File No. UIUCDCS-F=-85-934

l’-}’j ot f‘ﬂ*
k%j’* }‘ﬁt - Er‘wﬁt.
é’ L St

Editing Network-Structured Knowledge Bases
in the ADVISE System

Thomas D. Channsc

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

February 15, 1985
1SG 85-4

ABSTRACT

Until now, knowledge bases in the ADVISE meta-expert system have
had to be edited by text editing or by changing the program that creates the
knowledge base. This paper discusses a network editor for ADVISE
knowledge bases, which can edit a knowledge base directly. The network
editor has been implemented on a Sus Microsystems Workstation, and is
screen-oriented and menu driven. The latter part of this report serves as a
user's guide for the editor.

This work was supported in part by the National Science Foundation under grant DCR 84-06801 and by the Office of Na-
. val Research under grant N00014-82.K.0188,

Editing Network-Structured Knowledge Bases in the ADVISE System

1. INTRODUCTION

The ADVISE expert system (Michalski 84) provides a powerful framework for building
expert systems. ADVISE has been used to build two very different expert systems - namely,
BABY (Rodewald 84), a system used for patient monitoring in a newborn intensive care unit,
and PLANT (Reinke 83), a system for diagnosis of soybean diseases. Until recently, however,
ADVISE lacked a facility for directly manipulating and editing a knowledge base for expert
systems. If a knowledge base needed to be changed, either a text file (which is frequently not
an accurate representation of an ADVISE knowledge base) had to be edited or the program
that created the knowledge base must also include code to alter the knowledge base. Thus the
only way to alter the PLANT knowledge base was either to text edit backup knowledge base
files or run a rule parser on new input rules. QUIN, a program for editing knowledge bases
represented as relational tables (Spackman 1983), is available but has minimal benefit for the

rules and network representations of currently implemented systems.

This report discusses the network editor, which provides ADVISE with the capability for
interactive manipulation of knowledge bases in the ADVISE representation. A brief descrip-
tion of the ADVISE knowledge representation is provided below followed by a user's guide for

the network editor.

2. REPRESENTING KNOWLEDGE IN ADVISE

The basic structure for representing knowledge in ADVISE is a tuple. A tuple is similar
to a list in LISP, and differs mostly in that it is implemented in Pascal. Nodes are like LISP

atoms, and a tuple is just a list of nodes. The second node of the the tuple has special

meaning as a relation or arc between the head node and subsequent nodes in a tuple. A typi-

cal tuple looks like the one below.

(headnode arc subnodel subnode2 subnode3 ...)

Of course, the same head node can have many arcs {relations) under it. These can be

represented simply by additional tuples as follows.

{headnode arcl subnodell subnodel?2 ...)
(headnode arc2 subnode?1)
(headnode arc3 subnode31 subnode32 subnode33 ...)

For efficiency reasons the above tuples would be stored as below.

{headnode (
{arcl subnodell subnodel? ...}
(arc2 subnode?21)
. {arc3 subnode31 subnode32 subnode33 ...)

In the actual implementation of this representation, nodes are memory addresses. Nodes
also have printnames associated with them as well as being associated with the tuples in
which they appear as head node. The ADVISE tuple manager (see the ADVISE Technical
Document) handles all the manipulations of the knowledge base on the tuple level. The net-
work editor simply makes the appropriate calls to the tuple manager based on its interaction

with a user.

The tuple representation represents an important generalization over the basic concept of
semantic networks (as described, for example, in Winston 84). Thinking about tuples in light

of these networks, each tuple with the same head node can be considered a slot, each slot has

a name (arc) and a value. Slot/value combinations are also known in ADVISE as attributes.
The generalization over other representations is that slots or attributes can have many values

associated with them. Thus, similar slots can be combined into a single slot

(house ((has-room living-room dining-room bedroom kitchen}})

or a single slot may have several values associated with it, for example, both a qualitative and

quantitative value.

{block-1 ({orientation vertical 89.5)))

The ADVISE representation of knowledge via tuples is a generai mechanism for representing,
not only networks, but rules and relational tables as well. These representations, however, are

bevond the scope of this report.

