CONCEPT LEARNING

by

R. S. Michalski

In AI Encyclopedia, John Wiley & Sons, New York, pp. 185-194. January, 1986.



ENCYCLOPEDIA OF
ARTIFICIAL INTELLIGENCE

VOLUME 1

Stuart C. Shapiro, Editor-in-Chief
David Eckroth, Managing editor
George A. Vallasi, Chemnow Editorial Services, Developmental Editor

Wiley-Interscience Publication

John Wiley & Sons

New York / Chichester / Brisbane / Toronto / Singapore



However, Henry was in a school that was set up to favor a
very different pattern of development. Children were encour-
aged to act as experts and advisors to the other children when-
ever they had special knowledge. The computers were located
out in the open rather than in computer labs or in classrooms
where quiet was imposed. This made it much easier to see
what other children were doing and to interact with anyone
doing intriguing work. Thus, it was not the computer as such
but the computer culture of the school that drew Henry into a
situation where he was in demand. So this young man who had
always been afraid of pursuing contacts with other children
found himself being pursued.

Finally, a more subtle example is drawn from the author’s
work with Logo. From the outset this language was designed
to encourage communication between users. Logo programs
are modular so they can be borrowed and shared. Logo is also
designed to make it as easy as possible to talk about how you
made your program work—what the bugs were, what the diffi-
culties were, and how you solved them. Thus, the content of
actual computer work, even on what might seem like a very
technical level such as designing a computer language, is a
factor that can make for greater socialization or greater iso-
lation.

In all these conceptual issues one needs to remember one
thing. Any question such as “What effect will the computer
have upon this or that?" is a badly posed question. It is not the
computer. In each case it is not what the computer will do to
one, it is what one will do with the computer.
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CONCEPT LEARNING

What is Concept Learning?

Among the fundamental characteristics of intelligent behav-
ior are the abilities to pursue goals and to plan future actions.
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To exhibit these characteristics, an intelligent system—hu-
man or machine—must be able to classify some objects, behav-
jors, or events as equivalent for achieving given goals and
some others as differing. For example, to satisfy hunger, an
animal must be able to classify some objects as edible despite
the great variety of their forms and the changes they undergo
in the environment. Thus, an intelligent system must be able
to form concepts, that is, classes of entities united by some
principle. Such a principle might be a common use or goal, the
same role in a structure forming a theory about something, or
just similar preceptual characteristics. In order to use the con-
cepts, the system must also develop efficient methods for rec-
ognizing concept membership of any given entity. The ques-
tion then is how concepts and concept recognition methods are
learned.

The study and computer modeling of processes by which an
intelligent system acquires, refines, and differentiates con-
cepts is the subject matter of concept learning. Concept learn-
ing is a subdomain of machine learning (qv). The research in
this area originated with studies of concept development in
humans (e.g., Refs. 1-3). It subsequently continued in the con-
text of both Al efforts to build machines with concept-learning
capabilities and cognitive science studies to construct compu-
tational models of learning. Selected publications covering
this development are listed in Refs. 4-23.

At present, concept learning is one of the central research
topics in machine learning, a subarea of Al concerned with the
development of computational theories of learning and the
building of learning machines (see Machine learning). In re-
search on concept learning, the term “concept” is usually
viewed in a more narrow sense than outlined above, namely,
as an equivalence class of entities, such that it can be compre-
hensibly described by no more than a small set of statements.
This description must be sufficient for distinguishing this con-
cept from other concepts. Individual entities in the class are
called instances of the concept.

The assumption that a concept is an equivalence class im-
plies that its every instance is equally representative of the
concept and that the concept description has precise bound-
aries, that is, it either matches or does not match any given
entity. (This notion is more general than the classical defini-
tion, which postulates that a concept is characterized by singly
necessary and jointly sufficient conditions and thus excludes
a disjunctive description.) Such an idealization greatly facili-
tates research on concept learning, as it defines the learning
task simply as the acquisition of a formal structure describing
an equivalence class. It is. however, only a very rough approxi-
mation that ignores many important aspects of the human
notion of a concept (24). At the conclusion of this entry the
weaknesses of this definition are briefly addressed, and ideas
are pointed out that attempt to capture the notion of a concept
more adequately.

