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Topics In Incremental Learning 

of Discriminant Deserlptlons 

Abstract 

Discriminant descriptions may be learned from classified sets of examples or objects. These 
descriptions may be used as decision rules. In many situations it is desirable to be able to easily 
modify existing rules to make them consistent with newly observed examples. This paper covers 
a number of topics in the area of learning discriminant descriptions rrom examples. Topics 
covered include lopsidedness, the N-promise algorithm, the SPLIT algorithm, direct 
simplification, constructive induction, learning hierarchies or class descriptions, and learning 
situation-action rules. 

1. introduction 

Learning rrom examples is one of the most common forms or learning. Learning in prob­
lem domains in the "real world" is rarely done in batch mode. Generalizations must be formed 
from a limited nun,ber or examples, and gradually modified in the light of new training examples 
as they become available. It is reasonable to require or learning programs that they be capable 
of making use of training examples in an incremental fashion. 

One type or learning rrom examples wich is or particular interest is learning discriminant 
descriptions. 

"A discriminant description is & description of a class of objects in the context of a fiztd. set of 
other c13.Sses of objects. It states only those properties of the objects in the given el3.SS that are 
necessary to distinguish them from the objects in the other classes" lDietterieh and Michalski, 
'83al· 

Discriminant descriptions may also be viewed in terms of discriminating the objects in one 
subclass or a given class of objects from the objects in all other subclasses. Thus, hierarchical 
taxonomies can be specified with discriminant descriptions. 

Given a system capable of learning discriminant descriptions, what kinds of problems could 
it be applied to? It is important to notice that the word "objects" used in the above definition 
should be considered in the most general sense. It may refer to actual physical objects, concep­
tual objects, or anything else which may be described in terms of a set of properties such as 
diseases or situations. Consider the analysis of scientific data. Raw scientific data is usually of 
little value. Some methods rororganizing and summarizing the results must be applied. Numer­
ical statistical methods for analyzing such data have existed for a long time. Recently, tech­
niques have been developed for learning conceptutJl descriptions of classes of objects from exam­
ples in the form or logical expressions. Such a system may be used to produce rules for "human 
consumption" as a statistical analysis tool. For example, we might wish to characterize the 
difference between cancerous and non-cancerous cells given examples of cells from each class. 
The description would take the rorm 

features ::> class. 

The "::>" symbol is used to distinguish implication linking a concept description with a predi­
cate asserting the concept name from the implication between arbitrary descriptions. 

In the case of disease diagnosis, rules would take the form 

symptoms ::> cause. 

A system has been developed in which such rules are used for "machine consumption" as the 
rule base for an expert system. A high degree or success has been obtained in the area of plant 
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pathology using machine generated rules ror the rule base or an expert diagnosis system iMichal­
ski, Davis, Bisht, and Sinclair, '82\. The system, caUed Plant/ds, is not capable or incremental 
rule refinement based on user reed back. 

Another possible application, which is untested and is being proposed here, is learning 
triggering conditions ror a finite set or actions. Such rules would take the rorm 

situation ::> action. 
The learning system would be coupled with a production system. The rules learned would serve 
as productions. Such a system would be capable or learning to perrorm simple tasks rrom exam­
ples. Feedback rrom the environment or an internal critic runction, as well as human input, could 
be used to provide training instances. For example, we might wish to train a robot to handle the 
passing or objects rrom one delivery belt to another and to take certain actions when the belts are 
not travelling at the same speed. This approach is quite general since actions such as 'deciding an 
object belongs to a particular class', or 'deciding that a set or symptoms imply the cause is a cer­
tain disease with a certain probability' could be implemented as easily as actions involving physi­
cal motion. 

It should be apparent that the methodology being discussed is capable or providing practical 
solutions to real world problems. Many other possible applications exist in addition to those men­
tioned. In the next section, previous approaches to the task or incremental learning are con­
sidered. Section 3 provides a discussion or the problem or "lopsidedness" in discriminant descrip­
tions, Section 4 provides an in-depth look at operators which are userul ror incremental rule 
refinement, Section 5 covers issues beyond incremental rule refinement, and Section 6 covers 
learning or situation-action rules. Appendix A gives a brief summary or the VI:..1 representation 
language and related terminology, Appendix B gives the AQ algorithm, and test runs using some 
current implementations are given in Appendix C. 

2. 	 Previous Approaches 

Previous approaches to incremental learning have been limited in capability and/or general­
ity. Two systems which may be applied to a wide variety or problems but which do not go 
beyond incremental rule refinement are AQll and ID3. Most other systems do not rorm discrim­
inant descriptions and are either highly domain dependent or have other serious shortcomings. A 
rew or these other systems will be discussed ror comparison. 

2.1. 	AQll 

AQll is a program ror incremental generation or VL 1 hypotheses based upon the AQ algo­
rithm \Michalski and Larson, '831. For rurther discussion or the VLl representation language see 
Appendix A. For a description or the AQ algorithm see Appendix B. AQll operates on VLI 
expressions in disjunctive normal rorm (DVLI descriptions). The method or inductive generaliza­
tion used in the AQ algorithm is the eztension against rule: 

Given 

CTX1 &; IL = Rl! ::> K {Positive Example} 

CTX2 &; IL = R21 ::> -.K {Negative Example} 


generalize to 

IL =F R21 ::> K {Output Assertion} 


where CTX1 and CTX are arbitrary expressions (context descriptions) which complete the con­
cept description, and t~e intersection or R 1 and R2 is empty. Intuitively, the extension against 
rule states that we assume an event to be true unless it is known to be false. It provides the most 
general statement consistent with both the positive and negative examples. Modifications or this 
rule are used in AQll wherein R2 in the output assertion is replaced by some superset or R2 
which does not intersect with R I' 
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As discussed in Appendix B, the AQ algorithm may be used to form the cover of a set of 
positive examples (eplus) against a set of negative examples (eminus). This is denoted 

COVER (eplus! eminus), 
read as "cover eplus against eminus." Here, a cover is a DVLl expression (a union of complexes). 
An event is covered by such an expression if the event satisfiea some complex in the expression. 
If the parts of the two set of examples overlap it is obviously impossible to form a cover. In 
AQll, to facilitate the incremental learning process, if the sets of examples overlap the positive 
examples take priority and 

COVER (eplus ! em inus) is defined as COVER (eplus! eminus - eplus). 
Consider again the definition of extension against given above. Note that the output assertion is 
defined in terms of R 2. This is important since it means that the negative example is more 
important for defining the scope of the output assertion than is the positive example. Hence, in 
forming COVER (eplus ! eminus), the set of negative examples is most important in determining 
the "shape" of the cover produced. 

Incremental hypothesis generation in AQll proceeds as follows: 

Given for each class i, i == 1 .. m, an initial hypothesis Hi and a set of events Ei , 

1. 	 Isolate facts which are not consistent with the given hypotheses. For each hypothesis, two 
set are determined: 

E/ - A set of events which should be covered by H. but are not. 
I 

Ei; 	 - A set of events which belong to class j but are covered 
by Hj and should not be, j :/= i. 

2. 	 For each class i determine a cover Hr ror the exception events Eij against the union of all 
Hi and Et: 

lit 	 lit 

Hj- == U COVER ( Eij I U Hi U Et ). 
j=1 ;=1 
'¥=i 

This step is done because it is computationally more efficient to use formulas Hi- than the 
sets of events Ejj. 

3. 	 New hypotheses H; are determined as covers: 
lit 

H; == COVER (Ei! U HI: - HI:- U Et ). 
1:=1
I:¥=j 

A few other details should be mentioned. Complexes in a cover which cover few events may 
be replaced by the events themselves (for efficiency). lC there are few exception events, Step 2 
may be bypassed and the union of Ej; used instead of Hi- in Step 3. 

It has been pointed out by O'Rorke !O'Rorke, '82\ that the above procedure may be 
simplified to: 

1. 	 For each class i determine Et, the events which should be covered by hypothesis Hj but 
are not. 

2. 	 New hypotheses H: are determined as covers: 
lit 

H; == COVER (Ei I U HI: U Et ). 
I: = 1
I: ¥= i 

This procedure takes advantage of the ract that 
COVER (eplus I eminus) is defined as COVER (eplusl eminus - eplus). 

Hence, there is no need to subtract exception events (or a cover of exception events) from the ini­
tial hypothesis. 
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Note that in both procedures the new hypotheses are generated by rorming a cover or the 
events in a dass against the union or existing (possibly modified) hypotheses and uncovered 
events in all other classes. Hypothesis are only used to preserve negative inrormation rrom one 
"ypothesis generation step to the next. The effect or this is instabilit1l. Instability is observed as 
a radical change in hypothesis complexity rrom one generation step to the next which is not war­
ranted by the new training events. AQl1 may exhibit a cyclic instability where covers cycle 
between being relatively complex and relatively simple, as noted by O'Rorke and others 
[O'Rorke, '82]. In fact, there is no reason to discard the positive information. Since the COVER 
function may be applied to formulas as well as events, Step 3 in the first procedure may be 
replaced by: 

m 

H: 	= COVER ( Hj - Hj- U Et I U Hk - Hi U Et ). 
k = I 
t;"'i 

Clearly, incremental hypothesis generation consists of two major steps: 1) A specialization 
step to uncover new exception events. 2) A generalization step to cover new positive events which 
are uncovered. The specialization step has not been adequately dealt with in the original AQll 
procedure nor in O'Rorkes revision. A new function for selective specialization or complexes, 
called the SPLIT algorithm, is presented in Section 4, along with a new procedure for incremental 
generation of \1...1 hypotheses. 

