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1. INTRODUCTION

People are capable of making decisions under extremely adverse conditions, including
situations in which information is incomplete or time is limited. A detective [orms
hypotheses concerning the identity of the killer in a murder case by piecing together evidence
which is usually incomplete and uncertain. A race driver must make split second decisions in
order to react quickly to a rapidly changing environment. One reason that people are able to
tailor their reasoning to fit the demands of their environment is that they can both reason
under limitations of resources available for solving a problem and they can reason in the face
of uncertainty. This combination is crucial since resource limitations put constraints on the
information which can accurately be gathered. Two abilities are important in this kind of
decision making. First is the ability to decide which information to attempt to gather.
Second is the ability to reason in the absence of some information and in the presence of

information which could only be approximately ascertained.

The most common type of resource limitation faced by reasoning systems is limited
time. One attempt at solving the problem of real time response has been to make inference
engines run faster. While such efforts are laudable in their own right, they do not properly
address the problem of real time inference. With this approach, the time constraints of the
application must be known before the knowledge based system is designed to insure that
inference times are within limits. This puts unnatural constraints on the knowledge base
design and makes for a very brittle system. The knowledge engineer is not free to encode the

knowledge in the way that most closely reflects the expert's knowledge. I[nstead, he must



keep the length and breadth of inferences within certain limits to guarantee required response
time. There is no simple way to add new knowledge to such a system. In addition, in situa-
tions where the system has more than the minimum time limit to perform an inference, there

is no way of using the additional time to improve the results.

The research presented in this thesis addresses the problem of reasoning under time con-
straints with incomplete and uncertain information. [t is based on the ideas of Variable Pre-
cision Logic, introduced by Michalski & Winston [1986]. The approach taken is to vary the
precision of inferences in order to produce the most accurate answer possible within a given
time limit. This method produces a highly flexible system. Information can be added to the
knowledge base without undue concern for inference times. In addition, the possible range of
required inference times does not need to be known before a knc:;wlu-dge base can be encoded.

The system can simply adjust to the amount of time available.

The problem of reasoning under time constraints with incomplete and uncertain infor-
mation is closely related to the problem of reasoning efficiently with exceptions. Solutions to
the latter problem shed light on the former one. Recent work in machine learning has
addressed the problem of adding knowledge to existing knowledge bases, also known as
knowledge assimilation. When new information is obtained, this information must be
integrated with the existing knowledge in a consistent manner. There are two approaches to
assimilating new knowledge: knowledge evolution and knowledge revolution [Michalski, 1985|.
Revolution refers to formulation of completely new hypotheses, while evolution refers to
modification of the existing hypotheses. In general, the revolutionary approach is far more
computationally costly than the evolutionary approach. Thus the evolutionary approach is

preferable in situations where the amount of time required to learn a concept is important,



e.g., in dynamic environments where the learning process must keep pace with the rate by

which information is gathered.

The current research complements one particularly promising method of evolutionary
learning called exception learning. Under this methodology, rules are learned which apply to
a general class of situations. Particular situations to which they do not apply are noted as
exceptions. Specifically, when a rule is found to produce a false positive classification, the
misclassified case is 1absl1ed as an exception to the rule. Two systems capable of learning
exceptions are Excel [Becker, 1985 and Winston's learning system [Winston, 1986]. Accumu-
lation of exceptions is a highly efficient learning method; however, the rules created rapidly
become branchy, leading to inefficient reasoning. The Variable Precision Logic reasoning

methodology is one way of reasoning efficiently with such exception augmented rules.



2. THEORY OF VARIABLE PRECISION LOGIC

Variable Precision Logic deals with both the problem of time constrained uncertain rea-
soning and the problem of reasoning efficiently with exceptions. In so doing, it displays an
adaptability of reasoning behavior which until now has been observable only in human infer-
ence. This section discusses the theory of Variable Precision Logic as presented by Michalski

& Winston [1986].

2.1. Time, Certainty, & Specificity

In any practical reasoning process there are extra-logical cost constraints such as time
and resource limitations which must be taken into account. These constraints are generally
dictated by the requirements of the particular environment in which the reasoning agent is

functioning. In order to flexibly respond to these constraints, the tradeoff between the cost,

computational
cost

specificity

Figure 1. Triad of Trndeu&‘a..

* Introduced by Michalski at the ISG seminar, October 1985.



certainty, and specificity of inferences can be used (see figure 1). In this context, certainty
refers to the degree of beliel in a statement, while specificity refers to the degree of detail of a

description.

As an example of these tradeoffs in reasoning consider the following. Suppose you are
standing in front of the Sears Tower with a friend. You ask him, "Are there more than one
hundred offices in the building?” and he answers very quickly, "es." You ask him “Are there
between one hundred and five thousand offices?” and he takes a bit more time. Finally you
ask him "Are there between one and two thousand offices in the building?" and he takes
much longer to respond. Each question requires progressively more deliberation. This is an

example of the tradeofl between specificity and time. The more specific or narrow the probe

question, the more time it takes for a response.

Now suppose that your friend is not required to answer only yes or no but can provide
approximate answers. You ask him "Are there between one and two thousand offices in the
building?” and he answers immediately "Maybe, maybe not.” You tell him that you want
more commitment than that and he replies "Most likely not.” Finally, you tell him to either
answer yes or no and he says "No.” Again, each of the answers takes progressively more deli-
beration but this time because the required certainty of the answers is increasing. This illus-

trates the tradeofl between certainty and time.

Now suppose that you ask your friend to give you any answer he can within five
seconds. When asked if there are more than cne hundred offices in the building, he answers
"es." You ask if there are between one hundred and five thousand offices and he says "Prob-
ably.” Finally you ask if there are between one and two thousand offices and he says that he

simply doesn’t know. With a fixed time limit, as each question becomes more specific, the



certainty of the answer must be lowered. This is an example of the tradeoff between cer-

tainty and specificity.

2.2. Censored Production Rules

The current research examines the tradeoff between time and certainty, when specificity
is kept constant. Michalski and Winston [1986] first presented a logic in which the certainty
of an inference could be varied to conform to cost constraints. Variable Precision Logic
(VPL) used censored production rules to encode both domain and control information. The

rules take the form:

P->D|C

read If P then D unlesa C,

where P is the premise, D is the decision, and C is the censor. The premise is a conjunction
of literals; the decision is a single literal; and the censor is a disjunction of literals. These
rules embody both object level and control level information. The object level information is
expressed in the logical semantics and the control level information resides in the fact that
censors represent exceptions. Since exceptions are by definition false most of the time, we
have certain expectations concerning the character of the inferences made with such rules.

These expectations may be used to control the inferences.

Two means of assigning a logical semanties, with associated procedural semantics to
these rules are: the passive interpretation and the active interpretation. Winston, in his

learning system [Winston, 1986, uses the passive interpretation.



This says that rules with e_x:eptiuns are logically equivalent to:
P&-C—D

or alternatively,
P—-(DVvC).

Winston exploits the control level knowledge in the reasoning process by allocating only one-
step effort to determining the censor values and unlimited effort to checking the premises. [f

a censor cannot be shown to be true, it is assumed false.

Io the active interpretation proposed by Michalski & Winston [1988], censored produc-

tion rules represent the conjunction of the two rules:

P&-C—D

P&C—-D
or equivalently,
P — (D& C)

where (B denotes the exclusive—or operator. The control level information concerning the
censors is expressed by representing the strength of the inference when the censor value is
known and when the censor value is unknown. The details of representing beliefs will be
explained in section 3.3. Since the censors are exceptions, the inference will be quite strong
even if their values are unknown. Thus in time critical situations, meaningful inferences may

be made even when the resources devoted to determining the censor values are limited.



It is clear from the logical semantics that the active interpretation of a censored produc-
tion rule provides more information than the passive interpretation does. The active
interpretation allows conclusions concerning the negation of the decision, while the passive
interpretation can only make positive conclusions. The two approaches also differ in that
they make different uses of the information that exceptions are false most of the time in order
to achieve efficient inference. The passive interpretation uses this information to assume that
censors are false if they cannot be proven true, whereas the active interpretation uses this
information to make acceptably strong inferences even without complete knowledge of the

censor values.

The following example will make this discussion more concrete. Suppose that on Sun-

days I go for a drive unless the weather is bad. This can be expressed by the rule:
Sunday — Drive car | Weather is bad.

From this we can conclude that if it is Sunday and the wu.mhcr is good, I will drive my car;
also if it is Sunday and the weather is bad, [ will not drive my car. If it is not Sunday then
nothing can be concluded. Since the exclusive-or operator is symmetric, one might be

tempted to rewrite this rule as
Sunday — Weather is bad | Drive car.

With respect to the logical semanties, this rule is correct but it is not intuitive. There seems
to be an inherent asymmetry in the unless operator. This asymmetry is due to the expecta-
tion concerning the truth value of the decision and the exception. Given the premise, the
decision is true most of the time, whereas the censor is false most of the time. The first rule

expresses the idea that on most Sundays [ drive my car and on most Sundays the weather is



not bad. The second rule expresses the idea that on most Sundays the weather is bad and on

most Sundays [ do not drive my car.

2.3. Making Expectations Quantitative

In order to quantify the expectations inherrent in the semantics of censored production
rules, Michalski & Winston (1986] introduce subjective point probabilities. A censored pro-

duction rule is then written

P—=D|C:7§

where 7 = prob(D|P) and § = prob(DIP&-C). A § value less than one represents an incom-
plete censor. Michalski & Winston suggest performing inference by using the § value when
the ecensor is known to be false and the + value when the censor value is unknown. There are
a number of problems in reasoning with this representation scheme due to inherent limita-
tions of Bayesian inference when using point probabilities. These problems will be discussed
in section 3.1. [n addition, this approach leads to a discrete kind of reasoning behavior:
either the censor value is known or not; thus either the & value or the 7 value is being used.
Haddawy [1986| presents an implementation which displays this type of behavior. In the next
section an extension of this notion is presented where the censor value can be known with
varying degrees of certainty. This results in a continuous behavior along the entire spectrum

between the two extremes.
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2.4. The Provided Operator

If it is useful to augment production rules with exception conditions which are false
most of the time, we might want also to include conditions which are true most of the time.
For this purpose, the provided operator is introduced as the dual of "unless.” To express the

fact that P implies D provided C, we write
P-DJ[C,

where P is a conjunction of literals, D is a single literal, and C is a conjunction of literals.

This single rule is defined as the conjunction of the two rules

P&EC—D
P&£-C—D

or equivalently,

P — (D - C)

This is semantically equivalent to writing

P—D|-C

but more directly expresses the idea that we wish to convey. For example, to express the fact
that if interest rates are low I will buy a new car provided I have sufficient funds we could
write:

Low-interest — Buy—car [ Sufficient—funds.

This could be expressed using "unless” as follows:

Low-interest — Buy—car | =Sufficient—funds.
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3. REPRESENTING AND REASONING WITH BELIEFS IN VPL

Along with the logical semantics presented above, the VPL system associates a proba-
bilistic semantics with rules and facts. The basis of this semantic interpretation is the

Dempster-Shafer theory of belief.

3.1. Comparison of Approximate Inference Methods

The primary goal of this thesis was to develop a system capable of reasoning with
incomplete and uncertain information under time constraints. The system was to be capable
of varying the certainty of its inferences to produce a result within a given time limit. To
achieve this behavior, a suitable approximate inference scheme needed to be chosen and the
notion of the certainty of an inference defined within that scheme. The definition of the cer-
tainty of an inference should satisfy two criteria: it should correspond to our intuitive under-
standing of certainty; and the certainty of any inference should increase monotenically with
the time allotted. The second criterion guarantees that as more information is brought to
bear on a problem, the certainty of the result increases. To choose an approximate inference

scheme, three uncertainty caleuli were considered:

- Mycin Certainty Factors
- Bayesian [nference

- Dempster-Shafer Theory

Shortliffe [1976] introduced the notion of certainty factors for modeling belief in the
Myecin medical expert system. The certainty of a hypothesis given some evidence is expressed

using two factors: the measure of belief and the measure of disbelief.
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Shortliffe & Buchanan [1984] define these measures as:

MB|h,e|] = x means "the measure of increased belief in the hypothesis h, based on
the evidence e, is x"
MDIh,e] = y means "the measure of increased disbelief in the hypothesis h, based

on the evidence e, is y"
These values are governed by the following restrictions

0 < MBlhe < 1

0 <MDfhe| <1

The certainty factor of a hypothesis h given some evidence e is then defined as
CF [h,e] = MB|h,e| - MD[h,e],

where
-1 <CF[he] <1

The certainty factor indicates the net belief in a hypothesis. CF > 0 indicates that there is
more reason to believe a hypothesis than to disbelieve it, while CF < 0 indicates that there
is more reason to disbelieve a hypothesis than to believe it. CF = 0 indicates either a lack of

evidence concerning a hypothesis or conflicting evidence.
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Measures of belief and disbelief are combined and propagated according to the following func-

tions [Shortliffe & Buchanan, 1984):

Conjunction:
MBIk 8hyye|=min(MBh ], MB(hye|)
MD [k ,&h y,e|=maz (MD [hye], MD{hye )]
Disjunction:
MB [h v hg,l ]-mn: {MB [h l!“]l MB {hm‘ ]}
MD [hVhaye|=min (MDA e], MD [hae])
Propagation:

Given a rule P — D with MB'[D,P| and MD'(D,P}, if P is not known to be true or false
but is believed with a CF between -1 and +1, based on some evidence ¢; then the belief in D

is given by:

MBD ¢ |=MB'|D ,P|'maz (0,CF|P.e])
MDD ,]=MD'[D P|-maz(0,CF[P.e])
Given two rules P, — D and P; — D, the belief and disbeliefl in the decision are com-

puted according to the function:

MB[D P &P,| =0 f MD[D,P &P, =1
MB|D ,P,8P;] = MB(D ,P\|+MB (D,Py}(1~MB[D P\|) otherwise
MD[D,P, 8Py =0 it MBID P8Py =1

MD(D,P,&P;) = MDD ,P,|+ MDD Py|(1-MD (D Py]) otherwise

Certainty factors worked well in Mycin's limited medical domain but have no clear theoreti-
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cal basis and their applicability in other domains is dubious.