Within research on concept learning two major orientations
can be distinguished: cognitive modeling and the engineering
approach. They parallel the orientations of efforts in cognitive
science and Al respectively. Cognitive modeling strives to de-
velop computational theories of concept learning in humans or
animals. It blends original cognitive psvchology techniques
with efforts to develop well-defined computational methods
and computer programs embodying those methods. In con-
trast. the engineering approach attempts to explore and exper-
iment with all possible learning mechanisms. irrespective of
their occurrence in living organisms.
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Concept Learning Can Be Classified by Type of
Inference Performed

In any learning process the student applies the knowledge
possessed to information obtained from a source, for example,
a teacher, in order to derive new useful knowledge. This new
knowledge is then stored for subsequent use. Learning a new
concept can proceed in a number of ways, reflecting the type of
inference the student performs on the information supplied.
For example, one may learn the concept of a butterfly by being
given a description of it, by generalizing examples of specific
butterflies, by constructing this concept in the process of ob-
serving and analyzing different types of insects, or by yet an-
other way. The type of inference performed by the student on
the information supplied defines the strategy of concept learn-
ing and constitutes a useful criterion for classifying learning
processes.

Several basic concept-learning strategies have been identi-
fied in the course of machine-learning research. These are pre-
sented below in the order of increasing complexity of inference
as performed by the learner. In some general sense, this order
reflects the increasing difficulty for the student to learn the
concept and the decreasing difficulty for the instructor to teach
the concept. In any practical act of learning, more than one
strategy is often simultaneously employed. It should also be
noted that this classification of strategies applies not only to
learning of concepts but also to any act of acquiring knowl-
edge.

Direct Implanting of Knowledge. This is an extreme case in
which the learner does not have to perform any inference on
the information provided. The knowledge supplied by the
source is directly accepted by the learner. This strategy, also
called rote learning, includes learning by direct memorization
of given concept descriptions and learning by being pro-
grammed or constructed. For example, this strategy is em-
ployed when a specific algorithm for recognizing a concept is
programmed into a computer or a database of facts about the
concept is built. In Samuel's CHECKERS program (5) rote
learning was employed to save the results of previous game
tree searches in order to deepen and speed up subsequent
searches.

Learning by Instruction (or Learning by Being Told). Here the
learner acquires concepts from a teacher or other organized
source, such as a publication or textbook. but does not directly
copy into memory the information supplied. The learning pro-
cess may involve selecting the most relevant facts and’or
transforming the source information to more useful forms. The
svstem NANOKLAUS (25), which builds a hierarchical
knowledge base by conversing with a user. is an example of
machine learning employing this strategy.

Learning by Deduction. The learner acquires a concept by
deducing it from the knowledge given and or possessed. In
other words, this strategy includes any process in which
knowledge learned is a result of a truth-preserving transfor-
mation of the knowledge given, including performing compu-
tation. A very simple example of this strategy determining
that the factorial of 6 is 720 by executing an already known
algorithm and having this fact for future use. This technique
is called “memo functions” (26). A form by deduction is expla-
nation-based learning which transforms an abstract. not di-
rectly usable, concept definition to an operational definition

using a concept example for guidance (27). In general, deduc-
tive learning is performing a sequence of deductions or compu-
tations on the information given and/or stored in background
knowledge, and memorizing the result.

More advanced deductive learning is exemplified by ana-
Iytic or explanation-based learning methods (e.g., 27). These
methods start with the abstract concept definition and domain
knowledge, and by deduction derive an operational concept
definition. A concept example is used to guide the deductive
process. For instance, knowing that a cup is an open, stable
and liftable vessel, an explanation-based method can produce
an “operational” description of a cup. Such a description char-
acterizes the cup in terms of lower level, more measurable
features, such as the presence of concavity, of a handle and a
flat bottom. Current research attempts to combine such ana-
lytical learning with inductive learning in order to learn con-
cepts when the domain knowledge is incomplete, intractable
or inconsistent.

Learning by Analogy. The learner acquires a new concept by
modifying the definition of a known similar concept. That is,
rather than formulating a rule for a new concept from scratch,
the student adapts an existing rule by modifying it appropri-
ately to serve the new role. For example, if one knows the
concept of an orange, learning the concept of a tangerine can
be accomplished easily by just noting the similarities and dis-
tinctions between the two. Another example is learning about
electric circuits by drawing analogies from pipes conducting
water.

Learning by analogy can be viewed as inductive and deduc-
tive learning combined and for this reason is placed between
the two. Through inductive inference (see below) one deter-
mines general characteristics or transformations unifying con-
cepts being compared. Then, by deductive inference. one de-
rives from these characteristics features expected of the
concept being learned. Winston (18) describes a method for
learning concepts by analogy based on matching semantic net-
works. Learning by analogy plays an important role in prob-
lem solving (e.g., Ref. 22).

Learning by Induction. In this strategy the learner acquires
a concept by drawing inductive inferences from supplied facts
or observations. Depending on what is provided and what is
known to a learner, two different forms of this strategy can be
distinguished: learning from examples and learning from ob-
servation and discovery.