3. A USER'S GUIDE FOR THE NETWORK EDITOR

This section is divided into three subsections: a brief introduction/orientation to the edi-
tor, a sample session illustrating the basic features of the editor, and a reference guide detail-

ing all the options available to the user.
3.1. Four Most Commonly Asked Questions about the Network Edltor

What is it?

The network editor is a menu-driven interactive program with modest use of graphics,
which runs on a Sun-2 Workstation. The interface is written on top of the SunWindow pack-
age developed by Sun Microsystems, Inc. Naturally, being menu-driven, it is easy to figure out
how it works just by pressing the right buttons. Experimenting with the editor, and follow-
ing, the sample session below are the best ways to learn to use the editor. Besieds the sample
session and the brief introduction below, the rest of the user’s guide is intended only for refer-

ence.

How do you display s network?

In displaying a network, a non-graphic approach was taken to allow minimum
modification for running the program on machines without graphic capabilities.. Nevertheless,
the network structure is readily apparent as the figures in the next section demonstrate.
Nodes are represented in boldface. Arcs under nodes are not in boldface, and are set one line
below and indented from the main node. Subnodes under arcs are placed similarly under the
arc. Additional subnodes are placed on the same line immediately following the preceding sub-

node.

What kind of things can I do to a network?

At each node or arc in the network, two sets of options are available. One set of options
effects the node or arc itself, the other set effects the environment around the node or arc. An
example of an option in the first set is changing a printname of a node. An example of an
option in the second set is adding an attribute after a node. The first set of options are avail-

able via the middle mouse button, the second set via the right mouse button.

How can | determine the portions of the network [want diaplayed?

The only other thing a user need know in order to use the network editor is how it clips
the network to fit on a display. There are three parameters which affect the display - namely,
depth, arc breadth and tuple breadth. Depth is the number of arcs down from the main node
to display. Arc breadth is the number of arcs to traverse from each node. And tuple breadth
is the number of subnodes to display under the head node. How these parameters affect the

display will be seen in the next section.

If in spite of these parameters the network still cannot fit on the screen, the network edi-
tor leaves markers that indicate information has been clipped from display. At the top level of
the network, these markers are arrows that point in the direction of the missing information.
Menus are available at these markers to scroll the top level of the network in order to see the
missing information. Beyond the top level of the display, missing information is indicated by a
string of dots - “..."". Missing information at this level can usually be viewed only by descend-
ing the network to make this level the new top level and, if necessary, scrolling or changing

the appropriate parameters.

3.2. A Simple Sample Session

In this section, a simple network is constructed using the network editor. The example is
chosen to illustrate the features of a network editor, and is not intended to have any semantics
in the context of ADVISE, therefore any resemblance of the network to ADVISE systems, liv-

ing or dead, is purely coincidental. The network represents a arch made of building blocks.

Here the network editor has just been invoked with the network name “arches’ as an
argument. A node to be taken as the root node for the display has just been typed in. The
editor must be supplied with a petwork name and a root node before it can begin a session.

The network name can be passed as argument or typed in when the editor starts up.

ADVISE
Network Editor

Trying to open network: arches...
arches : Succassfully Open

N

Enter name of main node: archil

Since there are no other nodes in the network, “‘archl” is created and placed at the root
of the network. If “‘archl” already existed in the network, the structure under this node
would be displayed under the default parameters. The default parameters are set to not effect

the display, i.e. the window size is the only limiting factor to the display.

A prompt for menus appears at the bottom of the screen.

rchl

—

The user moves the mouse to the “‘archl” node, which becomes highlighted. Then the
user presses the right button on the mouse and the menu for ““local” options appears. “Yank™

places the node in a buffer to be added into a tuple at a later date. Help is available with all

menus.
Change Printr . - d
-y
Yank
Help i

Pressing the middle button while at the node reveals the desired option of adding an

attribute (slot).

From Q@an Hude:

Ad Attribgtre

Put Attribute
Help

10

Selecting “Add Attribute” brings up a prompt for the aumber of nodes (printnames)

including the arc in the tuple which the network editor will add into the network.

11

Next the user is prompted for the printname of the arc. The user types in this name.

12

When the users presses return, the arc appears in the network and the name of the node

is solicited. The users types the node name.

rchi
contain-top

13

The entire attribute now appears in the network. No more prompt appears. The user

now moves to the arc to add the next attribute below the first attribute.