Bayesian inference is the oldest uncertainty caleulus. There is an extensive body of
literature on both the theory and application of Bayesian inference. Thus it was the most
thoroughly investigated alternative to the chosen Dempster-Shafer theory. When applied to
rule-based systems, this method interprets rules as representing conditional point probabili-
ties and facts as simple point probabilities. For example, the rule E — H with certainty & is
interpreted as prob{H|E)=a, where E is called the evidence and H the hypothesis. A model
of a domain is built by assigning prior probabilities to the evidence and hypotheses. These
probabilities are then updated to yield nm.teri-:-r probabilities when the user enters new infor-

mation. Bayes theorem states that

prob(E ... By | H)prob(H)

ob(H ! By By ) =
preb{H i Bynli) prob(E ,rrrEn)

A theoretically correct implementation of Bayesian inference requires knowledge of the condi-
tional probability of every fact given every combination of other facts. For example, to infer
prob(H) from prob(E;) and prob(E,) requires knowledge of prob(H | E,&E,), prob(H | -E,8E,),
prob(H | E,8—E,), and prob(H | —E,8-E;). Thus for a knowledge base with n facts we require
knowledge of 2* conditional probabilities. This is a prohibitively large amount of informa-
tion to gather and store. To solve this problem, there are two approaches suggested in the
literature: the use of the maximum entropy principle and the use of simplifying assumptions

with the L~ interpolation heuristic.

Maximum entropy is a means of computing the complete conditional probability distri-
bution given only partial information concerning the conditional probabilities. Any condi-

tional probabilities supplied along with any posterior probabilities are considered to be a set
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of constraints. The remaining :onditir.l.nal probabilities are chosen so that the constraint set is
satisfied and the least additional bias is introduced. This is done by choosing the remaining
conditional probabilities so that the entropy of the system is maximized [Duda, et al. 1979].
The computation is performed using the simplex method of optimization. Unfortunately, this
method is too computationally costly for use as an inference method, particularly when

response time is of concern.

The need for the 2* conditional probabilities can be partially alleviated by assuming

independence among the evidence events. In this case, Bayes theorem can be written as

\ ~ prob(E; | H)
prob(H | EynBa) E orob E)]

prob(H)

But by Bayes theorem again

prob(H | E;)prob(E;)

So
. n prob(H | E;) ;
prob(H | BB ) H_"__W{H} prob (H')

Thus we have an expression for the probability of H given a conjunction of evidence events in
terms of the probability of H given each of the events individually, as might be expressed in
the form of rules in an expert system. To propagate probabilities, the posterior probability

of H as a result of observing event E’ can be expressed as

prob(H | E") = prob(H' EyynrBp ) prob(Ey - - - 1 Ea E)

+ prob [H'l Etr---rEn]'F"“ (B Eai B

The problem in using this is that commoanly observations correspond to prob (E; | E " individu-

ally and not prod(Ey, - - .,E,'E"). The L’ interpolation heuristic is an approximate solution

* The presegtation hers closely follows that of Konolige in Appendix D of [Duda, et al. 1979].
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]
to this updating problem proposed by Duda, et al. [1978] . L’ is both continuous and mono-
tonic but only corresponds to Bayesian theory when applied to certain evidence. The L°

heuristic is defined as

L' L'gO(H)
o181 = o

where

prob (H)
1—prob(H)
OjH"]Af!

O(H)

Ly = O1H B)
B~ T0H)

O(H) =

L'A =

prob(H | A") = prob(H | A)prob(A | E') + prob(H ' ~A)prob(=A  E')

Unfortunately, L° displays extreme nonlinear behavior for certain combinations of evidence.
This means that small changes in the probability of the evidence can produce large changes in
the probability of the hypothesis. A change in the probability of a piece of evidence should
not cause a correspondingly greater change in the probability of the hypothesis. This type of
behavior would suggest that there are additional factors affecting the hypothesis. The worst
cases of non-linearity occur for very high and very low certainty of evidence. If L'z => 1, we
have the behavior shown in figure 2. Almost all the effect on prob(H ! E') takes place when

prob(H | A") has reached the value 10/L'5.

At this point we turn to the question of how to define the notion of certainty of infer-
ence for a Bayesian inference scheme using point probabilities. Within this framework, the

most appealing definition of certainty is in terms of entropy.
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—
=Y P

4 prob(HIA')

Figure 2. Non-linearity of L’ interpolation for L"g > 1.

Given a probability distribution P, the entropy is defined as
H = = S P;logF;

where the P, are the probabilities of the individual events. The certainty of a fact is then
defined as the inverse of its entropy value. A fact known with probability 0.5 has the lowest
certainty and a fact known to be absolutely true or false has the highest certainty. The prob-
lem with this formulation is that it violates the monotonicity criterion. For example, if the
probability of a proposition is inferred to be 0.8 given 3 seconds inference time, there is no
guarantee that the inferred probability will not be 0.5 given 5 seconds. Under this definition
of eertainty, an increase in inference time resulted in a decrease in certainty. It is assumed

here that time is equivalent to amount of search permitted and that unknown facts are given
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a posterior probability equal to 0.5 or their priors. A definition of the certainty of an infer-
ence is needed which corresponds to the notion of amount of information. As will be shown
below, Dempster-Shafer theory employs a simple definition of certainty which provides such
a notion and satisfies both the monotonicity and intuitivity criteria mentioned above. For a
more general discussion of the properties of various uncertainty calculi in the context of infer-

ence see Wise & Henrion [1984].

3.2. Dempster-Shafer Theory

Dempster—Shafer Theory (DST) is a generalization of Bayesian inference which provides
a method of explicitly representing the ignorance inherrent in knowledge and of reasoning in
the absence of certain information. The method was originally proposed by Dempster [1968]
and later adapted to reasoning in discrete domains by Shafer [1976|. By allowing for
ignorance, DST avoids the problem of requiring the complete set of conditional probabilities
mentioned earlier., The central ideas of DST will now be presented. The presentation follows

closely that of Garvey, et al. [1981].

The belief in a proposition A is represented by a Shafer interval [s(A), p(A)] which is a
subinterval of the unit interval [0 .. 1]. s(A) is called the support and p(A) the plausibility of
the proposition A. These values can be thought of as upper and lower bounds on the proba-
bility of A. The uncertainty of a proposition is then defined as the width of the interval:
u(A) = p(A) - s(A). The precision of the probability estimate for the proposition A is then
defined as PPE(A) = 1-u(A). The PPE of the decision is the measure which will be used to
characterize the certainty of an inference. Henceforth we will refer to this as the precision of

the inference. When the precision of the probability estimate is one for all propositions, the
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system reduces to a Bayesian scheme. An example will illustrate the contrast between this
representation and that of point probabilities. Suppose [ throw a die and ask you what the
probability of a six coming up is. You would answer one sixth. Now if I tell you that the die
is not necessarily fair, you would have to say that the probability is somewhere between zero
and one. Reasoning schemes using point probabilities have no way of capturing this type of
uncertainty, which corresponds to a lack of observations. If you observed a hundred throws
of the die, you would be able to form a hypothesis concerning its fairness and thus narrow
your estimate of the probability of a six coming up. As will be shown later, it is exactly this

type of uncertainty that needs to be represented in the VPL system.

Dempster's rule is a method of integrating information from independent sources. In
Dempster’s calculus, propositions are represented as subsets of the exhaustive set of possibili-
ties ©, the frame of discernment. A basic probability assignment m maps elements of 27 to a
 value in the interval [0 .. 1]. Given a proposition which represents some subset of the possi-
bilities contained in the frame of discernment, m(A) represents the probability mass con-
strained to stay in A but otherwise free to move, called its basic prabability mass. This
represents our ignorance bmuu we cannot further subdivide our belief and restrict move-
ment of the probability mass [Barnett, 1981]. m(©) represents the residual uncertainty of the

domain. m is defined as follows:
m($) =0
m(A) € [0.1]

om(A)=1
Ace

where & denotes the empty set. The support for a proposition A is then defined as the total

mass attributed to A and all of its subsets. This represents the total belief in A. The



plausibility is one minus the support for the complement of A.

s(A)= ¥ m(4)
ACA

plA) = 1-s(-A4)

To make this discussion more concrete, consider the following example. Suppose you
are thinking of moving to a new city. You have several alternatives in mind and would like
to rate them according to your primary criterion, the type of women who live there. You like
blondes and red heads but not brunettes. So your frame of discernment representing the
exhaustive set of possibilities is © = |blond, brunette, red head!. In order to make your deci-
sion, you decide to travel to each city and see what the proportion of blonds and red heads to
brunettes is. You visit the first city and walk through the streets with your note pad, record-
ing the hair color of each woman you see. But you chose to visit the city in the winter and
some of the women are wearing hats so you do not know what their hair color is; it could be
any one of the three. You see 40 blonds, 20 red heads, 30 brunettes, and 10 women with hats,

making a total of 100 women. Based on this, the basic probability assignment m is defined as

m(blond) = 0.4
m(red head) = 0.2
m{brunette) = 0.3

m(hat) = m(blondVred headvbrunette) = m(©) = 0.1

The support for the proposition A = blondVred head is then
s(A) = m(blond) + m(red head) = 0.6
and the support for —A = brunette is

s(=A) = m(brunette} = 0.3.
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The plausibility of A is p(A) = 1-s(=A) = 0.7. So the prob(A) € (0.6 .. 0.7]. The uncer-
tainty in the domain is just m(8) = 0.1 Dempster-Shafer theory allows us to represent
ignorance by assigning a probability mass to a statement which contains several alternatives,
in this case m(hat). In this way we can account for a lack of observations and uncertain

observations, both of which represent forms of incomplete information.

Two basic probability assignments m, and m, which provide evidence ¢oncerning a com-
mon frame of discernment are combined using Dempster’s orthogonal sum rule to yield a new
basic probability assignment. The combined effects of m, and m, are represented by a unit
square. Suppose we have a frame of discernment © = {a,bc] and the propoei;‘:iuns A =avb
and —A = ¢. Figure 3 shows the unit square representing the combination of two basic pro-
bability mass functions m, and m,. The belief committed exactly to the combination AC€ is
then the area of the rectangles corresponding to the intersection, ie,

m ,(A)my(8) + m,(8)maA) The total mass allocated to a given subset ColBis

E m (A }""2{3,-'}~
A NB=C

Referring to the above example, the total mass allocated to A is

m(A) = m(A)mgd) + m (A )yma(#) + my(#)mald)

Since the combination of m, and m; must again be a baaic probability assignment, the follow-

ing must hold.

5 mA)ma(B) + T m (A Jmq(B;) = 1
A8 Al |0y



ml_a.}

m{ﬂ}

ml[a.} m(b) m[c] EA) m&B}

Belief committed to AN® = m, (A)m,(8)+m (8)-m,(A)

Figure 3. Dempster’s orthogonal sum.

Thus Dempster’s orthogonal sum rule for the new probability function for all subsets C of ©

.
13

F.E m (A Jmq(B;)

A\E=C

ks L= 5 my(A)mq(B;)
A8 =

The denominator is a normalizing factor which removes the probability assigned to the

empty set.
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Now consider the case in which © contains only two values A and =A. The support and

plausibility values are then:

s(A) = m(A)

p(A) = 1 - m(=A) = m(A) + m(8).

Substituting these into Dempster’s rule and simplifying, we obtain:

s(A)=1~- (1—s llA}](l—lg[A ”
(s A)1—palA)+{1=p1(A)ealA)]

Dempster's rule can be expressed in terms of Shafer intervals as:

; ac bd
(¢ - 41Ble - di= |1 = I—(ad+be)  1-(ad+be)

where @ denotes the orthogonal sum of the two intervals [a .. b] and [¢ .. d]. This is similar
to the formula given by Ginsberg (1984|. The formula is both associative and commutative so

it can be applied pairwise in any order.

3.3. Dempster-Shafer Interpretation of VPL

The VPL system represents knowledge in terms of rules and facts. To apply DST to
VPL, we must provide an interpretation of rules and facts in terms of Shafer intervals. The
belief in a fact is represented by associating a Shafer interval with each fact. Shafer intervals
are viewed as representing upper and lower bounds on the probability of a fact; thus
Ay, = prob(A) € [s - p|, where A is a proposition. A censored production rule should then
imply information concerning the Shafer interval of its decision given the Shafer intervals of

its premises and censors. Implication is interpreted as expressing conditional probability.
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Four belief values are associated with each censored production rule:
P-=D|C:F, 817

The & value is the lower bound on the probability of D given P and =C; the & value is the
lower bound on the probability of —D given P and C; the 7" value is the lower bound on the
probability of D given P; and the 4 value is the lower bound on the probability of =D given

P. This is summarized below:

prob(D|P & =C) € [¢" .. 1]
prob(—=DJP & C) € [¢ .. 1]
prob(D{P) € [v" .. 1]

prob(=DIP) € [v .. 1]
The v~ and 7~ values are constrained by the restriction that v~ + v < 1, thus

prob(D{P) € [v" - (1 = 7).

For example, the following rule might be used to express the fact that [ read the paper

before going to work unless I oversleep, which occurs once or twice a week:
Weekday-morning -> Read-paper | Oversleep : 0.9, 1, 0.6, 0.2
where the belief factors are interpreted as follows:

- the "0.9" states that on weekday mornings when I do not oversleep I read the paper at least
0.9 of the time because there are other factors which would keep me from reading the

paper, such as the paper boy throwing it on the roof, which are not being considered;



— the "1" states that on weekday mornings when [ oversleep I certainly do not read the paper;

— the "0.8" states that I read the paper at least three out of five weekday mornings (because [
oversleep at most twice a week);

_ the "0.2" states that I do not read the paper at least one out of five weekday mornings

(because [ oversleep at least once a week).

This formalism also allows representation of incomplete and inconsistent censors. Fig-
ure 4 shows the set theoretic interpretation of a censored production rule. Most of the prem-
se intersects with the decision, indicating that the inference P — D is quite strong. Most of
that part of the premise which is outside of the decision is covered by the censor. This censor
is both incomplete and inconsistent. The censor part of a rule is incomplete if it does not
cover all possible exceptions. It is inconsistent if it has a nonempty intersection with the

decision. The degree of incompleteness is expressed by the amount by which & < 1 and the

Area Area

h
|
|
|
|
|
|
|

_

Figure 4. Set theoretic interpretation of P — D l1¢C.
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degree of inconsistency by the amount by which & < L.

The provided condition, the dual of unless, is represented as:

P—-D[C:&,8,7
where

prob(DIP & C) € [ .. 1]

prob(—D|P & ~C) €[ .. 1]

prob{D{P) € [v" .. 1

prob(—DIP) € (v .. 1].

The set theoretic interpretation of the provided operator is shown in figure 5. Since the cen-

sor part of a provided rule is true most of the time, it is shown to cover a large part of the

[ncomplete Inconsistent
Area Area

Figure 5. Set theoretic interpretation of P — DfcC.
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universe of discourse. Most of the premise intersects with the decision, indicating again that
the inference P — D is quite strong. Most of the intersection of the premise with the decision
is covered by the censor. The area of intersection between the premise and decision not
covered by the censor represents the degree of incompleteness of the censor. The area of the
premise covered by the censor but outside the decision represents the degree of inconsistency

of the censor.