Learning from Examples. The learner induces a concept de-
scription by generalizing from teacher- or environment-pro-
vided examples and (optionally) counterexamples of the con-
cept. It is assumed that the concept already exists: it is known
to the teacher or there is some effective procedure for testing
the concept membership. The task for the learner is to deter-
mine a general concept description by analvzing individual
concept examples,

An example of this strategy takes place when a senior doc-
tor examines medical records and makes interviews with pa-
tients in the presence of one or more interns. noting that
“this is a patient with hepatitis™; “this is another patient with
hepatitis, but notice that . . . ", and so on. The latter part of
this entry briefly discusses a few methods for learning from
examples.

Learning by Observation and Discovery. In this strategy
the learner analyzes given and or observed entities and deter-
mines that some subsets of these entities can be grouped use-



fully into certain classes (i.e., concepts). Because there is no
teacher who knows the concepts beforehand, this strategy is
also called unsupervised learning. Once a concept is formed, it
is given a name. Concepts so created can then be used as terms
in subsequent learning of other concepts. .

An important form of this strategy is clustering (i.e., parti-
tioning a collection of objects into classes) and the related pro-
cess of constructing classifications. Classifications are typi-
cally organized into hierarchies of concepts. Such hierarchies
exhibit an important property of inheritance. If an object is
recognized as a member of some class, the properties associ-
ated specifically with this class, as well as with classes at the
higher level of hierarchy, are (tentatively) assigned to the
given object. For example, if one learns that Freddy is an
elephant, then, without seeing Freddy, one will typically as-
sume that Freddy has four legs, a trunk, and all the distin-
guishing properties of elephants, vertebrates, and generally,
animals. Hierarchical classifications vary in height: Some
may be tall, like the classification of living organisms, and
some more flat, like the social hierarchy. The topics of cluster-
ing (in particular, conceptual clustering) and classification
construction are treated in a separate entry in the encyclope-
dia (see Clustering).

Another form of learning by observation and discovery is
descriptive generalization. This form is concerned with discov-
ering regularities and formulating new concepts and rules
characterizing collections of any entities (objects, events, pro-
cesses, etc.). It produces statements such as “most people are
honest,” “whenever there are independent events, the normal
distribution should hold,” or “John is in the habit of amblin’
down to the soda fountain every day about now.”

Examples of research on this topic are two programs by
Lenat (15.23): AM. which searches for and develops new “in-
teresting” concepts after being given a set of heuristic rules
and initial concepts in elementary mathematics and set the-
ory. and EURISKOQ. which formulates new heuristics. Another
example is the BACON system te.g., Ref. 28), which synthe-
sizes mathematical expressions representing chemical or
physical laws on the basis of given empirical data.

In the Al literature the term “concept learning” is fre-
quently used in a more narrow sense than it is here, namely, to
mean solely learning concepts from examples. One reason for
this is historical, as this strategy was studied first, and most is
known about it. It subsequently served as the springboard for
studies of other strategies, but it continues to be the area most
intensively investigated. Learning from examples and learn-
ing from observation and discovery fi.e.. inductive learning in
general) are fundamental forms of concept learning. When
acquiring any abstract concept. examples are typically needed
to achieve a deeper understanding of the concept; and initial
learning of any concepts and natural laws is typically achieved
by generalizing from our sensory observations. For these rea-
sons the remainder of this entry concentrates on inductive
learning. For coverage of other strategies the reader is advised
to consult other references, in particular Ref. 29. The nature of
inductive inference. which is the core of inductive learning
processes, is explored in more detail.

Inductive Inferences Generates Hypotheses from Facts and/or
Other Hypotheses

Inductive inference is the primary vehicle for creating new
knowledge and predicting future events, It is usually charac-
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terized as reasoning from specific to general, from particular to
universal, or from part to whole. Such a characterization is
simple but not too informative. It does not identify all the
components playing a role in the inductive process, nor does it
explain how this inference is possible. To understand this in-
ference more precisely, its major components are distin-
guished, and the properties of its conclusions are specified.

Given:

premise statements (facts, specific observations, intermedi-
ate generalizations) that provide information about some
objects, phenomena, processes, and so on;

a tentative inductive assertion, which isan a priori hypothe-
sis held about the objects in the premise statements (in
some acts of inductive inference there may not be any ten-
tative hypothesis; if there is such.a hypothesis, the induc-
tive process may be simplified, as it may involve merely a
modification of the tentative hypothesis rather than creat-
ing a new hypothesis from scratch); and

background knowledge, which contains general and do-
main-specific concepts for interpreting the premises and in-
ference rules relevant to the task of inference; it includes
previously learned concepts, domain constraints, causality
relations, assumptions about t' e premise statements and
candidate hypotheses, goals for ‘nference. and methods for
evaluating the candidate hyt ) theses from these goals’
viewpoints (specifically, the pr:ference criterion or bias).