Put Attribute

Help

oy ot

S En T vy

—
o

S S e

R o donic ey odot

14

Continuing as with the first attribute the user has added all the ares under “archl”. He
now wishes to add arcs under the “b-1"" node. To do so he must first make b-1 the new focus

node.

rchi
cantain-top
b-3
cantain-left~-s ide
b-2

New Printname
Delete From Tuple
ank

Halp

15

“b.1" becomes the new focus node. The user has used ‘‘Add Attribute’ as before to add
all the appropriate nodes and is now ready to “Back Up” to the previous root node. “Back
Up" is an option from one of tWwo menus that aren’t associated with any node. The other is a

global menu with options such as editing a new file, writing this file, quitting, etc.

-1
isa
brick :

support k:

b-3 E
orientation 2
vertical z

i New Main Node
isible Arcs

Change Level

Change Depth

Ehangc Arc Breadth

Change Jupl® Breadth 5

18

Next the user wants to add attributes under "“'b-2". To do so he must make b-2 the focus
as he did before. This time however, he notes that he wants to add some of the attributes that

are already under b-1. He chooses to “Yank” the ‘isa’ attribute.

rchi £
contain-top 2
b-3
contain-lgft-side
b-2
contain-right-side
b-1

Change Arc
sup{Change Printname

Delate Attribute
ori

iank aArc §
ake Invisible 4

Help

S r

S YN v+

17

After making “b-2" the new focus, the user wishes to “Put” the attribute he just

“Yanked' under “b-2".

e, .
Sk My e &

.

(A, o Attribute
Put Arc

SRS SN B L FIVARS

18

The “Put” succeeds. The user continues adding, yanking and putting until the entire

network is complete.

o

25 s s

19

Now the network for “‘archl” is complete. Note the three dots near the bottom of the

screen. These are markers that indicate information would appear beginning at that position.

At this point the user may enter a new root node, such as “‘arch2”, and create a network

from there or he may choose to alter the display by changing depth, for example.

rchi

contain-top
b-3
isa
brick
1sa
building-unit
arientation
horizontal
contain-left-side :
b-2 ?
isa 2
brick 7
isa 5
building-unit
support
b-3
isa
brick 7
isa 3
building :
horizontal New Main Node §
orientation :
vertical igible Arcs E
contatin-right-side Change Level ;
b-1 i
isa E
brick Change Arc Breadth :
‘e Ekango Tuple Breadth Z
Help ;

The user indicates he wishes the depth changed from an “‘unlimited" default to 2.

Foas ey bz - i 5

rchi
contain-top g
b-3 E
isa E
brick) k&
isa 2
butilding-unit
origntation
hor {zontal
contain-left-side
b-2
isa f
brick ;
isa ;
building-unit ;
support E
| b-3 5
isa : E
brick i
isa f
building-unit é
orisntation :
hor izontal E
orientation 5
vertical :
contain-right-side K
b-1 E
isa ¥
brick ;
L] ‘ E

Current Depth is 08
v) e

NE . 1 i s B

21

Now the depth has been changed to 2. Note that the markers indicating clipped informa-

tion have disappeared..

rchi
contain-top
b-3
isa
brick
orientatian
har {zontal
contain-left-sids
b-2
isa
brick

support
b-3
orisntation
vertical
contain-right-side

b-1
isa
brick
supporst
arientation
vertical

22

http:cont.a1n-t.op

Instead of limiting the depth, the user may have chose to limit the breadth of the net-

work instead.

archi
contain-top
b-3
isa
brick
isa

bullding~unit

orientation
horizontal aw Main Node

ccntaggi1eft-eide Vigible Arcs

Change Leve)
Eg;nge Depth

iga
brick
isa

building-unit =
support Change Tuple Breadth
b-3

isa Help

brick
isa

bullding-unit
arientation

hor fzontal
orientation

vertical
contain~right-side

b-1

Press Middls or Right Mouse Buttons for Menus

23

The user indicates he wishes the breadth changed from an “unlimited’ default to 2.

archl

conta in-top

isa
brick
iss

building~-unit

orientation
hor{zontal
contsin~-left-side
b-2
isa
brick
isa
building-unit
support
b-3
isa
brick
iss
butiding-unit
orientaticn
harizontal
orientat ion
vertical
contain~right-side
b-1

Current firsadth s 09
New Display Breadth (Enter a number): 2

24

Now the breadth has been changed to 2. Downward-pointing arrows have appeared at
the bottom of the screen indicating that an arc has been clipped from the screen. The user

moves to these arrows and presses either the middle or right button for the scroll menu.

archtl
conta in-top
isa
brick
is8
building-unit
ortfentation
haorizontal
contain-left-side
b-2
iss
brick
isa
building~unit
suppoert
b-3
isa
brick
isa

building~unit

orisntation
horizontal

25

Now the first arc under “archl’ has been clipped so that the last two arcs are visible.