Coming up with a simple formula ror an order or magnitude speed estimate for the AQ algo­
rithm is complicated by the truncation of the partial star list during star formation and the 
nature or the evaluation functions used to do the truncation. The rollowing rough estimate of 
computation time ror forming a class cover ignores many details or the AQ algorithm and is not 
guaranteed to proportional to observed times. But, changes to the values or the ractors in the fol­
lowing formula should be observable in a corresponding change in computation time: 

Formula 2.1.1 
(complexity) .. (11 or attributes) .. (MaxStar) .. (11 or negative examples) 

complexity - is measured as the number of complexes in a cover and corresponds to the number or 
iterations of the AQ algorithm needed to rorm a class cover. 

11 of attributes - is the number or attributes used to describe objects. The speed or the EXTEN­
DAGAINST, MULTIPLY, and INCLUDES runctions are all roughly proportional to the 
number or attributes. 

MaxStar - is the user supplied limit on partial star size used for partial star truncation. This 
value is assumed to be roughly the average partial star size. 

11 of negative examples - is the number or negative examples supplied to the AQ algorithm. The 
ex tension of the seed event against each negative example is multiplied into the partial star 
during star generation. 

The least reliable ractor in this rormula is MaxStar since in actual operation the partial star size 
may never reach MaxStar or may at times grow much greater than MaxStar. When no trunca­
tion takes place, MaxStar should be replaced by (11 or negative e~amples). Hence, the time 
required by the AQ algorithm could grow by (11 or negative examples) . 

2.2. ID3 

ID3 is a program for iteratively constructing decision trees ror discriminating between 
objects of different classes. Objects are represented as reature vectors. Thus, an ID3 decision tree 
is a kind of discriminant description. ID3 is incremental only in the sense that it takes several 
tries to fi nd a correct rule (decision tree) when working on large sets or training instances. It 
builds an entirely new decision tree at each step rather than modirying the existing one. 

ID3 decision trees are a more restrictive representation than DVL 1 rormulas. Each node 
represents a single object attribute. Each branch rrom a node represents a single value for the 
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attribute represented by the node. 

"An object is classified by starting at the root of the decision tree, finding the value of the 
tested attribute in the given object, taking the branch appropriate to that value, and con­
tinuing in the same fashion until a leaf is reached. Notice that classifying a particular 
object may involve evaluating only a small number of attributes depending on the length of 
the path from the root of the tree to the appropriate lear [Quinlan, '831. 

The classes to which sets of objects belong are represented at the leaves of the decision tree. This 
is an example of a one level decision tree: 

color 

The basis of the 103 program is the IP algorithm (for Iterative Poillchotomization). IP con­
structs a decision tree in a top-down divide-and-conquer fashion. The outline of the IP algorithm 
is as (ollows: 

IP (Examples, Node) 

Ie (Examples = NULL) 
Then Return. 

If (all Examples belong to the same class) 
Then make a leaf for that class at the current Node and Return. 

Otherwise, 

1. Select an attribute A using some preference criteria. 
2. Assign A to the current node. 
3. For each value V of attribute A 


Sprout a branch and assign V to it, 

Make a new node N, 

Let Examples = all Examples with value V for attribute A,
v 
IP (Examples ' N),v

end. 

The key to constructing a good decision tree, i.e. one with a small height and few leaves which 
correspond to empty sets of examples, is picking the best attribute to split on at each node. ID3 
uses an information theoretic measure based on relative frequencies of attribute value occurences. 

The iterative aspect of ID3 is important when dealing with very large sets of examples. The 
method is summarized in [Quinlan, '831 as: 
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• Select at random a subset or the given instances (called a window) . 
• Repeat 

o (orm a rule to explain the current window 
o find the exceptions to this rule in the remaining instances 
o form a new window (rom the current window and the exceptions to 

the rule generated rrom it 

Until there are no exceptions to the rule. 


According to Quinlan, this method converges rapidly to a correct decision tree, and the final win­
dow may contain only a small (raction of the objects being classified. 

The cost in terms o( computational time o( ID3 program "increases only linearly with 
difficulty as modeled by the product of: the number o( exemplary objects, the number or attri ­
butes used to describe objects, and the complexity of the concept developed (measured by the 
number o( nodes on the decision tree)" [Quinlan, '83J. This speed is gained at the expense o( rule 
complexity 1 rule readability, and representational power. 

2.3. 	Other Maehlne Learning Methode 

Maoy learning techniques are highly domain dependent. Usually, buman designed rules of 
thumb (heuristics) are used to provide the intelligence in sucb systems. Here are some examples. 

2.3.1. Explanatory Sehema Aequ1eltlon 

Explanatory Schema Acquisition is a tecbnique (or learning by observation which involves 
knowledge-based generalization o( explanatory scbema. The problem domain being studied is 
story understanding. Explanatory schema are networks o( rrame-like objects which describe typi­
cal story situations. Currently, the types o( generalization handled are schema composition, 
secondary effect elevation, schema alteration, and volitionalization. The generalization types 
correspond roughly to certain high level reasoning processes in humans. Various heuristics are 
used to decide whether and how to generalize a schema. The current computer implementation 
only handles one special type o( story IDeJong, '83J. 

2.3.2. Learning by Augmenting Rulee and Aeeumulatlng Ceneore 

This technique is based on learning rrom precedents by drawing analogies. Because rules 
learned by analogy are not usually totally correct they must be "fixed up". Augmented rules 
have an "unless" part, in addition to the usual "if" and "then" parts, which prevents the "if" part 
(rom being satisfied under certain conditions. Censors are rules which may trigger the "unless" 
part or other rules. Again, the problem domain being studied is story understanding. This 
methodology seems (airly general, except (or the analogical matching process which appears to be 
tailored to the problem domain. Semantic nets are used to represent story situations. A 
corresponding predicate logic representation is used for representing if-then-unless rules learned by 
the system [Winston, '83bj. 

2.3.3. 	The Inetructlble Production Syetem Project 

The Instructible Production System Project produced a series o( systems for learning from 
instruction. Rules for driving the learning process were encoded in a kernel o( productions along 
with rules (or driving the user interrace and rules (or performing tasks in the task environment. 
The starting size of the kernels ranged (rom 295 to 450 rules. The systems were designed (or goal 
oriented problem solving with (eedback and instruction being supplied by interaction with a 
human instructor. Various rules were developed (or reconstructing rules from existing rules. 
Although much may have been learned by the design effort, all of the systems (ell short o( 
Rychner's hopes in terms of Oexibility and robustness [Rychner, '83J. 
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2.3.4. Learning by Dlaeovery 

AM and EURISKO are heuristically driven programs ror learning by discovery. As with the 
previous knowledge based systems, these systems start with an initial kernel or knowledge (in the 
rorm or heuristics and concepts in this case) and attempt to add to that knowledge. The AM sys­
tem, designed ror discovering concepts in the field or mathematics, started with 115 core concepts 
and 243 rules ror driving the heuristic search ror plausible new concepts. The EURISKO system 
was designed to discover new and useful heuristics using heuristics. Both programs have achieved 
promising results, especially in the area or constructive induction [Lenat, '831. 

2.4. 	Conclusions 

AQ 11 and ID3 are general purpose systems ror learning discriminant descriptions rrom 
examples. Most other systems are supplied by the human designer with a kernel or rules which 
enable them to construct new rules (Le. learn) by making modifications to existing rules. In gen­
eral, practitioners or machine learning are working to eliminate the expert knowledge acquisition 
bottleneck. At this point, it does not appear to be any easier to develop heuristics ror guiding 
knowledge acquisition in a new domain than it would be to encode the expert knowledge directly. 
The bottleneck has just been shirted up a level. A worthwhile goal would be to build a system 
with basic learning capabilities which could learn rules ror efficient rule construction in new 
domains, i.e. a system which "learns how to learn". This is an important capability which people 
seem to possess. Although at this point the basis or such a system is open to speculation, a good 
starting point appears to be learning situation-action rules as discriminant descriptions rrom 
examples. 

3. 	An Inherent Problem: Lopsldednes8 

There is an inherent problem in the rormation or discriminant descriptions in a finite 
representation space which I will refer to as "lopsidedness." Lopsidedness is observed as an 
increase in complexity or concept descriptions (or covers) rrom those rormed early to those rormed 
h.ter, even though the underlying concepts are equally complex. Consider the rollowing diagram, 
where the outer box represents the event space boundary, the lines represent a partitioning or the 
event space, and letters represent examples in a class. Assume VI and V2 have NOMINAL 
domains with the indicated value sets. 