The above discussion has presented a representation of belief for propositional logic, but
the VPL system uses a predicate logic representation. In this representation, terms contain-
ing only ground instances are equivalent to propositional logic and thus present no additional
problems. However, a semantics for expressions with free variables is needed. Rules of the
form A(x,y) — B(x), with an associated belief [s p| are interpreted as ¥x,y prob{B(x)jA(x,y))
€[s. p|. Thisis essentially a shorthand for listing rules over the entire domain of x and y.

Similarly, a fact A(x) with belief [s p| is interpreted as ¥x prob(A(x)) € [s .. pl.

3.4. Combination & Propagation of Belief in VPL

The VPL system reasons by combining belief values via logical operators and propagat-
ing belief values across rules. This implies that a probabilistic semantics must be assigned to
the combination operators &, V, and = and to the propagation operator —. There are
several ways of making this assignment, corresponding to different assumptions and interpre-
tations of the operators. As stated earlier, Shafer intervals are interpreted as upper and
lower bounds on probabilities. Within a probabilistic framework, three assumptions which
can be made concerning the correlation between events are: positive correlation, negative

correlation, and independence. Given two propositions A & B, they are positively correlated
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prob(A;B)=1 prob(BiA)

Figure 8. Positive correlation.

O ‘
prob(A;—B)=1 prob(B{—A)=1

Figure 7. Negative correlation.




prob(AlB)=prob(A)
prob(BIA)=prob(B)

Figure 8. Independent events.

if prob(A;B) = 1 or prob(B{A) = 1, as shown in figure 6. As can be seen from the diagrams,
the probability of the conjunction of the two propositions is just the minumum of the two
and the probability of the disjunction is just the maximum of the two. Two propositions are
negatively correlated if prob(A|=B) = 1 or prob(Bl=A) =1, as shown in figure 7. Two pro-
positions are independent if prob(A|B)=prob(A) and prob{BlA)=prob(B), in other words, the
event of one has no influence on the event of the other. Since by definition prob(A{B) =
prob(A&B)/prob(B), under independence prob(A&B) = prob(A)-prob(B). This is shown in
figure 8. To summarize, under these assumptions, the combination functions for conjunection
and disjunction are:

Independence: prob(A&B) = prob(A)-prob(B)
prob(AVB) = pruh(ﬁ]+prub(B}-prob{A]+proh(B].

Positive: prob(A&B) = Min(prob{A), prob(B))
prob(AVB) = Max(prob(A), prob(B))
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Megative: prob(A&B) = Max(0, prob(A)+prob(B) - 1)
prob(AVB) = Min(1, prob{A)-+prob(B))

The negation operator has the en-ame definition under all these assumptions, namely prob{—A)
= 1-prob(A). Wise & Henrion [1984] have shown that of the three assumptions, inference
under the independence assumption corresponds most closely to inference using the maximum
entropy principle. Since maximum entropy can be shown to cause the least biasing of infer-
ence behavior, the independence assumption was adopted in the VPL system. When comput-
ing the conjunction or disjunction of twe Shafer intervals, the result should yield upper and
lower bounds on the probability of the conjunction or disjunction. Under the independence

assumption, the upper and lower bounds are obtained by applying the combination functions

to the support and plausibility values separately as follows:

If prob(A) € (s(A) .. p(A)]

and

prob(B) € [s(B) .. p(B)|
then prob(A & B) € [s(A)s(B) .. p(A)-p(B)
and

prob(AVB) € (s(A)+s(B)-s(A)s(B) .. p(A)+p(B}-p(A)p(B)|

To defin
e negation recall that s(—A) = 1-p(A) from which it follows that p(—A) = 1-s(A)
This yields the definition: |

prob(=A) & [1-p(A) .. 1-s(A))

Rules in ¢ i
in the VPL system are interpreted as representing bounds on conditional probabil

ities, Standard babili i
probability theory provides a simple formula for propagating probabiliti
1es
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across such rules. Given arule P — D, the probability of D may be expressed as:

prob(D) = prob{D{P)-prob(P) + prob(D}=P)-prob(=P).

A propagation function for Shafer intervals may be derived by performing a sensitivity

analysis on this formula [Dubois & Prade, 1985|. Suppose the following:

prob(P) € (s(P) .. p(P)]

prob(—P) € [1-p(P) .. 1-s(P)]
prob(D{P) € [s(P—D) .. p(P—D)|
prob(=D!P) € [s(P—=D) .. p(P—-D)|

prob(D!=P) € [0.. 1], i.e., it is unknown.

Values from these bounds must be chosen which will minimize and maximize the prob{D).
These values must obey the restriction that if the upper bound on prob(P) is chosen then the
lower bound on prob(—P) is used and vice versa since prob(—=P) = 1 - prob(P). To derive the
lower bound, first take prob(Dj-P) = 0. Then since prob(—P) will have ne effect, take
prob(—=P) = 1-s(P). For prob(D|P) we are free to take s(P—D). The lower bound is then

simply the product s(P—D)-a(P).

To determine the upper bound, first take prob(D|—P) = 1. Since prob(D|P) < 1, the
maximum value is yielded by taking the lower bound on prob(—P) and the upper bound on
prob(P). Thus the upper bound is given by 1-s(P)+p(P—D):s(P). Since p(P—D) = 1-
s(P—=D), this can be simplified to 1-s(P)-s(P—=D). To summarize, the final propagation

function is:

orob(D) € [s(P)-s(P—D) .. 1-s(P)-s(P—=D)|.



When a VPL type rule has no censors, this is the propagation function used. For the
rule P — D : 9", 7 the resulting expressions for the support and plausibility of the decision

are:

s(D) = s(P)-1"

p(D) = 1-s(P)7

For rules with censors, both the § and ~ values must be taken into account. We concen-
trate first on propagation using the § values. Consider first & which represents the lower
bound on the prob(D!P&=C). The support for D may be obtained by taking the product of

& and the lower bound on prob(P&=C). Thus
s(D) = s(P)[1-p(C)|-&"

Next, consider § which represents the lower bound on prob{(D!P&C). The support for =D
may be computed by taking the product of & and the lower bound on prob(P&C). The plau-

sibility of D can then be derived using the identity p(D) = L-s(—D) to yield:
p(D) = 1-s(P)-s(C)-&

These support and plausibility values represent the constraints which the censor value puts
on the range of values which the decision may assume. The interval represented by these
values is called the possible range of the decision and denoted [spw ppmi, For example, if the
Shafer interval for P is [1 1] then the range of the decision is equal to the range of the censor.

The propagation functions for the possible range are then:

9 onD) = 9 (P)1-p . (C)|&

PoosslD) = 1-8 o (P)s (C)-F, -
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where the references to the possible ranges on the right hand side allow the values to be pro-

pagated from rule to rule.

The possible range can leave some uncertainty concerning the value of the decision. The
amount of uncertainty is equal to the width of the probability interval. This uncertainty
represents the probability mass which could not be assigned exactly to D or =D. In other
words, it is free to move between the two values. The 7 values can be used to apportion this
remaining probability mass. The 7 values represent the probability of D given P when the
cepsor value is unknown. When the censor value is completely unknown, they are used to
distribute the entire probability mass. When the censor value is partially known, they can be
used to distribute that portion of the probability mass which the censor value has failed to

constrain. The range produced by use of the v values is called the moal likely range and is

denoted I’ml-l’mg.l- The corresponding propagation functions are:

8.(D) = 3,0 (D) + (3, (P)7 I[P () - 3 (C)]

Poi(D) = Pooee(D) - [85,(P)71(P(C) - 3, (C-

Note that the propogation functions for rules without censors is just the special case of these
wheres__(D) =0, p_ (D) = 1, and [p_(C) = 5_,(C)] = 1. The most likely ranges of P&C
appear on the right hand side to allow the most likely range to be propagated from rule to
rule. For any observed fact, the possible range and most likely range are equal. Figure 9

shows some possible and most likely ranges for various values of the premise and censor.

The first four rows of the table show that both propagation functions are faithful to the
logical interpretation of censored production rules. The middle three rows show the effect

that varying the censor value has on the most likely and possible ranges for a premise known



0.40 | 0.60 || 0.40 | 0.60 | 0.54 | 058
060 | 0.60 | 0.40 | 0.40 | 0.40 | 0.40
530 | 0.90 | 0.00 | 1.00 | 0.00 | 1.00 | 0.58 | 092
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Figure 9. Possible and most likely ranges of the decision
for the rule P D | C:1,1,07,0.1

with absolute certainty, When the censor value corresponds to a point probability, the most
likely range is equal to the possible range. When the censor value is completely unknown, the
possible range is [0 1] and the most likely range is a function of the 4 values. When the cen-
sor has some certainty between zero and one, the most likely range is a subrange of the possi-
ble range. The possible range can be thought of as indicating the extent to which the most
likely range could change given more information concerning the censor. The last three rows
of the table are the same as the above three except that the premise is only known with par-
tial certainty. Again when the censor value is a point probability, the possible and most
likely ranges are equal because the uncertainty of the decision is not due to any uncertainty

in the censer.

The reasoning behavior displayed by these propagation functions is a generalization of

default reasoning. Default logic [Reiter, 1980 is a formalism for reasoning with incomplete



information in a logical framework. Lack of information is handled by the use of assumed
truth values when the truth value of a fact is unknown. Thus either the truth value of a fact
is known or it is a complete assumption. VPL, on the other hand, allows partial information
to be incorporated into the default reasoning process, resulting in conclusions with varying
amount of default character between the two extremes. This is reflected in the most likely
range of the decision as a function of the PPE of the censor value. When the censor value is
known as a point probability, the most likely range of the decision is strictly a function of the
§ values and the evidence, When the censor value is unknown, the most likely range is
strictly a function of the 7 values and the evidence. When the censor value is partially
known, the most likely range is a function of the & values, the 7 values, and the evidence,
weighted toward the § or 7 values according to the PPE of the censor. The § values can be
thought of as the belief in the decision when all of the available evidence is considered, and
the 7 values can be thought of as the default belief in the decision when information concern-
ing the censors is limited. Figure 10 shows the characteristic curves of the propagation fune-

tion for various values of the PPE of the censor for the rule:

pP—D|C:1,1,08,02
Note that as the PPE of the censor increases, the midpoint of the probability interval for the
decision approaches the default value of 0.8.

To relate the combination and propagation functions presented above back to censored

production rules, consider the lollowing two rules:

P, &P'—D|C Ve 5L Fu T

P, P'—D [ Cyv Cy: 6203 T T2,
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Figure 10. Characteristic curves for the rule
P—-D|C:1,1,08,02
fﬂr PPE{G) = n. uo’-., ﬂai, uﬁ‘f ut‘, 1.

Given the belief in the premises and censors, we wish to know the belief in the decision D.

For each rule, the beliefs in the premises are combined using the combination funetion for
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conjunction; the beliefs in the censors are combined using the combination function for dis-
junction. Using these values and the propagation functions, the belief that each rule attri-
butes to D is calculated separately, yielding two most likely and two possible ranges. The
most likely ranges and possible ranges are finally combined using Dempster's orthogonal sum

to arrive at the total belief in D as a function of all available evidence.

3.4.1. Tweety Example

The following example illustrates the way in which the VPL system reasons with uncer-
tain information. Consider the rule base shown in figure 11, based on an example [rom
Michalski & Winston [1986]. These rules indicate whether a bird can fly based on evidence
concerning its condition and the type of bird it is. The frst rule states that a bird can fly
unless it is a special bird or is in an unusual condition. The next three rules define what an

unusual condition is and the last five rules enumerate the different kinds of special birds.

is-bird z) => (flies z}
(is-special-bird z) V fis-in-unusual-condition z):1,1,08 01

(is-dead z) == fis-in-unusual-condition z):1,0
(is-sick ) => [is-in-unusual-condition z) : 1, 0
(has-broken-wing z) == (is-in-unusual-condition z) : 1, 0

fis-penguin z) => (is-special-bird z) : 1, 0
(is-oatrich z) => (is-special-bird z) : 1, 0

(is—emu z) == (is-special-birdz) : 1, 0

(is-kiwi ) == (is-special-birdz) : 1, 0
(is-domestic-turkey z) => (is-special-bird z) : 1, 0

where x is universally quantified.

Figure 11. Tweety example rule base.




Now we would like to give the system various observations about some bird named Tweety

and ask it if Tweety can fly. We first tell the system that Tweety is a dead bird:

(is=bird Tweety): 11
(is-dead Tweety): 11

When asked if Tweety can fly the system responds

Most Likely Range = [0.00 0.00]
Possible Range = [0.00 0.00],

indicating that Tweety certainly cannot fly. The certain premise combined with the certain
censor yield the negation of the decision. Now, if the certainty in Tweety’'s death is reduced

to
(is-dead Tweety) : 0.7 0.8,

the resulting belief in his ability to fy is

Most Likely Range = [0.24 0.27|
Possible Range = [0.00 0.30|.

The possible range indicates that there is no support for Tweety’s ability to fly and strong
support against it. The most likely estimate of his ability to fly lies toward the upper end of
the possible range since most birds can fly. Based on the most likely range, we can conclude

that Tweety probably cannot fly. Next we add some suspicion that Tweety is in fact a kiwi:

(is—kiwi Tweety) : 0.3 0.5.
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This combines with the belief in his death to further reduce the belief that he can fy:

Most Likely Range = [0.17 0.19)
Possible Range = [0.00 0.21].

Note that the additional evidence also causes the PPE to increase. Suppose now that we tell

the system that Tweety is healthy and normal:

(is-in-unusual-condition Tweety): 00
(is-special-bird tweety) : 0 0

It is now certain that he can fy:

Most Likely Range = [1.00 1.00|
Possible Range = [1.00 1.00].

3.5. Time Constrained Inference

With the framework of the propagation functions presented above, inference is quite
straight-forward. Using rules to represent the effects u-:l' evidence on a hypothesis reduces the
problem of inference to that of search through the space of rules and facts. Suppose we wish
to determine the beliel in a faci entailed by a knowledge base of rules and facts. Call this
fact the query. If the knowledge base contains a fact which unifies with the query, this value
is returned. Otherwise, all the rules whose decision parts unify with the query are sought.
For each of these rules’ premises and censors we search for unifying facts in the knowledge
base and if none are found, we search for rules. This search process continues in a recursive

manner. Sinee all evidence linked through some rules to the query can effect its belief, the
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search must be exhaustive. This search process ¢an be described as backward chaining
exhaustive search. When the search is complete, the truth values are propagated from the

evidence through the rules back to the original fact.

