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FOREWARD

This collection contains research summary papers submitted by participants at
the Third International Machine Learning Workshop held June 24-26, 1985 at
Skytop Lodge, Skytop, Pennsylvania. The first workshop in this series was held at
Carnegie-Mellon University in Pittsburgh, during July 1980. The second workshop
was held at Allerton House at the University of Illinois at Urbana, during June
1983. This series of Machine Learning Workshops is intended to serve as a forum
for exchange of new research results and ideas in machine learning from an

artificial intelligence perspective.

We are grateful to the Office of Naval Research for sponsoring all three of these
workshops, and to the Laboratory for Computer Science Research at Rutgers
University for providing organizational help with this Workshop. Special thanks
go to Jo Ann Gabinelli, the Administrative Organizer for the workshop, for her
invaluable good cheer and organization. We are also indebted to the Rutgers
student and faculty workshop participants who served as the local arrangements

committee.

Tom M. Mitchell
Jaime G. Carbonell
Ryszard S. Michalski
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KNOWLEDCE REPAIR MECHANISMS:
Evolution vs. Revalutlon

Ryszard S. Michalski
Massachussetts Institute of Technology®

ABSTRACT

Whea new [acts contradict established knowledge, this knowledge can be
repaired by ao evolutionary zpproach or by & revolutionary spproach. The
evolutionary spproach makes incremental modifications to the appropriste
segmeants of knowledge, while the revolutionary approach replaces old knowledge
with new knowledge, geaerated from scratch. Within the evolutionary spproach
two methods are discussed: 1 premise-based method, and an exception-based method.
Assuming that knowicdge is represented ia the form of rules, the premise-baszcd
method maodifies the main conditions (premises) of the rules, while the exception-
based method sccumulates exceptions to the rules sad ormulstes preconditions or
rule spplication. In the context of machine learaing (a3 opposed to human
learning) a full memory evolutionary spproach is advocated, whick incrementally
improves knowiedge structures, but does not forget facts An exception-based
learning method is discussed that represents knowledge in the form of cemsored
production rules. Such rules are created by augmenting ordinary rules by an unless
or provided condition.

INTRODUCTION

Almost all human knowledge is fluid. It changes because the world arouand of
us changes, or because new facts we learn about the world call for 1 moedification
of what we kaow. When our %nowledge of some subject is inconsistent with
newly observed facts, we may choose one of several options. We may ignore the
inconsistency, hoping that it is insignificant or accidenial, and retasin our
knowledge unsltered. Or we may make incrcmental modifications to the
tppraopriate part of cur koowledge. This is an evolutionary approsch. Another
option is to throw awey this picce of knowledge altogether and develop anather
one from scratch. This is a revolutionary approsch.

The revoiutionary approach may bring about sew sad significantly better
knowledge. The new knowledge 30 obtained may be radically diTlereat from the
old knowlcdge, or closely related (a3 Einstein's reformulation is rclated to Newton's
second iaw of dynamicy), It is also relstively casy to implemest such an spproach
on a computer, because it does not require am intimate understandiag of the
current body of knowledge, nor does it need sophisticated knowledge repair

mechanisms.

On other hand, the revelutionary spproach requires starting from C[irst
principles and using original facts and observations. [t may also involve adopting
new viewpoiats, discovering uanexpected rclationships, formulating new ideas.
Therefare it is difficult, often inefTicicat and cime consuming. This approach does
not take advantage of the parts of the old knowledge structures that are correct.
Its difficulty grows rapidly with the extent of knowledge to be developed anew,
The revolutionary approsch to knowiedge improvement seems thus to be most
advantageous for small bodies of knowledge.

Until 2ow, our- machine learning programs. have been primarily orieated
toward acquiring only small amounts of knowledge, using reiatively simpie
inductive learning techniques. Consequently, it is pot surprising that most
implemented up-to-date rule lcarning techmiques use an son-incremental,
revolutionary spproach, .

As knowledge bases of our Al systems grow larger and Iarger, and the
problem of kaowledge acquisition bottleseck worsens, machine learning research
nceds to put greater emphasis an  the development of efficicat miethods for
incremeatal learning and knowledge repair. This includes deveioping kaowledge
representations that aot only (acilitate processes of inference derivation, bug are
slto amenable to casy modification and improvement,

The evoluticnary approsch to knowledge repair can be accomplished in twa
basic ways: by incrcmentally refining the main body of knowledge (the premise-
dased method), or by accumulsting exceptions and formulating preconditions for
applying koowiedge currently held (the excepiion-based method), The Ilatter
method can be illustrated by a simple way in which Newton's second law of
dyoamics can de improved. Instead of replacing it with Einstein's more precise (dut
also more complicated) equation, one can formulate the srez of applicability of
Newtoa’s equation, and use it withia this arcs. And this is what we usuaily do for

simple physics problems oa earth.

