
File No. UIUCDCS-F-85-934

Editing Network-Structured Knowledge Bases
in the ADVISE System

Thomas D. Channic

Department or Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

February 15, 1985

ISG 85-4

ABSTRACT

Until now, knowledge bases in the ADVISE meta-expert system have
had to be edited by text editing or by changing tbe program that creates the
knowledge base. This paper discusses a network editor ror ADVISE
knowledge bases, which can edit a knowledge base directly. The network
editor has been implemented on a Sun Microsystems Workstation, and is
screen·oriented and menu driven. The laUer part or this report serves as a
user's guide Cor the editor.

This "'ork "'&, suppor\lId ia P&r\ by tbe N&tioul Sciuce Foud&tioa under Ira.nt DCR 84·06801 nd by ~bf: Omce of N&·
v&1 Rese...rcb uader ,rut NOOO 14·82·K-O11111 ,

Editing Network-Structured Knowledge Bases in the ADVISE System

1. 	 INTRODUCTION

The ADVISE expert system (Michalski 84) provides a power(ul (ramework (or building

expert systems. ADVISE has been used to build two very different expert systems - namely,

BABY (Rodewald 84), a system used (or patient monitoring in a newborn intensive care unit,

and PLA;-';T (Reinke 83), a system (or diagnosis o(soybean diseases. Until recently, however,

ADVISE lacked a (acility (or directly manipulating and editing a knowledge base (or expert

systems. It a knowledge base needed to be changed, either a text file (w hich is (requently not

an accurate representation o(an ADVISE knowledge base) had to be edited or the program

that created the knowledge base must also include code to alter the knowledge base. Thus the

only way to alter the PLANT knowledge base was either to text edit backup knowledge base

files or run a rule parser on new input rules. QUINt a program (or editing knowledge bases

represented as relational tables (Spackman 1983), is available but has minimal benefit (or the

rules and network representations o(currently implemented systems.

This report discusses the network editor, which provides ADVISE with the capability (or

interactive manipulation or knowledge bases in the ADVISE representation. A brier descrip­

tion o(the ADVISE knowledge representation is provided below (ollowed by a user's guide (or

the network editor.

2. 	 REPRESENTING KNOWLEDGE IN ADVISE

The basic structure (or representing knowledge in ADVISE is a tuple. A tuple is similar

to a list in LISP, and differs mostly in that it is implemented in Pascal. Nodes are like LISP

atoms, and a tuple is just a list o(nodes. The second node or the the tuple has special

1

meaning as a relation or arc between the head node and subsequent nodes in a tuple. A typi­

cal tuple looks like the one below.

(headnode arc subnodel subnode2 subnode3 ...)

or course, the same head node can have many arcs (relations) under it. These can be

represented simply by additional tuples as rollows.

(headnode arc! subnode11 subnode12 ...)
(headnode arc2 subnode21)
(headnode arc3 subnode31 subnode32 subnode33 ...)

For efficiency reasons the above tuples would be stored as below.

(headnode (

(arc! su bnode 11 su bnode 12 ...)

(arc2 subnode21)

(arc3 subnode31 subnode32 subnode33 ...)

))

In the actual implementation of this representation, nodes are memory addresses. Nodes

also have printnames associated with them as well as being associated with the tuples in

which they appear as head node. The ADVISE tuple manager (see the ADVISE Technical

Document) handles aU the manipulations or the knowledge base on the tuple level. The net­

work editor simply makes the appropriate calls to the tuple manager based on its interaction

with a user.

The tuple representation represents an important generalization over the basic concept or

semantic networks (as described, ror example, in Winston 84). Thinking about tuples in light

or these networks, each tuple with the same head node can be considered a slot, each slot has

2

a name (arc) and a value. Slot/value combinations are also known in ADVISE as attribute,.

The generalization over other representations is that slots or attributes can have many values

associated with them. Thus. similar slots can be combined into a single slot

(house ((has-room living-room dining-room bedroom kitc hen)))

or a single slot may have several values associated with it, for example, both a qualitative and

quantitative value.

(block-l ((orientation vertical 89.5)))

The ADVISE representation of knowledge via tuples is a general mechanism for representing,

not only networks. but rules and relational tables as well. These representations, however, are

beyond the scope of this report.

