be used to represent 
intermediate knowledge structures (inrormation derived 
by a learning system tor its own I1le), as well as the hal 
products or the inductin process (dasses or concepts). 
Augmented reature Ipaces can support a mechaaism to 
derive bigher-level. Itrueturally-oriented representa­
tions. 

Unfortunately. choosing efective representations is 
only part or the SOIUtiOD to automated iDduction ­
efficient muipulation is also required. Intuitively. it is 
apparent that efectin representation aad elBcient 
manipulation are closely related to the degree or ·pre­
existing" or "natural" replaritJ. The rollowing section 
examines the relationship between tbis pair or critical 
issues. 

3. SOURCES 01' ORDER 

Learning system. alway. generwe partl,. on the basis 
or pre-existing knowledge (tbey always are somewhat 
"model-drivenw• ther use domaiD knowledge). This 
knowledge may be expressed in a variet,. or rorms: as 
inrormation strudares, as algorithms, or as control 
strudures ror algorithms. These various racton dete.... 

O. A. appliudo. o( ~his appears ia (ReadeII 83a, SSc1. 
There. aa objec\ X repte'Hats a state ia a problem or a game, 
and "success- means leadiDI to discovery or a cood 501u~ioD 
or o( a wia. If x ralls .ithiD a reetaDlle r, tht'. the fUDction 
uCr. - H(x. ma, be oed as aa ef!.t••ti,,./wru:ti.fI or lIeuri,.. 
lie for staU-space searell to UI:SC3S su,te X. 

10. AD alterutin de8DitioD tor uti6t.l i. problem 5011'­
iD, is the "timated _Iutio. patb Ieol'h. la simple CODCep\ 
InraiD,. utility is the silO o( ~he traioiD' iutaoce. 

mine the cost, power. and difficulty or indu('tion. ror 
t'xample. ir attributH are ordinal rt'atur~. and if thl""1.' 
futures afl'e-ct utilities smoothly, gt'nt'uIiution i~ 1':1:<I('r 

(see fig. l). In the following. we ('onsider !IOml:' kindll or 
regularity which may be impO:St'd on dat:l. r/:l$st'S. 3nd 
domains. 

A rationa. basis ror guiding induction :tnd ctf.':tting 
order is the utility. Since utility is the ~('n("e of lask 
perrorme.nce. it should regulate class rormal.ion and 
underlie inrormation structures. Stru('turE"S use altri­
bute vecton. so attribut~ inHuence order or r('gularity. 

3.1. FEATURE QUALITY 

The overriding determiner or regularity is the attribute:. 
describiDg objects. There are related two wa\'s in which 
attributes may aid induction: one invol\'!!$ the amount 
or detail the,. describe. the gr.i" .ize (data compres­
sion), aad the otber has to do with the regularity they 
impose, the .tilil, coherence. 

Grala SII. (OtlliDaI Data Compresaloa). As 
suggested b,. Fi,.2, attributes bave greater or lesser 
degrees or abstraction. In a game such as checken, 
lotD-le"el, ,rimilitle attributes give contents or indivi­
dual squues, while hi,h-lctlel, d.lr.d reatures summar­
ize properties relevaat to winning (e.g. cpiece advan­
tapw. cmobllitJ'·. ecenter control', etc.). Depeading on 
:t.f.tributes, ODe poiDt in reature space may reprHent 
more than 0 ... case. U the attributes are primitive, a 
reature .pace representation wiD compress the data very 
little or not at aU, and the space may be very large Ie.g. 

about 10 20 ror cbeckers). On tbe other haad, ir attri­
butes are high-level. tbe reatur. space will contain con­
siderably rewer points than there are primitive objects. 
and consequently induction will be easier, since order is. 
then inherent in compressed reature vector descriptions. 
A reature vector compacts data baving common or simi­
lar utility. 