Upward pointing arrows allow the user to scroll upwards as before. Left and right arrows pro-

vide analogous left-right scrolling when the subnodes of the main node extend beyond the edge

of the screen or when the tuple breadth preveuts all the subnodes from being seen.

archil

gném- left-sids
b~2
isa
brick
iss
building-unit

' suppert

isa
brick
isa
building-unit
orisntaticn
hor {zontal
contain-right=-side
b-1
isa
brick
isa
building-unit
support

Another way to alter the display is by making arcs invisible. With the breadth and depth

reset to their default values, the user causes “isa” links to disappear from the display.

rchi

contain-top i
b-3
igsa 2
brick F
isa 3
building-unit 4
agriantation g
H horizontal 3
contain-left-side :
b-2 8
isa 4
brick &
isa i
butilding-unit 4
support :
b-3 :
isa é
brick i
Change Arc ‘
arientation lfhzreg' Printname :
horizont|Deleta Attribute 4
grientation ank Arc
vartical . E
contain-right-side ank Attribute 3

isa i
brick Help 3

e

27

This action, as did the change depth option, also caused the clipping markers to disap-

pear.

rchi
contain-top
b-3
orientation
horizontal
contain-left-side
b-2
support
b-3
orientation
horizontal
orientation
vertical
contain-right-side
b-1
support
b-3

orientation
" horizontal
orientation
vertical

Still another way to limit the display is by specifying a subset of the visible arcs as the

only ones to be displayed.

LI B N S T

rchl
contain-top 3
b-3
orientation ;
horizontal
contain-left-side £
b-2 1
support 4
b-3]
orientation ’
horizontal :
ogrientation g
vertical 4
contain-right-side 4
b-1 :
suppart 3
b-3 :
orientation
horizontal

oriantation
vartical

T~

New Main Node

RSN

Change Leval n
Ehango Depth E
Change Arc Breadth 7
|Changa Tupie Breadth
[Help

29

Herc the user has selected the “‘contains’’ arcs and the “isa” arcs to be the only ones visi-

ble. This will allow him to see inheritance relationships.

Choose visible arcs fros the following:

isa
isa

orfentation

support

{sa
orientation

orientation

Nove mouse t s {red arc and click left button.

BRI)

30

After seeing the inheritance relationships via is-a links, the user decides he wants to end
the session. He presses the middle mouse menu for the the global option menu. He chooses

“Write (Text)" because he (and we) want to see the tuple representation of his network.

EERNE T R B AN SR "
archi E
contain-top :
b-3 :
isa E
brick :

isa

butlding-unit
contain-left-gide

b-2 :
isa E
‘ brick :
isa E:
butld ing-unit
contain-right-side 8
b-1 i
isa k
brick ;
isa :

builid ing-unit

rite (Backup)

Abort
Help

31

The user types in a file name for the text file. The system notifies him of success {or

failure). Now the user “Quits”. The actual network is written to file given at the start of the

program.
Paeme o TR ¢

archi :

contain-top

b-3 E

isa #

brick :

isa 4

building-unit 4

contain-left-side ;

b-2

isa :

brick 4

isa g

butlding-unit
contain-right-gide
b-1
isa
brick
isa

N N s e

building-unit

raeoecoos

Help g

o

Enter name of text file: archtext

2 SO

* e

32

(archl (
(contain-top b-3)
(contain-left-side b-2)
(contain-right-side b-1)))
(contain-top ())
(b-3 (
(isa brick)
{orientation horizontal)))
(contain-left-side ())
(b-2 {
{isa brick)
{support b-3)
(orientation vertical)))
(contain-right-side ())
(b-1 (
(isa brick)
(support b-3)
(orientation vertical) })
(isa ()
(brick (
{isa building-unit }))
(support ())
(orientation ())
(vertical ()
(borizontal ())
{building-unit ())

The textual representation of tuples for ‘‘arches”

33

3.3. Network Editor Reference Guide

This section gives descriptions of all the options available from each menu.