3

3. 	A USER'S GUIDE FOR THE NETWORK EDITOR

This section is divided into three subsections: a brief introduction/orientation to the edi­

tor, a sam pie session illustrating the basic features of the editor, and a reference guide detail­

ing all the options available to the user.

3.1. 	Four Ma.t Commonly Aaked Queltlonl about the Network Editor

What tilt!

The network editor is a menu-driven interactive program with modest use of graphics,

which runs on a Sun-2 Workstation. The interface is written on top or the SunWindow pack·

age developed by Sun Microsystems, Inc. Naturally, being menu-driven, it is easy to figure out

how it works just by pressing the right buttons. Experimenting with the editor, and rollow­

ing, the sample session below are the best ways to learn to use the editor. Besieds the sample

session and the brief introduction below, the rest of the user's guide is intended only ror refer­

ence.

How do you dllplay • network?

In displaying a network, a non-graphic approach was taken to allow minimum

modification for running the program on machines without graphic capabilities.. Nevertheless,

the network structure is readily apparent as the figures in the next section demonstrate.

Nodes are represented in boldface. Arcs under nodes are not in boldrace, and are set one line

below and indented from the main node. Subnodes under arcs are placed similarly under the

arc. Additional subnodes are placed on the same line immediately following the preceding sub­

node.

What kind of thin.. ean I do to a network!

At each node or arc in the network, two sets of options are available. One set of options

effects the node or arc it5elf, the other set effects the environment around the node or arc. An

example of an option in the first set is changing a printname of a node. An example of an

option in the second set is adding an attribute after a node. The first set of options are avail­

able via the middle mouse button, the second set via the right mouse button.

How ean I determine the portion. of the network I want dl.played?

The only other thing a user need know in order to use the network editor is how it clips

the network to fit on a display. There are three parameters which affect the display - namely,

depth, arc breadth and tuple breadth. Depth is the number or arcs down from the main node

to display. Arc breadth is the number of arcs to traverse from each node. And tuple breadth

is the number of subnodes to display under the head node. How these parameters affect the

display will be seen in the next section.

If in spite of these parameters the network still cannot fit on the screen, the network edi­

tor leaves markers that indicate information has been clipped from display. At the top level of

the network, these markers are arrows that point in the direction of the missing information.

\-tenus are available at these ma.rkers to scroll the top level of the network in order to see the

missing information. Beyond the top level of the display, missing information is indicated by a

string of dots - " ... ". Missing information a.t this level can usually be viewed only by descend­

ing the network to make this level the new top level and, if necessary, scrolling or changing

the appropriate parameters.

5

3.1. A Simple Sample Sealon

In this section, a simple network is constructed using the network editor. The example is

chosen to illustrate the features of a network editor, and is not intended to have any semantics

in the context or ADVISE, therefore any resemblance or the network to ADVISE systems. liv­

ing or dead, is purely coincidentaL The network represents a arch made or building blocks.

Here the network editor has just. been invoked with the network name "arches" as an

argument. A node to be taken as the root node (or the display has just been typed in. The

editor must be supplied with a network name and a root node berore it can begin a session.

The network name can be passed as argument or typed in when the editor starts up.

ADVISE
••t ..rk Editor

Trving to ap.n n.t..rk: .rch••...
• rch•• : Succ •••fully Op.n

Ent.r na.. of .. in nod.: archl

7

Since there are no other nodes in the network, "archl" is created and placed at the root

or the network. If "archl" already existed in the network, the structure under this node

would be displayed under the derault parameters. The derault parameters are set to not effect

the display, i.e. the window size is the only limiting factor to the display.

A prompt ror menus appears at the bottom or the screen.

rchl

8

The user moves the mouse to the "areh!" nJde, whieh beeomes highlighted. Then the

u!er pre!!es the right button on the mouse and the menu ror "loeal" options appears. "Yank"

places the node in a buffer to be added into a tuple at a later date. Help is available with all

menu!.

o

Pressing the middle button while at the node reveals the desired option of adding an

attribute (slot).

10

Selecting "Add Attribute" brings up a prompt (or the .:lumber or nodes (printnames)

including the arc in the tuple which the network editor will a.dd into the network.

11

Next the aser is prompted (or the printname or the arc. The user types in this name.

'When the users presses return, the arc appears in the network and the name of the node

is solicited. The users types the node name.