Determine:

an inductive assertion (a hypothesis) that strongly or
weakly implies the premise statements in the context of
background knowledge and is most preferable among all
other.such hypotheses.

A hypothesis strongly implies premise statements in the
context of background knowledge if by using background
knowledge (and standard rules of inference). the premise
statements can be shown to be a logical consequence of the
hypothesis. In other words, the assertion

Hypothesis & Background knowledge = Premise statements

is valid, that is, true under all interpretations (the symbol =
denotes implication). A hypothesis that satisfies this condition
is called a strong candidate hypothesis. In contrast, a weak
hypothesis is the one that only weakly implies premise state-
ments, that is, these statements are a plausible. but not cer-
tain, consequence of the hypothesis. The following two-part
example illustrates both types of hypotheses.

Example: Part 1.
Premise statements:

Socrates was Greek. Aristotle was Greek. Plato was Greek.
Background knowledge:

Socrates, Aristotle, and Plato were philosophers. They lived
in antiquity.
Philosophers are people. Greeks are people.

Preference Crilerion. Prefer the hypothesis that is short and
useful for deciding the nationality of philosophers.
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Candidate hypotheses (a selection):

1. Philosophers who lived in antiquity were Greek.
2. All philosophers are Greek.
3. All people are Greek.

Preferred hypothesis:

4. All philosophers are Greek. (It is shorter than 1 and more
specific than 3; it allows one, unlike 1, to determine the
nationality of all philosophers.)

It can be seen that the original premise statements are a
logical consequence of the generated hypothesis and back-
ground knowledge. The fact that the generated hypothesis is
too general is a result of the poverty of the background knowl-
edge and/or the premise assertions.

Example: Part 2. Suppose that the stock of facts has been
enlarged with statements such as “Spencer was British” and
“Hume was British” and that the background knowledge in-
cludes also the statement “Hume and Spencer were philoso-
phers.”

In this case a strong candidate hypothesis would be “All

philosophers were Greek except Spencer or Hume, who were
British.” A weak hypothesis would be “Most (or some) philoso-
phers were Greek.” Given a Yact that Plato was a philosopher,
the new hypothesis, in contrast to the old one, does not allow
one to conclude strongly that he was Greek. It allows one only
to say that it is likely (or that it is possible) that he was Greek.
However, unlike the first hypothesis, it will also not conclude
strongly that philosopher Russell was Greek!
" This example illustrates important properties of inductive
inference. One is that it may not be truth preserving, that is,
its conclusions may be incorrect though the premise state-
ments are correct. Going back to the first hypothesis, though
Socrates, Aristotle, and Plato were Greek, it certainly does not
follow that all philosophers were Greek. This quality of non-
truth preservation contrasts inductive inference with truth-
preserving deductive inference. Figure 1 illustrates the rela-
tionship between deductive and inductive inference.

Inductive inference that produces strong hypotheses is fal-

Induction
'P'tem'set J Hypotheses
statements rules
facts Deduction

Background knowledge

Figure 1. Relation between deduction and induction.

sity preserving. This means that if the original premise state-
ments are false, the derived hypothesis will be false also. For
example, if it were not true that Socrates was Greek, then
clearly the first hypothesis, “All philosophers were Greek,”
could not be true either. Hypotheses generated by inductive
inference have unknown truth status. They must be tested
and verified before they become rules or accepted theories (see
section on hypothesis verification).

The premise statements, background knowledge, and de-
rived hypotheses need to be expressed in some language. In
human inference it is the language of the mind, a “mentalese,”
that at the surface level takes the form of natural language
augmented with special representations of sensory stimuli,
such as drawings, pictures, sounds, or gestures. In machine
inference it is a formal language, such as propositional logic,
predicate calculus or other logic-style formalisms, or a knowl-
edge representation system, such as semantic networks, math-
ematical expressions, frames, scripts, or conceptual structures
(30). Sometimes expressing the premise statements is easier in
one language and expressing hypotheses is easier in another
language.

In concept learning from examples (concept acquisition) the.
main concern is with a special case of inductive inference,
called inductive generalization. Here both the premise state-
ments and the hypothesis are either interpretable as descrip-
tions of sets (in this case there is instance-to-class generaliza-
tion) or as descriptions of components of some object or process
(in the latter case there is part-to-whole generalization).

In instance-to-class generalization properties known to
hold for a set of objects are assigned to a larger set of objects.
This form can be seen in the example above, in which a prop-
erty (the nationality) assigned by premise statements to a few
individuals was assigned to all individuals in some class (all
philosophers). In part-to-whole generalization the premise
statements describe parts of some object, and the goal is to
hypothesize a description of the whole object. For example, the
following is a part-to-whole generalization.

Premise: His hands and his legs are strong.
Background knowledge: Hands and legs are parts of a body.
Hypothesis: His whole body is strong.