3.3.1. Menus Avallable from the Maln Node
At Main Node via Right Mouse Button

Change Printname Allows you to change the printname of this
node EVERYWHERE it occurs in the network

Yank Allows you to yank this node into the node
buffer for subsequent 'Put Node’ operations

Enter Dictionary If the node is not in the dictionary, you
may enter it there if this option is present.
If and only if a node is in the dictionary,
it can be made the main node via the
'New Main Node’ option on the Main Menu

Help Prints this message

At Main Node via Middle Button

Add Attribute Allows an attribute (an arc followed by zero
to 254 nodes) to be added under the main node.

Put Arc The contents of the arc buffer will be put
‘ under the main node as the first attribute.

Put Attribute The contents of the attribute buffer will be put
under the main node as the first attribute.

Help This message is displayed.

34

3.3.2. Menus Avallable at Nodes other than the Maln Node
At Nodes with Numeric Values via Right Mouse Button
Change Node Allows you to change the number to a new
number or to a new node.

Delete From Tuple This node is removed from its current tuple position.

Yank Allows you to yank this node into the node
buffer for subsequent 'Put Node' operations

Help Prints this message

At Nodes with Non-Numeric Values via Right Mouse Button
Change Printname Allows you to change the printname of this
node EVERYWHERE it occurs in the network

Delete From Tuple This node is removed from its current position.
All other occurrences of the node remain intact.

Yank Allows you to yank this node into the node
bufler for subsequent 'Put Node' operations

Make Focus This node becomes the new top node in the
display of the network.

Help Prints this message

as

At Nodes with Non-Numeric Valuer via Middle Mouse Button

Add Node Allows a node to be added to the right of
the current node in the attribute in which
the current node occurs.

Put Node The contents of the node buffer will be put
to the right of the current node in the

attribute in which the current node occurs.

Help This message is displayed.

3.3.3. Menus Available from Arcs
At Any Arc via Right Mouse Button

Change Arc ' Allows a new arc to be inserted in place
of the arc in the current attribute.

Change Printname Allows the printname of the current arc to be
changed EVERYWHERE it occurs in the network.

Delete Attribute Removes this arc and all subnodes from underneath
the head node, i.e. the entire tuple is removed.

Yank Arc Places this arc into the arc buffer to be used
in subsequent Put Arc operations

Yank Attribute Places the attribute (this arc and all nodes
- underneath it) into the attribute buffer to be
used in subsequent Put Attribute operations.

Make Invisible Inhibits the display of this arc and all other
occurrences of this arc as well as everything

underneath them.

Enter Dictionary If an arc, does not appear in the dictionary,
this option allows you to put it there.

Help Displays this message.

38

Add Node

Add Attribute

Put Node

Put Arc

Put Attribute

Help

From Arcs Under the Main Node via Middle Mouse Bution

Allows a node to be added immediately under
the current arc in the attribute in which

the current arc occurs. Nodes presently
under the arc are shifted to the right.

Allows an attribute (an arc followed by zero

to 254 nodes) to be added under the main node
below the attribute which contains the current
arc.

The contents of the node buffer will be put
immediately under the current arc in the
attribute in which the current arc occurs.

Any nodes presently under the arc are shifted
to the right.

The contents of the arc buffer will be put
under the main node below the attribute which
contains the current arc.

The contents of the attribute buffer will be put
under the main node below the attribute which

contains the current arc.

This message is displayed.

a7

Add Node

Put Node

Help

At All Other Arcs via Middle Mouse Button

Allows a node to be added immediately under
the current arc in the attribute in which

the current arc occurs. Nodes presently
under the arc are shifted to the right.

The contents of the node buffer will be put
immediately under the current arc in the
attribute in which the current arc occurs.
Any nodes presently under the arc are shifted
to the right.

This message is displayed.

3.3.4. Menus Avaliable When Not at an Arc or a Node

Edit/Create

Write (Backup)

Write (Text)

Quit

Abort

Help

Via Middle Button

Start 3 new session with a new network

The edited network will be written to the
file given at startup

A text representation of the edited network
will be written to a specified file.