We have just described the way in which a complete search through the knowledge base
is performed. If there is insufficient time for a complete search, the VPL system limits the
depth of search used to determine censor values. This is done by <earching in a breadth first
manner for rules which imply the censors until the time limit is reached. The amount of
search preformed to. determine the censor values is called the censor chaining depth and is
defined to be the length of the deepest sub-path which has a censor as its root. The censor

itself is considered to be at depth one. Figure 12 shows the points at which search is

/ R W ) |
O O @ OC

Figure 12. Censor chaining depths of 0, 1, 2.
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terminated for censor chaining depths of 0, 1, and 2 through a space of seven rules. A censor
chaining depth of zero examines no censors at all. A depth of one examines only the first
level censors but does not search for rules implying their values. A depth of two searches for -
rules one level below these censors. When search is prematurely terminated at some censor
chaining depth, there will be several nodes (premises and censors) whose truth values are unk-
nown. These nodes are assigned values of [0 1]. These unknown values along with all the
belief values found are then propagated back. As can be seen from figure 12, the greater the
censor chaining depth, the more information is potentially found. Of course there is no
guarantee that more information will be found with more search since the values of all the
terminal nodes can be [0 1]. However, the point is that the amount of information [ound
monotonically increases with search depth. An increase in search will never be accompanied
by a decrease in the amount of information found but the amount of information can remain

constant if the search is looking in places where no information exists.

With the search process clearly described, it is now possible to show that the

Dempster-Shafer notion of uncertainty satisfies the monotonicity criterion.

Theorem

The precision of VPL type inference increases monotonically as a function of inference

time or censor chaining depth.

Proof

Since the PPE of a proposition is defined as the inverse of its uncertainty, it suffices to
show that the uncertainty decreases monotonically as a function of inference time or censor

chaining depth. As described above, when search is terminated early, the belief @1l is
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assigned to nodes on the frontier of the search tree. Thus we need to show that substituting
the value [0 1] for the belief of a fact results in a greater uncertainty than if the true value of

the fact were used. This must be shown for each of the combination and propagation funec-

tions.
CONJUNCTION:
By definition, prob(A & B) € [s(A)-s(B) .. p(A)-p(B)]
If prob(B) € [0 .. 1] then prob(A & B) £ [0 .. p(A)).
Since s(B) > 0 aad p(B) < 1,
s(A)-s(B) > 0 and p(A)-p(B) < p(A).
Thus p(A)-p(B) - s(A)+(B) < p(A).
So the uncertainty is greatest when the Shafer interval
for B is [0 1].
DISIUNCTION:

By definition,

Prob(AVB) € [s(A)+s(B)-s(A)-s(B) .. p(A)+p(B)-p(A)-p(B)]
If prob(B) € [0 .. 1] then prob(A V B) € [s(A) .. 1].

First we show that s(A)+s(B)-s(A)-s(B) > s(A).

Since s(A) <=1, s(B) > s(A)-s(B).

So 3(B)-s(A)-s(B) > 0.

from which it follows that

s(A)+s(B)-s(A)s(B) > s{A).



43

Next we show that p[A]+p{B}—p[A}-p{B} <L
Since 1-p(A) > 0 and 1-p(B) 20,
(1-p(A))(1-p(B)) = 0.

S 1 - (1-p(A))(1-p(B)) < 1.

Combining these two results we have

o(A)+p(B-p(A)-p(B) - 5(A)+s(B)-3(A)s(B) < 1-5(A)
DEMPSTER'S ORTHOGO NAL SUM:

First note that

a.bj@f0.1]= (a « bl

So we need to show that

(a..bl Dle.d=[.f

implies that

(f-e) < (b-a).

Recall that if m is a basic probability assignment and © is the frame of discernment
then m(©) is the uncertainty of the domain. Thus the above problem can be stated as
showing that

if m = ml & m2

then m(©) < m1(8).

According to the definition of Dempster’s orthogonal sum,

5 my(A)mqlB;)
A8;=8
1- ¥ m,,l.;‘h:lm:[B,-}
A\B; =

m(8) =
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The denominator simplifies to L, yielding:

m(8) = m,(8)m,(0)
Since for any m, m(8) < 1,

m(6)<m,(8).

PROPAGATION:

Recall that the general form of the propagation function for the rule P — D with asso-
ciated belief [s(P —D) .. p(P—D] is

prob(D) € (s(P)-s(P—D) .. 1-s(P)-s(P—-D).
If the Shafler interval for P is [0 1| then prob(D) € [0 .. 1|. Since any Shafer interval is
a subinterval of the unit interval, the uncertainty of D is greatest when the belief in P

is [0 1]. This completes the proof.

In addition to the monotonic increase in the precision with increasing inference time,
there are certain cases in which the certainty of the decision itself actually can be shown to
increase with increasing inference time. As mentioned earlier, the closer a decision is to 0.5,
the less certain it is and the closer it is to 0 or 1, the more certain it is. Consider the situa-
tion in which there is only one rule per hypothesis and all the evidence is either true or false.

Suppose we have the rule

P—=D|[C:11070.3

and the assertion P : 1 1. If C is true and we perform censor chaining, then D is inferred to
be false. [f C is false and we perform censor chaining then D is inferred to be true. [f we do
not chain on C then the value of D is inferred to be 0.7. Clearly 0.7 is closer to 0.5 than 0 or

1. This decrease in certainty which accompanies a decrease in censor chaining depth results
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because the 7~ value is always less than the & value and since C represents an exception, ¥’ is
never less than 0.5. S0 0.5 < 7~ < 1, from which it follows that the certainty decreases with

decreasing censor chaining depth or increasing inference time.

3.5.1. Autonomous Car Example

A simple example will serve to illustrate the way in which the VPL system exploits the
tradeoff between inference time and precision. Suppose it is a Sunday afternoon and your
fully autonomous car is taking you for a drive. Suddenly a boulder rolls out into the road

ahead of you. Your car has only a fraction of a second to decide what to do.

As an initial reflex action, the car applies the brakes lightly. If the car is not traveling too
fast, detects the obstacle far in advance, and the brakes work as expected, then application of
the brakes will stop it in time to avoid a collision. Of course, this is not always the case so
the car must decide on possible alternative courses of action. One such alternative is to turn

off the road to avoid the obstacle. [n order to do this, the car must not wait too long

Figure 13. Safe turning distances from obstacle.
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Rules:
R1 [obstacle-ahead) (~ speed-distance-rakio high)
=2 fuse-brakes)
| (tire-traction poor) [brake-condition poor) : 1, 1, 0.7, 0.2

R2 (obstacle-ahead) {~ on-bridge)
=2 (turn-aff-road)
| {ditch-on-side-of-road) : 0.95, 0.9, 0.8, 0.2

R3 [on ice road)
=>> ftire-traction poor)
| {using-chains) : 1.0, 0.8, 0.9, 0.05

R4 ([on gravel road) => (tire-traction poor) : 0.85, 0.1
R5 (tire-type snow) => (Hire-traction good} : 0.9, 0
R8 ftire-traction good) == (" tire-traction poor): 1, 0

R? (temperature below-freezing) {road-appearance shiny)
== fon ice rand} :0.9 0.1

R8 (construction-site} (sound-of-pebbles-hitting-underside-of-car)
=>> (on gravel read) : 0.9, 0.1

Facts:

(obstacle-ahead) : 1 1
(speed-distance-ratio high) : 0.05 0.15
(temperature below-freezing) : 0.1 0.2
(road-appearance shiny} : 0 0
(construction—site) : 1 1
(sound-of-pebbles-hitting-underside-of-car) : 0.1 0.8
fbrake-condition poor) : 0.1 0.2
(using-chains) : 0 0

(tire-type snow) : 1 1

fon-bridge) : 0 0
(ditch-on-side-of-road) : 1 1

Figure 14. Autonomous car knowledge base.
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((USE-BRAKES) (0.168 : 9) (0.164 : 2) (0.078 : 1) (0.026 : 0))
({TURN-OFF-ROAD) (0.023 : 1) (0.015 : 0))
({OBSTACLE-AHEAD) (0.002 : 0))

((ON-BRIDGE) (0.002 : 0))
({DITCH-ON-SIDE-OF -ROAD) (0.00¢ : 0))
((SPEED-DISTANCE-RATIO HIGH) (0.002 : 0))
((SPEED-DISTANCE-RATIO MEDIUM) (0.002 : 0))
((SPEED-DISTANCE-RATIO LOW) (0.002 : 0))
((TIRE-TRACTION POOR) (0.120 : 1) (0.116 : 0))
((TIRE-TRACTION FAIR) (0.011 : 0))
({TIRE-TRACTION GOOD) (0.021 : 0))
({BRAKE-CONDITION POOR) (0.002 : 0))
({BRAKE-CONDITION FAIR) (0.002 : 0))
((BRAKE-CONDITION GOOD) (0.002 : 0))
((SQUEAKY-BRAKES) (0.002 : 0))

{(ON ICE GROUND) (0.008 : 0))

((ON ICE ROAD) (0.017 : 0))

((ON GRAVEL GROUND) (0.008 : 0))

((ON GRAVEL ROAD) (0.016 : 0))
((TEMPERATURE ABOVE-FREEZING) (0.002 : 0))
((TEMPERATURE BELOW-FREEZING) (0.002 : 0))
((ROAD-APPEARANCE ROUGH) (0.002 : 0))
((ROAD-APPEARANCE SHINY) (0.002 : 0))
({CONSTRUCTION-SITE) (0.002 : 0))
((SOUND-OF-PEBBLES-HIT TING-UNDERSIDE-OF -CAR ) (0.002 : 0))
({USING-CHAINS) (0.002 : 0))

((TIRE-TYPE SNOW) (0.002 : 0))

({TIRE-TYPE STICKY) (0.002 : 0))

((TIRE-TYPE REGULAR) (0.002 : 0))

Figure 15. Data base of inference times for autonomous car.

otherwise it will either not clear the obstacle or it will have to turn 30 sharply that it will
spin. The situation is depicted in figure 13. The car must decide if it is going to turn before

it has reached a distance d, from the obstacle.

Figure 14 shows a hypothetical rule base which such an intelligent car might contain,
The first two rules express conditions under which a maneuver can be successfully completed

without causing damage to the car. Rule R1 says that the car can use its brakes to avoid a
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collision if the speed to distance ratio is not too high unless either the road or brakes are in
poor condition. Rule R2 says that the car can turn off the road to avoid a collision if it is not
on a bridge unless there is a ditch on the roadside. Rules R3 through R8 are for determining
the road and brake conditions. Rules R4 through R8 have no censors and thus have only two
belief factors, the 7 values. Following the rules are the facts known to the system. To
demonstrate the precision/time tradeoff, the VPL system is given three progreasively increas-
ing time limits to decide which course of action to take. As the time limit is increased, more
information is found and thus the precision of the inference increases. The first inference sim-
ply returns the default values, while the last inference finds all relevant evidence. [nteraction

with the system has been translated into English to simplify the presentation.

The inference performed by the autonomous car in order to decide on the best course of
action occurs at two conceptual levels: the meta level and the object level. First inference at
the meta level is performed to determine how much time will be devoted to determining the
merits of each alternative course of action. To do this the car determines the total amount of
time it has for the inference by measuring the distance d, shown in figure 13 and its current
rate of travel, taking into consideration that it is currently applying the brakes. It then looks
in a data base of inference times in order to decide how to apportion this time. The data
base contains guaranteed inference times for various uniform censor chaining depths for all
possible queries in the system. This information can either be gathered through the rule base
analyzer described in section 4.3 or through experience. In this example, the available time is
apportioned to allow all alternatives an equal censor chaining depth. Other strategies such as
devoting more time to alternatives considered to be more important could also be used. Once
the available time has been allotted, the merits of each alternative are decided at the object

level, using the meta level generated time constraints.
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ENTER Command or make query of system
> Decide whether to use brakes in 0.03 gecond.

Uniform censor chaining depth of 0 achieved in
0.024 seconds elapsed time.

RESULT: Most Likely Range = [0.60 0.83/
Possible Range = [0.00 1.00/
ENTER Command or make query of system

> Decide whether to turn off road in 0.02 second.

Uniform censor chaining depth of 0 achieved in
0.015 seconds elapsed lime.

RESULT: Most Likely Range = (0.80 0.30/
Poasible Range = [0.00 1.00]

Figure 18. Deciding among alternatives within 0.05 second.

Suppose first that the car is traveling at 90 miles per hour and has only 0.05 second to
decide which course of action to take. Examination of the data base of inference times in
figure 15 shows that within the available time, a censor chaining depth of zero can be
achieved for deciding both the merits of using the brakes and turning off the road. Rather
than specifying a chaining depth of zero for each inference, the inference system is given a
time limit. This allows the system to use any small additional time over that required for
uniform search to depth zero to perform some additional search. In other words, the system
may be able to perform an amount of search between uniform depth zero and uniform depth
one. Specification of a time limit on the inference as opposed to a fixed censor chaining depth

allows maximum fexibility.
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The interaction with the VPL system ‘s shown in figure 16. The system is given 0.03
second to decide if the brakes should be used. The inference is completed in 0.024 second,
achieving a uniform censor chaining depth of 0 and possibly a greater non-uniform chaining
depth. The possible range of [0 1] indicates that the inference is purely based on default

information. The most likely range is 0.60 to 0.83.

The system is given 0.02 second to decide whether the car should turn off the road and
finishes the inference in 0.015 second. The probability that turning off the road will succeed
lies in the interval O to 1, the most likely range being the point value 0.8. Based on this

information, the car decides to turn off the road in order to avoid the obsatacle.

ENTER Command or make query of syatem
> Decide whether to use brakes in 0.1 second.

Uniform censor chaining depth of 1 achieved in
0.072 seconds elapsed lime.

RESULT: Most Likely Range = [0.54 0. 76/
Possible Range = [0.00 0.91]
ENTER Command or make query of syatem

> Decide whether to turn o ff road in 0.025 second.

Uniform censor chaining depth of 1 achieved in
0.023 seconda elapsed time.

RESULT: Most Likely Range = [0.00 0.10f
Possible Range = [0.00 0.10/

Figure 17. Deciding among alternatives within 0.125 second.
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Next, suppose the car is traveling at 35 miles per hour. This time is has a total of 0.125
second to make a decision. Examination of the data base of inference times shows that
within this amount of time, a uniform censor chaining depth of one can be achieved for both
alternatives. Figure 17 shows the interaction with the VPL system. Allocating 0.1 second to
considering use of the brakes allows some information pertaining to the condition of the road
and the brake condition to be taken into consideration. This results in a possible range of
0.00 to 0.91 and a most likely range of 0.54 to 0.76. The additional information brought to

bear on the problem increases the precision of the inference.