I 
V2 

2 3 4 5 6 7 8 

VI 

I 
2 
3 
4 

A 

A 
A 

B 

B 
B 

5 
6 C D 
7 C D 
8 C D 

This illustrates the typical distribution or unobserved events in an event space in covers rormed 
by a discriminant description learning system ir class covers are rormed in the order A first, B 
second, C third, and D rourth. Here, class covers are required to be disjoint. Covers rormed early 
"consume" large volumes or the event space (as shown ror Class A in the diagram). Those covers 
rormed later may not overlap with existing covers, hence they must be "smaller", which means 
more specialized and more complex. 

When the AQ algorithm is being used to rorm disjoint discriminant descriptions, both lop­
sidedness and speed may be improved upon somewhat by using a re-entrant version or AQ which 
allows rorming one covering complex at a time ror each class. The top-level algorithm cycles 
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through the classes forming one cover per class until a complete cover has been generated for each 
class. I call this "multi-class" generation since the cover generation process is active ror aU classes 
at once. The diagrams below give a comparative illustration or the single-class generation process 
versus the multi-class generation process for a simple problem: 

Single-Class Generation Multi-Class Generation 

Step 1 Step I 

V2V2 
2 3 4 5 6 72 3 4 5 6 7 
A A1 A A 

U B22 8 8 
' , ;,,'/ " BVI 3VI 3 8 ,/, 

A 
.•" ./

/44 ~tp!i/% 
B,;/;, " / /' A' A5B5 " ".' 

/ .. " . ,/~ ',.',,', ,// 
66 

Step 2 Step 2 

V2 
1 2 3 4 5 6 7 

VI 

1 
2 
3 

'~/J A /, / ~A'////,~//;jl 
8 B 

B 
4 
5 
6 

A 
A B 

V2 
I 2 3 4 5 6 7 

I ' "//A A 
" "/'
" B //182 

VI 3 B<:7~A4 " /, ~ ,'// / 8A5 '-, <,;j.>«,//~
6 

Step 3 St<'p 3 

1 2 3 
V2 
4 .5 6 7 

I II A A 
2 8 ,.. B '/ " 

/, // /,# 

B-;:'/~/'/
7~/' " '/ / B

,'/ //2­

VI 3 
4 
5 
6 

A 
A 

V2 
1 2 3 4 5 6 7 

1 ' A'/,. ./ A ~JI 
[J 8 

VI 3 
2 

8 
4 A 

5 
 B 
6 

A 

Step 4 Step 4 

1 2 
V2 

3 4 5 6 7 

I I A A 
2 1,/// /' / B''/,' /'/ R;/ '/ 

VI 3 
4 
5 
6 

A 
A 

8 

B 

I 2 3 
V2 
4 5 6 7 

I A A I 
// B/ //:2 /'/, B ' , /-"",N' , 

VI 3 
I 
5 
6 

A 
A 

B 

B 

. -, 
~ 

Lopsidedness is decreased because the covers are not generated class by class, but rather one 
covering complex per class at a time, giving each class a better chance or "claiming territory" in 
the event space. Note that this method will not be very effective at reducing lopsidedness if the 

" number or complexes in the class covers is few. In both cases, once a cover has been generated, it 
ill used in place of the events it covers ror further cover generation. Covers are formed using 

COVER (eplus I uncovered-eminus-events U covers-of-eminus-events). 
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This effectively decreases the number or negative events (last ractor in Formula 2.1.1, Section 
2.1). In the multi-class generation case, the effective number or negative events is reduced sooner 
since we move on to the next class alter finding a single covering complex rather than an entire 
class cover. A typical speed-up or about 1.4 is obtained when using multi-class generation rather 
than single class generation in the disjoint covers mode. Multi-class generation capabilities are 
implemented in AQINTERLISP. See Appendix C ror a specific example. 

Another way to handle the problem or lopsidedness is to control the "degree of generaliza­
tion". An effective way or measuring the degree or generalization of a cover is by counting the 
number of unobserved events in the event space which are covered. This measure is called abso­
lute Bparseness. The relative sparseness of a cover is defined as the ratio of absolute sparseness of 
the cover to the total number of events covered. [Michalski and Stepp, '83b]. By selectively 
specializing a cover to reduce the relative sparseness to below some threshold value, it would be 
possible to generate roughly "balanced" rather than lopsided covers. A trimming function which 
reduces the reference or each selector in a complex by finding the intersection or the complex with 
the rerun ion or the associated covered events is one way to accomplish this. 

It the application in which the rules are to be used allows it, perhaps the best way to deal 
with lopsidedness is to allow class covers to intersect. Since we are assuming that our learning 
system has incremental hypothesis generation capabilities, when a new training or testing instance 
is covered by more than one class cover, the class covers can be appropriately modified. In this 
case we are allowing some or the don't-care space, or perhaps more appropriately "don't-know" 
space, to remain ambiguous until adequate inrormation has been recieved by the system ror 
resolving the ambiguity. Such a system might guide the selection or rurther training instances by 
requesting or selecting training instances which rall within the scope or more than one class cover, 
hence speeding the process or resolving the ambiguities. 

4. 	Operators tor Ineremental Hypothesle Generation 

A large part or my current study involves identirying and inventing operators which would 
be uselul ror incremental learning or discriminant descriptions. These operators should be top­
down whenever possible so that the decision making process is comprehensible and justifiable to 
the average human. They should be capable 01 rorming rules which are concise and seem reason­
able to human experts. These operators should also be reasonably efficient ror very large bodies 
or rules on single processor computers, and should be composed 01 operations which may be per­
rormed in parallel on the highly parallel machines or the ruture. Two basic steps are needed to do 
incremental hypothesis generation: 1) A generalization step that modifies a cover to include new 
positive examples that were not previously covered, and 2) A specialization step that modifies a 
cover so that it does not cover new negative examples that were previously covered. The steps 
may be perrormed in either order. In AQll the implicit specialization step is to reduce a cover to 
the individual events covered and the generalization step is to rorm a new cover using the AQ 
algorithm. 

The AQ algorithm is not top-down but is acceptably fast on moderately sized problems, is 
composed or operations many 01 which may be perrormed in parallel, and produces very good 
rules. Hence, it serves very well as a generalization operator. There exists a need ror a specializa­
tion operator which specializes rules while maintaining conciseness as much as possible. It is 
desirable to have an operator ror identirying the most promising attributes ror rorming discrimina­
tion rules, and ror identirying promising sets or attributes ror constructive induction. It is also 
desirable to be able to directly simplify class descriptions since the generalization and specializa­
tion operators are not likely to be perrect and may introduce redundant terms. 

The next three sections address these needs. Section 4.1 describes the N-promise algorithm 
lor selecting most relevant attributes. In Section 4.2 the SPLIT algorithm, a top-down learning 
algorithm which uses N-promise and reducing the rererence of selectors to learn discriminant 
descriptions, is described. In Section 4.3 some elementary simplification operations are described. 



4.1. 	The reviled PROMISE algorlthml N.promile 

In this section a revised version or the promise algorithm ror selecting most relevant attri­
butes is described and illustrated. The PROMISE algorithm described in !Baim, 82) is a powerrul 
tool ror determining the most relevant attributes ror inductive learning systems. However, there 
is room ror making some improvements. First, the value caIcul3.ted is not normalized so, unlike a 
probablity value, it is impossible to determine the "meaning" or a particular promise value out or 
context. Second, a promise value can be computed more directly by summing the appropriate 
values without the necessity or building relational tables, locating and removing events, etc. 
Third, the algorithm given will not work ror rormulas. This new version, called N-promise, has 
the rollowing reatures: 

1) 	 The computed value is normalized on a scale or 0 to 1 (hence the name N-promise ror "nor­
malized promise"). An N-promise value or 0 ror an attribute corresponds to the worst case, 
when an attribute has the same values in all events. An N-promise or 1 corresponds to the 
best case, when there are no CCEs ror an attribute. 

2) By using relative rrequencies rather than counts and class sizes to determine which values to 
sum, a more reliable metric is obtained. 

3) The algorithm works ror rormulas (a cover ror many points in an event space) as well as ror 
events (single points in an event space). 

4.1.1. 	CompariloD ot N.promile to PROMISE 

This new algorithm has the same limitations and is based on the same assumptions as the 
original. The original version used relational data base techniques, whereas the new version works 
more directly from relative frequency tallies. The abbreviations CCE ror cross-class equivalency 
and ICE ror in-class equivalency are used throughout. The original algorithm is stated here ror 
rererence: 

Algorithm PRO.M1SE: This algorithm determines the promise or an attribute by computing 
a "cost" based on the loss or class-distinguisbing inrormation due to CCEs witbin tbe projec­
tion or tbe data.-set onto the current attribute or interest. It does tbis by selectively remov­
ing events rrom CCEs and re-evaluating the data.-set until no CCEs remain. The algorithm 
returns a value, p, which is a measure or the promise or the attribute wbere p ranges rrom 0 
ror a perrect attribute (witbout CCEs) to m-l ror tbe worst case (wben tbe attribute bas the 
same value in all events) where m is the number or distinct classes in tbe data-set. Tbe ini­
tial value or p is O. 

