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Abstract

A new approach, called the eztension matriz (EM) approach, for describing and solving the general covering problem
(GCP) is proposed. The paper emphasizes that the GCP is NP-hard and describes an approximately optimal covering
algorithm, AEl. AEl incorporates the EM approach with a variety of heuristic scarch strategies. Results show the new
algorithm to be efficient and useful for large scale problems.

Introduction

An overview

The general covering problem (GCP) occurs often in various aspects of artificial intelligence, pattern recognition,
switching theory, VLSI design, and other fields. This problem is of particular importance to machine learning and inductive
inference’.

The general covering problem (GCP) is an extensior of the standard covering problem and is defined as follows. Let E
be an_event space spanning a finite set of discrete-valued variables. Certain subsets of the event space E are distinguished
and called complezes (described in detail later). Given a partition of the event space into PE and NE, called positive and
negative event sets, respectively, GCP ‘is the problem of finding decision rules to classify groups of objects in a way that
minimizes cost (e.g., rule length), where the decision rules are complexes whose set-theoretic union includes all PE and none
of NE.

It is known that the general covering problem is NP-hard?3, and it is shown herein that many specializations of GCP
are NP-hard®. Consequently, for solving complex problems, efficient approximate algorithms are of most interest.
Michalski's A9 is such an efficient, quasi-optimal covering algorithm® * 5. H

This paper introduces a structure, the eztension matriz, for describing the general covering problem simply and
constructing a new covering algorithm . Implementation shows that the new algorithm, AE1 {Extension Matrix Algorithm),
is efficient and gives optimal or nearly optimal results. Moreover, AE1 handles large data sets. Experiments in the areas of
bio-medical computing and used car dealerships demonstrate performance comparisons against various A9 algorithms and
Rendell’s probabilistic PLS1 & (which produces something akin to covers). This paper discusses in detail a variety of
heuristic search strategies incorporated into AE1 to make it approximately optimal.

A simple example for GCP

Suppose there are two series of microprocessor systems: Mic_Non8080 and Mic_8080. A store owner wants simple rules
for deciding the series of 2 system on the basis of such characteristics as RAM memory size, ROM memory size, display
type, and number of keys on keyboard. Suppose the owner collected facts about the systems in stock and arranged the facts
into Table 1. From this data, one can generate. for example, the following decision rules.

Mic_Non8080 & [RAM=32K] v [ROM==10K v 80K]
Mic_8080 €1 [RAM=48K v 64K|[ROM=1K v 4K v 8K v 11_16K]
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Naval Research under grant N00014-82-K-0186, Defense Advanced Research Project Agency under grant
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Mic_non8080 Mic_8080
RAM ROM Display Keys RAM ROM Display | Keys
48K 10K | Color TV 52 48K 4K | B/W_TV | 57.63
48K 10K Color TV 57_63 ’ 64K 1K Built_in 64 73
32K 11.16K | Color TV | 6473 64K 8K | Terminal | 57_63
32K 8OK Built_n 92 48K 11.186K B/W_TV | 5356
32K 10K B/W_TV | 53.56 64K 8K Built_in | 6473
48K 10K B/W_TV 5356 48K 11_16K Built_in 6473

Table 1. Microprocessor Systems Data

Paraphrasing, the rules say if RAM size is 32K, or ROM size is 10K or &0K, then it is 2 non-8080 series system, but if RAM
size is 48K or 64K, and ROM size is 1K, 4K, 8K, or within 11K to 16K, then it is a 8080 series. Expressing the example
terms of Table 1, a characteristic (such as RAM or Keys) is a variable, an individual system is an event, and the given series
is a class. If we were looking for Mic_Non8080s, a Mic_Non8080 system would be a positive event, while a Mic_8080 system
would be a negative event. A statement such as [RAM = 48K v 64K] is a selector, and a rule such as [RAM = 48K v
64K][ROM = 1K v 4K v 8K v 11_16K] is a complez.

Terminology

This paper adopts the basic concepts of the Variable-Valued system VLI S. Table 2 gives a summary of the relevant
notation used herein.

X; a variable, attribute or characteristic with values from set Dj .
Dj domain of variable x., a finite set of integers

e== <v1,...,vn> an event e, consisting of VjEDj’ j€[1,n]

M the j* element of event e. .

PE the set of posilive events, the set to be covered

NE the set of negative events, not to be covered

#(S) # is a function returning the cardinality of a set S

A a reference set, a subset of D,

[x; # A} a selector®, a statement that the value of x, is notin A

[Xj = A] an alternate selector, a statement that the value of x‘j 1sin A
& denotes conjunction, logical product

L= ,8:1 ["j * Aj] A complez L, conjunction of n selectors

“Note: We use selectors mostly in form of [xj # Aj] rather than Exj = BJ.], as the elements of 2 complex, where Bj = A—)-

Table 2. Basic Symbols and Terms
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Positive Events Negative lvents
Variable # Variable #
t
Bvent# M To 3|4 Brent# M To]3 4
1 0l0}o0o]0 1 0{2|1 i
2 o|lol2 0 2 0710|310
3 0|20 1 3 1 2 [
4 011 1|0 4 1 1 1 ]
5 0|2 2 1 5 1 02 1
6 02 1{0 6 1121310
(a) PE (b) NE
:-E‘Ejﬂvi%ilibﬁ Positive Event, EM Positive Event E:{
10000 e:0201 e:011
Row # e Row # [———d——smm—nn — Row # & .
Elements Elements cments
* *
1 «laoip it 1 RN PR D 1 NERE!
P * * JB * 2 . 0 J3 0 9 * }>3 *
3 1 3| 3 1 *|0 3 1( 210"
4 flrjpu ] 4 iyrr}o 4 1L OGN R I
5 ifpr b2t 5 tffotz|* 5 1|0 ‘2:;{
6 ifp2§3]* 6 1hp*j3io 6 11273
(c) EM, (d) EM, (e) EM,

Table 3 — Positive and Negative Events with Extension Matrices.

The following definitions give the condition under which a complex covers a positive event in PE and does not cover any
negative event in NE.
Def 1.1:  Given an event, e = <v,, .. ,v,>, and a complex, L = & [xj # Aj]’ L is said to cover e if for each j€J, v ¢ Aj.
i€
L does not cover e if there exists at least one j such that j€J and \f € A].

Def 1.2: A complex L covers e against NE if L covers e and does not cover any event in NE.

Def 1.8: A cover of class PE against class NE is a set of those complexes that cover PE and do not cover any eventdn
NE.

In the microprocessor example, complex [RAM # 16K v 48K v 64K], equivalent to [RAM == 32K], covers three events
(the third, fourth, and fifth) in Mic_Non8080 since the element 32K of the three events is absent in the complex. Also, the
complex does not cover any event in Mic_8080 since, for example, the first event in Mic_8080 has an element 48K which
appears in the values to be excluded from the complex. Similarly, [ROM = 10K v 80K| covers the remaining events in class
Mic_Non8080, and complex [RAM = 48K v 64K|[ROM = 1K v 4K v 8K v 11.16K] covers class Mic_8080 against
Mic_Non8080.

The extension matrices

This section introduces a basic concept, the extension matrix, on which the covering algorithm AE1 is based. Suppose
PE and NE are the sets of the positive and negative events, as shown in (a) and (b) of Table 3.

Def 2.1:  Given a positivé event ¢ = <V, ..,V > in PE, if one substitutes * (referred to as the dead element) for all
appearances of v, in the j‘h column of NE, for j€{1,n], the resulting matrix is called the eztension matriz of event
e, against NE, denoted by EM, .

Def 2.2: A set of m non—dead elements that come from m different rows is called a path, where m = #{NE).

Def 2.8: Corresponding elements in different extension matrices that have the same value are said to be a common
element of the matrices, and a path that consists only of common elements is said to be a common path of the
extension matrices involved. Two extension matrices are disjoint if they share no common path.
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For example. (¢}, {d), and (e) of Table 1 are the extension matrices of events e, e;, and e, respectively. Letting T
denote an element r in the i'® row and the 't column in EM,. path 1}3—323_131'141_151—161 in (c) stands for the complex L
= [x,#1][x;#1.3]. or equivalently [x,=0i[x,=0,2]. This path is also a common path of EM, and EM,;. Also, EM, and EM,
are disjoint since in the first row they have no common element.

From deBnitions 1.1-2.3, one can prove the following theorem which shows a one-to—one mapping ¢ from the set of the
paths in an extension matrix to the set of complexes that cover e against NE. Thus, a path and the corresponding complex

may be considered as the same thing.

Theorem 1: Let EM, be an extension matrix of e against NE, then each path represents a complex that covers e against
NE, and each such a complex corresponds to a path.

Proof: Suppose P = <1 .,y > is a path in EM,, thena complex, say L, that consists of i fori=1.. mand

5 € [1,n], covers e against NE by the following argument. Since no element of e is the same as T, i=1..m,soL covers
e. Also, for each i, T is an element of negative event e_..Y so L does not cover e—i. Conversely, given a complex that coverse
against NE, a path can be structured in a way that the path consists of such elements of the complex that are in EMe. Also,
for each row i in EM,, there exists an element that is in the path, since otherwise the negative event e-i would be covered by
the complex.
Theorem 1 shows that an EM, contains the paths which correspond to all complexes that cover e against NE.
Def 8: " The star G of e against NE is the set of all complexes that cover ¢ against NE, denoted by G( e | NE ). The
event e is called the seed of the star.

Note that a star of seed e is isomorphic to the corresponding extension matrix EM,.

NP-Hard problems in the general covering theory

The optimal set covering problem (SETCV) is as follows: Given a finite cover of a finite set, find the subcover which
uses the fewest sets from the given cover. More precisely, suppose T is a set of m points and the given cover F is a finite
family {s,, 5 sp}, such that Us, = T and p<m, find a solution F* = { 5 }.sj CFand U s, = T } so that #(F) is
minimai.

The followiug sre some optimization problems in the GCP which are shown by Hong and Michaiski® to be NP-hard.

(1) MCV: Generating a cover that has the minimum number of complexes.

(I) MCOMP: Generating a complex which has the minimum number of selectors: such complexes are called minimal
complezes.

(III) MSCV:  Generating a cover which consists of only minimal complexes.
{IV) MCVS:  Generating a cover that has the minimum number of complexes and consists of only minimal ¢complexes.

(V) MINF: Generating the minimum complete family of extension matrices (i.e., generating the minimal set of EMs
which contain complexes covering all PE and none of NE).

As an illustration of the type of reasoning required ‘to justify such theorems, we give an example from (I). Let T be a
set of 9 points and let F == { Sj } be the given cover of the SETCV problem depicted in Table 4a. It is known that SETCV

is NP-hard?, so showing SETCV reduces to MVC in polynomial time suffices to verify that MCV is NP-hard. The
characteristic matriz F, shown in Table 2b, may be analogously considered to be a set of positive events for a GCP whose
sole negative event is that of Table 4c. From the positive and negative events, the extension matrices of Table 4d are
derived. Since there is only one negative event and its elements all are 0, each EM consists.of only one row and each of its
non-dead elements (the 0 elements) are complexes. Corresponding elements in two or more EM are equal to 0 and are the
common complexes of the EM. There is an exact correspondence between the complexes of the MCYV problem and the sets
of the SETCV problem, such that finding a minimum complex cover does indeed generate the smallest set subcover.
Similarly, any SETCV problem can be reduced to an MCV problem, and thus MCV is NP-hard.

The extension matrices algorithm AE1

According to Theorem 1, one can directly construct a covering algorithm to generate a cover of PE against NE by
appropriate choice of paths in corresponding extension matrices. Note that a complex generated this way may cover several
events. For instance, the complex L in Table 3 covers four positive events, e, e,, e, and eg, so the actual number of

complexes generated is smaller than the number of the positive events. Furthermore, the appropriate search strategies can
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F =15,8, ., S\ where T =11,2,3,4.5,6,7,8 9}

= {1, 3,5}, Su= {1, 4, 5}, §,=12,3,7),8,=1{1,2,4,6}, 5, = 3. 4 5}.5,=13,5,7,8},8, = {2, 6,7, 8, 9}.

Sets
Point # S, S, | S, S, | S Se S,
1 @ 1 1
2 2 | (2 @
3 @ |3 3] 3
4 4 @) 4
5 @ 5 5| 5
6 @ 6 -
7 7 7 Negative Events (NE)
8 8 8 Event#‘0‘0‘0101010|0
; IO,

(a) Sets for SETCV (c) Negative Event for MCV

Characteristic Matrix (F) Extension Matrices
17 F, = Lif P S F,=0if P {8, EM, X, X, Xy X Xg X X
Point # - O . . N .
FH FiZ Fll Fi‘ Fi& FIS FI7 l 0 0 @
* * * *
1 tliloeltlolojo 2 o @ ©
2 olo |11 ]ofoy1 3 @ * o * o o *
3 1 o] 1o |1 1 | o . . o @ 0+
4 o {10 |1 1 oo .
. ;
5 t b1 lo o | 1 ]o 5 @ o * o o *
8 ] 0 0 1 0 ] 1 6 * * * @ * * @
7 ojo}l1tio0 o1 |1 .
7 * * 0 * * 0
8 o| oo oo |1 1 @ '
9 ololololt1 ol 8 o+ x = g @
Event # Positive Events (PE) . 9 * * * * 0 '_ @ )

(b) Characteristic Matrix for SETCV and Positive Events for MCY (d) Extension Matrices and Complexes [x, # 0] for MCV

(a) sets = aman = > (d) EM

SETCV = is,, 5, 5,1 <======3> MCV = { [x,=0], [x,=0], [g=0]}.

Table 4. SETCV is reduced to MCV .

substantially optimize the cover to be generated. Now, comes an outline of algorithm AEl, including some strategies it
incorporates.

Generaling compiexes

When implementing AE1, it is unnecessary to build the actual extension matrices. Suppose e = <ej>,j =1..n,is
a positive event to be covered, and NE =<e_ij>’ i = 1 .. m, is the matrix of negative events. In order to generate a
complex L that covers e against NE, AE1 selects an element r, from each row of NE such that r, # € where the inequality
guarantees element r, is not a dead element. Also, the complexity of generating a complex is at most n*m.
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Paired associate searching

In order to limit the choice of elements in generating complexes, AE1 does paired associate searching, finding a

common path from two extension matrices. The following theorem gives the condition under which two extension matrices

are disjoint, that is, have no common path.

Theorem 2: Given the extension matrices, EMk and EMI, of two events e, = <ekj> and e = <eb.>, then

¢ an element T in EM, is a common element if and only if T #* €y and T ey

e EM, and EM, are disjoint if and only if there is at least one row, say the it such that, for all j, T, = e or = &e
Proof: It suffices to note that the elements in EM and EM, are the same as those in NE except for the dead elements.

The optimization criteria and evaluation matrices

AE1 optimizes a cover according to the following three criteria: 1) minimizing the number of complezes, 2) minimizing
the number of selectors, and 3) mintmizing the number of complezes and selectors. In order to achicve criterion 1, the
complexes generated need to cover as many events as possible, that is, the corresponding paths are the common paths of as
many extension matrices as possible. For criterion 2, the number of columns involved for each complex needs to be as small
as possible, that is, the columns that have the fewest dead elements are the candidates for searching. Criterion 3 is a
combination of criterion 1 and 2. In accordance with these three criteria, we build three evaluation matrices. The first
consists of those elements which are the number of appearances of each element of positive events in PE, as shown in (a) of
Table 5. The second consists of the appearances of each element of negative events in NE, as shown in (b). The third
consists of the quotients of the elements of matrix (a) divided by the corresponding elements of matrix (b), or by 0.1 if the
corresponding elements are equal to 0, as shown in (¢) (for ¢lass 1 (PE)) or (d} (for class 2 (NE)).

The costs of variables

We can see that in the evaluation matrix (a), the larger the element is, the more positive events there may be which
share the common element. Thus, AE1 first sorts all the elements in the matrix in descending order, then assigns a cost to
earh positive event, according to the sequence of appearance of the elements in the sorted matrix. AE1 searches a path
according to the cost of elements in the positive event from largest to smallest. For example, in Table 1 (2), e, <0,1,1,0>,
corresponding to the numbers of appearances <6,1,2,4> and has cost ordering (1,4,3,2). so AE1 will search the path in the
order variable 1, variable 4, variable 3, then variable 2. Similarly, the processing applies to (b) with ascending order and to
(¢) or {d) with descending order.

Selecting seeds

Appropriate seed selection can improve results. In practice, according to the criteria, AEl rearranges the set PE of
positive events in such a way that: events which contain the appearances of the first element in the sorted evaluation matrix
are put in the first place, those which contain the appearance of the second element in the second place, and so on. AEl
also refines the cover generated by repeating seed selection a number of times.

Variables Variables Variables Variables
Values || 1 | 2 | 3 | 4 Values [[ 1 | 2 | 3 ! 4 | Values 1 2 3 4 Values 1 2 3 4
0 612214 0 21211 4 0 3010} 20 ] 10 0 0.33 { 1.0 0.5 1.0
1 0|1 212 1 4 1t2]2 1 00 {10} 10| 10 1 40.0 | 1.0 1.0 1.0
2 3 2 2 3 1 2 1.0 2.0 2 1.0 0.5
3 0 ___3 21 3 0.0 3 20.0
{a) For class 1 {b) For class 1 (¢c) For class 1 (d) For class 2
(using criterion 1) (using criterion 2) (using criterion 3) (using criterion 3)

Table § — The Evaluation Matrices
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Partitioning PE into subsets

AE1 will refine each cover of classes by partitioning the set of positive events into three disjoint subsets, selecting seeds
independently, and generating a cover for each subset. In AE1, PE is partitioned using the experimental function bound('})
as the size of the partition, where i is the number of complexes generated for the current subset. The value b = bound(i)
indicates that among the i complexes generated, only the first b complexes which cover the maximum number of events are
chosen.

Learning

When applying a strategy, by repetition and comparison, AE1 chooses the best results. For e.xarfxple, if criterion == 1,
then for each class, AE1 runs twice according to the combinations of criterion 1 and 2, and criterion 1 and 3, then by
applying the set—covering algorithm, described in the next section, AE1 generates the third cover fro.m the.ﬁ'rst two covers
generated, finally, AEL chooses the best one among the three covers generated. Thus, AEL has learning ability throughout

the searching.

The incorporation of the set-covering algorithm

We incorporate the approximate set-covering algorithm (e1) by Johnson’ into AE1 to select a more desirable cover as
previously mentioned (Partitioning PE into Subsets). The algorithm works as follows. For each pass among the complexes
generated, AE1 chooses the one which covers the maximum number of events, and deletes the covered events. Then AE1
repeats the processing until set PE of positive events becomes empty.

The 'mcorpbration of deductive inference

Some deductive inference rules in mathematical logic were incorporated into AE1L for rewriting and simplifying the
decision rules generated. The rules used in AE1 are the following.

Suppose a is a selector, say a = [x = A, ma = [x # A}, and P, @, R, and S are complexes. Let =, &, v, and ::> be
negation, conjunction, disjunction, and implication linking a concept description with a concept name 8, Then we have the
following deductive inference rules.

(I) Ifava&P:> K, thenau> K. (I) Ifav—a%P > K,thenavP > K.
(IO) If a&P v —a&P ::> K, then P ::> K. (IV) f P&Q&S :> K and P&Q => R then R&S :> K.

Formulas (I) and (III) can be used to optimize the covers, and formula (II) and (IV) can be used to optimize the
complexes.

Generating maximal complexes

Finally, AE1 always generates mazimal complezes. Maximal complexes are those with all redundant selectors removed.
For example, as shown in (e) of Table 3, complex L = [x, # 1][x, # 2][x, # 3][x, # 1} = L’[x, # 1], which corresponds to
path 212—323—13]—1“—154~353, contains a redundant Jse]ector [x4 # 1]. If we delete the redundant selectors, then the
subezpressions that cannot be simplified further are maximal complexes. Now, we give the formal definitions of maximal
complex and a relevant concept.

Def 4.1: A complex L that covers e against NE is a mazimal complez if it contains no proper subexpression that also
covers e against NE.

Def 4.2:  Two elements in an EM are similar if they are in the same column and have the same value. An element v is
termed a brother of the other v’ if they are in the same row. In a path, an element v is called a redundant
element of the path if it and all its similar elements have brothers such that the brothers or their similar elments
are in the path.

For example, in (e) of Table 3, all elements 1 in the first column are similar to each other, 1., is a brother of 240 and

1, isa redundant element of the path drawn since its brother I, is similar to 1, in the path, and its similar element 1,

has a brother 2,, in the path. Now we give the condition under which a complex is maximal.

Theorem 3: A complex L that covers e against NE, where L = &[xj #* Aj], is maximal if and only if the corresponding
path has no redundant elements.
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Proof: Suppose L is maximal. but there exists a redundant element. say v1. in the corresponding path P, thatis. L =L~
& [x, = v1i. Since vl and all its similar elements already have brothers in P, we can delete v1 and its similar elements from

P. The resulting subexpression L~ still covers e against NE, which contradicts the fact that L is maximal. Conversely,
suppose P has no redundant elements, but L is not maximal. There exists a subexpression L’ such that L™ covers e against
NE. Then, L = L’ & L", where L" is not the empty complex. We see that any element, say v,, in L" must have a brother

in the path P’ corresponding to L” since otherwise L* would cover the negative event e ,, which contradicts the fact that L°
covers e against NE. Thus, any element in L"is a redundant element of P, which is also a contradiction.
In Table 3, the complex in EM, is a maximal complex, but the complex in EM, is not maximal. Since generating

maximal complexes can optimize a complex, AE1 has a procedure to generate maximal complexes.

Experiments and performance summary of AEL

AE1 run on a Pyramid machine and on a VAX 780 using some sample data sets gave optimal or near optimal results.
For example, for a data set with 1236 events and 11 variables, available result was obtained, as shown in Table 4.

Specifically, AE1 can handle a large data set containing 2!% events for simplifying switching circuits and gave more desirable

results than those given by the VLSI design tool EQNTOTT®. Considering the complexity of generating a complex
(previously mentioned), one goncludes AE1 is such an efficient covering algorithm that its worst case time complexity is
determined only by the product of the following items:
1. The number of given classes,
2. The number of variables,
3. The number of positive events on an average,
) 4. The number of negative events on an average. \

A set of 4 experiments demonstrated the comparative performance of AE1 against 3 other programs producing covers.
The additional algorithms compared are GEM (a successor of AQI1), AQ15 10 (the latest AQ program), and PLS1. It is
noted that PLS1 regions were taken to be complexes without any loss of generality, but not all complexes are representable
as regions. It is also noted that PLS1, being a probabilistic algorithm, permits an error bound, and hence, the PLS1 covers
contain errors whereas the other algorithms guarantee no errors.

Experiment i is an attempt to learn rules for distinguishing 6 human sleep stages®. There are 1236 events composed of
11 features. Eack event is a vector representing a 30 second interval of real time, reduced from 3 channels of data (2 EEG, 1
Electromyograph, 2 Electro-oculograph). Experiment 2 is the same as 1, but the event set has been reduced. Experiment 3
derives rules for distinguishing 3 types of regular heart arrhythmias'®. There are 263 examples of ECG recordings which are
described in terms of 7 attributes. Experiment 4 is toy problem wherein a car dealer has three manufacturers of pickup
trucks: Ford, Dodge, Chevy, and he wants simple rules for deciding the manufacturer of a truck on the basis of such
characteristics as length in feet, exterior and interior color, and number of passengers. Hence, there are 4 attributes and 27
events. Table 6 gives a comparison among the known covering algorithms for these experiments.

Data Set EXP 1 EXP 2 EXP 3 EXP 4
# Events 1236 621 263 27
# Variables 11 11 7 4
# Values (ave.) 9.1 9.1 5.9 12.3
# Class 6 5 3 3
Algorithm #Cpx : Time | #Cpx : Time | #Cpx : Time | #Cpx : Time
AE1 85 : 47.4 36 : 20.4 6" : 08 5' 1 0.3
GEM 95 : 305.6 41 : 43.9 6 : 15 5 : 03
AQis 61 : 330.4 41 : 46.9 6 : 1.7 5 : 03
PLS1 75 : 1874 38 : 68.1 13 : 8.6 9 : 23

*Note: The results marked by * are optimal.

Table 8 — Performance Summary (*Note: Time is in CPU seconds.)
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Conclusions

We have introduced the extension matrix method to the general covering problem, and presented an efficient
approximately optimal covering algorithm, AE1. Also, we have analyzed some heuristic strategies which were incorporated
into AE1. We conjecture that incorporating more powerful strategies into AE1 will make it more efficient and more nearly
optimal. :
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