13

The entire attribute now appears in the network. No more prompt appears. The user

now moves to the arc to add the next attribute below the first attribute.

b-3

Continuing as with the first attribute the user has added all the arcs under "archl". He

now wishes to add arcs under the "b-t" node. To do so he must first make b-l the new focus

node.

contain-top
b-3

contain-left-side

15

"b-l" becomes the new focus node. The user has used "Add Attribute" as before to add

all the appropriate nodes and is now ready to "Back Up" to the previous root node. "Back

r p" is an 0 ption from one of two men us that aren't associated with any node. The other is a

global menu with options such as editing a new file, writing this file, quitting, etc .

• , ,! 1:' . . "': ':. ~

-1
isa

brick
support

b-3

orientation

vertical

18

Next the user wants to add attributes under "1>-2". To do 50 he must make 1>-2 the (OCUs

as he did berore. This,time however, he notes that he wants to add some or the attr:butes that

are already under b-l. He chooses to "Yank" the "isa" attribute.

rchl
contain-top

b-3
contain-18ft-side

b-2
contaln-right-slde

b-l

17

......

After mak.ing "b-2!1 the new focus, the user wishes to "Put" the attribute he just.

. ··Ya.nked" under "b-2".

18

The "Put" succeeds. The user continues adding, yanking and putting until the entire

network is complete.

is.
brick

19

~ow the network ror "archl II is complete. Note the three dots near the bottom or the

screen. These are markers that indicate inrormation would appear beginning at that position.

At this point the user may enter a new root node, such as "arch2", and create a network

from there or he may choose to alter the display by changing depth, for example.

reM
contain-top

b-3
in

brick
in

building-unit
orientation

horizontal
contain-left-side

b-2
isa

brick
In

building-unit
support

b-3
isa

brick
i5&

but
orientation

hortzontal
or lenUt Ion

Yertical
contain-right-side

b-t
In

brick

10

The user indicates he wishes the depth changed rrom an "unlimited" derault to 2.

rchl
contain-top

b-3
isa

brick
isa

bui lding-unit
orientation

horizontal
contain-left-side

b-2
151

brick
isa

bui lding-unit
support

b-3
in

brick
1sa

bu l1d ing-un it
orientation

horizontal
orientation

vertical
contain-right-s1de

b-l
isa

brick

Current III

Now the depth has been changed to 2. Note that the markers indicating clipped informa­

tion have disappeared.

rchi
cont.a1n-t.op

b-3
1n

brick
or1ent.at.1on

horizontal
contain-left.-s1de

b-2
1..

brick
support.

b-3
or1entat1on

vertical
conta1n-r1gnt.-s1de

b-l
1..

brick
support

b-3
or 1enut lon

vertical

http:cont.a1n-t.op

Instead or limiting the depth, the user may have chose to limit the breadth or the net­

work instead.

reh1
conta in-top

b-3
in

brick
iSI

bu i ld ing-un tt
or ientat ion

horizontal
contlin-left-side

b-2
1sI

brick
iSI

bu i ld lng-un tt
support

b-3
isa

brtck
isa

bu i ld ing-un it
orientation

horizontal
orientation

v.rtical
contain-r1ght-side

b-l

Pr••••iddl. or Right .au•• Button. for ..nu.

The user indicates he wishes the breadth changed from an "unlimited" default to 2.

, ~. • ~. II. -_ , ., • 1_
, '\ JIIo ­

rchl
contafn-top

b-3

i ..

b .. ick
fn

bul1d1ng-untt

orientation

ho.. izont.1

contain-left-.ide

b-2

1.a

b .. ick
1..

bu1lding-unit
support

b-3
fsa

b .. 1ck
i ..

bu l1d tnl-un1t
orientaticn

ho.. izontal
orfentatfon

v...tic.l
contafn-rfght-s1de

b-l

Curr.ntdth 1. DI
••• Dt.pl.~ 'r••dth (Ent.... ~r): 2

Now the breadth has been changed to 2. Downward-pointing arrows have appeared at

the bottom of the screen indicating that an arc has been clipped rrom the screen. The user

moves to these arrows and presses either the middle or right button ror the scroll menu.