W o Ve o B Ak B i ihen o Ml on FHak . . . oma
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An important question is how to decide when to use the evolutionary
approach and whea {0 use the revolutioaary approach. The decision can be made
on the basis of estimates of costs and benefits of applying cither approach in &
given situation. For the revolutionary approach, there is the cose of developing =
new body of knowledge from scratch. A potential benefit ig that the new
knowledge may be simpler and/oc better. For the evolutionary approach, there is
the cost of modifying already possesed knowledge. This cost depends on many
factors, such as the complexity of this body of knowledge, amount of repair
pecded and the availability of appropriate skills and tools. A potential benelit is
that in some situations 1 modification can be made simply and quickly.

The rest of this paper is concerned with the evolutionary approach 1o
knowledge repair. It addresses both, the premise-based.and the exception-based
method of incremental learning, assuming that knowledge is represented in the
form of cules. It describes &  full memory rule refinement method, which modifics
premises of the rules using both, the newly observed facts and those previously
employed. Aa exception-based refinement method is also briefly described, which
uscs censored production rules as a knowledge representation. Such rules are erested
by augmenting ordinary rules by an umless or provided condition.

NEED FOR INCREMENTAL KNOWLEDGE REFINEMENT

Typically, in ordinsry life matters and decision making, humans {as
individuals, not 3t & group) employ incrementsl learning methods. They tend to
use any newly obtained information to refine what they siready know, rather than
to campletely change or reformulate their knowledge. There scem to be several
rcasons {or such an incremental style of repairing knowledge.

One reston is that we live in a world which continuously changes, and we
must zeact (0 these changes as they occur. The information comes to us
sequentially, and we have to process it and relate it to our other knowledge as we
reccive it. Also, we cannot consciously erase what we know, as aur memory docs
not have an ¢rase command. When some new infarmatios contradicts & part of our
koowledge, we may try to modily this part zppropriately, but we caanot simply
remove it [rom memocy, and replace it with 2 new better pare.

Another important factor is the limitation of our memory. We cannot store
aad have caty access 10 all the information we have ever been becn exposed to. We
scem ta store and have sccess to only the most prominent facts and gencralizations,
One¢ may aiso observe, that the personal knowledge basc of an adult appears to be
quite large, and it would be difficult to make any radical modification of it.

The first factor, the scquentist flow of information, reflects the intrinsic
nature of the world, and cannot be chasged. Other factors, however, the lack of
crase instruction and the memory limitation, apply to people but not to modern
computers, For contemporary computers, storage, (23t retricval, and deletion of
vast amounts of information is mot infeasibie. [t is thercfore argued that when
implementing lesrning methods oa & computer, it may be advantageous is certain
situations to employ & full memory method, which incremencally refines knowledge
structures, but does not {orger facts (Reinke and Michalski, 1985). The strength of
such a mcthod lies in ity ability to use sll the original facts far guiding the process
of modilying and gencraliziag kaowledge stuctures, and sclecting slternative
solutions. Alse, such a [lcarning method guarantees the completeness and
coasistency of the modified knowledge with all the lacts.

PREMISE-ORIENTED FULL MEMORY LEARNING:
Iacremental AQ Algorithm

The basic top-level slgorithm used in many of our learning programs is AQ
(the quasi-minimal algorithm), or some simplified version of iz It was originally
developed for solviag the genersl covering probiem very efficiently (Michalski,
1969), and zubsequently adapted to prablems of inductive learsing. The algorithm
gencrates & Cover, that iz, & set of rules that generally describe all  positive
learning ¢vents and none of the negative events. To do so, it employs the concept
of & siar of one positive cvent against all megative events, i.c., the set of all most
gcacral and consisteat concepts or rules that explain = single positive event
(Michalski, 1983). Oac advantage of this nigorithm is that elements of aay star can
always be conjunctive concepts (and thus very simple concepts), and snother that it
allows to estimate the difference between the genersted cover and the minimum
COver.,

In & simplified version, algorithm AQ generates & star of & randomly chosen
(positive) event, and 1elects the best concept {rom the star according to a flexible
criterion. If the selected concept does not cover (explain) all the pasitive events,
thea & new star is generated for some 30 far uncovered learning event, and the
process repeats uatil all positive events are covered. In this form it is & non-
incremental learning algorichm.