UtUlt>- Cohereac. (Ualformlt>- 01' Smooth­
aeslll). Another meaas or providing order ror integrat­
ing events into classes depends oa the relationships 
between utility aad reatures. To simpUry in an exam­
ple, suppose utUity is binary. and indicates elMS 
membership. Fi,.2 shows two diferent patterns or just 
on. -concept" (two dasses. positive and negative).11 
These two patterns have dilrer.nt degrees or regularity. 
For a simple concept descriptioD. eitber situation in 
Fig.! Deeds only a straightforward partition or rea.ture 

11. Whea eYeDts are lpeei&ed III positive aad uegiltiv~ 
examples (tramillC iutaaces) o( a coacept.. ~he !f.aruia, is ,g.
"1'n"l. This correspoodt to ~he detloitioa o( simple iDdue­
lio. stat.ed i. FootDOte 2: a se\ S o( eYeDta is siveD. of wbirh 
S. C S are poeiti" examples, aDd S_ c: S are Deptive. From 
these, a SllperYiKd learaia, s1'tem mast form a class T + 

su.ch ~IlM S. CT•• aad T. n S_ - 0. T. is the geDeral rlass 
or cODcept. la ....,em.e" learaiol the umber or dass.s is 
DOt. loo.a, nor is their meaDiDI. Lack or supt'rvisioD makf'5 
iDductio. more dillcu',. 

http:dilrer.nt
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"p:1("e. while fig.:! requires rormation or the intermedi-. 
ate ('on('ept or -evenness", The situations or Fig.l allow 
el('mt'nury methods or ('lass rormation: these indude 
di:;('o\'ery 01 parameters in linear discriminant runctions. 

. or insertion or partitions in reature space clustering 
{Tou ':'41. However. mechanized structuring is \'ery 
difficult. and no general and tractable methods exist. 
The lim"" {easierl kind or induction has also been 
called u/,di"" and the other. whereby abstract con­
cepts or reatures are created. is ton.,lnttil1' [Michal­
ski 831. the problem 01 new ',rm, IDietterich 821. or ton­
(epl.all:no'lC'led,e atqui,itioft [Rendell 8ScI. 

The signi&cant dill'erences between selective and 
constructive induction become apparent in a more con­
crete example sucb as checkers, where high-level 
reatures ("piete advantage-, "center control-. etc.) take 
the roles or tbe coordinates in Fig. I. Here the basis lor 
classification (utilityl migbt be multivalued (perhaps 
indicating likelihood 01 a winl. Utility varies only gr ... 
dually with high-level reatures. In contrast, if the attri ­
butes are not abstract, but primitive (e.g. the contenb . 
or individual checkerboard squares), then utility is very 
irregular (much worse than Fig. 2 suggests). Here. coa­
cepts such as piece advantage would have to be created 
belore straightlorward partitioning algorithms could be 
ell'ettive. 

3.2. REGULAlUTY" INDUCTIVE DIFFICULTY 
If constructive induction is required. it too can be or 
varying dt'grees or difficulty. Symmetries like the one 01 
Fig. 2 can be more or less complex. and as the complex­
it~· of 4 concept increases, so does tbe complexity or the 
language needed to describe it (e.g. lull predicate logic). 
When disorder (t'ntropy) is so bad that utility patterns 
arC!' complt'tely r:1ndom. no generaliza.tion esa· occur 
which is relia.ble ror any other case. 

tn practice, howevt'f, any interestinl reaJ..world 
situation exhibits some degree 01 commonality. This 
regularity appears not only ac:ross instances 01 a prob­
lem (e.g. all <'het:'ker games), but also across problems or 
a class (e.g. aU board ga.mes). In other worda. induction 
requires classillcation, not only at the event level, but 
also at the level of the domain. A.. an example or the 
latter, utility is otten iDvariaa& or similar under transla­
tiOD. rotalioll, ete. (these apply in divt'rgent domains. 
hom board games to vision). 

In summary, there are many Idads aDd degrees ot 
ft'gUlarity. They can be captured by data strudurine, 
concept structuring, and domain structuring. In the 
(ollowing section we shall examine how structured infor­
mation may be converted into efficiency in algorithms; 
we shall also consider some ide.. ror avoiding loss ot 
power. 