• - .. ,- (' ' .. ~ I'

arch1
contain-top

b-3

1sa

brtck

1sa

butlding-unit

orientation

hortzonta1

contain-left-side

b-2

1sa

brtck
1sa

bui ldtng-un1t
support

b-3
ill

brtck
ill

bu tld tng-un it
or 1entat ion

hortzonta1 ...
By One

By iv
~

Now the fint arc under "arch!" has been clipped so that the last two arcs are visible.

l.' pw ard pointing arrows allow the user to scroll upwards as before. Left and right arrows pro­

vide analogous left-right scrolling when the subnodes of the main node extend beyond the edge

of the screen or when the tuple breadth prevents all the subnodes from being seen.

arch1
"n~1n-l.1t-.1de

b-2
in

brtck
in

tau t ld tng-un it:
support

b-3
i81

brtck
1..

bu1ld tng-un it:
orientation

hortzontal

contain-right-stde
b-l t.,

brtck
1s,

but ldtng-untt
support

b-3

brtck

ZG

Another way to alter the display is by making arcs invisible. With the breadth and depth

reset to their de(ault values, the user causes "isa" links to disappear (rom the display.

rchl
conta in-top

b-3
isa

brick
isa

bu ild ing-un it
orientation

horizontal
contain-left-side

b-2
isa

brick
isa

bu i ld tng-un tt
support

b-3
isa

orientation
vertical

co ntain-right-slde
b-l

isa
brick

bri

27

This action, as did the change depth option, also caused the clipping markers to disap­

pear .

• I~ I J' j 1 i _

rchl
contain-top

b-3
orientation

horizontal
contain-left-side

b-2
support

b-3
orientation

horizontal
orientation

vertical
contain-right-sida

b-l
support

b-3
or ilenta t 10n

horizontal
orientation

vertical

28

Still another way to limit the display IS by specifying a subset of the visible arcs as the

only ones to be displayed.

I P-' I " .! 1 .. .

rchl
contain-top

1:»-3
orientation

horizontal
contain-left-side

b-2
support

b-3
orientat1on

horizontal
orlentation

vertical
contaln~rlght-s1de

b-l
support

1:»-3
orientat10n

horizontal
or lentat 10n

vertical

2Q

Here the user has selected the "contains" arcs and the "isa" arcs to be the only ones visi­

ble. This will allow him to see inheritance relationships.

Choo•• vl.lbl. arc. fro. the follOMtng:

isa

1sa

orientation

•
is.

support

isa

isa

orientation

orientation

isa

MOv• .au•• to d•• ir.d arc and click l.ft button.

30

After seeing the inheritance relationships via is-a links, the user decides he wants to end

the session. He presses the middle mouse menu (or the the global option menu. He chooses

"Write (Text)" because he (and we) want to see the tuple representation of his network.

rchl
conta in-top

b-3
isa

brick
in

bu ild ing-un it
contain-left-side

b-2
iea

brick
in

bu ild ing-un it
contain-right-side

b-l
isa

brick
in

building-unit

31

The user types in a file name ror the text file. The system notifies him or success (or

railure). :"low the user "Quits". The actual network is written to file given at the start or the

program.

rchl
conta1n-top

b-3
isa

brick
151

contain-left-side
build1ng-untt

b-2
isa

brick
1$1

contain-right-side
bu 11d ing-un 1t

b-l
isa

brick
iSI

bu ild ing-un i t

Enter na.. at te.t til.: archt••t

31

(archl (
(contain-top b-3)
(contain-Ieft.side b-2)
(contain-right.side b·l)))

(contain-top ())
(b-3 (

(isa brick)
(orientation horizontal)))

(conta.in-left-side ())
(b-2 (

(isa brick)

(support b-3)

(orientation vertic al)))

{contain-right-side ())
(b. I (

(isa brick)
(support b·3)
(orientation vertical)))

(isa ())
(brick (

(isa building-unit)))
(support ())
(orientation ())
(vertical ())
(horizontal ())
(building-unit ())

The textual representation of tuples for "arches"

33

3.3. 	Network Editor Reference Guide

This section gives descriptions or all the options available rrom each menu.