1. 	 Project tbe data-set on tbe attribute. 

Repeat steps 2 tbrougb 5 until no more CCEs are round. 


2. 	 Locate an event, e, tbat is a member or a CCE. 

3. 	 Find the largest class, c, with tbe smallest ICE within the CCE whicb contains tbe 
event found in step 2. 

4. 	 Increase p by the size of the ICE in tbe class round in step 3 divided by the size of the 
class. 

5. 	 Remove tbe events in the ICE accounted for in step 4 from class c. 

6. 	 Exit. 

Let us examine the value that this algoritbm computes. Let relative rrequency R(a,v,c) be 
the number or times a value ror a particular attribute occurs in the events of a particular class 
divided by the class size (i.e. the number or events in the class), where the subscripts or indices 
indicate: a - the attribute, v - the value of attribute a, and c - the class. 
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For each value or an attribute the algorithm computes: 

S(a,v) == ER(a,v,c) - MAXc R(a,v,c) 

Where 

MAXc R(a,v,c) = MAX (R(a,v,l), R(a,v,2), ... ,R(a,v,n)) 

for classes numbered 1 .. n. 

This is not quite true. Repeated application or step 3 will leave the largest ICE for the 
smallest class c untouched by steps 4 and 5. This may only approximate MAX R(a,v,c), depend­
ing on the order or comparison. This problem is corrected in the new algorith~ since relative fre­
quencies are used directly. 

Let p be the promise value as described by Bairn. Study of the above algorithm will show 
that for a given attribute a, 

p == ES(a,v). 
tf 

If m is the number of classes in the current problem then p may have a value between 0 (best 
possible promise - no CCEs) and m-l (worst possible promise. attribute is completely redundant). 
Note that 

EER(a,v,c) = m. 
" c 

Let p' be promise normalized on a scale or 0 (worst) to 1 (best). Then 

p' = (m-p-l)/(m-l) 

EER(a,v,c) - ES(a,v)-1 
" c " 

m -1 

EER(a,v,c) EER(a,v,c)- EMAXe R(.::,v,c) -1 
tI c " c II 

m - 1 

EMAXc R(a,v,c) - 1 

- ~"----------------m - 1 

Thus it is easy to see that the normalized promise or an attribute may be calculated rrom 
the sum of the maximum relative rreQuencies or its values. This is essentially what the new algo­
rithm does. One major difference is how "class size" is determined. If formulas are allowed then 
a single complex can contribute more than once to the occurences or values tallied ror an attri­
bute. Thus, the number or occurences tallied must be totalled separately for each attribute in 
each class. This total is then used as the "class size" tor that attribute and class. An additional 
modification is needed to account ror the loss ot independence between the occurences tallied for 
the values of an attribute when rormulas are allowed. Let C be the class size determined as indi­
cated above, and N be the number of corplexes in the class. When computing relative frequen­
cies the weighting factor used is N / C . This reduces to 1 / C when all of the complexes 
in the class are events. As with PROMISE, attributes may be grouped to form compound attri­
butes so that interrelationships between attributes may be detected. 
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This is the N-promise algorithm: 

Step 	1: Select an attribute "a". Tally the occurences or values ror the selected attribute and com­
pute the class size ror the attribu teo All quantities ~e initialized to O. T is the tally of oc­
curences. N is the "c1ass size". 

ror each value v 
ror each class c 

T(a.,v,c) := {the number or occurences or [a = vJ in class c events} 
C(a,c) := C(a,c) + T(a,v,c) 

end 

end 


Step 	2: Compute the sum of maximum relative rrequencies and normalize. P is the N-promise 
value (initially 0), N(c) is the number or complexes in class c, w is the weighting ractor, and 
m is the number or classes in the current data set. 

ror each class c 

w := N(c)/C(a,c)2 

ror each value v 


P := P + MAXc (T(a,v,c) * w) 
end 


end 

P := (P-Il/(m-I) (* normalize *) 


4.1.2. 	N-promlse Example 

An example will illustrate the runctioning or the algorithm. The tables and accompanying 
descriptions show a sample data set and the results of the computations performed by the N­
promise algorithm. The first table below gives the domain descriptions of the variables (attri­
butes) being used. The second table gives complexes which are examples of three classes, where 
each row represents a complex. The second complex in class A is a formula, the remainder are 
events. 

DATA SET 

Domain Descriptions 
Variable(s) Domain Type Values 

Vl,V3 
V2 
V4 

Nominal 
Nominal 
Nominal 

1,2 
1,2,3 
1,2,3,4 

Events and Formulas 
Class VI V2 V3 V4 

A I 
1 

2 
1,2,3 

2 
1 

3 
2,3 

B 1 
1 
2 

I 
2 
2 

1 
2 
2 

1 
I 
I 

C 2 
2 
2 

1 
1 
3 

1 
2 
1 

3 
3 
2 
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COMPUTATIONS 

The first step is to tally occurences or variable (attribute) values in the input data and find 
the class sizes. The first table below shows the occurence tallies for each value or a variable in 
each class, the second gives the class sizes by class and variable. Note that when no rormulas are 
present, the class size is always equal to the number or events in that class. 

Occurence Tallies 
Class VI 

1 2 
V2 

1 2 3 
V3 

1 2 1 
V4 

2 3 4 
A 2 0 1 2 1 1 1 0 1 2 0 

B 2 1 1 2 0 1 2 3 0 0 0 

C 0 3 2 0 1 2 1 0 1 2 0 

Class Sizes 
Class VI V2 V3 V4 

A 2 4 2 3 
B 3 3 3 3 
C 3 3 3 3 

In the second step, we divide each occurence count by the associated class size to get the 
following relative frequencies, with maximums indicated at the bottom or each column. These 
maximums are then summed to get a "raw" value which is then normalized, yielding an N­
promise value for each variable. 

Relative Frequencies 

Class VI 
1 2 

V2 
1 2 3 

V3 
1 2 1 

V4 
2 3 4 

A 1 0 1/8 1/4 1/8 1/2 1/2 0 2/9 4/9 0 

B 2/3 1/3 1/3 2/3 0 1/3 2/3 1 0 0 0 

C 0 1 2/3 0 1/3 2/3 1/3 0 1/3 2/3 0 

max 1 1 2/3 2/3 1/3 2/3 2/3 1 1/3 2/3 0 

N-promise values 

VI V2 V3 V4 
Raw 2 5/3 4/3 2 

Normalized 1/2 1/3 1/6 1/2 



From the normalized promise values it is easy to see that VI and V4 are the most promising 
attributes, but that neither one alone could be used to completely discriminate the three classes. 
AQINTERLISP was run on the above data (without the benefit or the N.promise results) to 
confirm this conclusion. These covers were generated in the non-intersecting covers mode: 

Cover or Class: A IVI = 1l!V4 " 11 

Cover or Class; B !V4 = 11 

Cover or Class: C (VI == 21!V4 " 11 

4.1.3. 	Applications of N-promlse 

N.promise is applicable in all situations that PROMISE is, and possibly others. As with 
PROMISE, N·promise may be used to evaluate groups or attributes to test ror strong interrela.­
tionships which could serve to guide the constructive induction process. When background rules 
are used ror constructive induction, as in INDUCE-2, a large number or selectors containing 
derived attributes could be added to a complex. N·promise results can be used as criteria when 
trimming a list or background rules to select the rules that are most likely to be productive. N­
promise results can also be used to discover and remove redundant selectors prior to applying 
inductive-learning techniques, whether or not selectors containing derived attributes have been 
added. 

Because it works ror rormulas, and because or the organization or the computation, N­
promise can be used efficiently ror selecting most promising attributes when using the SPLIT 
algorithm. This methodology is described in detail in the next section. N·promise could also be 
used Cor attribute selection in programs such as ID3 which build decision trees. 

Similarity may be defined in a number or ways. One way, proposed by Tversky "states that 
two concepts become more similar as the number or properties shared by them increases and the 
number or distinctive (i.e. nonshared) properties decreases" (Barslou, '83\. The N-promise algo­
rithm may be used to derive a clustering quality measure ror a given clustering or events by sum­
ming the N.promise values ror the set or attributes (variables) in the current problem. The expla­
nation is quite simple. If the total or the normalized promise values is relatively high, that means 
the number or ICE's (shared properties) is large ror a large proportion or the attributes in each 
class and the number or CCEs is low. Hence, there must be strong similarities between members 
or a class. 

4.1.4. Conclusions 

A revision or the PROMISE algorithm has been introduced. The relationship between the 
original PROMISE algorithm and N-promise has been shown. The N-promise algorithm has been 
given, and illustrated with a simple example. The new algorithm is straightforward and easy to 
understand. It has reatures which make it useful as an attribute selector ror the SPLIT algo­
rithm, and in a number or other applications. 