The system is given a time limit of 0.025 second to decide on the merits of turning off
the road to avoid the collision. This is sufficient time for the system to find that there isa
ditch on the side of the road and thus decide that the probability of completing this
maneuver without damaging itself is in the range 0 to 0.10, with a most likely range of O to
0.10. The most likely range is equal r.ult.he possible range because there is no uncertainty in
the censor value. The uncertainty of the decision is purely a function of the § values of the
rule. Based on the most likely range, the best course of action is for the car to use its brakes.
The possible range indicates, however, that this decision could be reversed in the light of

additional evidence.

Finally, suppose that the car is traveling at safe rate of 20 miles per hour. This allows
0.225 seconds for deliberation. The maximum censor chaining depth for deciding whether to
turn off the road is one so the same amount of time is allocated to this alternative as in the
previous scenario. The remaining time is sufficient time for a complete search to determine
whether to use the brakes as well. As the interaction depicted in figure 18 shows, the

increased evidence brought to bear on evaluating the likely effectiveness of using the brakes



ENTER Command or make query of ayatem
> Decide whether to use brakes in 0.2 second.

Uniform censor chaining depth of § achieved in
0.174 seconds elapsed time.

RESULT: Most Likely Range = [0.71 0.88/
Possible Range = [0.61 0.91/

ENTER Command or make query of system
> Decide whether to turn off road in 0.025 second.

Uniform censor chaining depth of 1 achieved in
0.028% seconds elapsed time,

RESULT: Most Likely Range = [0.00 0.10/
Possible Range = [0.00 0.10/

Figure 18. Deciding among alternatives within 0.225 second.

increases the precision of the inference significantly. It is now certain that the best course of
action is to use the brakes. Using this information, the car applies the brakes and comes to a

safe halt.
The results of this example show that the VPL system was able to make a rational deci-
\LPé teanyea of ¢p1a éxswbie apom (pwe tpe AB 2Aares moa P[6 (O WIKE ¥ LIFIOUT] Gecr-

The results of this example show that the VPL system was able to make a rational deci-
sion about the best course of action to avoid a collision even though both time and informa-
tion were limited. The effect of the time limit on the precision of the inference is transparent
to the user, as reflected in the probability range of the answer. The "possible range” shows
the effect of the immediate evidence on the conclusion and indicates to the user whether the
decision could possibly be reversed given more information. The "most likely range” aug-

ments the immediate evidenee with past experience to produce an answer of varying default



4. IMPLEMENTATION

The VPL system is implemented in Common Lisp and runs on a Symbolics 3640 lisp
machine. The system consists of six main modules, comprising a total of 1800 lines of code.
The modules are: the parser, the data base, the inference engine, the unifier, the rule base

analyzer, and the user interface.

4.1. Typed Logic Representation

Knowledge in the VPL system is represented using a typed logic formalism. Type infor-
mation specifies the finite domain of each predicate argument. This is done via type and
predicate declarations. Before a predicate is used, both it and the types of its arguments
must be declared. This information is used in two ways: to insure that information supplied
by the user is semantically meaningful, and to constrain the search space. The parser per-
forms various forms of type checking when rules and facts are entered. Constant predicate
arguments must be of the correct type and the argument domains of a variable commeon to
several predicates in a rule must have a nonempty intersection. For example, the rule shown
in figure 19 would produce an error because the intersection of types t1, t2, and t3 is empty.

Types are considered to intersect if their domains share common symbols.

The type information is used to constrain search by incorporating it into the unification
procedure. Conceptually, when two variables are unified, the intersection of their types is
formed. Two terms unify only if their bindings are compatible and their types have a non-
empty intersection. As the search progresses, the types of variables become increasingly con-
strained. At some points, the types become empty, allowing those branches to be pruned

from the search tree. Typed unification is implemented by generating all ground instances



Types:

tl = |abj
t2 = |be}
t3d = lac|

Predicates:

(P t1)

(Q t2)

(R t3)
(Px)&(Qx)=>(Rx):1,0

Figure 19. Inconsistent variable types.

consistent with a particular binding when a rule is unified with a query. The type and bind-
ing information is expressed in this enumeration. A ground instance of a term unifies with a
rule only if its arguments are elements of the argument types of the decision. Notice that the

rules are stored in a compact form and only expanded when used.

4.2. Inference Engine

The inference engine is the system component in which search, combination, and propa-
gation of beliefs is performed. There is a clear distinction in the implementation between the
search phase of inference and the belief propagation phase. Inference is initiated by the user
entering a query as shown in the autonomous car example earlier. The query can have either
a censor chaining depth limit or a time limit associated with it. If the user specifies a censor
chaining depth, the system chains to that depth and stops as shown in figure 12. If a time
limit is specified, the system allocates 2/3 of this time to search and 1/3 to propagation.

This proportion was derived empirically and produces actual inference times which are a few
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hundredths of a second below the limit given. For time constrained search, the system has
available a data base of minimum inference times for each possible query. These are the
times for a censor chaining depth of zero. If the time limit specified is below this limit, a

message stating that the time limit is insufficient even for minimal search is issued.

(defun infer (query state)

(setf state (initialize-state state query))

: Search all pure premises
(do ((currterm (car (state-Pq state)) (car (state-Pq state))))
((null (state-Pq state)))
(pop (state-Pq state])
(setf state (evaluate-subgoal currterm state ‘ante)))

; Search along the censor chains
(when (and (cadr (state-Cq state))

(< (get—elapsed-time) (* 0.8 *time-limit*))
(> *depth* 0))

: Search down level by level

(do ((depth—left *depth® (1- depth-left)))
((or (null (cadr (state-Cq state)))

(>= (get-elapsed-time) (* 0.6 *time-limit*))
(serop depth-left)))

: Flip censor chain queues

(setf (state-Cq state) (nreverse (state-Cq state)))

(do ((currterm (caar (state-Cq state)) (caar (state-Cq state])))
((or (and (null (car (state-Cq state)))
(setf *depth-searched® (1+ *depth-searched®)))
(>= (get—elapsed-time) (* 0.6 *time-limit*))))

(pop (car (state-Caq state]))
(setf state (evaluate-subgoal currterm state ‘censor)})))

(cons (perform-calculations state) state))

Figure 20. Prioritised search algorithm.
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The search strategy is backward chaining, prioritized breadth-first search. The algo-
rithm is shown in figure 20. The algorithm works with three main data structures: the prem-
ise queue, the censor queue, and the stack of operation requests. These are all part of the
state structure. First the query is put on the premise queue through a call to "initialize-
state.” The queue is then processed as follows. The first element on the queue is taken off
and processed by function "evaluate-subgoal.” The premises of any rules matching this
subgoal are added to the queue. The search proceeds until this queue is empty. Censors
encountered during this search are added to the censor queue. All queue additions occur in
routine "update-for-new—rules” called from routine "evaluate-subgoal.” Next, if time and
censor chaining depth allow, the subgoals on the censor queue are processed. The censor
queue actually consists of two queues. Subgoals are added to the second queue and taken off
the first. When the first queue is empty, the queues are fipped. In this way the system keeps
track of the censor chaining depth. Censor chaining proceeds down the search tree level by

level until either the queue is exhausted or the time limit or the censor chaining depth are

reached.

Whenever a conjunction of premises, a disjunction of censors, or a rule is processed, a
request for the appropriate combination or propagation function is put on the stack of opera-
tions requests. The stack is processed in the propagation phase. Facts found along the
search are put on a value-list for access in the propagation phase. If at any time along the
search, the time limit or censor chaining depth are reached, the search is terminated. For all

remaining subgoals on the censor queue, the value [0 1] is put on the value-list.

The final step in the search algorithm is to call the propagation routine "perform-

calculations.” This routine processes each request on the stack of operations requests. The
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results of each caleulation are put on the value-list. The result of the last request on the
stack is the answer to the original query. Additional features of the inference engine such as

user query templates are described in the user manual, Appendix 7.1

4.3. Rule Base Analyser

The use of a typed logic representation means that the VPL system knows of all legal
queries which a user could make. Based on the predicate and type dutaratiuns. the system
can enumerate these possible queries. This knowledge is exploited in the rule base analyzer,
which measures the inference times for queries using various censor chaining depths. The
analyzer can be run in two modes: minimum analysis and full analysis. In the first mode,
only the inference times for a censor chaining depth of zero are measured. These times are
stored in a data base of inference times and used to guarantee that the user specified time
limit will at least allow minimum search. In full analysis mode, inference times for all chain-
ing depths from zero to the maximum for each query are measured. This leature allows a
knowledge engineer to produce an inference time profile for a rule base. Such a profile gives
him a feel for the amount of information which can be gathered in a given amount of time for
any given query. Full analysis of a rule base is a very time consuming process but it i= only

done during rule base development and thus is not a frequently performed computation.



5. EXPERIMENTATION

The effectiveness of the VPL system was tested in two ways. First a series of controlled
experiments using automatically generated knowledge bases was run to test the effect of vari-
ous knowledge base characteristics on system behavior. To test the applicability of the VPL
system to "real world” problems, the ESTIMATOR system for estimating construction pro-

ject costs was developed using the VPL system as the inference engine.

5.1. Controlled Experiments

The implemented VPL system exploits the tradeoff between the precision of the proba-
bility estimate and inference time by varying the amount of search performed on rule cen-
sors. The precision of any VPL type inference is purely a function of the beliefs available to
the system and those found using the amount of search allowed by the time limit. The infor-
mation found by a search strategy is a function of the way in which a search proceeds
through a knowledge base which is itself largely a function of the rule base structure. An
interesting question is then how the quality of the precision/time tradeoff is affected by the
precision of the rules and assertions and the rule base structure. To test the effects of various
manifestations of these two characteristics, the Rule Base Generator (RBG) was written and
a series of controlled experiments using different knowledge base configurations was run. The

RBG generates a knowledge base described by the following set of parameters.

- Belief value of positive assertions
- Belief value of negative assertions

- Belief lactors for the rules
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— Number of premises per rule

— Number of censors per rule

- Number of premises to chain on

_ Number of censors to chain on

- Number of rules per premise

- Number of rules per censor

- Number of premise rules to chain on

 Number of censor rules to chain on

The knowledge bases contain assertions which are characterized as either positive of negative.
For example, a positive assertion is prob(A) € [0.8 .. 1] and a negative assertion prob(A) € 0
.. 0.2]. The belief values of these two types can be specified. The number of premises and
censors to chain on specifies the number of premises and censors in each rule which have rules
implying their value. The number of rules per premise and censor indicates how many of
these rules there are. The number of premise and censor rules to chain on specifies how many
of these rules will in turn have rules implying the values of their premises and censors. These

eleven parameters allow generation of an extremely diverse set of knowledge bases.

Using the RBG, five different rule base structures were generated. The rule bases all
used rules with the beliefs: & = 1,8 = 1,7 =087 =0 For each of these structures,
four different knowledge bases, corresponding to different sets of assertions were generated.
There were two values of positive assertions a.mi two values of negative assertions,
corresponding to higher and lower PPE's, used in all four combinations. One of the

knowledge bases for Rule Base 1 is shown in appendix 7.2.1. The five rule base configurations



are shown in figures 21 through 25, while figures 26 through 30 show the precision versus
time tradeoff for each rule base structure and the set of four belief value combinations. Note

that the graphs in figures 26 through 30 demonstrate experimentally the monotonicity result

which was proved earlier.

Rule Base 1 is configured with one premise and censor per rule, two rules per premise
and censor, and only one of these rules chained on. Note that the top level decision is treated
as a premise. The precision versus time tradeoff for the set of four belief value combinations
is shown in figure 26. The four graphs represent the PPE of the top level decision for inereas-
ing inference times, i.e., increasing depths of censor chaining. The leftmost point represents a

censor chaining depth of zero and the rightmost point a censor chaining depth of five.

As the graphs for Rule Bases 1,2,3, and 5 show, tl:_le precision/time tradeoff follows a law
of diminishing returns, In Rule Base 1, the PPE increases sharply up to an inference time of
about 8 seconds and then tapers off. In the worst case for Rule Base 1, i.e., knowledge base ¢,
the inference time can be reduced from the maximum of 25 seconds down to 8 seconds by
only sacrificing a degree of the PPE of about 0.09. Thus we realize a savings of 68% of the
inference time required for complete search and only pay with 9% decrease in the PPE. For
Rule Bases 2, 3, and 5 the worst case tradeoffs are 67% vs 6%, 85% vs 5%, and 69% vs 7%

respectively.

Rule Base 4, on the other hand, shows alternating periods of increasing PPE and little
change. This behavior is most pronounced i.e. has the greatest difference between periods of
increasing PPE and periods of no change, for knowiedga base a, which has the most precise
assertions. The effect is least pronounced for knowledge base d, which has the least precise

assertions. Thus for this rule base structure, the behavior is highly dependent on the preci-
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sion of the information. Comparison of the rule base structures shows that Rule Base 4 is the
only one in which the censor has only one rule implying its value. This structural property
causes significant information to be found only at every other censor chaining depth. When
information is less precise, this additional information has less of an effect than when highly

precise information is found.

A comparison of the four curves for each of the other rule bases shows that the general
shape remains the same for the various PPE's of the assertions. The precision of the asser-
tions simply shifts the curves up or down. Whereas in Rule Bases 1,4, and 5, the curves are
more or less evenly distributed along the y axis, in Rule Bases 2 and 3, the curves clearly
group into sets. System behavior with Rule Base 2 seems to be sensitive to the precision of
positive assertions. With Rule Base 3, the system is sensitive to the combined PPE's of the
assertions. When both types of assertions have a high degree of precision, the curve is high
on the y axis; when one or the other is imprecise, the curves are in the middle of the scale;

and when both types are imprecise, the curve is low on the scale.