3.3.1. Menu. Available from the Main Node

Change Printname

Yank

Enter Dictionary

Help

Add Attribute

Put Arc

Put Attribute

Help

At Main Node via Right Mouse Button

Allows you to change the printname or this
node EVERYWHERE it occurs in the network

Allows you to yank this node into the node
buffer ror subsequent 'Put Node' operations

Ir the node is not in the dictionary, you
may enter it there ir this option is present.
rr and only ir a node is in the dictionary,
it can be made the main node via the
'New Main Node' option on the Main Menu

Prints this message

At Main Node via Middle Button

Allows an attribute (an arc rollowed by zero
to 254 nodes) to be added under the main node

The contents or the arc buffer will be put
under the main node as the first attribute.

The contents or the attribute buffer will be put
under the main node as the first attribute.

This message is displayed.

34

3.3.2. Menu. Avallable at Nod.. other than the Maln Node

At Nodes with Numeric Values via Right Mouse Button

Change Node Allows you to change the number to a new
number or to a new node.

Delete From Tuple This node is removed rrom its current tuple position.

Yank Allows you to yank this node into the node
butler ror subsequent 'Put Node' operations

Help Prints this message

At Nodes with Non-Numeric Values via Right Mouse Button

Change Printname 	 Allows you to change the printname or this
node EVERYWHERE it occurs in the network

Delete From Tuple 	 This node is removed rrom its current position.
All other occurrences o(the node remain intact.

Yank 	 Allows you to yank this node into the node
butler (or subsequent 'Put Node' operations

Make Focus 	 This node becomes the new top node in the
display or the network.

Help 	 Prints this message

35

At Nodes with Non-Numeric Value~ via Middle Mouse Button

Add :--;ode Allows a node to be added to the right or
the current node in the attribute in which
the current node occurs.

Put Node The contents or the node buffer will be put
to the right or the current node in the
attribute in which the current node occurs.

Help This message is displayed.

3.3.3. Menu. Available trom Are.

At Any Arc via Right Mouse Button

Change Arc 	 Allows a new arc to be inserted in place
or the arc in the current attribute.

Change Printname 	 Allows the printname or the current arc to be
changed EVERYWHERE it occurs in the network.

Delete Attribute 	 Removes this arc and all subnodes rrom underneath
the head node, i.e. the entire tuple is removed.

Yank Arc 	 Places this arc into the arc buffer to be used
in subsequent Put Arc operations

Yank Attribute 	 Places the attribute (this arc and all nodes
underneath it) into the attribute buffer to be
used in subsequent Put Attribute operation!.

Make Invisible 	 Inhibits the display or this arc and all other
occurrences or this arc as well as everything
underneath them.

Enter Dictionary 	 Ir an arc. does not appear in the dictionary,
this option allows you to put it there.

Help 	 Displays this meSSl\ge.

38

From Arcs Under the Main Node via Middle Mouse Butl.-on

Add ;-";ode

Add Attribute

Put Node

Put Arc

Put Attribute

Help

Allows a node to be added immediately under
the current arc in the attribute in which
the current arc occurs. Nodes presently
under the arc are shifted to the right.

Allows an attribute (an arc followed by zero
to 254 nodes) to be added under the main node
below the attribute which contains the current
arc.

The contents of the node buffer will be put
immediately under the current arc in the
attribute in which the current are occurs.
Any nodes presently under the arc are shifted
to the right.

The contents of the arc buffer will be put
under the main node below the attribute which
contains the current arc.

The contents of the attribute buffer will be put
under the main node below the attribute which
contains the current arc.

This message is displayed.

31

At All Other Arcs via Middle Mouse Button

Add ~ode

Put :"Jode

Help

Allows a node to be added immediately under
the current arc in the attribute in which
the current arc occurs. Nodes presently
under the arc are shifted to the right.

The contents of the node buffer will be put.
immediately under the current arc in the
attribute in which the current arc occurs.
Any nodes presently under the arc are shifted
to the right.

This message is displayed.

3.3.4. Menu. Avallable When Not at an Arc 01' a Node

Edit/Create

Write (Backup)

Write (Text)

Quit

Abort

Help

Via Middle Button

Start a new session with a new network

The edited network will be written to the
file given at startup

A text representation of the edited network
will be written to a specified file.

Graceful exit from a session, updating the
network

Immediate exit from editor, no update.

This message

38

Via Right Button

;';-ew ~1aiD 0iode 	 Allows you to enter the name or a node
which will become the new top node in the display.