An important form of part-to-whole generalization is se-
quence or process prediction (31.32).

Inductive inference was defined as a process of generating
descriptions that imply original facts in the context of back-
ground knowledge. Such a general definition includes induc-
tive generalization and abduction as special cases. The term
“abduction” was coined by the American logician Peirce (33).
In abduction, the generated descriptions are specific assertions
implying the facts (in the context of background knowledge)
rather than generalizations of them. For example. given a
premise assertion, “these roses are purple.” and background
knowledge “all roses in Adam’s garden are purple,” an abduc-
tive assertion would be “perhaps these roses are from Adam's
garden.”

A description that implies some facts can be viewed as an
explanation of these facts. The most interesting form of an
explanation is when it provides a causal, goal-oriented charac-
terization of the facts. To derive such an explanation. back-
ground knowledge must contain. along with other inference
rules, causal inference rules as well as a specification of the



goal(s) of inference. Generating causal explanations can thus
be viewed as a form of inductive inference.

Inductive Inference Can Be Performed by Rules

One of the important results of research on inductive inference
is the development of the concept of an inductive inference
rule. An inductive inference rule performs some elementary
act of inductive inference. It takes one or more assertions and
generates an assertion that tautologically implies them. The
concept of an inductive inference rule permits one to view
inductive inference, at least conceptually, as a rule-guided
process that starts with initial premises and background
knowledge and ends with an inductive assertion (34). Here are
a few examples of such rules:

Dropping conditions (removing a conjunctively linked con-
dition from a statement; e:g., replacing the statement “a
nation is strong if it has a strong economy and high deter-
mination” by “a nation is strong if it has high determina-
tion”).

Turning constants into variables (e.g., it generalizes the
statement “this apple tastes good” into “all apples taste
good”).

Adding options (it generalizes a statement by adding a
disjunctively linked condition; e.g., it might generalize the
statement “peace will be preserved if all nations have
peaceful intentions” into “peace will be preserved if all na-
tions have peaceful intentions or if nonaggressive nations
are much stronger than the aggressive ones”™).

Climbing generalization tree (replacing a less general term
by a more general term in a statement; e.g., generalizing
the statement “I like oranges” into “I like citrus fruits™.

A systematic presentation of inductive rules is in Ref. 34.

Instance Space versus Description Space

Earlier two forms of inductive learning have been distin-
guished: learning from examples and learning by observa-
tion. Learning a concept from examples is a process of con-
structing a representation of a designated class of entities by
observing only selected members of that class and optionally
nonmembers (counterexamples). Learning from observations
involves creating concepts as useful classes for characterizing
observations or any given facts. Both processes depend on the
learner’s background knowledge. in particular. on the type of
description language the learner uses for characterizing exam-
ples and learned concepts.

In this context it is instructive to distinguish between an
instance space and a description space. The instance space
consists of all possible examples and counterexamples of con-
cepts to be learned. Actually observed positive and negative
examples constitute subsets of such an instance space. The
description space is the set of all descriptions of instances or
classes of instances that are possible using the description
lanuage specified by the learner's background knowledge.
Learning a concept involves an interaction between the two
spaces. Such an interaction may involve reformulation or
transformation of initial assertions as well as experimentation
and active selection of training examples (Fig. 2).
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Interpretation
Reformulation

instance space Description space

Equivalent
descriptions

Example selection
experiment planning
Figure 2. Interaction between instance space and description space.

'

Consider a simple case where examples of a concept (posi-
tive examples) and counterexamples (negative examples) are
represented by attribute vectors, that is, by lists of values of
certain attributes. Considering attributes as dimensions span-
ning a multidimensional space, each example maps to a point
in this space. Points that do not correspond to any observed
example represent potential examples. Such a space is called a
feature space or an event space and can be viewed as a geomet-
ric model of an instance space.

One may ask where the attributes come from. In simple
methods the attributes are defined by the teacher. Such meth-
ods are called selective because the learned concept does not
include any new attributes but only those defined by a teacher.
In more sophisticated methods the system is provided with
some initial attributes plus various rules of inference, heuris-
tics, or procedures that a learner uses for generating new at-
tributes. The latter methods are called constructive (34.35).