There have been two incremental versions of this algorithm, one which does
Rot remember past learning events (Michaiski and Larion, 1978), and ane
cemploying full memory of past events (Reinke, 1985; Reinke and Michaiski, 198%).
Herc we will briefly describe only the version utilizing full memory.
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The problem can be formulated as Collows. Given is a set of rules, a set of
newly acquired acts (new learning events), snd s set of previous facts from which
the rules were induced (old learming events). Suppose that some of the new
lesrning events contradict the rules. The goal is to transform ke original set of
rules to 8 new set, such that the new rules ere consistent and complete with regard
to all, new and old lcirning events. Moreaver, the new set of rules should be the
most preferred one {according to some sssumed criterion) among all aliernative
such sets of rules.

We will assume that the premise of any rule is ¢ither s single conjunctive
concept, or a disjunction of such coaceprs. To make rules consistent and complete
with regard to all newly acquired events, some rule premises may have to be
specialized (to uncover new negative eveats that are incorrectly covered), and some
premises may have to be gencralized (to cover acw positive cvents that are not
covered).

The incremeatal slgorithm starts by determining & set of rule components
(conjunctive concepts in rule premises) that cover new negative evenis These
components need to be specialized. Each such component covers some (oid) positive
cveats sad some (necw) negative events. The specialization is accomplished by
applyiag the noa-incrementsl AQ algorithm to such a "local® learning problem (to
determine cne or more componenty that cover only positive eveats),

The next step generatizes all rule components (the newly specialized oncs and
the original ones) to cover those new events that were not covered by the sriginal
rules. This is done by reapplying the non-incremental version of the 2::orithm,
treating esch rule component ag a generslized lesrning event.

This incrementa] learning aigorithm was tested on a serics of problems in the
domaias of imsect classification, chess endgames and plant disease diagnosis
(Reinke, 1985; Reinke snd Michalski, 1985). Experiments have showa that the
in¢cremental learning method was between § to 100 times faster than the non-
incremental method. The complexity and the performance of rules learned
incrementally were oca the avarage oaly slightly worse than that of the rules
learned in one step (i.c., non-incrementally).

RULE REPAIR BY DETERMINING EXCEPTIONS AND PRECONDITIONS

Suppose that a given set of rules (or a theory) works well most of the time,
but occasionally misfires. We may collect cases whea rules do not work, and apply
the above or other incremental learning method to develop correct rules. Oc we
may develop new correct rules from scratch. In science and other sreas where
standards for consistency and precision sre very high, rules (or theories) that are
only partially correct are not acceptabie. Efforts will be made to determine correct
rules through cither an evolutionary or revolutionary approach. If the problem is
sufficieatly importane, these efforts will be extended regardless of cost.

la commoansense reasoning, or ia solving complex practical problems, such as
the ones for which we are developing expert systems, it is not always possible to
have perfect rules. Due to the lack of precise knowledge of the domein, the cost
of obtaining all needed [acts, or the time and other limitations, we often use
approximste rules and uncertain theories. Ja these situations, sn exception-based
method can be especially usefuyl.

In such & method, the cases for which s given rule does not work are
collected together and treated ms exceptions. Various issues related to representing
and ressoning with exceptions are discussed by Etherington and Reiter (1983),
Winstoa (198! and 1983) snd Miansky (1935). Ian addition (or alternatively),
situations in which the rule works weil are characterized and generalized into a
precondition for the rule application.

o & recent work on variable precision logic, Michalski and Winston (1585)
developed a representation system (or expressing and reasoning with exceptions
and preconditions (Michaiski and Winston, 1985). The system employs censored
production rules, which ~re in the lorm;

It <premise>
thes <decision>
unless «Cenyor» {1

The censor 11ates conditions, which when satisflied reverse the decision. It is
assumed that the (en1ored conditions occur rarely. It has been shown, that from a
logical viewpoini. the weless operator is equivalent to the exclusive-or operator.
From an exposiiory srewpoint, the If-thea part is assumed to carry the important
causal or other icformation, while the ualess part acts as n switch that chenges the
polarity of the the decision. A complementary form of 1 censored production rule
uses the provided operator, which scates the preconditions for the rule, From the
logical viewpoint the rule (1) is equivalent to the following rule with the provided
operxtor;

If <degision>
ithen <decision>
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where = denotes the negation operator,

A prelimioary method for lesrning using censored production rules is
described by Becker (1985). In one of the experiments, his program was given a
number of cases whea after turning on the Key the car started, and cases when it
did not start. The program learned the {ollowing rule (expressed here in s slightly
editted form):

I the ignition key turned on
thea car starts
uniess gas taak is empty or battery is dead. (3}

The rule scems to reflect well our commonsense reasoning about starting s
car,
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