Visible Arcs Allows you to select a su bset or arcs to rollow
in displaying the network

Change XXX XX Allows you to enter a new value (or XXXXX - depth,
breadth, or tuple breadth - which will effect
the display accordingly

Back l'p If present in menu, allows ascension or the network
to the previous top node

Help Prints this message

. Via Visible Arcs Option rrom Right Button 	Menu Above

See Invisible Arcs 	 When this option is available, arcs exist
which would be displayed had they not been
designated invisible. Select this option if you
wish to make some or these arcs visible again.

~fake New Arcs Visible 	 II you wish to select a subset 01 arcs
as the only visible arcs rrom those arcs
that are currently visible select this
option.

3e

4. CONCLUSION

In section 3, the basic features of the network editor were displayed. Although the exam­

ple network was naive, it served to illustrate much oC the editor's overall usefulness with

regard to larger more realistic networks.

An immediate application of the network editor is working with the BABY system. The

implementation of the network editor serves as the basis for a similar menu-driven rule editor

for editing rule-structured knowledge bases in ADVISE.

5. ACKNO~EDGEMENTS

The author would like to thank everyone associated with the ADVISE project, particu­

lary Professor A.B. Baskin and Carl Uhrik Cor their input and support in building this editor.

40

REFERENCES

[1] 	 ~ichalski, R.S, et.al. A Technical De3cription 0/ the ADVISE Meta-elpert SY3tem,
Department of Computer Science, University of Illinois, May 5, 1983.

[2] 	 Reinke, R., PLANT/d,: .4n Ezpert Sydem lor the Diagn03i, 0/ Soybean Di,eaae, Com­
mon in lllinoi', V,er', Guide and Program De,cription, Department of Computer Sci­
ence, University of Illinois, October 1983.

[3J 	 Rodewald, R.E., BABY: An Ezperl Syltem lor Patient Monitoring in a Newborn Intw­
,ive Care Unit, Department of Computer Science, University of lIIinois, July 1984.

[4] 	 Spackman, K.A., QUlN: Integration o/In/erential Operato" within a Relational Data­
ba,e, Department of Computer Science, University or Illinois, 1983.

[5] 	 Winston, P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1983.

41

APPENDIX - SUNWINDOW INTERFACE

Below is a Pascal interface to the Sunwindow screen package which was used in imple­
menting the network editor. At present the package allows a process to open a single window
on the screen, and perform i/o with that window only.

Because signal processing is frequent during window operation, input is done differently to
avoid race conditions and other errors associated with asynchronous signal processing. The
basic idea is that all input is treated like signals via the select call, which enables the interface
to pick up all the signals 50 that the programmer doesn't have to worry about them. This
means however that input comes to the program as signals would, the program has no choice
but to accept it. It's as if input is saying, "Don't caU us, we'll call you:' As a result, programs
that use the interface must contain a procedure as described below which is called whenever a
window receives input. This notification process must be enabled initially by calling the win­
select procedure and can be disabled by calling the winselectdone procedure both of which are
described later under PROCEDURES.

The notification procedure that the programmer is required to write should be declared
as

procedure winprocessinput (<paramname> : ptrinputevent);

The procedure mu,' have this name. After the initial winselect caU, winprocessinput will be
called will a pointer to an inputevent record (see TYPES below) after a winselect call when­
ever desired input is received by the window. Types of input desired are indicated to the win­
dow system through the winnotify procedure (below).

Typically, the winprocessinput procedure will be a large case statement, which will call
other procedures based on different inputs. If a program needs to read character strings from
the window, this procedure must be aware of this fact (through a global state variable for
example). In this state, the procedure must place characters as they are received into a global
string variable until the string terminator character is read in. At this point, another global
variable must be checked to determine the procedure to be called that will operate on the
string. This variable must be set prior to the first character being read in.

To clarify string processing, suppose that a program has a menu with an option of "Enter
Name" which allows the user to enter his name (a character string) from the keyboard.
Assume that the winprocessinput procedure has recognized that this menu option has been
selected. The following are the steps the program should take.

41

1) 	 The winprocessinput procedure calls a getname
procedure which sets up global variables to
read in a string and to call a setname procedure
once the string bas been read in. A simple way to do
this in general is by having a global input mode variable.
Its initial value is none, meaning do not read
cbaracter strings. When a string must be read in,
winprocessinput calls a getXXXX procedure which, besides
putting up a prompt and turning oft' mouse input, sets
tbe input mode variable to callXXXX.
Tbus tbe getname procedure sets the global input mode
varibale to callname, then returns to winprocessinput
which in turn, returns to tbe interface.