Graceful exit from a session, updating the
network

Immediate exit from editor, no update.

This message

Via Right Button

New Main Node Allows you to enter the name of a node
which will become the new top node in the display.

Visible Ares Allows you to select a subset of arcs to follow
in displaying the network

Change XXXXX Allows you to enter a new value for XXXXX - depth,
breadth, or tuple breadth - which will effect
the display accordingly

Back Up If present in menu, allows ascension of the network
to the previous top node

Help Prints this message

Via Visible Arcs Option from Right Button Menu Above

See Invisible Arcs When this option is available, arcs exist
which would be displayed had they not been
designated invisible. Select this option if you
wish to make some of these arcs visible again.

Make New Arcs Visible If you wish to select a subset of arcs
as the only visible arcs from those arcs
that are currently visible select this
option.

39

4. CONCLUSION

In section 3, the basic features of the network editor were displayed. Although the exam-
ple network was naive, it served to illustrate much of the editor's overall usefulness with

regard to larger more realistic networks.

An immediate application of the network editor is working with the BABY system. The
implementation of the network editor serves as the basis for a similar menu-driven rule editor
for editing rule-structured knowledge bases in ADVISE.

5. ACKNOWLEDGEMENTS

The author would like to thank everyone associated with the ADVISE project, particu-

lary Professor A.B. Baskin and Carl Uhrik for their input and support in building this editor.

40

REFERENCES

(1] Michalski, R.S, et.al. A Technical Description of the ADVISE Meta-ezpert System,
Department of Computer Science, University of lllinois, May §, 1983.

2] Reinke, R., PLANT/ds: An Ezpert System for the Diagnosis of Soybean Diseases Com-
mon 1n [llinois, User's Guide and Program Description, Department of Computer Sci-
ence, University of lllinois, October 1983.

[3] Rodewald, R.E., BABY: An Ezpert System for Patient Monitoring in a Newborn Inten-
sive Care Unit, Department of Computer Science, University of Illinois, July 1984.

[4] Spackman, K.A., QUIN: Integration of Inferential Operators within a Relational Data-
base, Department of Computer Science, University of Illinois, 1983.

(5] Winston, P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1983.

41

APPENDIX - SUNWINDOW INTERFACE

Below is a Pascal interface to the Sunwindow screen package which was used in imple-
menting the network editor. At present the package allows a process to open a single window
on the screen, and perform i/o with that window only.

Because signal processing is frequent during window operation, input is done differently to
avoid race conditions and other errors associated with asynchronous signal processing. The
basic idea is that all input is treated like signals via the select call, which enables the interface
to pick up all the signals so that the programmer doesn't have to worry about them. This
means however that input comes to the program as signals would, the program has no choice
but to accept it. It's as if input is saying, “‘Don't call us, we'll call you.” As a result, programs
that use the interface must contain a procedure as described below which is called whenever a
window receives input. This notification process must be enabled initially by calling the win-

select procedure and can be disabled by calling the winselectdone procedure both of which are
described later under PROCEDURES.

The notification procedure that the programmer is required to write should be declared
as

procedure winprocessinput { <paramname>> : ptrinputevent);

The procedure must have this name. After the initial winselect call, winprocessinput will be
called will a pointer to an inputevent record (see TYPES below) after a winselect call when-
ever desired input is received by the window. Types of input desired are indicated to the win-
dow system through the winnotify procedure (below).

Typically, the winprocessinput procedure will be a large case statement, which will call
other procedures based on different inputs. If a program needs to read character strings from
the window, this procedure must be aware of this fact (through a global state variable for
example). In this state, the procedure must place characters as they are received into a global
string variable until the string terminator character is read in. At this point, another global
variable must be checked to determine the procedure to be called that will operate on the
string. This variable must be set prior to the first character being read in.

To clarify string processing, suppose that a program has a menu with an option of “Enter
Name’' which allows the user to enter his name (a character string) from the keyboard.
Assume that the winprocessinput procedure has recognized that this menu option has been
selected. The following are the steps the program should take.