Postscript: In [Bairn, 831 Bairn describes promise as a normalized value between 0 and 1 
exactly as given here, but derived using a slightly more complex rormula. The rormula given by 
Bairn produces exactly the same value as the one given here. 
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4.2. The SPLIT Alaorlthm 

In incremental learning it is frequently necessary to specialize overly general class descrip­
tions so that new negative training examples are not covered. It is desirable that this operation 
be efficient for large sets of rules, and that it maintain the conciseness of the class description 
being specialized as much as possible. It is also desirable that an AI system performing incremen­
tal learning be able to inform the user about why a particular rule was formulated in a particular 
way. If the rules are to be used in an expert advice system, knowledge about attribute impor­
tance can be used to guide the order of questioning. It is especially important that the rules 
themselves be understandable so that they may be evaluated by a human expert. 

As previously discussed, the AQl1 algorithm is efficient ror small sets or rules, but becomes 
more expensive very rapidly as the set of rules grows in size. AQIl does not actually modify a 
class description, rather it remakes a new cover or the events in a class against the union or 
uncovered positive events in the other class and the difference or the existing covers or the other 
classes and the corresponding covers of exception events [Michalski and Larson, '831. The Star 
methodolgy used in AQll is a generate and test scheme. So, certain information such as values 
returned by evaluation criteria runctions can be supplied to the user, but this inCormation may 
not always be adequate. Rules produced by AQIl are in the VL 1 representation language and 
are easily understood. 

The ID3 algorithm Corms decision trees in a rast, but rather simple minded way. Informa.­
tion concerning what the system considered the most important attributes can be extracted from 
the decision tree building process by observing which attributes are selected the earliest. Decision 
trees produced by 1D3 are generally more complex than VLl rules produced by AQll for a given 
problem [O'Rorke, '82], and they are not easily understood by people. 

The SPLIT algorithm, although not concieved as such, has features which make it appear to 
be a hybrid oC AQU and ID3 techniques. It uses a top-down divide-and-conquer control scheme 
remniscent or ID3, so a great deal oC inCormation can be extracted rrom the decision making pro­
cess during rule formation or modification. It is reasonably efficient, many of the operations could 
be performed in parallel, and it operates on VLl expressions so the rules are understandable. An 
inductive learning algorithm with incremental VLl hypothesis generation capabilities using 
SPLIT and AQ is described in part 3 of this section. 

4.2.1. 	Description of the SPLIT algorithm 

The SPLIT algorithm accepts as parameters an initial hypothesis (Cover), which is assumed 
to be a single complex, and lists or positive (Pos) and negative (Neg) training examples covered 
by the initial hypothesis. The examples may be events or formulas. It specializes the hypothesis 
by recursively "splitting on a selector" until none of the negative examples are covered. This is 
done in such a way that the simplicity of the resulting hypothesis is preserved as much as possible 
and all positive examples remain covered. Splitting on a selector involves separating the values or 
the right hand side (RHS) of the selector into two groups to allow changing a present internal dis­
junction into an external disjunction. For example, 

[X = IllY == 2HZ == a,b,c] 
might be split to Corm: 

[X = IHY = 2HZ = a] v IX = lilY == 2HZ = b,c]. 

If one oC the complexes resulting from a split still covers both positive and negative examples, it 
is split further. If it covers only positive examples it is lert a.s-is, and if it covers only negative 
examples it is deleted. Special criteria are used to decide which selector to split on, and how to 
distribute values from the RHS oC the selector being split on. 
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This is the SPLIT algorithm: 

SPLIT (Cover, Pos, Neg) 

If Neg = NULL then Return Cover 

IC Pos = NULL then Return NULL 


Otherwise do: 

1. 	Pick PSel, the selector containing the most promising attribute in Cover, 
using N-promise and tie-breaking heuristics. 

2. 	Divide the values in the RHS of PSel into two groups, 
Vals+ for those with the most occurences in Pos examples, and 
Vals- for those with the most occurences in Neg examples. 
For ties, assign a value rrom the RHS PSel to either Vals+ or Vals­
according to tie-breaking heuristics. 

3. 	Use the division of values from step 2 to transform Cover into the 
disjunction of Cover+ and Cover-. 

4. 	Divide the complexes in each of Pos and Neg into two groups, 
Pos+ and Neg+ ror those containing an occurence of a value in Vals+ 

in the corresponding selector, and 
Pos- and Neg- for those containing an occurence of a value in Vals­

in the corresponding selector. 
Note that formulas may end up in BOTH + and - groups. 

5. Return The-Disjunction-of ( SPLIT (Cover+, Pos+ , Neg+ ). 

SPLIT (Cover-, Pos-, Neg-) ). 


The N-promise algorithm mentioned in step 1 is a revision of the PROMISE algorithm 
IBaim. 82] and is descibed fully in the preceding section. More should be said about the sets of 
tie-breaking heuristics mentioned in steps 1 and 2. 

For step I, the following heuristics are recommended: 

1) 	 Pick the selector with the fewest values (there must be at least 2) on its RHS. This 
effectively minimizes the depth of recursion, and so increases in rule complexity are minim­
ized. 

2) 	 Don't pick a dropped (ie. IVar = *1) selector. Splitting a dropped selector causes it to be 
re-introduced into the rule, increasing the rule complexity. 

For step 2, the following heuristics are recommended: 

1) 	 IC one value remains to be assigned and one group has no values assigned, assign the value 
to the group with no assigned values. Putting all of the values in one group would defeat 
the purpose of this operation. 

2) 	 If the selector has a NOMINAL domain variable - make the split as "balanced" as possible, 
ie. the value should go to the side with the least number of values assigned. 

3) 	 If the selector has a LINEAR domain variable - keep adjacent values together. For example, 
ir for a value VaJ(i) both VaJ(i-l) and Val(i+ 1) have been assigned to Vals+, then Val(i) 
should be assigned to Vals+ to complete the interval. 

4) 	 If the selector has a STRUCTURED domai.n variable - try to fill in all children under the 
highest possible parent node. 

Given appropriate evaluation functions these heuristics may be implemented using a 
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"Lexicographical Evaluation Function with tolerances" (LEF) [Michalski and Stepp, 1983\. A 
LEF is a sequence or criterion-tolerance pairs (Cl,T I),(C ,T2)' ... , where C. is an elementary cri­
terion and T. is a tolerance threshold (0 ~ T. S- 100%). 

2
Each criterion Cit is applied in order to 

a list or ite~s and those items that score w~thin threshold T. are retained. The process stops 
when either a single "best" item remains, or the sequence or crilerion-tolerance pairs is exhausted. 
In the latter case, an item is chosen arbitrarily rrom those remaining. 

4.2.2. An Example Using SPLIT 

A simple example will demonstrate the operation or the SPLIT algorithm. We will use the 
Data Set described in the section on N-promise. Let the initial hypothesis be the entire event 
space, let the positive examples be the complexes in Class A, and let the negative examples be 
the complexes in Classes Band C. We have, 

Cover = [VI = *J[V2 = *J[V3 = *J[V4 = *\ 
Pos = {[VI = I][V2 = 2][V3 = 21!V4 = 3] 

[VI = l][V2 = *J[V3 = IJ[V4 = 2,3]} 
Neg = {[VI = I][V2 = IJ[V3 = I\[V4 = 1\ 

[VI = 1][V2 = 2j[V3 = 2][V4 = I] 
[VI = 2][V2 = 21[V3 = 2][V4 = I] 
[VI = 2J[V2 = 11[V3 = I][V4 = 3] 
[VI = 2][V2 = I][V3 = 21[V4 = 3] 
[VI = 2][V2 = 3][V3 = I][V 4 = 2]} 

In Step 1, N-promise is used to select the most promising attribute. For the attributes in 
classes Pos and Neg above N-promise returns: 

Attribute N-promise 

VI 
V2 
V3 
V4 

2/3 
0 
0 

1/3 

VI is selected as the most promising attribute, so PSel is [VI = *]. In Step 2, the values in PSel 
are split into two groups. Note that [VI = *] is equivalent to [VI = 1,2] since VI has a Nominal 
domain consisting or the values 1 and 2. The rollowing table gives the occurence counts ror the 
values in the RHS or PSel ror classes Pos and Neg. 

Occurence Counts 

Class VI 
1 2 

Pos 2 0 

Neg 2 4 

Vals- becomes "2". Vals+ becomes "1" by virtue or the first tie-breaking heuristic. In Step 3 we 
have: 

Cover+ = [VI = II!V2 = *I!V3 = *I!V 4 = *1. 
Cover- = [VI = 21!V2 = *][V3 = *J[V4 = *]. 
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In Step 4, 

Pos+ = {lVl == 1l!V2 == 21[V3 = 21[V4 == 3\ 

[VI = IJ[V2 = *J[V3 = Il!V4 == 2,31} 


Neg+ = {lVI = I][V2 = IJlV3 == lHV 4 = 1\ 

[VI = II!V2 = 21!V3 == 211V4 = In 


Pos- - NULL 
Neg- = {[VI = 2liV2 = 211V3 = 211V4 = IJ 


[VI = 21!V2 = IJ[V3 = lllV 4 = 3\ 

[VI = 2J[V2 = IllV3 = 2J[V4 = 31 

[VI = 2J[V2 == 31!V3 = lJ[V4 = 21} 


In Step 5, on the recursive call SPLIT(Cover+, Pos+, Neg+), Cover+ must be split 
rurther. However, Cover- is deleted (NULL is returned) since it covers no positive examples. 
Following the recursive call on Cover+ , we now have Cover = Cover+, Pos == Pos+ , and Neg 
== Neg+. In Step 1 the following N-promise values are obtained: 

Attribute N-promise 
VI 
V2 
V3 
V4 

0 
1/8 
0 

2/3 

V4 is selected as the most promising attribute, so PSel is !V4 = *1. The subsequent steps result 
in: 

Cover+ = [VI = 1][V2 = *J[V3 = *j[V4 = 2,3\, 

Cover- = [VI = 2HV2 == .I!V3 == .I!V4 == 1,4\. 