2) 	 Tbe next time the winprocessinput procedure is called,
it must check to see it input mode is none. When
the mode is not none, but cal1name tor example, it
will put the character trom the input record into a
global string variable, and increment the global index tor
that string so that the next character can be put in
the right place. Only one global string and one global
index are required by a program since only one string
can be read in at a time.

3) 	 The winprocessinput procedure continues as in 2) until
the string terminator character is read in. At tbis
point, another case statement is needed to check the
input mode variable and call the appropriate procedure.
In this example, a setname procedure wouJd be called
to copy the global string variable into tbe name
variable, reset the input mode variable to none,
and return to the winprocessinput procedure, which
returns to the intertace tor continued input processing.
Either this type ot procedure or the getXXXX procedures
should reset the global string index to zero and, it desired,
blank out the global string.

4) 	 To discontinue input processing, the winprocessinput
. procedure (or a procedure called trom winprocessinput)
should call the winselectdone procedure. When winprocessinput
returns to the interlace, program control will be transferred
to tbe code immediately following the most recent winselect
call.

43

PROCEDURES

procedure wininit(jd) x, y : integer; var rows, cols : integer;

ront : winronttype;

var sUCCess: boolean);

external;

attempts to run process in a window with origin at x,y
with size rows x cols and default ront. Actual size or window
with respect to the size or characters in ront is returned
in rows and cols. Currently the process is assumed to be
running inside a window already, and id, x and yare all ignored.
additional wininit calls before a windone will have no e8'ect.

raise is returned in success ir no windows are available.

procedure winclear;

external;

(*

clears the entire window or its contents

procedure winront(ront : winronttype);

external;

(*
changes the window ront to that denoted by the parameter Jont.
currently winronttype = (small, medium, mediumbold, large)

*)

(* ror the rollowing three output procedures op is a scalar with values:
normal: the item is drawn normally (bl. on white);
clear: the item is erased (drawn white);
highlight: the item is draw n inversely (w h. on bl.);
black: the item is drawn black;

*)

procedure winchar(ch : char; row, col: integer; op : optype);

external;

(*

places the character ch at row, color the window

according to op.

*)

procedure wintext(var s : strtype; row, col: integer; op : optype);
external;

('
places the string s beginning at row, col of the window
according to op.

*)

procedure winvector(rl,cl,r2,c2 : integer; op : optype);
external;

(*
draws a line from rl,cl to r2,c2 according to op

*)

procedure wininverse(x,y,width,height : integer);
external;

inverts the region beginning at x,y extending width pixels right
and height pixels down

*)

function winyi'romrow(row : integer) : integer;
external;

(*
given a row corresponding to a row of text in the current font
winyi'romrow returns the starting y coordinate for text

*)

function winxfromcol(col : integer) : integer;
external;

(*
given a column corresponding to a column of text in the current font
winxfromcol returns the starting x coordinate for text

*)

function wincharheight : integer; external;

(* returns the height in pixels of text in the current font *)

function wincharwidth : integer; external;

(* returns the width in pixels of text in the current font *)

45

(*

The rollowing three procedures handle menu processing.

The fh'st procedure, winalJocmenu, allocates the necessary
memory to the interrace for a menu. It also sets the
title or the menu. winallocmenu can only be called once
for each menu.

The second and third procedures can be called as often as
desired. The second procedure, winsetupmenu, determines
the num ber and order of items in a menu already allocated
by winallocmenu.

The third procedure. winmenudisplay is a function which
displays a menu and returns the item number of the selected
item.

*)

procedure winallocmenu(menuid : winmenuid;

var title: winmenuitem;

maxitems : winnumitems

);

external;

(*
allocates a menu to be rererred to in ruture calls as menuid.
menu will have title as its header.
the number or items displayed in the menu can never exceed maxitems.

*)

procedure winsetupmenu(

menuid : winmenuid;

numitems : winnumitems;

var menu: winmenu

);

external;

(.

sets up selectable items for the menu allocated as menuid.

numitems is the actual number of items in the menu and

menu is an array or the items. the first numitems in menu

will be the items displayed upon a call to winmenudisplay (below).

. .)