42

The winprocessinput procedure calls a getname
procedure which sets up global variables to

read in a string and to call a setname procedure

once the string has been read in. A simple way to do
this in general is by having a global input mode variable.
Its initial value is none, meaning do not read

character strings. When a string must be read in,
winprocessinput calls a getXXXX procedure which, besides
putting up a prompt and turning off mouse input, sets
the input mode variable to callXXXX.

Thus the getname procedure sets the global input mode
varibale to callname, then returns to winprocessinput
which in turn, returns to the interface.

The next time the winprocessinput procedure is called,

it must check to see if input mode is none. When

the mode is not none, but callname for example, it

will put the character from the input record into a
global string variable, and increment the global index for
that string so that the next character can be put in

the right place. Only one global string and one global
index are required by a program since only one string
can be read in at a time.

The winprocessinput procedure continues as in 2) until
the string terminator character is read in. At this

point, another case statement is needed to check the
input mode variable and call the appropriate procedure.
In this example, a setname procedure would be called

to copy the global string variable into the name

variable, reset the input mode variable to none,

and return to the winprocessinput procedure, which
returns to the interface for continued input processing.
Either this type of procedure or the getXXXX procedures
should reset the global string index to zero and, if desired,
blank out the global string.

To discontinue input processing, the winprocessinput

- procedure (or a procedure called from winprocessinput)

should call the winselectdone procedure. When winprocessinput
returns to the interface, program control will be transferred

to the code immediately following the most recent winselect
call.

43

PROCEDURES

procedure wininit(id, x, y : integer; var rows, cols : integer;
font : winfonttype;
var success : boolean);
external;
(*
attempts to run process in a window with origin at x,y
with size rows x cols and default font. Actual size of window
with respect to the size of characters in font is returned
in rows and cols. Currently the process is assumed to be
running inside a window already, and id, x and y are all ignored.
additional wininit calls before a windone will have no eflect.

false is returned in success if no windows are available.

*)
procedure winclear;
external;
(*
clears the entire window of its contents
*)
procedure winfont(font : winfonttype);
external;
(*
changes the window font to that denoted by the parameter font.
currently winfonttype = (small, medium, mediumbold, large)
*)

(* for the following three output procedures op is a scalar with values:
normal : the item is drawn normally (bl. on white);
clear : the item is erased (drawn white);
highlight : the item is drawn inversely (wh. on bl.);
black : the item is drawn black;

*)

procedure winchar{ch : char; row, col : integer; op : optype);
external;

(‘
places the character ch at row, col of the window
according to op.

*)

44

procedure wintext(var s : strtype; row, col : integer; op : optype);
external;
(‘

places the string s beginning at row, col of the window
according to op.

*)

procedure winvector{rl,cl,r2,c2 : integer; op : optype);

external;

(t
draws a line from rl,cl to r2,c2 according to op

*)

procedure wininverse(x,y,width, height : integer);
external;

(‘
inverts the region beginning at x,y extending width pixels right
and height pixels down

*)

function winyfromrow(row : integer) : integer;
external;

{*

given a row corresponding to a row of text in the current font
winyfromrow returns the starting y coordinate for text

*)

function winxfromcol(col : integer) : integer;

external;

(t
given a column corresponding to a column of text in the current font
winxfromcol returns the starting x coordinate for text

*)

function wincharheight : integer; external;
(* returns the height in pixels of text in the current font *)

function wincharwidth : integer; external;
(* returns the width in pixels of text in the current font *)

45

The following three procedures handle menu processing.

The fiist procedure, winallocmenu, allocates the necessary
memory to the interface for a menu. It also sets the

title of the menu. winallocmenu can only be called once
for each menu.

The second and third procedures can be called as often as
desired. The second procedure, winsetupmenu, determines
the number and order of items in a menu already allocated
by winallocmenu.

The third procedure. winmenudisplay is a function which
displays a menu and returns the item number of the selected
item.

*)

procedure winallocmenu{menuid : winmenuid;
var title : winmenuitem;
maxitems ;: winnumitems

external;

allocates a menu to be referred to in future calls as menuid.
menu will have title as its header.
the number of items displayed in the menu can never exceed maxitems.

*)

procedure winsetupmenu{
menuid : winmenuid;
numitems : winnumitems;
var menu : winmenu

external;
sets up selectable items for the menu allocated as menuid.
pumitems is the actual number of items in the menu and

menu is an array of the items. the first numitems in menu
will be the items displayed upon a call to winmenudisplay (below).