4. DYNAMICS OF ORDER 


This section or tbe paper examines algorithmic a!'peclS 
01 induction. using Pl.S as a paudigm. Details or the 
induction methods. and other aspects or Pl.S may be 
round in [Coles 84. Rendell 83b. &1c. 84. 85a. 8.5b. 85cl. 

4.1. EFFICIENCY IN SIMPLE INDUCTION 

Let us consider some reasons ror the t'ffit'it'nry or gt'n­
eralization algorithms used by the simpler 'ystems Pl.SI 
and Pl.S2 (which we sball collectively fert'r to a.s Pl.S2). 
Pl.S2 can be used in situations where some Idilil" u C3n 
be deliaed. This covert a large clw 01 problt'ms. For 
example. u can simply indicate da.ss membership /lor 
single con<'ept learning), or u can mea.sure desirabilitr 
ror some perrormance task. Recall Crom SectiQns :l.3 3nd 
2.4 tbat u is a property or a le~ture vector x or rectan­
gle r (where r is aligned with Ceature space axes). 

Tbe rorm 01 tbe inductive hypotheses in Pl.S2 is 
"rectangle r hasutililY u". A perCed Jearning system 
would generate Jectaogles r or just ,the right sizes, so 
that r', would be of small extent in volumes or tbe 
space where utmty varies rapidly. but r', would other­
wise be Lvge (causinl various emeieneies) .. Each (r. u) 
pair would be perfectly accurate. .'''' .' .,.' 

PLSt attempts to approach this ideal by several 
rorms 01 incremental feedback, credit assignment. and 
credit Ioc:alizatioa. While the system is complex, it is 
essentially a set 01 utility class rewriting rules ror pairs 
(r, u). One rule alters u (el'ectively moving r to a 
dil'erent class. Other operators adjust rectangles; tbese 
rules include forming, reBaiDg (specialUing), merging 
(generaJiJing), and recombining, so that the reature 
space partidol is iteratively improved during task per­
forman"" . 

Here we shall consider just ODe rule: retinement (i.e. 
specialiJatioD. dil'ereatiation). Rellnement employs a 
special kind 01 clustering which examines contextual 
iDrormatioll. A rectaogle r is tentatively split in two, 
and the spUt becomes petmsaent if it is "beUer than" 
otber teatative refinemeats, arid .if the split is "good 
enoup-. These decisions depead OD the ."lit, diver­
,'fie, in the t.wo subrectangles. UtiUtY.,div:ergence is 
measured as the variation or ut.ility in reature space. 
&CCOunting Cor observation error .1'· This is appropriate 
since utility is used to guide t.,skpertormance. nility 
divergence results- in ·simpUcity·.and',~8t:~ asa conu· 
,acfle« of goal direct.ednesl (compare' with [Michal­
ski 83!). .:1' ·T.-': 

12. Ia iliON pncile de&ail: Til.' cri"'rio. ror .pli\tinr in­
Yolyes a dissilllilamy (diAaace) lIleasure d: II Qt...•nd u. ue 
the two utilities tor a tentative diellotolllY, .nd • I and •• 
their errol'll, thea d -ilos-. -Ioc u, I -IOC('I'~): This d': 
taace is cOlllputed tor all bouada&7 iueniou pirallel to any 
reature Ipace axis. If tit. lar,_ d is positin, the 
eorrespoadiac 'pli' it ""ailltd. Tile proc.. repeated until 
additional rehemeDt is uawarranted by the d.t. (until d S 
0). Notice that. lareer d IlltaOS lIlore assured dissilllilarity. 



This splitt ing scheme has se\'eral efficiencies. One 
ill that a rectangle is economica.lly stored (just Iwo 
f"'3lure n!ctors spE'cify the extreme cornet points). 
Second. rE.'ct angles compress objects into fewer 
c:llE'gories (utility classes). Because rew rectangles are 
rE'quired. PLS~ makes efficient use or both storage space 
and processing time. Finally, the generation of rectan­
gl4!ll is inexpensh'e because of the small number or 
dichotomies to be tested. The time complexity or the 
splitting :llgarit hm is knm. wbere k is the number of 
objects obsen·ed. n is tbe dimensionality or the feature 

. space. and m is the number or rectangles lutility classes) , 
formed. 