Pos+ = {[VI = IlIV2 = 2][V3 == 21!V4 == 31 

[VI == Il!V2 == .I!V3 == lliV4 == 2,31} 


Neg+ = r-.'1)LL 


Pos- = NULL 

Neg- == {[VI = IJ[V2 == IJ[V3 == IHV4 = 11 


[VI = I][V2 == 211V3 = 2J[V4 == I]} 


On the next recursive call to SPLIT, Cover+ is returned a.s-is, and Cover- is deleted. The 
final value for the cover of Class A with IV == *\ selectors dropped is [VI == 1l!V4 == 2,3\. 

The covers or class Band C may be generated in a similar fashion. As a final result we have: 

Cover of Class A: IVI = 11 IV4 == 2,3\ 

Cover or Class B: [V4 = 1\ 

Cover of Class C: [VI = 2J[V2 :f 21 


Note that these covers have a non-nuJl intersection. Non-intersecting covers may also be 
generated. All that is needed to accomplish this is to replace the examples in a class by the new 
hypothesis (cover) returned by SPLIT before proceeding to the next class. 

4.2.3. Incremental Generation of VLl Hypotheses 

We wish to incrementally learn discriminant descriptions for a set or classes by starting out 
with a set of hypothesized class covers and gradually modirying these in the light of new training 
instances. Class covers are assumed to be in disjunctive Dormal form (DNF), i.e. 

[complex v complex v ... v complexl. 



When the SPLIT algorithm is combined with the AQ algorithm and a small number or other 
runctions, we have an effective method ror incremental generation or VL 1 hypotheses. In this ver­
sion, SPLIT is used to specialize the existing cover or each class to uncover new negative events 
which are covered. AQ is then applied to generalize the covers or each class to cover new positive 
events which are uncovered: 

ror each class 

ror each complex Ci in the class-cover 


Pos := {All examples covered by C , both new and old} 
i
Neg := {New examples rrom all ottier classes 

which have a non-null intersection with C }i
C. := SPLIT(C., Pos, Neg) 

I I 
end 

end 
ror each class c 

Pos := {Cover(c) U uncovered-positive-events} 
Neg := {covers-or-all-other-classes U uncovered-negative-events} 
Cover(c) := COVER (Pas I Neg) 

end 

" COVER " uses the AQ algorithm to rorm a cover or the complexes (rormulas or events) in 
Pos against the complexes in Neg. . 

4.2.4. 	Conclusions 

The SPLIT algorithm has been introduced and described. It has been demonstrated with a 
simple example. An algorithm ror incremental generation or VL I hypothesis using the SPLIT 
algorithm and the AQ algorithm has been described. The cost in terms or computation time or 
the SPLIT algorithm should proportional to that or the ID3 algorithm, which "increases only 
linearly with difficulty as modeled by the product of: the number of given exemplary objects, the 
number of attributes use to describe objects, and the complexity or the concept developed (meas­
ured by the number or nodes on the decision tree)" [Quinlan, 831. The SPLIT algorithm uses 
more specialized decision criteria and a more flexible rule representation than ID3, so the rules 
produced should be simpler than those produced by ID3, and nearly as good as those produced by 
AQll. An example using an implementation of the SPLIT algorithm is given in Appendix C. 

4.3. 	Direct SimpUftcatlon 

Since the covers produced by the generalization and specialization operations used in incre­
mental hypothesis generation are not always optimal, redundant terms may be introduced into 
class covers. Although some simplification operations may be computationally expensive, the cost 
or most simplification operations is independent of the number of classes, and they may be 
applied selectively to reduce the impact of this expense on program performance. Several opera­
tions are discussed in this section for direct simplification of OVL I expressions. 

4.3.1. ABSORB 

Sometimes in a disjunction of complexes (a OVLl expression) one complex will include aU 
or the points in another complex. In this situation, we want to remove the smaller complex. For 
example, given the OVL 1 expression: 

IX = lJ[Y = 2HZ = 31 v IX = 211Y = IJ v IX = lilY = 21 
the first complex may be deleted since it is included by the third complex, yielding the simpler 
expression: 

[X = 2J[Y = IJ v IX = lilY = 21. 
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The ABSORB algorithm consists of running two pointers through an expression and deleting 
the redundant complexes. It is quite simple and requires only an INCLUDES predicate to deter­
mine if one complex includes another: 

ABSORB (expression) 
for ComplexA in expression 

(or ComplexB in expression 
if (ComplexA ~ ComplexB) and INCLUDES (ComplexA, ComplexB) 

then delete ComplexB from expression 
next ComplexB 

next ComplexA 

Intracies of the data structure used may require an actual implementation to be more compli. 
cated, but this is the basic outline. In the worst case, whe~ no simplification is possible, the com· 
putational cost or this algorithm is proportional to A. N , where A is the number of attributes 
used to represent events and N is the number or complexes in the expression. The ABSORB 
operation is especially useful ror removing redundant complexes from partial stars in the TRUN­
CATE (unction used in the AQ algorithm. 

4.3.2. 	 INDEPENDENT 
The INDEPENDENT operation removes complexes rrom a class cover in OVLl form which 

do not cover any events in the class independently. The ABSORB operation is a special (and 
more efficient) case of the INDEPENDENT operation where one complex must be completely 
included by another to be considered redundant. If the disjunction of several complexes within an 
expression covers all of the events covered by some other complex, the non-independent complex 
should be deleted. For example, given the OVL 1 expression containing complexes Cl, C2 and 
C3: 

Cl v C2 v C3 
and events El. E2, E3 and E4 such that: 

Cl covers El and E2. 

C2 covers E2 and E3, and 

C3 covers E3 and E4, 


C2 may be deleted because it does not cover any events independently, yielding the expression: 
Cl v C3. 

The algorithm proceeds by repeatedly evaluating the number of events covered indepen­
dently by each complex, and deleting a non-independent complex. A set of complexes may be 
mutually non-independent, so the "worst" non-independent complex - as determined by specific 
quality criteria - should be deleted first. For this algorithm we assume "CoveredEvents" is a list 
of lists of events covered by each complex with the sublists in order corresponding to the order of 
complexes in "Cover". 
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The I:i'i'DEPENDENT algorithm is outlined as follows: 

INDEPENDENT (Cover, CoveredEvents) 
Repeat 

for Complex in Cover as CEvents in CoveredEvents collect 
(COUNTEVENTS (LISTDIFFERENCE CEvents 

(APPENDX (REMOVE CEvents CoveredEvents)))) 
end 
assign the list of counts to the variable IndepCount. 
Non Independent := List of complexes in Cover for which IndepCount = O. 
WorstComplex := the "worst" complex in NonIndependent. 
Remove WorstComplex from cover. 

Until (the number of Non Independent complexes = 0). 

Where, 


COUNTEVENTS - returns the number of events in a list of events, 


LISTDIFFERENCE - returns all members of its first argument which are not present in its 
second argument, 

APPENDX - changes a list of lists of events to a list or events, and 

REMOVE - returns its second argument with all occurences of its first argument removed. 

The computational cost of this algorithm is roughly proportional to (C + 1). E2 where C 
is the number ~r non-independent complexes and E is the total number or events covered by the 
cover. The E ractor is due to the LlSTDIFFERENCE operation, and the (C + 1) factor 
corresponds to the number of iterations of the Repeat loop. 

4.3.3. 	MERGE 
The r..1ERGE operation changes external disjunction in DVLI expressions to internal dis­

junction where possible. For example, 
IX = lilY = 2HZ = 31 v [X = lilY = 2][Z = 11 

may be simplified to 
IX = lIlY = 2HZ == 1,3]. 

Two complexes may be merged if they differ by no more than one selector. The complexes are 
merged by taking their REFUNION. The REFUNION operation simply forms the logical union 
(OR) of values on the right-hand-side of corresponding selectors. 

The basic outline of the MERGE algorithm is as follows: 

r..1ERGE (Expression) 
for ComplexA in Expression 

for ComplexB in Expression 
if #-or-Differenct-Selectors (ComplexA, ComplexB) ~ I 

then replace ComplexA by REFUNION (ComplexA, ComplexB), 
delete ComplexB from Expression. 

next ComplexB 
next ComplexA 

In t~e worst case, the computational cost or the MERGE algorithm is roughly proportional 
to A • N where A is the number or attributes used to describe objects and N is the number of 
complexes in Expression. 
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4.3.4. Conclusions 

Some techniques Cor direct simplification oC DVL 1 expressions have been discussed and algo­
rithms given. The ABSORB operation is currently used in AQINTERLISP to improve efficiency 
oC the star generation process. IJ'.;'DEPENDENT and MERGE will be used in the near future in 
implementations with incremental hypothesis generation capabilities. Some simple metrics must 
yet be devised Cor determining when to apply these simplification operations. 