40

function winmenudisplay(menuid : winmenuid; button : buttontype)
external;
(t

the menu referred to by menuid will be displayed.
button is the button which invoked the menu.
menudisplay waits for this button to be released as
indication that an item has been selected.

thus this function may be called other than in

response to a button press. winmenudisplay returns

an index to the array which was used to setup the menu
which indicates the item selected by the user. If no item
is selected, O is returned.

*)

procedure winnotify(ascii, button, move: boolean);
external;

(ﬁ

: integer;

each parameter set to true will cause the winprocessinput procedure

to be called for the corresponding input.

each parameter set to false will prevent calls to winprocessinput

on the corresponding input.

default settings are keyboard = true, button = false, move = false.

*)

procedure winselect;
external;
(t

call this procedure to begin input processing.

a call to winselect is best thought of as entering a

loop which waits for input which, when received, causes the
winprocessinput procedure to be called.

calling winselectdone (below) causes the loop to exit.
additional winselect calls after a winselect will be ignored.

*)
procedure winselectdone;
external;
(*
Causes a return from winselect (see above).
*)
procedure windone;
external;
(t
graceful termination by clearing screen and deallocating
associated storage. '
*)

47

function winconfirm(var s : strtype) : boolean;
external;
(t

the string s is displayed to the user as a prompt

s should be something the user can confirm

actions for confirming s are displayed by the function.

if the user performs the confirming action (left-button press)
the function returns true, otherwise false is returned

*)

procedure winmessage(var s : strtype);
external;
(*

similar to winconfirm except that no confirmation is acknowledged.
winmessage displays s and waits for the user to do anything.
s should include a something like 'press any key to continue’

*)

function strien{var s : strtype) : integer;
external;

(t
for the builtin C routine strlen.
returns the number of characters in s

*)

48

TYPES

const
winmenuitemien = 32;
winmenusize == 32;
winmaxmenus == 32;

type

strtype == packed array(1..100] of char;
buttontype = (left,middle, right);
postype == record

row,col : integer;

end;
winiotype == (keyboard, mousebutton, mousemove);
winfonttype = (small,medium,mediumbold,large);
ptrinputevent == "inputevent;
inputevent == record

pos . postype;

case inputtype : winiotype of

keyboard : (ch : char);
mousebutton : (button : buttontype);

end; (* inputevent *)
optype == (normal, clear, inverse, black);
winmenuid = |.winmaxmenus;
winmenuitem = packed array(l..winmenuitemlen] of char;
winnumitems = l..winmenusize;
winmenu = array(winnumitems] of winmenuitem;

40

BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient's Accession No.
SHEET UIUCDCS-F-85-934
4, Tile and Subtitle S. Report Dste
Editing Networked-Structured Knowledge BRases in the Februarvy 1985
ADVISE Svstem 6.
7. Author(s) 8. Performing Orgsnizaction Repx.
Thomas D. Channic -
9. Performing Organization Name and Address 10. Project/Task/Work Unw No.
Department of Computer Science
University of Illinois “‘C°“g:“gg§g No.
Urbana, IL DCR 84- 1
! NO0OO14~82-K-0184
12 Sponsoring Organization Name and Addcess 13. Type of Report & Period
Covered
National Science Foundation Office of Naval Research
Washington, D.C, Washington, D.C. T4,

15. Suppiementary Notes

16. Abstracts

Until recently, knowledge bases in the ADVISE meta-expert system have
had to be edited by text editing or by changing the program that creates
the knowledge base. This paper discusses a network editor for ADVISE know-
ledge bases which can edit a knowledge base directly, The network editor
has been implemented on a Sun Microsystems Workstation, and is screen-oriented
and menu-driven. The latter part of this report serves as a user's guide for
the editor.

17. Key Words and Document Analysis. 17a. Descriptors

knowledge base editing
expert system interface

17b. Identifiers /Open-Ended Terms

17e. COSAT! Field/Group

18. Availability Statement 19. Security Class (This 21. No. of Pages
) Report) 32
T
. Security Class (égis 22, Price
Page
UNCLASSIFIED

FORM NT!S 38 (10-70} LUECOMM-DC 40329-P71