In addition, while the precision of inference in Rule Bases 1,2, and 3 is more gensitive to
the precision of positive assertions, the precision of inference in Rule Bases 4 and 5 is more
sensitive to the precision of the negative assertions. A comparison of the rule base structures
shows that Rule Bases 1 through 3 have an a number of premises per rule equal to or greater
than the number of censors per rule, while Rule Bases 4 and 5 have less premises than cen-

The results of these experiments show that rule base structure has a greater effect on
the quality of the precision versus time tradeoff than the precision of the information,

although there is some interaction between the two. In addition, for many rule bases the tra-



deoff follows a law of diminishing returns, allowing large savings in inference time at little
cost in terms of precision. This occurs because the assertions found at the upper levels of the
search tree have more influence on the decision than those lower down. Intuitively, the
deeper the assertions, the more peripheral the evidence they represent. This diminishing
returns type behavior is dependent on the presence of information at all levels of the search.
If all the assertions in the search tree occur at the deepest level, the PPE will not increase

until this level is reached, at which point it will jump to the maximum.
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Figure 21. Structure of Rule Base 1.
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5.2. The ESTIMATOR System

The problem of estimation is both time limited and value approximate. The goal of an
estimation task is to produce the best possible answer to a question within a time frame
which does not permit complete deliberation of every detail. The quality of an estimate is
usually characterized by words like "rough” or "detailed” which refer to a range of precision.
of the estimate. The more precise an estimate is required to be, the more time is required to
~ perform the inference. Thus the estimation task involves a direct tradeoff between precision

and inference time.

Estimation tasks utilize two main classes of knowledge: knowledge pertaining to the
task to be performed and knowledge which indicates the priority of the considerations in the
task. The VPL formalism is ideally suited to representing this information because censored
production rules allow both kinds of information to be embodied in a single representational
structure. The rules represent approximate task level decisions and focus attention on the

premises before the censors are considered.

Cost estimation is an area which illustrates many of the issues involved in estimation
tasks in general. The ESTIMATOR system was developed with the goal of aiding an
engineer in estimating the costs of installing heating ventilating and air conditioning (HVAC)
systems in both new and existing buildings. The problem can be characterized as follows.
The engineer is given a job specification which states the building type, size, required control

systems, ete. and the goal is to determine the total cost of installing the required systems.

The problem can be divided into two main steps: equipment selection and cost calcula-

tion. The goal of the equipment selection step is to determine a list of equipment required for

" This work was dooe in collaboration with Jim Kelly of the [atelligent Systems Group.
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For example, the following rule specifies the characteristics of a particular model of thermos-

tat.

(Equipment = room-thermostat) & (Control = temperature) &
(Power = electric) & (Temperature-range = 20-120)

— (Equipment—code = sl)

[ (Accuracy = =0.1) & (Durability = low) & (Delivery = 2-weeks)

:1,1,0.7,02

Equipment selection is done by first determining the types of equipment required such
as thermostats, valves, controllers, ete. The system determines the probability that each
type of equipment is required for the job. Since each equipment type represents an individual
decision, the absolute probabilities are used. If the probability for a particular equipment

type falls above a certain threshold, that equipment is determined to be required.

Next, for each type of equipment peeded, the system then determines the model with
the characteristics best suited to the job specification. For a particular equipment type, there
will typically be numerous models with different combinations of characteristics. Since the
equipment models are mutually exclusive, the decision is based on the relative probabilities of
the suitability of each model to the job at hand. The probability of each model for an equip-

ment type is determined and the model with the highest support is selected.

The substitution rules come into play in selection of the equipment models. If no equip-
ment specification matches the requirements exactly, a piece of equipment may be chosen
which exceeds the requirements. For example, if 3 thermostat of low accuracy is required,

one of higher accuracy may be substituted. However, we only want to do this substitution if
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the desired equipment is unavailable because, in general, the higher accuracy device is more

expensive, as mentioned earlier.

5.2.2. Caleulation of the Bid

In the caleulation step, the system uses five types of information:

- the job specification,

- the purchase price of each piece of equipment,

- the installation lt.imn for each piece of equipment,
- the number of zones, and

- markup adjustment rules.

The number of zones in the building is used as a multiplier to arrive at total equipment quan-
tities. These quantities are multiplied by standard purchase and installation costs to arrive

at a total cost estimate.

If our computer already in building then job is an extra.

If inatalling computer then extra potential is high.

If big job then extra potential is high.

If job location < 20 miles from office then markup-factor = 0.8
If job location > 40 miles from office then markup-factor = 1.2
If extra potential is high then markup-factor = 0.8

If extra to a previous job then markup-factor = 1.3

If no other competitive bids then markup-factor = 1.3

If labor intensive job then markup-factor = 1.2

If many outside purchases then markup-factor = 1.1

If good contractor then markup-factor = 0.8

Figure 31. Markup adjustment rules.




71

the particular job at hand. This is where most of the work is performed. The engineer must
utilize large amounts of different types of information and be able to focus his attention on
those aspects of the problem which most affect the cost. The goal of the second step is to
determine the total equipment and labor cost for the job. In many cases this amounts to a
relatively straight-forward calculation based on the number of zones in the building, the unit

cost of each piece of equipment, and the labor required to install each piece of equipment.

5.2.1. Equipment Selection

The ESTIMATOR system uses four types of information to perform equipment selec-

tion:

- the job specification,
- engineering expertise,
- substitution rules, and

- equipment characteristics.

The job specification is the set of available facts describing the job. The specification may be
incomplete in the sense that it does not provide information concerning all factors determin-
ing job cost. The engineering expertise represents the knowledge known by the engineer such

as rules linking system type to required equipment type or building type to time schedule.
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For example, the following rule states that schools are on "fast-track™ building schedules

unless the time of year is summer:

(Building = school) — (Schedule = fast-track)

| (Time-of-year = summer): 1, 1, 0.75, 0.25

The substitution rules are a special type of engineering expertise; they indicate valid
substitutions of one piece of equipment for another when something is not available. These
rules allow approximate pattern matching to be done between the requirements and the
equipment characteristics. The following set of rules specifies that a sensor of low accuracy
may be replaced with one of higher accuracy (in + degrees Fahrenheit). The greater the jump
in accuracy, the lower the belief in the rule, This reflects the notion that a higher accuracy
piece of equipment can be substituted fcur. an acceptable lower accuracy piece but this is, in

general, not a good practice.

(Accuracy 1) = (Accuracy £0.5): 0.6, 0.4
(Accuracy £0.5) — (Aceuracy £0.2):0.7, 0.3

(Accuracy +0.2) — (Accuracy +0.1): 0.8, 0.2

Notice that these rules form a chain from (Accuracy 1) to (Accuracy 0.1). The longer the
chain needs to be in order to bridge the gap between the job requirement and the equipment
characteristics, the lower the probability that the particular piece of equipment will satisfy

our needs.

The equipment characteristics contain the information the engineer would obtain [rom

equipment catalogs, such as the range of a sensor, the type of power it uses, the accuracy, etc.
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A certain percentage profit markup is added to the total cost to produce the final bid.
I[n determining this markup many additional heuristics may come into play: is there a poten-
tial for many "extras"?; is there a "good” general contractor on the job?; ete. For example, if
the extra potential of a job is high then a company can afford to bid low on the contract,
assuming that it will gain business in the future. As can be seen the answer to these and
similar questions cannot be completely certain but nonetheless play an important role in the
ultimate profitability. Using rules which represent these heuristics, an adjustment factor for
the basic markup is derived and the bid is caleulated. The markup adjustment rules are
shown in figure 31. Adjusting the final bid in this way corresponds quite closely to the intui-

tion and instincts relied upon by good estimators and salesmen.

5.2.3, Example Cost Estimation

This example shows the estimation of a heating system for a large office building. The
job specification is shown in figure 32. The specification states that the system is to be
powered pneumatically; the system should be of medium durability; the accuracy should be
+0.2 degrees Fahrenheit; etc. Three estimates of varying quality are made: rough, average,
and detailed. These differ in the amount of resources devoted to checking the provided condi-
tions on the rules representing equipment characteristics. Figure 33 shows the calculation of
a rough estimate for the bid on this job. The system determines the types of equipment
required and selects the best equipment model for each, within the time available. The sys-
tem configuration corresponding to the equipment types determined to be necessary is shown
in figure 34. The possible range indicates that this selection is based purely on default infor-

mation. The equipment type and model selection is done using the rule base in appendix 7.3.
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(building office) : 1 1
(building-size large) : 1 1
(system heat): 11

(power pneu): 11

(durability med) : 11
(aceuracy .2): 11
(air-temp-range 50-80) : 1 1
(water—temp-range -50-150) : 1 1
(pressure-range 3-7) : 1 1
(control temp) : 1 1

(job construction) : 11
(equip-source existing) : 0 0
(system-purpose monitor) : 0 0

Figure 32. Job specification.

The total cost of the selected equipment is then caleulated using the total purchase price and
installation time. The markup is applied to this value to yield the bid. There are two factors
affecting the markup: the job is large, and there are no competitive bids. The fact that that
job is large decreases the markup and the lack of competition increases the markup. The
result is a markup of 52% (2% over the standard). The final estimated bid is $45828.00,

derived in 9.7 seconds.

The caleulation of an average accuracy estimate for this job is shown in figure 35. The
probability ranges on some of the equipment are now narrower and the system has now
chosen both duct sensor S9 and pipe sensor S17 over S11 and S18 in the rough estimate

respectively. The final bid is now $44612,00 and requires 14.8 seconds to calculate.

All details are taken into consideration in the detailed estimate shown in figure 36. The

resulting bid is $43852.00. This differs from the rough estimate by only 4.5%, which shows
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What quality estimate do you require (rough, average, detailed)? rough

What file contains the job specification? "ds-vpl > est—facts-2.lisp"
What are the mackup adjustment factors?

((big-job) (no-competition))

How many zones are there? 20

Required equipment types:
ROOM-THERMO
DUCT-SENSOR
PIPE-SENSOR
VALVE
PANEL-CONTROLLER

Chosen equipment models:
S3 Most Likely Range = [0.50 0.60] Possible Range = [0.00 1.00|
S10 Most Likely Range = [0.64 0.92| Possible Range = [0.00 1.00|
S18 Most Likely Range = [0.70 0.80| Possible Range = [0.00 1.00]
V1 Most Likely Range = [0.50 0.80| Possible Range = [0.00 1.00]
RCE Most Likely Range = [0.50 0.80| Possible Range = [0.00 1.00|

Total purchase price is $25900.00
Total installation time is 170.0 hours
Total coet is $30150.00

Markup is 52.%

Bid is $45828.00

Estimation completed in 9.7 seconds elapsed time

Figure 33. Rough estimate.
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Figure 34. Schematic diagram of heating system.
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Chosen equipment models:
S3 Most Likely Range = [0.50 0.60] Possible Range = [0.00 1.00]
S9 Most Likely Range = [0.56 0.84] Possible Range = [0.00 1,00}
S17 Most Likely Range = [0.72 0.75| Possible Range = [0.63 0.93
V7 Most Likely Range = [0.40 0.48] Possible Range = [0.00 0.80]
RC8 Most Likely Range = [0.47 0.56] Possible Range = [0.00 0.83]

Total purchase price is $25100.00
Total installation time is 170.0 hours
Total cost is $29350.00

Markup is 52.% -

Bid is $44612.00

Estimation completed in 14.8 seconds elapsed time

Figure 35. Average estimate.

Chosen equipment models:
S4 Most Likely Range = [0.74 0.78| Possible Range = [0.63 1.00]
S9 Most Likely Range = [0.56 0.84] Possible Range = [0.00 1.00|
S17 Most Likely Range = [0.72 0.75] Possible Range = [0.83 0.93]
V8 Most Likely Range = [0.74 0.78] Possible Range = [0.83 1.00|
RCS Most Likely Range = [0.47 0.56] Possible Range = {0.00 0.93]

Total purchase price is %24600.00
Total installation time is 170.0 hours
Total cost is $28850.00

Markup is 52.%

Bid is $43852.00

Estimation completed in 17.5 seconds elapsed time

Figure 38. Detailed estimate.

that the rough estimate was quite close, considering that the prices of two similar pieces of
equipment can differ by as much as 50%. The detailed estimate required 17.5 seconds. Com-

paring the rough estimate time of 9.7 seconds with this shows a 45% savings in inference



time over the detailed estimate. These inference times are very low due to the small rule
base being used. In an actual estimation system, the times would be more on the order of
hours and the inference time saved in making rough versus detailed estimates would be
significant. Note that the installation time remains constant for the three estimates. This is
due to the fact that installation times are only dependent on the particular equipment type
and the mode of powering it, i.e., pneumatic versus electric. The different qualities of esti-
mates differ only in the effort they devote to checking the provided conditions on the rules
but these two primary factors are represented as rule premises. Thus the installation times

of the equipment models considered are all the same.
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8. CONCLUSIONS

A system which can reason with incomplete and uncertain information under time con-
straints has been presented. In addition, the system is capable of reasoning efficiently with
exception augmented rules. Controlled experiments using several knowledge bases were run
to demonstrate the effects of knowledge base configuration on inference behavior. An applica-

tion to the area of construction project cost estimation was shown.

8.1. System Performance

The VPL system represents a new kind of reasoning system capable of exploiting the
tradeoff between inference time and inference precision. This is done by combining the abil-
ity to focus attention on determining the belief in those facts which are likely to provide the
most information with the ability to reason without knowing the belief in those facts for
which time did not permit consideration. The control information which allows the system
to foeus its attention is implicitly expressed in the natural form of censored production rules.

The 5 and + values of the rules quantify this control information.

The resultant inference behavior is similar to that of default reasoning systems, where
incomplete information is filled in by assumptions. In contrast to default reasoning, however,
beliefs in the VPL system can have varying default character, based on the precision of the
evidence considered. The extent to which a decision is based on default information is
_ﬂ:presud in the difference between the possible and most likely ranges. The more dissimilar

they are, the higher the default character of the inference.
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The use of Dempster-Shaler theory to formalize VPL type inference providesa a simple,
intuitive notion of the precision of an inference which relates it to the amount of information
found. This formalism allows the ignorance in the evidence to be preserved through the rea-
soning process and expressed in the decision. [t was proved that the precision of inferences
increases monotonically as a function of inference time. This is reflected in the width of the
resulting Shafer interval. The VPL system can even reason with rules which have incon-
sistent censors since the system only uses as much information as is consistent with what is

known.

The results of experiments on various knowledge base configurations show that
significant savings in inference time can be realized at little expense in terms of precision,
This is due to the fact that many knowledge bases produce inference behavior which con-
- forms to a law of diminishing returns in terms of the precision of the inference. It was found
that rule base structure has a greater effect on inference behavior than the precision of the

evidence.

The success of the ESTIMATOR system shows that VPL can be highly effective as a
tool for automating estimation tasks. The way in which the system focuses its attention on
primary considerations mirrors very much the way in which human estimators work. The
ability to use the uncertain inference to implement approximate pattern matching rules

proved highly useful for the task of equipment selection.

The VPL system has significant implications for knowledge engineering in time critical
domains in general. For applications in which censored production rules are a suitable
representation the system frees a knowledge engineer from undue concern for inference times.

The inference engine itself actually tailors the inference to fit the time constraints of the



situation at hand. This also means that the system can adapt to situations which were

unforeseen at the time of knowledge base design.

The VPL system complements machine learning systems. With earlier types of reason-
ing systems, there was no efficient way to reason with rules having many exceptions. When
faced with an exception to a rule, learning systems had the choice of either ignoring it and
accepting the fact that the rule would be applied incorrectly in exception cases or adding an
exception to the rule and thereby decreasing the efficiency of reasoning with that rule in every
future situation. The VPL system, on the other hand, allows the choice between using the
approximate rule and using the exact cule to be delayed until inference time, when informa-
tion regarding time constraints is available. In addition, the implications of this decision are

clearly reflected m the default character of the decision.

8.2. Limitations and Future Research

The controlled experiments have shown that the inference behavior of the VPL system
is quite sensitive to rule base structure. Prior knowledge of the rule base structure would
allow more intelligent inference. For example, one rule base structure showed stepwise
increases in the PPE of the decision with increasing inference time. An analysis of such a rule
base could yield information indicating what inference time increments produce significant

increases in the PPE.

The current VPL system performs best on knowledge bases which have information
available at all levels of chaining. This structure produces a continuous increase in inference
precision as more time is allotted. This limitation is due to the fact that the system uses a

fixed breadth-first control strategy for censor chaining. A better approach would be to have
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the system learn the control strategy best suited to a particular knowledge base. The infer-
ence precision/time tradeoff inherent in VPL type inference serves as a handy utility measure
on which search heuristics can be based. [n order to optimize system performance, search
should be ordered in such a way that the system maximizes the amount of information it
gathers in a given amount of time. A learning component could determine a control strategy
based on knowledge gained from past searches and knowledge of the combination and propa-
gation functions. For example, this would lead to depth-first strategies for knowledge bases
in which all the information was at the same depth; breadth-first strategies when information
is evenly distributed along all search depths; and a combination of the two in other cases.
The learning system would not have to be restricted to use with the approximate inference
scheme employed in the current research but could be made general purpose by modularizing
the knowledge of the combination and propagation functions of the particular uncertainty

calculus being used.

The inference process of the VPL system does not currently take into consideration the
certainty of the available evidence. Thus highly certain information which could have a large
impact on a particular decision could be ignored if the time limit did not allow the
backward—chaining search strategy to find it. This problem could be solved by allowing for-
ward chaining inference to occur whenever a fact with high certainty enters the system. All
implications of such facts would then be immediately available. The same argument holds

for highly precise information.

Much world knowledge is best expressed in the form of taxonomies. Taxonomies carry
more information than simple collections of rules. The concepts at any one level of the tax-

onomy are known to form a mutually exclusive spanning set. This information can be used,



for example, to infer the truth of one concept at some level if all the other concepts at that
level are known to be false. To make the system more effective, specialized combination and

propagation functions for reasoning in taxonomies could be developed.

The current VPL system deals only with the tradeoff between computational cost and
precision of inference. To exploit the tradeoff between computational cost and specificity,
rules could be crganized into abstraction hierarchies. Special control mechanisms could then
choose the appropriate abstraction level based on the certainty required and time allotted.
Inference at higher abstraction levels would be characterized by a higher certainty and a

lower amount of required time.

The probabilistic logic formalism of Nilsson (1986] holds promise for the study of the
tradeoff between between certainty and specificity. He formalizes the notion of the probabil-
ity of a first order logic formula in terms of possible worlds. Using this formalism, the cer-
tainty of general statement can be determined given the certainties of more specific state-

ments.



7. APPENDICES

7.1. User Manual

The VPL system is written in Common Lisp and runs on a Symbolics 3640. It consists

of 1800 lines of code contained in the following seven files.

declarations.lisp - global declarations

data-base.lisp - knowledge base maintenance functions
infer.lisp - inference engine

encode.lisp - parser

top—level.lisp - user interface

unify.lisp - unification algorithm

analyze.lisp - rule base analyzer

The system is defined as a Common Lisp system and can be loaded with the function call
(make-system 'vpl). Once loaded, the system is invoked by typing (vpl). Communication

then proceeds via the user interface.

7.1.1. The User Interface

The user interface is a top level loop similar to that of prolog systems. Declarations,
assertions, and commands may be entered in an interactive fashion. A summary of com-

mands is shown below.
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Command Summary

'} indicates a choice, [| indicates optional parameters
Keywords are written in all caps.

(lisp form) - evaluates the lisp form
(type name (elements)) - declare type
(pred predicate (argtypes) [:d (s p) :q (template) :proc |t/name;])
- declare predicate
d - default probability -
q - query user template, where (n) denotes the nth argument
proc - name of attached procedure. t ->> name is same a3 predicate
(assert [fact,rule}) - add to knowledge base
(retract RULE predicate) - retract all rules with a decision with the predicate
(retract FACT predicate) — retract all facts with this predicate
(show LRULES,FACTS,TIMES.FLAGSI] — show contents of knowledge base
or the flags
(clear {RULES,FACTS,TIMES}) - clear the knowledge base
(load "filename”) - take input from the file
(save "Glename”) - saves rules and facts in the file
(save-times "filename”) - saves the TimeDB in the file
(load-times "filename”) - loads the TimeDB from the file
(? (term time/depth)) — make a query in the specified time or
to the specified depth. Time is a real while depth is an integer.
(? term) — make query with unlimited search
(analyse min/full) - analyse the rule base
(user should clear all facts first)
end stop quit exit done bye — exit system

Commands may be entered in both list form as shown in the summary and in line form.
Using the latter form, the command is typed separately on one line and the argument on the
next line. The system stays in the submode for the particular command as long as arguments
are being entered. This is a convenient way of entering numerous declarations or assertions

in a row.



7.1.2. Representation

The VPL system uses a strongly typed language. Types and predicates must be
declared before they are referred to. Types represent nominal domains for predicate argu-
ments. The type declaration enumerates the elements of the domain. Types declarations

may refer to other types. For example the following declarations are legal

(reptile (snake lizard))
(bird (robin sparrow))

(animal ((reptile) (bird) dog cat horse)

Predicates are declared by listing the predicate name, followed by the argument types,

followed by optional parameters. The parameters are

:d (s p) - default probability to be used if value is [0 1|
:q (template) — user query template

:proc name — name of attached procedure

The query template allows the user to specify an English translation of the predicate. Rather
than looking in the data base for the value of this predicate, the system will query the user
using the template. A template entry of (n) is substituted with value of the nth argument at

run time.

The procedure name is a lisp function which is called to return the value of this predi-
cate. If name = t, the procedure name is the same as the predicate name. The following

declaration specifies a default and a query template for the predicate "mother.”

(Mother (person female) :d (.8 .9) :q (Is (2) the mother of (1)))



Once the types and predicates are defined, rules and facts using these may be asserted.
Rules consist of a conjunction of premises, a single decision, and a disjunection of censors.

Unless rules are written as
((p1 $x)(p2 $y)... => (d $x $y) | (c1 a){(c2 ¥y)... 7" 7' & &)

and provided rules as

((p1 $x)(p2 $¥)... => (d $x ¥y) [ (el a)(c2 $y)... 7" v & &)

where $x and $y denote variables. The unless operator is defined in the vpl font as the key

symbol-h and the provided operator as symbol-g.

Facts are written as ((P $x a) s p).



7.2. Experimental Data

7.2.1. Rule Base 1

premises—per—rule 1
censors-per—rule 1
premises-to-chain-on 1
censors—to—chain-on 1
rules—per-premise 2
rules—per—censor 2
premise-rules—to—chain-on 1
censor—rules—to—chain-on 1

depth 5

((Po002) => (D) | (C0003) 1.0 1.0 0.8 0)

((Pooo4) => (D) | (Co005) 1.0 1.0 0.8 0)

((Pocos) => (P0002) | (C0007) 1.0 1.0 0.8 0)
((P0008) => (P0002) | (C0008) 1.0 1.0 0.8 0)
((P0010) => (C0003) | (C0011) 1.0 1.0 0.8 0}
((Po012) => (C0003) [ (C0013) 1.0 1.0 0.8 0)
((P0014) => (P0008) | (C0015) 1.0 1.0 0.8 0)
((Po018) => (P0008) | (C0017) 1.0 1.0 0.8 0)
((P0018) => (P0010) | (C0019) 1.0 1.0 0.8 0)
((Po020) => (P0010) | (C0021) 1.0 1.0 0.8 0)
((P0022) => (Coo011) | (C0023) 1.0 1.0 0.8 0)
((Po024) => (Coo11) | (C0025) 1.0 1.0 0.8 0)
((P0028) => (C0007) | (€0027) 1.0 1.0 0.8 0)
((Poo28) => (C0007) | (C0029) 1.0 1.0 0.8 0)



((P0030) => (P0014) | (C0031) 1.0 1.0 0.8 0)
((P0032) => (P0O14) | (C0033) 1.0 1.0 0.3 Q)
((P0034) => (P0018) | (C0035) 1.0 1.0 0.8 0)
((Poo3s) => (Po018) | (C0037) 1.0 1.0 0.8 0)
((P0038) = > (P0022) | (C0039) 1.0 1.0 0.8 0)
{(P0040) => (P0022) | (C0041) 1.0 1.0 0.8 0)
((P0042) == (P0028) | (C0043) 1.0 1.0 0.8 0)
((P0044) => (P0026) | (C0045) 1.0 1.0 0.8 0)
((P0048) = > (C0027) | (CO047) 1.0 1.0 0.8 0)
((P0048) => (C0027) | (C0049) 1.0 1.0 0.8 0)
((P00S0) => (C0023) | (COOS1) 1.0 1.0 0.8 0)
((P0052) => (C0023) | (C0053) 1.0 1.0 0.8 0)
((P00S4) => (C0019) | (C0OS5) 1.0 1.0 0.8 0)
((Pooss) => (Co019) | (C0057) 1.0 1.0 0.8 0)
((P00S8) = > (C0018) | (C0059) 1.0 1.0 0.8 0)
((P0080) => (C0015) | (C0081) 1.0 1.0 0.8 0)
((P00682) => (P0030) | (C0063) 1.0 1.0 0.8 0)
((P0084) =>> (P0030) | (C0065) 1.0 1.0 0.8 0)
((P008s) => (P0034) | (C008T) 1.0 1.0 0.8 0)
((Po08S) => (P0034) | (C0068) 1.0 1.0 0.8 0)
({(Poo70) => (P0038) | (C0071) 1.0 1.0 0.8 0)
((P0072) =>> (P0038) | (C0073) 1.0 1.0 0.8 0)
((P0074) => (B0042) | (C0075) 1.0 1.0 0.8 0)
(Poa7s) => (P0042) | (C0077) 1.0 1.0 0.8 0)
((P0078) => (P0048) | (C0079) 1.0 1.0 0.8 0)
((P00s0) == (P0048) | (Coas1) 1.0 1.0 0.8 0)
((Po082) => (P0050) | (C0083) 1.0 1.0 0.8 0)
((P0084) => (P0050) | (C008S) 1.0 1.0 0.8 0)
((P0088) = > (P00S4) | (C0087) 1.0 1.0 0.8 0)
((P0088) = > (P0054) | (C0089) 1.0 1.0 0.8 0)
((P0090) => (P00S8) | (C0091) 1.0 1.0 0.8 0)
((P0092) => (P0058) | (C0093) 1.0 1.0 0.8 0)

91



92

((Poos4) => (Co058) | (C0095) 1.0 1.0 0.8 0)
((P00$6) => (C0059) | (C0097) 1.0 1.0 0.8 0)
((P0098) = > (C0055) | (C0099) 1.0 1.0 0.8 0)
((P0O160) => (C0055) | (CO101) 1.0 1.0 0.8 0)
{(P0O102) => (C0051) | (Co103) 1.0 1.0 0.8 0)
((P0O104) => (C0051) | (CO105) 1.0 1.0 0.5 0)
((P0108) = > (C0047) | (C0107) 1.0 1.0 0.8 0)
((P0108) => (C0047) | (C0109) 1.0 1.0 0.8 0)
((PoO110) => (C0043) | (C0111) 1.0 1.0 0.8 0)
{(PO112) => (C0043) | (C0113) 1.0 1.0 0.8 0)
{(Po114) == (C0039) | (CO115) 1.0 1.0 0.8 0)
{(PO118) => (C0039) | (COL17) 1.0 1.0 0.8 0)
{(PO118) => (C0035) | (COL19) 1.0 1.0 0.8 0)
{(P0120) => (C0035) | (Co121) 1.0 1.0 0.8 0)
((Po122) => (C0031) | (C0123) 1.0 1.0 0.8 0)
((P0124) => (C0031) | (CO125) 1.0 1.0 0.8 0)

((P0004) 0.8 1) ((P0008) 0.8 1) ((P0012) 0.8 1) ((P0018) 0.8 1) ((P0020) 0.8 1) ((P0024) 0.8 1) ((P0028)
0.8 1) ({P0032) 0.8 1) ((P0038) 0.6 1) ((P0040) 0.8 1) ((P0044) 0.6 1) ((PD048) 0.6 1) ((P0052) 0.6 1)
((Pooss) 0.6 1) ({(P0060) 0.8 1) ((P0064) 0.5 1) ((P00ES) 0.8 1) ((P0072) 0.8 1) ((P0078) 0.6 1) ((Po0s0)
0.8 1) ((Poos4) 0.6 1) ((P0088) 0.6 1) ((P0092) 0.6 1) ((P009S) 0.8 1) ((PO100) 0.8 1) ((P0O104) 0.8 1)
((Po108) 0.8 1) ({P0112) 0.8 1) ((P0118) 0.8 1) ((P0120) 0.6 1) ((P0124) 0.8 1) ((P0082) 0.8 1) ((P00SS)
0.8 1) ((P0070) 0.8 1) ((P0074) 0.8 1) ((P0078) 0.6 1) ((P0082) 0.8 1) ((P00S6) 0.6 1) ((P0090) 0.6 1)
((P0094) 0.6 1) ((P0098) 0.8 1) ((P0102) 0.8 1) ((P01086) 0.8 1) ((PO110) 0.8 1) ((PO114) 0.8 1) ((PO118)
0.8 1) ((P0122) 0.8 1) ((C0125) 0.8 1) ((C0121) 0.8 1) {(CO117) 0.8 1) ((CO113) 0.8 1) ((C0O108) 0.8 1)
((C0105) 0 0.1) ((Co101) 0 0.1) ({C0097) 0 0.1) ({C0093) 0 0.1) ((CO0%Y) 0 0.1) ((Co08S5) 0 0.1) ((Co081)
0 0.1) ((C0077) 0 0.1) ((C0073) 0 0.1) ((C0089) 0 0.1) ((CO085) 0 0.1) ((CO061) 0.6 1) ((C00O57) 0.6 1)
((C0053) 0.8 1) ((C0048) 0 0.1) ((C0045) 0 0.1) ({CO041) 0 0.1) ((C0037) 0 0.1) ((C0033) 0 0.1) ((Co029)
0.6 1) ((Coo25) 0 0.1) ((Coo21) 0 0.1) ((C0017) 0 0.1) ((C0013) 0.8 1) ((C0009) 0 0.1) ((C0O00S) O 0.1)
((C0123) 0.8 1) ((C0119) 0.6 1) ((C0115) 0.8 1) ((CO111) 0.8 1) ((C0107) 0.6 1) ((C0103) 0 0.1) ((Co098)
0 0.1) {(C0095) 0 0.1) ((C0091) 0 0.1) ((COOE7) 0 0.1) ((CO083) 0 0.1) ((C0079) 0 0.1) ((COOTS) 0 0.1)

((C0071) 0 0.1) ((CO067) 0 0.1) ((C0083) 0 0.1)



7.3. ESTIMATOR Knowledge Base

TYPE

(building-type (medical office military school))

(time-frame (slow average fast-track])

(system-type [heat a/c vav controlers))

(equip-type (room-thermo valve duct-sensor pipe-sensor panel-controler field—controler))
{thermostats (s1 a2 33 s4 35))

(valves (v1 v2 v3 v4 v5 v8 v7 v8 v9 v10 vil ¥12})

(sensors (s6 7 s8 s9 510 s11 512 513 314 315 516 517 s18))

{controlers (rel re2 red red re5 re re7 red red rel0 rell rel2))

(equip-codes ((thermostats) (sensors) (valves) (controlers)))

(locations (room duct pipe panel fieid))

(controls (temp humidity pressure air-fow))

(mediums (air water))

(powers (elect pneu))

(ranges (1-5 3-7 8-13 50-80 20~120 0-100 -50-150 40-240))

(accuracies (.1 .2 .5 1)) ; REQUIRED ACCURACY IN +/- DEGREES FARENHEIGHT
(level (low med high))

(delivery-time (1 2 3 4)) ; REQUIRED DELIVERY TIME IN WEEKS

(costs (50 75 100 125))

(season (summer winter spring fall))

(source (existing incompany outside})
(job-type (construction service management))
(purpose-type (control monitor))
(cooling-type (water DX))

(heating-type (water electric))

(size (small medium large})



94

PRED

(building (building-type))
(schedule (time-frame))
(system (system-type])
(location (locations))
(control (contrals))
(medium [mediumas))
(power (powers))
(air-temp-range (ranges))
(water—temp-range (ranges))
(pressure-range (ranges))
(equip—code (equip-codes))
(accuracy (accuracies))
(durability (level))
(delivery (delivery-time))

(time-of-year (season))

(building-size (sise))

(heating (heating-type))

(cooling (cooling-type])

(iob (job=type))

(equip-source (source))
(system-purpose (purpose-type))
(equip (equip-type))

ASSERT

( (building-sise large) == (heating water) .8 .1)

( (building-sise large) = (cooling water) .7 .1)

( (building-size small) => (heating electric) .6 .2)
( (building-sise small) => (cooling DX) .7 .2)



{ (job service) => (equip-source existing) .7 .1)
( (job management)} =>> (equip-source existing) .7 .2)

( (job conatruction) => {~ equip-source exiating) .8 .1)

; DETERMINE EQUIPMENT TYPE BASED ON SYSTEM TYFE
( (system a/c) =>> (equip room-thermo)
| (equip-source existing) (system—purpose monitor) 11 .8 .1)
( (system a/c) => (equip duct-sensor) | (equip-source existing) 1 1.7 .2)
( (system a/¢) =>> (equip pipe-sensor) | (equip-source existing) (cooling DX) 1 1 .8 .2)
( (system 3/c) => (equip valve)
| (equip-source existing) (system—purpose meonitot) (cooling DX) 1 1.5 .3)
( (system a/c) => (equip panel—controler)

| {equip-source existing) (system—purpose monitor) 1 1.7 .2)

{ (system heat) => (equip room-thermo)
| (equip-source existing) (system-purpose monitor) 1 1.9 .1)
( (system heat) => (equip duct-sensor) | (equip-source existing) 1 1.7 .1)
{ (system heat) => (equip pipe-sensor) | (equip-source existing) (heating electric) 1 1.7 .2)
( (system heat) => (equip valve)
| (¢quip-source existing) (system-purpose monitor) (heating electric) 1 1 .8 .2)
( (system heat) => (equip panel—controler)

| (equip—source existing) (system—purpose monitor) 1 1 .8 A1)

; TIME SCHEDULE RULES

( (building medical) => (schedule fast-track) .9 0)
( (building office) => (schedule slow) .7 3)

( (building military) => (schedule average) .7 .3)

( (building school) === (schedule fast-track) | (time—of-year summer) 1 1 .75 .25)

( (schedule slow) => (delivery 4) .9 .1)

[ (schedule average) =>> (delivery 2) .9 .1)



( (schedule fast-track) = (delivery 1} .9 .1)

s MEDIUM & LOCATION RULES

{ [system heat) = > [medium air) .9 0)

{ [system heat) == (medium water) .7 .1)
( (system a/¢) => {medium air) .9 0)

( (system a/c) => (medium water) .6 .2)

[ (system vav) =2 {ﬁudium air) .9 0)

{ (medium air) == (location duct) .8 .1)
( (medium air) = > (location room) .8 .1)

{ (medium water) =>> (location pipe) .9 0)

; —————— SUBSTITUTION RULES
; These rules indicate how good a substitution of one piece of equipment for

; another is.

: [F A SENSOR IN THE RANGE 50-80 [3S NEEDED THEN ONE IN THE RANGE 20-120 [S ALSO
; SOMEWHAT ACCEPTABLE.
[ (air-temp-range 50-80) => (air-temp-range 20-120) .8 .2}

{ (water-temp-range 0-100) = (water—temp-range -50-150) .8 .2)

; WE CAN REPLACE A SENSOR OF LOW ACCURACY WITH ONE OF HIGHER ACCURACY.
; IN GENERAL WE DON'T WANT TO DO THIS BECAUSE WE PAY FOR ACCURACY.

( (accuraey 1) => (accuracy .5) .8 .2)

( (accuracy .5) => (accuracy .2).7 .3)

{ (accuracy .2) == (accuracy .1) .8 .2)

; REPLACE A PIECE OF EQUIPMENT OF LOW DURABILITY WITH ONE OF HIGHER DURABILITY.
{ (durability low) = > (durability med) .8 .2)

{ (durability med) => (durability high) .8 .2)

[ (delivery 4) = > (delivery 3) 1 0)
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( (delivery 3) => (delivery 2) 1 0)
( (delivery 2) => (delivery 1) 10)

j THERMOSTATS

( (equip room-thermo) (control temp) (power elect) (air-temp-range 20-120) =>

(equip—code s1) [ (accuracy .1) (durability low) (delivery 2) 11.7 .2)

( {equip room-thermo) (control temp) (power elect) (air-temp-range 20-120) =>
(equip—code 12) [ (accuracy .5) (durability med) (delivery 1)1 1.3 .8)

( (equip room-thermo) (control temp) (power paeu) (air-temp-range 50-30) =>
(equip—code s3) [ (accuracy 1) (durability med) (delivery 1) 1 1 .5 .4)

( (equip room-thermo) (control temp) (power pneu) (air-temp-range 50-80) =>

(equip—code s4) [ (accuracy .2) (durability med) (delivery 3) 1 1.3 .8)

( (equip room-thermo) {control temp) (power pneu) (sir-temp-range 50-80) =>
(equip—code 5) [ (accuracy .1) (durability high) (delivery 4) 1 1.2.7)

DUCT SENSORS

( (equip duct~sensor) (control tamp) (power elect) (air-temp-range 20-120) =>
(equip—code 58) [ (accuracy .1) (durability high) (delivery 3)11 .8 1)

( (equip duct-sensor) (control temp) (power elect) (air-temp-range 50-80) =>
(equip—code s7) [ (accuracy .2) (durability med) (delivery 4) 1 1 .6 .3)

( (equip duct-sensar) (control temp) (power elect) (air-temp-range 50-80) =>
(equip—code 38) [ (accuracy .2) (durability med) (delivery 2) 1 1 .4 .5)

( (equip duct-sensor) (control temp) {power pneu) (air-temp—range 20-120) =>
(equip—code s9) [ (accuracy .5) (durability med) (delivery 2) 1 1.7 .2)

{ (equip duct-sensor} (control temp) (power pneu) (air-temp-range 20-120) =>



(equip—code s10) [ (accuracy .1) (durability high) (delivery 4) 11 .8.1) °

( {equip duct-sensor) (control temp) (power pneu) (air-temp-range 50-80) =>

{equip—<code s11) [ (accuracy .1) (durability high) (delivery 1)1 1.6 .3)

; ——— PIPES SENSORS
( {equip pipe-sensor) (control temp) (power elect) (water-temp-range 0-100) =>

(equip-code 312) [ (accuracy .5) (durability low) (delivery 1)1 1 .8 .1)

{ (equip pipe-sensor) {control temp) (power elect) (water-temp-range -50-150) =>

(equip-code s13) [ (accuracy .2) (durability low) (delivery 1)11.8.3)

( (equip pipe-sensor) (control temp) (power elect) {water-temp—range -30-150) =>

(equip—code s14) [ (accuracy .1) (durability med) (delivery 1) 11 .4 .3)

( (equip pipe-sensor) (control temp) (power elect) water—temp-range 0-100) =>
(equip—code s15) [ (accuracy .1) (durability high) (delivery 2)11.8.1)

{ (equip pipe-sensor) (control temp) (power pneu) (water-temp-range 0-100) =>

(equip—code s18) [ (accuracy .2) (durability low) (delivery 1)1 1.8 1)

( (equip pipe-sensor) (control temp) (power pneu) (water-temp-range -50-150) =>

{equip—code 517) [ (accuracy .2) (durability med) (delivery 4) 1 1.3 .8)

( (equip pipe-sensor) (control temp) (power pneu) (water—temp-range -50-150) =>

(equip—code $18) [ (accuracy 1) (durability high) (delivery 2) 11 .7 .2)

; VALVES
{ (equip valve) (control temp) (power elect) (pressure-range 1-5) =>

(equip—code 1) [ (accuracy .1) (durability low) (delivery 2)1 1.2 .7)

{ (equip valve) (control temp) (power elect) (pressure-range 1-5) =>

(equip-code v2) [ {aceuracy .1) (durability med) (delivery 3) 1 1.3 .8)



( (equip valve) (control temp) (power elect) (pressure-range 1-5) =>

{equip—code v3) [ (aceuracy .1) (durability high) (delivery 4) 1 1 .1 .8)

( (equip valve) [control temp) (power elect) (pressure-range 1-5) =>

{equip—code v4) [ (accuracy 1) (durability low) (delivery 2)11.1.8)

( (equip valve) (control temp) (power elect) (pressure-range 1-5) =>

(equip—code v5) [ (accuracy 1) (durability med) {delivery 3) 11 .1 .8)

( (equip valve) (control temp) (power elect) (pressure-range 1-5) =>
[equ:ip-cude v8) [ (sccuracy 1) (durability high) (delivery 3) 1 1.2 J)

 (equip valve) (control temp) (power pneu) (pressure-range 3-7) =>
{equip—code ¥7) [ (accuracy .1) (durability low) (delivery 2) 1 1 .5 .4)

( (equip valve) (coatrol temp) (power pneu) (pressure-range 3-7)=>
(equip—code v8) [ (sccuracy .2) (durability med) {delivery 3) 1 1 .3 .5)

( (equip valve) (control temp) (power pneu) (pressure-range 3-7) =>
(equip—code v9) [ (accuracy 1) (durability high) (delivery 1)11.2.7)

( (equip valve) (control temp) (power poeu) (pressure-range §-13) =2
(equip—<ode v10) [ (accuracy .1) (durability low) (delivery 4) 11 .2.7)

( (equip valve) (control temp) (power pneu) (pressure-range 8-13) =>
(equip—code v11) [ (sccuracy .1) (durability med) (delivery 4) 11 .3 .6)

{ (equip valve) (control temp) (power pneu) (pressure-range 3-13) =>
(equip—code v12) [ (accuracy 1) (durability high) (delivery 2)11.5.4)

; CONTROLERS
( (equip panel—<ontroler) (control temp) (power eleet) =>

(equip-code rel) [ (aceuracy .1) (durability low) (delivery 2) 11 .2.7)
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( (equip panel—controler) (control temp) (power elect) =>

(equip-code re2) [ (accuracy 1) (durability med) (delivery 3) 1 1.3 .8)
( (equip panel—controler) (control temp) (power elect) = >

(equip—code re3) [ (accuracy .1) [durability high) (delivery 4)1 1.5 4)
( (equip panel-controler) (control temp) (power pneu) =>

(equip-code red) [ (accuracy .1) (durability low) (delivery 3) 1 1.2.7)

( (equip panel-controler) (control temp) (power pneu) = >

(equip-code re5) [ (accuracy .5) (durability med) (delivery 4)11.3.8)
( (equip panel-controler) (control temp) (power pneu) =>

{equip—code re) [ (accuracy 1) (durability med) (delivery 4) 1 1.5 .4)
( (equip Geld—controler) (control temp) (power elect) =>

(equip—code re7) [ (accuracy .1) (durability med) (delivery 2)11.2.7)

( (equip Geld—controler) (control temp) (power elect) =>

(equip-code re8) [ (aceuracy 1) (durability high) (delivery 3)11.3.8)
( (equip feld—controler) (control temp) (power elect) =

(equip—code ) [ (accuracy .2) (durability high) (delivery 4) 1 1.5 .4)
( (equip Seld—controler) (contzol temp) (power pneu) =>>

(equip—code rel10) [ (accuracy .1) (durability med) (delivery 3)11 .2 .7

{ (equip Geld—controler) (control temp) (power pneu) ==

(equip-code rc11) [ (accuracy .5) (durability high) (delivery 4) 1 1.3 .8)

( {equip Geld—controler) (control temp) (power pneu) =>

{equip-code re12) [ (accuracy 1) (durability high) (delivery 2)11.5 4)
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