S. 	 Beyond Incremental Hypothesla Generation 

So Car the discussion has centered around incremental hypothesis generation. This is just a 
6rst step in the area of incremental learning of discriminant descriptions. What we have dis­
cussed is how to modify discriminant class descriptions (covers) to maintain consistency with new 
training instances {events}. A system should also be capable of dealing with new classes, new or 
deleted attributes, and modifications to attribute domains. In addition, a system should be capa­
ble of dealing with hierarchies oC classes, non~monotonic sets of training instances, and noisy data. 

5.1. 	Adding New Clasles, Changing the Event Space 

Adding new classes to a system is relatively simple to deal with. The same operators which 
are used to modify existing class descriptions when new training events are presented may be used 
when new classes are presented. Existing class covers which cover events in the new c1ass(es} 
must be specialized and a cover must be generated for the new class. 

In a real world problem, it is not always known what parameters should be measured to 
acquire information in a speci6c problem area. The ability to obtain certain measurements may 
be gained or lost over time. Thus, a system should be capable oC handling new or deleted attri ­
butes. This is in Cact a rather sticky problem. II a new attribute is introduced it will be of little 
value Cor Corming discriminations unless values Cor that attribute are entered for previously 
presented examples. Ir an attribute is deleted, for whatever reason, it will be necessary to re­
evaluate all rules which use that attribute Cor making a discrimination. Preferably, an attribute 
should be dropped only after it has been determined to be redundant. The only reason to drop 
redundant attributes is to save system and user time. Attribute domain changes should be han­
dled in a similar Cashion, with extensions allowed at any time, but reductions allowed only when 
an attribute value is determined never to occur. 

OC greater importance are derived attributes (and meta-attributes) which are Cormed by a 
process known as "constructive induction". Sometimes, several attributes may have meaningful 
interactions. For example, length, width, and breadth of a rectangular object may be combined 
via a simple mathematical relation to find volume. Volume may then turn out to be a promising 
attribute Cor Corming discriminant descriptions. One oC the most successCul techniques to date has 
been to explicitly code such information about relations between attributes in "background rules". 
Syntactic pattern matching is used to determine if a background rule may be applied to an event, 
and if it does, the attribute derived using the rule is added to the event. Generally, the process of 
adding derived descriptors is perCormed beCore any inductive generalization processes. An exam­
ple oC a system which uses background rules in this manner is the INDUCE2 system which is 
desc~ibed in [Hoff, Michalski, and Stepp, '831. Lenat uses heuristics in a similar Cashion to add 
attributes to concepts by creating new slots in a frame based system ILenat, '831. 

5.2. 	Hierarchical Learning 

As previously mentioned, discriminating between members oC different classes may be 
viewed as a problem of partitioning a class into subclasses. Since most real world inCormation 
may be conveniently organized Into hierarchies we would like our systems to be able to learn such 
hierarchies. Common examples are plant and animal taxonomies and business organization. The 
VLl representation language may be used for hierarchical learning, but this would be restrictive 
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and awkward ror complex problems. A system which includes rrame-like objects, such as the ano­
tated predicate calculus, would be more suitable. 

Many current inductive learning systems provide limited hierarchical learning racilities in 
the rorm or STRUCTURED variables. With this type or racility, climbing generalization may be 
performed on single attributes. But, the user must supply the structure in a domain declaration, 
so the structure itself is not actually learned. We would like the structure to be learned rrom 
information present in training examples. 

A system should be able to build class hierarchies both in the upwards (more general) and 
downwards (more specific) dirctions. For example, say that the system has learned concept 
descriptions ror birds, mammals, reptiles, fish, trees, grasses, algea, and so on. We should then be 
able to teach the concept "animals" in terms or these higher level concepts. The system should 
create rules which are stated in terms or higher level concepts whenever possible. As an example 
or building downward, say that the system has learned to distinguish birds rorm other types or 
animals. We should then be able to teach the system to distinguish between kinds or birds. Basic 
techniques ror learning discriminant descriptions can be used ror building hierarchies in both 
directions. 

5.3. 	Non-monotontetty and Noise 

Events previously presented to a learning system may later be round to be wrong (or unsub­
stantiated). A learning system should have the capability or deleting old training events which 
turn out to be wrong. Class covers may then be adjusted using the specialize/generalize mechan­
ism used ror making other incremental changes. So, this type or non-monotonicity is easily han­
dled. 

Noisy data is bound to occur in nearly every learning situation. Generally, noise events will 
be covered by "low weight" complexes in a class cover, i.e. complexes which cover rew events. 
Or, noise events may appear as contradictory inrormation. It may be possible to use similarity 
measures, such as sparseness and N-promise, to detect noise events and allow filtering them out. 
For example, given an event which is representative or more than one class in a problem where 
classes are assumed to be disjoint, a system could use similarity measures to determine to which 
class the event is most similar. It could then remove the event rrom the class to which it is least 
similar. 

Given a complex in a class cover which covers relatively rew events, a system could use 
similarity measures as above and possibly background knowledge (not necessarily Induce style 
background rules) to determine if the event(s) covered are irregular class members or noise. The 
solution may involve setting various thresholds, determining relationships between attributes, and 
having the program "know" about the salience or attributes used in the classification and the 
classification goals. For example, the program should be able to correctly classiry a penguin as 
member of the class "bird" rather than as noise. 

Some assumptions are necessary: 

(1) The number or noise events is relatively few. 

(2) There is high similarity between members of a class
different classes. 

, and low similarity between members of 

(3) The information available to the system 
members can be distinguished rrom noise. 

can be made sufficient so that irregular class 

G. Learning Situation-Action Rules 

As mentioned in the introduction, two applications of the methodology currently being dig.. 
cussed are statistical analysis and automatic generation of rules ror expert systems from examples. 
The QUIN (QUery and INrerence) system is a combination or a number or other systems includ­
ing GEM, AQll, CLUSTER/2, ESEL, and PROMISE ISpackman, '83J. These systems are 
integrated in a statistical analysis tool based on relational data base techniques. The ADVISE 
group has been working on using rules generated by machine learning techniques in an expert 
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medical diagnosis system, and the PLANT Ids system uses rules geilerated by machine from 
examples for plant pathology. 

Work done with many expert systems and research done by Lenat on many aspects of 
heuristics has shown that heuristic knowledge is one of the most useful forms 01 knowledge. 
Heuristics may take the lorm 01 "if (situation) - then (action)" pairs. This is a very general form 
of decision rule which may be used in essentially any problem domain. A system capable 01 
learning discriminant descriptions from examples could be used to learn such rules ror a finite set 
of actions. When a system for learning situation-action rules is combined with a production sys­
tem (a select-execute mechanism) and a feedback mechanism we have a very interesting "general 
purpose" system with both learning and task perlormance capabilities. 

To be more specific, a situation is an object defined in terms of a set of attributes. These 
attributes may correspond to properties 01 physical or conceptual objects as with previous 
classification tasks involving structural descriptions. The attributes may also correspond to a 
current goal, variables in a production system "blackboard" memory, past actions, sensory inror­
mation, etc. An action may be any action normally allowed in a production system (Le. virtually 
anything) such as modifying global memory, sending a signal, constructing new productions, etc. 
The sets of attributes, attribute domains, and actions are user defined to fit the problem solved. 
Feedback may be achieved in the rollowing way. Assume (ror simplicity) that the system is 
single-stepping through a sequence or actions. Actions may change the current situation, so situa.­
tions may occur which were not included in the training set. When an action is selected, the cri­
tic may respond and indicate that the choice was correct or incorrect, so the new situation may 
be treated as a positive or negative training example for the action selected. or course, more 
complicated schemes may be developed for assigning credit and blame over long sequences or 
actions. 

A simple example in the field of robotics was given in the introduction. Now consider the 
DEJ'.;'DRAL system for mass spectrogram analysis. The number or possible chemical formulas is 
so large that it would be virtually impossible to learn a discriminant description ror each chemical 
formula rrom examples, as is currently done in PLANTIds for soybean diseases. The task must 
be broken down into a number of smaller steps. 

"The DENDRAL system works out structure from chemical rormulas and mass spectro­
grams using the rollowing steps: 

• 	 The mass spectrogram is used to create lists of required and rorbidden substructures. 

• 	 The chemical rormula is fed to a structure generator capable of generating all possible 
structures. The structure generator limits its output to things consistent with the lists 
of required and forbidden substructures. 

• 	 The mass spectrogram is predicted for each structure generated. 

• 	 The generated mass spectrograms are all compared with the actual experimental spec­
trogram. The correct structure is the one whose generated spectrogram gives the best 
match." [Winston, '791 

For the first step, "For any given category of organic chemicals, the key tones or estrogens 
ror example, there are about six to ten ... rules." lWinston, '79J The rules add items to the lists of 
required and forbidden substructures. About 100 productions are used in the third step to predict 
mass spectrograms from chemical structures. Other expert knowledge is used in the other steps. 
AU or the expert knowledge in this system, encoded as productions (situation-action fules) could 
be learned incrementally from examples and feedback from experts. Most likely, the learning 
task would be broken into segments corresponding to the steps given above. 

Current methodologies are adequate for initial experimentation in this area. To be robust, a 
system used for learning situation-action rules should have strong constructive induction, incre­
mental learning and hierarchical knowledge learning capablilities. 
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7. 	 Coneluslons 

Several topics in the area of incremental learning of discriminant descriptions have been dis­
cussed. Previous approaches have been discussed, and some of their strengths and weaknesses 
identified. The problem of lopsidedness has been discussed and possible solutions identified. 
Several new, and not so new, operators useful for incremental learning of discriminant descrip­
tions have been discussed and demonstrated. Important issues beyond incremental hypothesis 
generation have been discussed, and the application of current methodologies to the learning of 
situation-action rules has been proposed. 
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Appendix A 

This appendix provides an introduction to some or the terminology used in this paper. 
Other terminology is explained as it is used. A rull, rormal description or the VLl variable-valued 
logic system may be round in IMichalski, '741. 

Variables are one or the basic representational units in VI.. 1. Associated with each variable 
is a domain which defines which values the variable may assume. Four basic types or domains are 
now in common use: NOMINAL, LINEAR, STRUCTtJRED, and CYCLIC. A NOMINAL 
domain includes only discrete values, such as "sweet", "sour". and "salty" ror the variable 
"navor". A LINEAR domain includes an interval or linearly ordered values, such an interval in 
the integers or real numbers. A STRUCTURED domain includes discrete values in a tree struc­
ture. For example, "triangle", "square", and "hexagon" may be siblings or "polygon" in a 
STRUCTURED domain ror variable "shape". A CYCLIC domain includes an interval or linearly 
ordered values where the first element may be considered to be a successor or the last, such as the 
days or the week. 

Relations associate variables with values. Typical relations are ==, 'I, <, and >. A selec­
tor has the rorm: 

[variable relation value( s )1. 

A selector is satisfied ir the indicated condition is met. Selectors are commonly used ror 
representing attribute-value pairs or feature vectors. Some examples or selectors are: 

Selector English Phrase 
[color 'I red] color is not red 
[temperature == 50 .. 1001 temperature is 50 to 100 
Isize == small, large] size is small or large 

An event space is defined by a set or variables and their associated domains. Each point in the 
event space corresponds to an allowed combination or variables and values. A point in an event 
space may be described by a conjunction or selectors and is called an event. A conjunction or 
selectors which covers more than one point in an event space is called a formula. Events and ror­
mulas are both complexes. A complex is any conjunction or selectors. A union or complexes is 
called a disjunctive normal rorm (DNF) expression or a DVLl expression. 

The product or two complexes is essentially those points in the event space which are con­
tained in the intersection or the two complexes. The difference or two complexes Cl - C2 is the 
intersection or CI with all points not contained in C2. The union or two complexes is as one 
would expect. 
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Appendix B 

In this appendix, the top level of the basic AQ algorithm is given. The parameter EList is a 
list of complexes to be covered. The parameter FList is a list of complexes which must not be 
covered. AQ returns the cover of EList against FList. 

AQ (EList, FList) 

UnCoveredEList := EList 

Repeat 


Seed :== randomly chosen event from UnCoveredEList 

Star :== STAR (Seed, FList) 

BestComp :== BESTCOMP (Star) 

Cover :== Cover U BestComp 

UnCoveredEList := KNOCKOUT (UnCoveredEList, BestComp) 


Until (UnCoveredEList = NIL) 

Return (Cover). 


Where, 

ST AR - returns the reduced star of Seed against FList. This procedure is described in more 
detail below. 

BESTCOMP - chooses the best complex rrom a star based on specific quality criteria. 

KNOCKOUT - removes complexes from its first argument which are covered by its second argu­
ment. 

The STAR function returns the reduced star of a seed complex E against a list of negative 
examples FList. A star is "a set of all possible alternative nonredundant descriptions of e that do 
not violate constraints F " [Michalski, '83]. A more restricted type or star is actually produced 
which consists of a set or ma.ximally general complexes which cover event E and do not cover any 
of the negative events F. A reduced star consist of no more than some fixed number of the most 
preferable descriptions, as determined by size limit MaxStar and specific preference criteria. 

STAR (E FList) 

Product := (NIL) 

for F in FList 


Product := MULTIPLY (Product, EXTENDAGAINST (E, F)) 
Product := TRUNCATE (Product) 


end 

Return (Product) 


Where, 

EXTENDAGAINST - returns a list of selectors which are extensions or selectors in complex E 
against corresponding selectors in complex F. 

MlJLTIPLY - forms the product of each complex in its first argument with each selector in its 
second argument. 

TRUNCATE - reduces the number of complexes in Product to below some fixed number (Max­
Star) by selecting only the most preferable complexes. 
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Appendix C 

This appendix contains some samples rules produced by current implemntations or AQ and 
SPLIT. SPLIT uses a specialized version or N-promise ror attribute selection. The 6rst example 
is a comparison of rules produced using single-class generation versus multi-class generation, and 
corresponding computation times. The example given illustrates the points made in the text con­
cerning lopsidedeness and speed. On the average, multi-class generation gives better perrormance 
than single-class generation. However, it should be pointed out that multi-class generation may 
at times be slower and will produce more complicated rules than single class generation due to the 
structure or the data set being processed. The following data set, consisting or some peculiar 
animals, was used: 

Domain Dec1&1'atlons 

Variable Domain Type Value Set 
Blood-Temp NOMINAL Hot, Cold 
Body-Covering NOMINAL Fur, Feathers, Scales, Skin 
Habitat NOMINAL Air, Water, Land 
Milk NOMINAL Yes, No 
Eggs NOMINAL Yes, No 
Weight LINEAR 1 .. 300 

Events 

Class Blood-Tem~ Body-Coverin~ Eggs Habitat Milk Weight 
Birds Hot Feathers Yes Air No 1 

Hot Feathers Yes Air No 10 
Hot Feathers Yes Land No 50 
Hot Feathers Yes Water No 20 
Hot Skin Yes Air No 200 

Mammals Hot Fur No Land Yes 175 
Hot Fur No Land Yes 50 
Hot Fur No Land Yes 10 
Hot Fur Yes Water Yes 20 
Hot Skin No Water No 300 

Reptiles Cold Scales Yes Land No 3 
Cold Scales Yes Water No 75 
Cold Scales Yes Land No 20 
Cold Skin Yes Water No 1 

AQINTERLISP was run the CRL VaxB at the University or Illinois Department of Computer 
Science in both single-class and multi-class generation modes. Note that multi-class generation is 
slightly raster and the covers for Mammals and Reptiles are less lopsided. In the single-class case, 
the ratio or the number or points in the event space covered by the Mammals class cover to the 
number or points in the event space covered by the Reptiles class cover is 4:1. In the multi-class 
case it is 4:3. 
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Using 'lngle-elu, generation the following covers were found: 

Cover of Class: Birds 
!B1ood-Temp == HotJ[Body-Covering = Feathers, SkinllEggs == Yes] 

Cover of Class: Mammals 
[Body-Covering = Fur] v IEggs = No] 

Cover of Class: Reptiles 
[Blood-Temp == Coldj[Body-Covering :;6 Fur]lEggs == Yesj 

Computation Time: 2.016 CPU sec. 

Using multi-cia.. generation the following covers were found: 

Cover of Class: Birds 
[Blood-Temp == HotJ[Body-Covering == Feathers, Skinj[Eggs = YesJ 

Cover of Class: Mammals 
!Body-Covering :=: Furl v [Blood-Temp == HotilEggs == No] 

Cover of Class: Reptiles 
[Blood-Temp == Coldl!Body-Covering :;6 Fur] 

Computation Time: 1.792 CPU sec. 

The current version of the SPLIT algorithm will of course be subject to rurther refinements. 
Preliminary results using the current implementation or SPLIT (which is not highly optomized) 
indicate that SPLIT is more costly in terms of CPU time than AQINTERLISP for small prob­
lems, but that the cost does not grow as rapidly as problem size increases. This agrees with cost 
estimates given in the text. Further emperical testing is needed to determine at what point (ir at 
all) SPL IT becomes less costly then AQINTERL ISP. Other revisions to the SPL IT algorithm are 
needed to allow it to produce less lopsided disjoint covers with the same representational flexibil­
ity as is provided by AQ. 

The covers formed by the SPLIT program on the same data set are quite lopsided: 

Cover of Class: Birds 
[Body-Covering == Feathers] v [Body-Covering :;6 Feathersl!Habitat == Air] 

Cover or Class: Mammals 
[Blood-Temp = Hotl!Body-Covering == Fur, Skinl!Habitat :;6 Air] 

Cover of Class: Reptiles 

[Blood-Temp == Cold!lBody-Covering == Scales, Skinj[Eggs == YesHHabitat :;6 AirllMilk == No] 


Computation Time: 2.64 CPU sec. 
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