Different subsets of the instance space correspond to differ-
ent concepts. Descriptions of those concepts are elements of
the description space. For simplicity, assume that the descrip-
tion space is the set of all logical expressions involving attri-
butes used in characterizing examples. Depending on the con-
straints imposed on these expressions, all (or only some)
subsets of the instance space can be represented by an expres-
sion in this language. Usually, any concept corresponds to a
subset of (logically equivalent) descriptions in the description
space. -

A concept is consistent with regard to the examples if it
covers some or all positive examples and none of the negative
examples. A concept description is complete with regard to the
examples if it covers all positive examples. A description of a
concept that is both complete and consistent with regard to all
examples is a candidate hypothesis. The requirement for com-
pleteness and consistency follows from the assumption that
the hypothesis should imply the initial examples (see Ref 34).
The set of all candidate hypotheses is called the candidate
hypothesis space or the version space. The candidate hypothe-
sis space can be partially ordered by the relation of generality
that reflects the set inclusion relation between the correspond-
ing concepts. The most general hypothesis describes the con-
cept that is the complement of the union of negative examples:
and the most specific hypothesis describes the concept that is
the union of all positive examples.

Because the candidate hypothesis space is usually quite
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large, a preference criterion is used to decide which candidate
hypothesis to choose. Such a criterion may favor, for example,
hypotheses that are short, hypotheses that require the least
effort to measure the attributes involved, or generally, hy-
potheses that best reflect the goal of learning.

If the concept representation language is incomplete, for
example, allows one to express only conjunctive hypotheses,
and a sufficient number of positive and negative examples is
supplied, the resulting version space may contain only one
candidate hypothesis. In such a case the preference criterion is
not needed (17).

In summary, learning a concept can be described as a
heuristic (qv) search (qv) through the description space for a
most preferred hypothesis among all those that are consistent
and complete with regard to the training examples.

Selected Methods of Inductive Learning

An important characteristic of learning methods is the way in
which descriptions in the description space are generated and/
or searched in relation to the examples or facts in the instance
space. Three types of methods can be distinguished: data
driven, model driven, and mixed. A data-driven method starts
with selecting one or more examples, formulates a hypothesis
explaining them, and then generalizes (and occasionally spe-
cializes) the hypothesis to explain further examples. A model-
driven method starts with some very general hypotheses and
then specializes (and occasionally generalizes) them to fit all
the examples. Roughly speaking, data-driven methods proceed
from specific to general, and model-driven methods proceed
from general to specific. A mixed method has elements of both:
It uses an example(s) to jump to one or more general hypothe-
ses, tests the hypotheses, and then modifies them to fit other
examples. Data-driven methods tend to be more efficient, and
model-driven methods tend to be more tolerant of errors in
data (29). Below are examples of the three types of methods.

Data-Driven Methods

Winston’s Block World: Learning by Incremental Generaliza-
tion and Modification. Winston's program (36) is an excellent
representative of a data-driven method of concept learning. It
learns structural descriptions of concepts in a blocks world
te.g.. the concept of an arch) from representative examples and
counterexamples provided by a teacher. The program repre-
sents examples and concepts in the form of a semantic net-
work. At each step of learning it maintains only one working
hyputhesis. In searching for the final hyvpothesis, it uses a
simple form of best-first search method The basic algorithm
can be described as follows:

1. Take first positive example of = . - pt and assume that
it is a concept description.

2. If the next example is posit:-
current concept description.
that it includes the example.

3. If the next example is negat:-.
description, specialize the des.:
the example.

4. Repeat steps 2 and 3 until the proce~~ converges on a stable
concept description.

Les not satisfy the
« the description so

-atisties the current
~o that it excludes

The generalization step (step 2) applies such operators as
dropping conditions, turning constants to variables, or climb-
ing generalization tree. When confronted with multiple choice
in generalizing, the program chooses the least “drastic”
change to the current concept description. For example, it will
replace a less general term by a more general term rather than
drop a term. The specialization step (step 3) adds more condi-
tions and introduces exceptions or the must-not conditions to
the currently held hypothesis. There are usually many ways to
specialize a hypothesis so that it does not cover a given nega-
tive example (as many as there are differences between the
example and the hypothesis). For that reason the program
favors the near misses, that is, negative examples that differ
from the hypothesis in only a few or, in the best case, in only
one aspect.

Other examples of data-driven methods are the candidate
elimination algorithm (17,37) for ledrning from examples and
the method for learning from observation embodied in the
BACON system (28). The latter method discovers equations
characterizing empirical laws.

Model-Driven Methods

Learning by Incremental Specialization and Modification: The
Meta-DENDRAL Program. This program implements a model-
driven method for discovering rules characterizing the opera-
tion of a mass spectrometer (38). These so-called cleavage
rules predict which bonds in a molecular structure of a chemi-
cal compound will likely break when bombarded by electrons
in the mass spectrometer. To avoid undue technical details of
the specific domain, the rule-learning process is presented at a
level of abstraction.