40

function winmenudisplay(menuid : winmenuid; button: buttontype) : integer;
external;

the menu referred to by menuid will be displayed.
button is the button which invoked the menu.
menudisplay waits ror this button to be released as
indication that an item has been selected.
thus this (unction may be called other than in
response to a button press. winmenudisplay returns
an index to the array which was used to setup the menu
which indicates the item selected by the user. IC no item
is selected, 0 is returned.

procedure winnotiry(ascii, button, move: boolean);
external;

each parameter set to true will cause the winprocessinput procedure

to be called ror the corresponding input.

each parameter set to raise will prevent calls to winprocessinput

on the corresponding input.

default settings are keyboard == true, button == raise, move == raise.

*)

procedure winselect;
external;

call this procedure to begin input processing.

a call to winselect is best thought or as entering a

loop which waits ror input which, when received, causes the

winprocessinput procedure to be called.

calling winselectdone (below) causes the loop to exit.

additional winselect calls arter a winselect will be ignored.

procedure winselectdone;
external;

Causes a return rrom winselect (see above).

procedure windone;
external;

(*
gracerul termination by clearing screen and deallocating
associated storage. .

*)

41

(unction winconfirm(var s : strtype) : boolean;
external;

(*
the string s is displayed to the user as a prompt
s should be something the user can confirm
actions (or confirming s are displayed by the (unction.
i(the user performs the confirming action (tefft-button press)
the (unction returns true, otherwise false is returned

procedure winmessage(var s : strtype);
external;

(*
similar to winconfirm except that no confirmation is acknowledged.
winmessage displays s and waits (or the user to do a.nything.
s should include a something like 'press any key to continue'

(unction strlen(var s : strtype) : integer;
external;

(*
(or the builtin C routine strlen.
returns the num ber of characters in s

*)

48

TYPES

const

winmenuitemlen == 32;

winmenusize = 32;

winmaxmenus = 32;

type

strtype == packed array[l..lOO] ot char;

buttontype = (Ieft,middle,right);

postype == record

row.col : integer;
end;

winiotype == (keyboard, mousebutton, mousemove);
winfonttype == (small,medium,mediumbold,large);
ptrinputevent == .inputevent;
inputevent == record

pos : postype;
case inputtype : winiotype ot

keyboard: (ch : char);

mousebutton : (button; buttontype);

end; (. inputevent .)
optype == (normal, clear, inverse, black);
winmenuid == l..winmaxmenus;
winmenuitem = packed arraY[l..winmenuitemlenJ or char;
winnumitems == l..winmenusize;
winmenu == array[winnumitemsJ or winmenuitem;

BIBLIOGRAPHIC DATA 1. Report No. 3. Rec:ipieGc's Ac:c:uaioG No.
SHEET 	 ("1 UIUCDCS-F-85-934
•• 	rule and Subtltle

Editing Networked-Structured Knowledge Bases in the

ADVISE System

7. Au.chor(s)

Thomas ~. Channic
9. 	Performing Organization Name and Aadress

Department of Computer Science

University of Illinois

Urbana, IL

12. 	Sponsotlng Organization Name and Address

National Science Foundation Office of Naval Research
Washington, D.C. Washington, D.C.

15. 	Supplementary Notes

S. I\epol't Uate

Februa_rY 1985
6.

8. 	Performing OrgaGizatlon Rep:.
No.

10. 	 ProJect/Task/Work Unit No.

11. Contract 'Grant No.
OCR 84-06801

NOOOl4-82-K-0186

13. 	Type of Report &I Period
Covered

I •.

16. 	Abstracts

Until recently, knowledge bases in the ADVISE meta-expert system have
had to be edited by text editing or by changing the program that creates
the knowledge base. This paper discusses a network editor for ADVISE know­
ledge bases which can edit a knowledge base directly. The network editor
has been implemented on a Sun Microsystems Workstation, and is screen-oriented
and menu-driven. The latter part of this report serves as a user's guide for
the editor.

17. Key Words and Document Analysis. 170. Descriptors

knowledge base editing

expert system interface

17b. laentifiers'Open-Ended Terms

17e. COSATI Field/Group

18. Ayallabdity Statement 19. Security Class (This
Report)

.JJNC LASSIF lED

21. :-'0. of P3ges

52
IlU. ::.ecurity Class (This

Page
UNCLASSlEIED

22. Price:

