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ABSTRACT

The problem of robotic manipulator path tracking has been traditionally solved with numerical methods.
An alternative approach that employs the techniques of symbolic computations is proposed. When given
tutorial examples of path tracking, the method generates decision rules through inductive generalization
from training instances, The decision rules can then be used to generate approximate solutions for smooth
path tracking. The method permits the integration of task modules with low level sensor/actuator control
modules. Parallel processing in the path tracking phase is also possible.

1. Introduction

The applications of the techniques developed in artificial intelligence to robotics have been mostly
limited to task level problems such as planning or problem solving. One major reason for this situation is
because lower level problems in robotics (such as manipulator path tracking), are numerical in nature,

while artificial intelligence concerns itsell mostly with symbolic computations.

Recent developments in inductive learning [Michalski, 1983; Quinlan 1983; Mitchell, 1977] indicate
the possibility of the application of symbolic computations to these type of problems. Instead of solving
problems with numerical methods, the problem can be transformed into gualitative descriptions, and then
qualitetive solutions are found using symbolic computations. Here we seek to find qualitative solutions for
smooth path tracking of an arbitrary mbot. arm that can be characterized as a generalized robot arm

through the technique of inductive inference.

Why would "inexact” gualitative solutions be desirable when exact solutions can be found with exist-

ing numerical methods? There are several reasons for that:



(1) Sometimes consideration over the efficiency and Hexibility of the solutions overrides precision.

(2) Generalized decision rules can be obtained through inductive learning during the learning phase, so
that solving the problem of manipulator path tracking can be as efficient as the time needed to

retrieve and apply the decision rules.

(3) The interaction between the task level and manipulator level modules can be greatly simplified, since
both modules can now speak the same language (i.e. symbolic representations). It becomes possible
for task level modules to interact directly with very low level attributes such as motor speed or sen-

sor signals. For example, given a path tracking solution in the form of a decision rule:

If condition A holds,

then activate the robot arm in a way as specified by B.
It is easy to attach to the rule as many extra conditions as the task modules call for:

If eondition A holds,
and the reading of sensor #4 is less than 30,
and there is no danger of knocking down anything with the elbows,

then activate the robot arm in a way as specified by B.

The method proposed here is designed to solve the path tracking problem for those robot arms that
can be abstractized as generalized robot arms. The problem of smooth path tracking is defined here as the
simultaneous control of the velocity of each joint, so that the velocity at the end effector is always tangent

to the given path.

2. Genereslized Robot Arm

A generalized robot arm is defined with three tuples: a configuration tuple, a control tuple, and a
reference tuple. A configuration tuple is a N—tuple of three dimensional vectors, where N is the number of

links (degrees of freedom) :

T T Ty Ty



where ¥, 1<{<N, are three dimensional vectors that represent the geometry of individually controllable

links of the arm. Each vector ¥, is characterized by its polar coordinate representation' (r; 8; ¢;), with
angles measured in radians. The parameter r; defines the length of ¥, while 4, and ¢, jointly define the
orientation of %;. The coordinates of T, are measured relative to its reference frame R, in the correspond-

ing reference tuple. Ordinarily, the reference frame of ¥, is either %;_,, or the shoulder (the fixed base) of

the robot arm. A configuration tuple of the form:
<(5 /2 0) (4 0 x/2) (3 0 0)>

indicates that the robot arm has three links, ¥, 7;, and ¥,. The first link ¥, has a length of 5, pointing
(with respect to its reference frame) in the direction #=x/2 and ¢=0. The second link 7, has a length of 4,
pointing (with respect to its reference frame) in the direction §=0 and ¢=x/2, The third link v, has a
length of 3, pointing (with respect to its reference frame) in the direction #=0 and ¢=0. Connecting the
world coordinates representation of these N vectors head to tail represents an abstraction of the robot arm,

as shown in Figure 1. The tail (emanating point) of ¥ is called the ith joint.

Shoulder

Figure 1. An abstractized three-link manipulator

! When superimposed with a Cartesian coordinate frame, B, is the angle between the projection of T; on the x-y plane and the
positive x axis. @, is the angle between ?,F; and the x-y plane.



The control tuple of a generalized robot arm is an N-tuple that takes the following form:
<Ey xpzy vt gy

where z; (called control parameters), 1<i<N, is one of r, #, or ¢. X; defines the dimension for which the

ith link is to be controlled. For example,

indicates that the fourth link is controlled by changing its length. Note that a generalized robot arm
assumes that a link has at most one control parameter. For robot arm with joints that have more than one
control parameter, pseudo links of sero length can be used to indicate the additional control without alter-

ing the physical geometry of the abstractized arm.

A typical three joint Cartesian arm as shown in figure 2 can be defined as follows®:

Configuration Tuple = <(r, 8, x/2) (r, 0 0) (r, 8, x/2)>
Reference Tuple= <shoulder v, v,>
Control Tuple = <r r r>

A typical three joint cylindrical arm as shown in figure 3 can be defined as follows:

Configuration Tuple = <(r, 4, x/2) (0§, 0) (r, 0 0)>
Reference Tuple= <shoulder v, v,>

! £

Figure 2. A typical Cartesian arm Figure 3. A typical cylindrical arm

*In general, the configuration tuple can be defined in more than one way, depending on the orientations of the reference frames.
This is not a problem as long as the reference frame are interpreted consistently,



Control Tuple = <r 8 r>

The net effect of z; (the velocity of the ith link) to the end effector, is given as a function B (z)
(abbreviated as E.}r which defines the instantanecus direction and speed that the end effector will travel,

provided that the ith link is activated with velocity z;, with all the other links being inactive.

Given the geometry of a robot arm, and the desired direction and speed of travel {expressed as a vec-
tor 7 emanating from the end effector of the arm), manipulator path tracking can be defined as the

problem of finding the velocities of each link z; , such that

N
L E(3)=7

The end effector will travel in the direction and speed indicated by 7 if each link is activated simultane-

ously with velocity =, assuming instantaneous accelerations are possible®. Since given a set of solutions

(called solution tuple)
<3 By Byttt By

for a particular path tracking problem, arbitrary speed can be obtained by proportionately scaling the
velocities of each link z;, in the following sections we shall concentrate only in the acquisition of solutions

that generate an unit length 7.

3. Inductive Learning

Inductive learning is a process of acquiring knowledge by drawing inductive inferences from given
examples. This process involves operations of generalizing and transforming knowledge representations in
order to accommodate given examples and satisfy various additional criteria, The generalised knowledge

can be viewed as the condensed version of the given examples.

! The problem of dynamics is ignored here.



Our approach to the problem of robotic manipulator path tracking begins with a learning phase that
acquires generalized decision rules from tutorial examples, then followed by a problem solving phase that
actually solves the path tracking preblem. During the learning phase, the system accepts as input
preclassified training examples for tracking a given path at a certain time instant, and produces as output
generalized decision rules for each decision class. The control of the arm is decided in the problem solving

phase with the rules learned from the learning phase.

Each tutorial example is given as a set of attributes {4,}, plus a solution tuple § that can generate a
unit length 7 at the end effector. The pair ({4}, §) represents an instance of a correct decision in the fol-

lowing sense:

If the world (of the robot arm) has attributes {4},
then activate the arm in a way as specified by §
to generate an instantaneous end effector velocity

of unit size as specified by 7.

The set of attributes can be viewed as the properties of the training instance, and the solution tuple is the
class designator for the training instance. A solution tuple that doesn’t generate unit end effector speed
can be proportionally scaled before being fed to the learning algorithm. Training instances can be
obtained through either teach pendants, lead-through actions, off-line data dump, or even directly from

spontaneous random exercise of the robot arm.

Remember that a solution tuple is an N-tuple of real numbers, which corresponds to a N-
dimensional space. Generating a class designation from this N-dimensional solution space can be achieved
by dividing the space into many small hypercubes, with each hypercube corresponding to a class. For
example, the velocity of each link ;, can be quantized into three ranges: positive, negative, or wero,
according to the sign of its value. In this way, 3" classes can be generated, Characteristic descriptions

[Michalski, 1983| for each class can be then generated with an inductive algorithm.



The natural question that comes to mind is: can sensible solutions be found with this approach? The
worst form of inductive learning could deteriorate to rote learning if no meaningful generalization can be

found. The crux of the problem lies in the selection of the right kind of attributes for the inductive learn-

ing algorithm. The simplest case occurs when the true description for each class is non—disjoint, conver?,
and non—overlapping with the descriptions of other classes. By non-digjoint we mean that the description
for each class (the conditions of a decision rule) contains no disjunctive terms; by conver we mean that the
closing-gap generalization is truth preserving®. It is a known fact that our approach can guarantee neither
the non-disjointness nor the non-overlapping properties. However, we do believe that a limited form of
convexity property can be obtained through a technique called gquadrent separaiion, which will be

explained in the fellowing sections.

Choosing the right attributes for an inductive learning system is a profoundly diffieult problem.
Robot arms with redundant links, such as a Cartesian arm with two links both comtrolling the x—
dimension, poses additional difficulty since what's important is not the individual velocities of the two x—
dimension links, but the sum of the two. The problem of constructing interesting attributes by the arith-
metic combinations of the existing attributes has been an intensively investigated topic in machine learn-
ing [Falkenhainer 1984; Langely, Bradshaw & Simon, 1981]. Although this technique is not used here, it is
clear that advancement in this field can be readily introduced to improve the performance of thela}'sttm.
A set of basic attributes that enable the system to acquire meaningful rules for uncomplicated cases is

given in the following sections.

* Hare we are concerned only with the convezily with respect to the closing-gap generalizations [Michalski, 1983|, since only
real numbers are involved.

"Thal s, given bwo rules

R ,=Conditions,— Decision,
B, =Conditions;— Decision;

that are both troe, the following must alse be true:
closing —gap( Conditions |, Conditions,)— Decision,.

Convexity implies non-disjointness, but the reverse is not necessarily true.



3.1. Representation

The description of each class can be represented in the form of a decision rule
Condilions — Decision

Conditions is represented as a VL, complex [Michalski, 1983). A VL, complex is a conjunction of rela-
tional statements called selectors. A selector, representing a logical statement concerning the value range

of an attribute, is of the following form®:
[Attribute, = [ower—range .. upper—range|
where both lower—range and upper—range are real numbers. For example, the VL, complex
|Angle = 85.3 .. 40.0][Length=3.4 .. 5.5

indicates that the value of the attribute Angle falls inclusively in the range between 35.3 and 40.0, and the
value of Length falls inclusively in the range between 3.4 and 5.5. The conjunction between adjacent selec-
tors is implicit. Training instances also take the form of decision rules. In the following sections the term
rules are used to refer specifically to the generalised decision rules derived from training instances., A
training instance C,—D, is covered by a rule C,—D, if and only if D, and D, are. identical, and C, tau-

tologically implies ;. For example, the event
[Angle = 4 .. 5][Length=6 .. 8] — D,
is covered by the rule

[Angle =2 .. 5}[Length=4 .. 12] — D,.

The closing-gap generalization can be characterized as the operation of eliminating the gap

between two ranges. For example, the following two decision rules

* The definition of selector given here is only a small subset of its permissible forme defined in [Michalski, 1983/,



[Angle = 35.3 .. 40.0][Length=3.4 .. 5.5] — D,

[Angle = 20.5 .. 25.5][Length=4.4 .. 7.8] — D,
can be generalized to
[Angle = 20.5 .. 40.0|[Length=3.4 .. 7.8] — D,.

Note how the value ranges of the same attribute in the lefthand side of the two decision rules are "merged”

to generate a new generalized hypothesis for D,

3.2. Attributes and Algorithm

The selection of proper attributes for the inductive learning algorithin is of utmost importance in
any learning system. The attributes must be chosen in such a way such that simple class descriptions can
be found. For example, if a learning algorithm is given only the absolute coordinates of the arm geometry,

then it is highly unlikely that any meaningful generalized decision rule can be found.,

We choose to use attributes that manifest the relationship between the desired direction of travel P

and the status of the arm. Specifically, the following attributes are used:
{1)  Astributes EP;, 1<i<N (N is the total number of links), where EP, is the angle between E; and 7.

2)  Attributes VP, 1<i<N, where VP, is the angle between T, and 7, ¥, is the vector from the ith
i i i i

joint to the end effector.
{3)  Attributes L;, where L; is the length of 7.

The EP attributes represent the relationships between the effects of link velocities and the desired
direction of travel 7. The VP and L attributes represent the relationships between the status of the robot
arm and 7. Angles, measured in radians, are positive real numbers between 0 and 7. The value of an
angular attribute, which represents the angle between 7 and e.g. E':-, can be divided into two quadrants
(the other two quadrants are unused). The first quadrant has a value range botween 0 and /2, and the

second quadrant has a value range between 7/2 and 7. The two quadrants represent the two qualitative

categories of the relationship between E’; and . A first quadrant angle indicates that E" has a positive
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component on F. Activating the ith link with positive velocity will cause the end effector to move more in
the direction of 7. A second quadrant angle indicates exactly the opposite. It is thus wise te avoid gen-
eralization across quadrant boundaries, since class descriptions are unlikely to scatter across quadrant

boundaries. This is ealled the Principle of Quadrant Separation.,

Since there is usually more than one solution for path tracking’, each training instance can belong to
more than one class. Each training instance is a positive example for its designated class, but cannot be
viewed as a negative example for other classes. For this reason, an inductive learning algorithm that is
capable of generating characteristic description is required. A simple algorithm based on the closing—gap
generalization and the Principle of Quadrant Separation is given below:

(1) Initialize the rulebase RB to nil.

(2) Input a training instance T = € — D,
(3) Let IR be the set of rules in BB that have the same righthand side as T

IRE{R,.; Rl.gc,_.p}

(4) Generalize R, to
R;=closing—gap(C,C,)—D
if the principle of quadrant separation is not violated.
Replace all generalized R, back into RB,

If no rule in IR has been generalized, then insert T into BH.
(5) Exit if there is no more input. Otherwise go to (2).

The quantization of the solution tuples into qualitative classes also merits some discussion here. In
general, the total number of classes is exponentially proportional to the number of levels used in the quant-
ization of each dimension of the solution space. The finer the quantization, the more precise the final solu-
tions will be, and the more burden the inductive engine must bear. For a solution space that is unbounded

(i.e. —oo<{z;<oo) due to normalization, logarithmic or variable quantization schemes can be used.

The efficiency of the learning algorithm relies greatly on the quality of the tutorial examples, Good

tutorial examples allow the learning algorithm to skip unpopulated parts of the solution space, and con-

" This problem is also commen in the similar inverse kinematics problem.
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centrate on finding characteristic descriptions only for those classes that are present in the tutorial exam-
ples. Thus although the number of potential classes might seem to be formidable at first sight, actually

only a small portion of them will be explored.

4. Path Control with Decision Rules

Equipped with the decision rules generated from the learning phase, we are now ready to sclve the
manipulator path tracking problem for a given robot arm. Given the status of the robot arm and the
desired direction of travel ¥ at a certain time instant, the attributes can be caleulated. If the conditions of
a decision rule are satisfied by the caleulated attributes, then the righthand side of the rule represents an
approximate solution to the problem. Those decision rules whose conditions are satisfied by the calculated
attributes are said to be invoked. Path tracking solutions can be recalculated at regular time intervals to
allow the robot arm to trace the path smoothly. It is obvious that it is most likely that more than one
rule will be invoked. Multiple invocation of rules indicates the presence of alternative solutions, Alterna-

tive solutions can be handled in one of two ways:

(1) Select the solution that satisfies predefined criteria, e.g. select the solution that is most efficient,
most commonly used, doesn’t violate the arm geometry or working space geometry, ete.

{2) The average of the invoked solutions can be used in order to achieve greater precision.
It is also possible that no rule is invoked due to insufficient data points during the learning phase. In

this case, a distance function can be defined so that the rule whose conditions that is closest to the com-

puted attributes is invoked.

6. Example and Performance Evaluation

A simple twe dimensional, two-link robot arm is given below to demonstrate the proposed method.
This two dimensional robot arm with two rotary joints can be characterized as follows:
Configuration Tuple = <(5 8,) (4 4,)>

Reference Tuple= <shoulder v >
Control Tuple = <# §>
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Note that the length of the first link is 5, and the length of the second link is 4. The solution space, an
unbounded two dimensional space, is quantized into 0.02 by 0.02 squares. The unboundness of the solution
space is due to a singular point at the position where the two links are aligned in a straight line., Only two
directions of movement at the end effector are possible at this position. It takes great link velocities to

generate a unit size  near the singular point, where computation errors are also magnified. Although
there are potentially infinite number of classes, a relatively small number of rules were generated. The
robot is simulated with a program written in Franz Lisp running on a Sun-2,/170 workstation. The status
of the arm and the desired direction of travel F were generated randomly, its selution tuple was then com-
puted numerically in order to generate a complete iraining instance. Only those rules that cover more
than one training instance are output by the learning program. In the problem solving phase, the status of
the arm and the desired direction of travel 5 were also generated randomly, the attributes for the arm are
then computed. To get an estimation of the precision of the generated rules and the sparseness of the solu-
tions, no distance function is used to get the "nearest” solution. If no rule in the rulebase is invoked by the
attributes, it is simply discarded and a new training instance is generated; otherwise the average of the
invoked solutions are used. Table 1 shows the results of five experiments using different quantum sizes and
number of training instances. The data in table 1 shows that the number of decision classes increases as
smaller quantum and more training instances are used. The precision also improves with smaller quantum

and more training instances. By avoiding generating training/testing instances that are 15 degrees within

the singular point, the precision of the results were improved by thirty to fifty percents.

Two problems are immediately evident from the results shown in table 1: the large number of the

rules generated, and the relatively low precision of the solutions. One way to cut down the number of

Number of Quantum | Total Number of | Average Error | Total # of | # of Test Cases
| Decision Classes Size Training Instances (in degrees) Test Cases not Covered
T4 0.02 1000 28.95 500 225
187 0.02 5000 27.52 500 84
120 0.01 1000 14.19 500 330
320 0.01 5000 13.95 500 160
520 0.005 5000 7.78 | 500 277 |

Table 1. Results of simulations with a 2-D 2-link spherical robot arm.
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rules and to improve precision is to divide all links into several groups, e.g. a transportation group, a dex-
terity group, and some groups between these two extremes. The links in the transportation group are
responsible for transporting the end effector over relatively long distances, where efficiency overrides preci-
sion. The links in the dexterity group are responsible for precise local operations where precision overrides
efficiency. These groups of links can be trained independently with different requirem.cnt-a in efficiency and
precision, thus greatly cut down the number of rules need to be generated, while at the same time allows
more extensive training for higher precision. Given a task of reaching for an object, a task module would
plan a path and decide which group is to be activated, depending on the distance between the object and
the end effector, plus possibly other factors. For example, given a mobile robot, the mobility links (the
wheels or "legs" of the robot) can be considered as the long-range transportation links that are activated
whenever the distance between the end effector and the object is greater than ten feet. The second group of
links (the "arms” of the robot) are activated if the distance is between 0.5 and 10 feet. The third group
(the "hand" and “fingers” of the robot) are activated if the distance is less than 0.5 feet. In this Way, no
only have we cut down the complexity in the learning phase, but we are also able to integrate the various

actuators of a robot system into one integral unit.

B. Conelusions

We have shown here how the problem of smooth path tracking for a robot arm can be transformed
into a form where symbolic computations can be applied. The simplified example demonstrated the viabil-
ity of this approach. Raibert [1977] approached the problem of motor control in a similar way by acquir-
ing the inverse equation in tabular form through learning. The mode] of the target robot arm is based
on the Newtonian equations of the rotary motions of the arm. Contrary to Raibert’s parametric represen-
tation, here attributes that explicitly describe the cause—effect relationships between joint velocities and the
resultant arm status are used. Representing motor control knowledge in rule form allows rule—based task
level planning systems to easily access/incorporate the knowledge acquired by the learning system. We
argue here that parametric representation of motor control failed to uncover the cause-effect relationships

between joint velocities and the resultant arm status, thus reduces the usefulness of the knowledge
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acquired by such a learning system to other task level reasoning or planning modules. Representing
mobile skill in symbolic forms also allows tighter coupling between high level task modules and low level
manipulator control ﬂ:odules. The coupling between multiple arms, or other mohile parts of a robotic sys-
tem, can also be simplified, since the coordinations between independent symbolic systems are considerably

simpler than those of between independent numerical systems.

It is possible to obtain sclutions of various precisions depending on the requirements. For example, if
rough approximation already suffices, than any invoked rule can be chosen as the solution. If higher preci-
sion is desired, than all invoked rules can be processed to obtain a more precise solution. It is also possible
to adopt progressively fner quantum sizes for the learning algorithm, so that the precision can improve

incrementally over time.

Note that using decision rules for path tracking involves two major steps: the computation of the
attributes, and the invocation of the rules. Since there is no dependency between either the attributes or
the decision rules, both the computation of the attributes and the invocation of rules can be done in paral-
lel. That is, given appropriate parallel machines, path tracking with decision rules can be achieve in con-

stant time, independent of the number of joints of the robot arm, or the number of decision rules.

The efficiency and the symbolic nature of this approach has potential applications in realtime or
complex domains where environments are unpredictable and changing rapidly, and for applications that

require complex interactions between the task level modules and the manipulator control modules.
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