This process consists of two phases. First, the rule genera-
tion phase conducts a general-to-specific search of the space of
possible cleavage rules (subprogram RULEGEN). Next. the
rule modification phase makes the rules so obtained more pre-
cise and less redundant by performing local hill-climbing
searches (subprogram RULEMOD). Training examples can be
viewed as attribute vector descriptions of the environment of
individual bonds in a molecule. Among the attributes are the
type of atoms on both sides of the bond, the number of hydro-
gen and nonhydrogen atoms bound to each atom, number of
unsaturated valence electrons of the atom, and so on. With
each example is associated a decision as to whether the corre-
sponding bond will break in the mass spectrometer. An impor-
tant feature of this application is a large-sized, error-laden set
of input examples.

The rule generation phase starts with the most general

_rule, stating that every bond will break. Abstracting from

the specific domain-dependent notation, such a rule can be
written:

If a bond is any bond, then it will break.

The next step specializes the left side of the parent rule by
making a change to atoms at a specified distance {rom the
bond. A change may involve changing properties of an atom or
adding a new atom. New rules so obtained are then tested to
sce if they perform better in predicting the breaks in the given
set of examples. This two-step process of rule specialization
and testing repeats until a local optimum of performance is
achieved. The resulting rules can be characterized as:



If a bond environment has properties so and so, then it will
break.

Meta-DENDRAL was an important learning system tha.t
worked well in a real-world domain with noisy data. In addi-
tion to the process of rule development, outlined at?oyg, it also
performed a sophisticated transformation of the initial data
(the input spectrum) to usable training instances (the bqnd
environment descriptions). In all aspects of its operation
the program relied on a large amount of domain-specific
knowledge.

Another example of a model-driven method is the concept-
learning program, CSL (3), and its modified version, ID3 (39?.
The program starts by attempting to find the best one-attri-
bute rule characterizing given examples. If this is not possible,
it builds a decision tree of such rules that classifies all input
examples. In such a tree nodes correspond to attributes, ema-
nating branches to the attribute values, and leaves to classes.

Mixed Methods

Learning by Rapid Generalization and Stepwise Specialization:
AQ11. Inductive concept learning can be viewed as a gener-
ate-and-test process. The “generate” part creates or modifies
hypotheses and the “test” part tests how well the hypotheses
fit the data. In data-driven methods the “generate” part is
sophisticated and the “test” part is simple, whereas in model-
driven methods the opposite holds. A mixed method, imple-
mented in the program AQIl1, attempts to more equally em-
phasize the “generate” and “test” parts.

AQ11 is a multipurpose learning program that formulates
general rules describing various classes of examples (40). In-
put to the program consists of attribute value vector descrip-
tions of examples from different classes. It also includes back-
ground knowledge about the application domain and a
hypothesis preference criterion. The output can be viewed as
rules,

Condition = class

where “condition™ may be conjunction. or a disjunction of con-
junctions, such that it describes all entities assigned to “class.”
A simplified version of the algorithm. called AQ, which under-
lies the nonincremental learning part of the program is as
follows.

1. Select at random one positive example (called the seed).

2. Comparing the seed with the first negative example. gener-
ate all maximally general hypotheses that cover the seed
and exclude the negative example.

3. Specialize the hypotheses to exclude all negative examples.
This is done by considering one negative example at a time
and adding, whenever neccessary. additional constraints to
the hypotheses. After each step of specialization the newly
generated hypotheses are ranked according to how well
they classify remaining examples and according to other
aspects defined in the preference criterion. Only the most
promising hypotheses are kept. The set of hypotheses ob-
tained at the end of the specialization process is called a
star. '

4. Select from the star the best-ranked hypothesis. If this hy-
pothesis covers all positive examples, exit ta solution has
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been found). Otherwise, find positive examples that remain
uncovered.

5. Repeat steps 1-4 for the remainder set. Continue until all
positive examples are covered. The disjunction of hypothe-
ses selected at the end of each cycle is a consistent and
complete description of all the positive examples and maxi-
mizes the preference criterion.

Thus, the program builds a disjunctive description of a con-
cept when a conjunctive description is not possible. The indi-
vidual conjuncts in such a disjunction may significantly differ
as to the size of coverage of the training examples. This allows
for an interesting interpretation: The conjunct that covers
most of the events could be viewed as a characterization of the
typical, or “ideal,” members and those with light coverage as a
characterization of exceptional cases.

The incremental part of the program.performs operations of
modifying generated descriptions to fit new examples. The
background knowledge of the program contains information
about the properties of the attributes used to describe exam-
ples and various domain constraints. The program has been
applied to various problems in medicine, agriculture, chess,
and other areas. A more advanced version of the program,
INDUCE (34), is capable of learning not only attribute-based
but also structure-based concept descriptions. These descrip-
tions characterize concepts as structures of components bound
by various relationships, and are expressed in an extended
predicate calculus. The program has the ability to utilize gen-
eral and domain-specific knowledge to generate new attri-
butes.

How are Learned Concepts Validated?