Like clustering Irelinement). PLS2's otber utility 
class rewriting rilles ror ((r. uU are also efficient. 
IThese rules include u modification. r generalization, 
and r recombination.) 

Tbe overall scheme CaD be considered aD improve­
ment of signature tables (Samuel 671. Botb approach. 
use feature space rectangles to represen' heuristic 
knowledge. but in PLS2 more knowledge is aut4> 
nomously acquired. Instead or baving the user compress 
feature ranges and dimensionaHty, PLS2 aDd the data 
det.ermine sizes, sbapes, and elective dimensionality or 
reature space rectangles. 

PLS2 and most otber systems tor generalization 
learning perform simple induction, wbere variation or 
utility witb attributes is gradual, and feature space can 
be meaningfully partitioned by insertion or a tew boun­
daries (see Fig. 1 and Section 3.1). ' 

••2. EFFICIENT CONSTRUCTIVE INDUCTION 

The great majority or realistic inductive problems 
require discovery or new and appropriate object descrip­
tions. Constructive induction is required wben tbe vari­
ation or utility with oripnal attributes is drastic (e.g. 
consider Fig.2 or the 32 attributes e i • de8ned as the 

t'ontl'nts or individual squares or a cbecker board). No 
realistic constructive induction bu beeD tractably 
mecbanized, altbouih some limited algoritbms have 
been devised [Ernst 82, Micbalski 83, RendeU 85al. 

A new s)'stem PLSD addresses a bard problem or 
constructive induction: mechanized creation 01 bigh. 
level reatures Irom verr detailed, elementary attributes 
or primitirlu (e.g. the ej abon). PLSO breaks down the 

problem into several levels, each' with a ~~u~~ time 
complexity IRendell, 8511.1. The system naturally unites 
representations (Ieature spaces, lolic deseriptio~st and 
lor mal grammars) as a consequence or its multi-layer 
design. PLSO requires little background knowledge, and 
the approach is quite general. 

Instead or clustering entire reature sp3e~. PL~O 
examines appropriate primith'e subspaces. The s},stem 
allips p4ttlTn, or vtilit, ,imilarit, •• tbat is: utilitv sur­
/acu. not utility values are clustered. PLSO can incre­
mentally construct tentative components Cor high 'e\'el 
features. ~iore structured elements are created from 
these component, arter tbey have been validated 
(attained some credibility). Gradually structures 
emerge to beeome abstract reatures. 

Just as traditional clustering is an ell'ective and 
effident means ror selective induction. this scheme for 
constructive induction introduces more general tech­
niques Cor economical use of st'art'e· inrormation. These 
techniques include layered inCormation compresSion 
resulting in a "divide and conquer" approat'h. and sub­
tle overlayin, or data Cor simultaaeous streDgthening of 
inlerence and discovery 01 structure. A complex form 
of regularity is induced. 

5. SUMMARY 
Generalization learning systems .. attempt the difficult 
problem 01 induction. i.e. the creation' or classes or con­
cepts trom data. Powerrul induction systems tend to 
possess certain characteristics, each 01 which contrj. 
butes to efficiency and electiveD": 

• Intermediate inrormation structures are used to gen­
erate layers or more abstract knowledge. 

• This mediating howled,e includes probabilistic infor­
mation (although it may be disguised}, wbose purpose is 
to overcome noise and make maximal use of sparse 
data. 

• Scarce and unreliable data are nevertheless used 
incrementally to increase credibility oC tentative 
bypotheses. 

• Credibility measures and otber constraints are 8exibly 
employed, not only to test generated bypotheses. but 
also to guide tbeir rormatioD. 

• Knowledge representations are dynamieally and 
appropriately selected; tbese representations are restrie­
tive enough to aid efficiency, yet expressive enough to 
learn structure in observed events. 
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