Although inductive inference represents the basic method for
acquiring knowledge about the world and is one of the most
common forms of inference, it suffers from a fundamental
weakness. Except for special cases, results of this inference are
inherently insusceptible to complete validation. This is be-
cause an inductively acquired hypothesis may have an infinite
number of consequences, but only a finite number of tests can
be performed. This property of inductive inference was ob-
served early on by the Scottish philosopher David Hume and
subsequently analyzed by twentieth-century thinkers such as
Popper (e.g., Ref. 41). Consequently, one typically assumes
that concept descriptions learned inductively have only a ten-
tative status. When new examples become available. these
descriptions are tested on them and. if neccessary. appropri-
ately modified. A standard method for testing inductively ac-
quired descriptions (rules) is to apply them to testing examples
and compute a confusion matrix. Such a matrix records the
number of correct and incorrect classifications of the testing
examples by the rules.

Extended Notions of a Concept

The basic ideas and a few selected methods of concept learning
have been described here. These methods were based on the
notion that concepts are classes of entities describable by a
logic-style description. This means that concept descriptions
have sharp boundaries and all members are equal representa-
tives of a concept. As pointed out above, this simplification.
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though useful for research, misses some important aspects of
the human notion of a concept.

Human concepts, except for special cases occurring predom-
inantly in science (concepts such as a triangle, a prime num-
ber, a vertebrate, etc.), are structures with flexible and/or im-
precise boundaries. They allow a varying degree of match
between them and observed instances and have context-depen-
dent meaning. Flexible boundaries make it possible to “fit” the
meaning of a concept to changing situations and to avoid preci-
sion when not needed or not possible. The varying degree of
match reflects the varying representativeness of a concept by
different instances. Instances of a concept are rarely homoge-
neous. Among instances of a concept, people usually distin-
guish a “typical instance,” a “nontypical instance,” or, gener-
ally, they rank instances according to their typicality. By the
use of context, the meaning of almost any concept can be ex-
panded in a multitude of directions that cannot be predicted in
advance. An imaginative discussion of this property is by Hof-
stadter (42), who shows how a seemingly well-defined concept,
such as “First Lady,” can express a great variety of meanings
depending on the context in which it is applied.

Despite various efforts, the issue of how to represent con-
cepts in such a rich and context-dependent sense remains
open. This issue is, of course, crucial for concept learning be-
cause to learn concepts, the learner must be able to represent
them. In view of this, a brief review of basic approaches
to concept representation may be useful for understanding
the current research limitations and directions in concept
learning.

Smith and Medin (43) distinguish between three ap-
proaches: the classical view, the probabilistic view, and the
exaniplar view. The classical view assumes that concepts are
representable by features that are singly necessary and jointly
sufficient to define a concept. This view is a special case of the
one assumed in this entry. as it does not allow disjunctive
concept descriptions.

The probabilistic view represents concepts as weighted, ad-.

ditive combinations of features. Using the aforementioned no-
tion of a feature space, this means that concepts should corre-
spond to linearly separable subareas in such a space.
Experiments indicate, however, that this may be too limiting a
view (43). The exemplary view represents concepts by one or
more. typical exemplars rather than by generalized descrip-
tions.

The notion of typicality can be captured by a measure,
called family resemblance. This measure represents the sum
of frequencies with which different features occur in different
subsets of a superordinate concept, such as furniture, vehicle,
and so on. The individual subsets are represented by
typical members. Nontypical members are viewed as corrup-
tions of the tvpical, differing from them in various small
aspects, as children differ from their parents (e.g., Refs. 44
and 45 ’

Another approach uses the notion of a fuzzy set as a formal
model of a concept (46). Members of such a set are character-
ized by a gradual numerical set membership function rather
than by the in-out function seen in the classical notion of a
set. This set membership function is defined by people describ-
ing the concept and thus is subjective. This approach allows
one to express the varying degree of membership of entities in
& eoncept but does not have mechanisms for expressing the
context dependence of the concept meaning.

Elements of the above approaches have been unified in a
more recent idea, which postulates that the concept is charac-
terized by a well-defined description, but the use of this de-
scription is flexible (47). If an entity does not satisfy the de-
scription precisely, a consonance degree is computed that
specifies the degree to which the description is satisfied. Thus,
objects precisely satisfying the formal description can be con-
sidered as typical concept members and those that satisfy ap-
proximately as less typical, with the degree of membership
defined by the consonance degree. In the case of disjunctive
descriptions the component (conjunction) that explains most of
the examples can be viewed as representing the ideal form of a
concept. Other components then represent exceptional cases.
The method of computing consonance degree can be shared by
many concepts; therefore, there is no need for storing a set
membership function with each concept, as in the case of fuzzy
sets. The dependencies among tha attributes characterizing a
concept and its relationship to other concepts can be expressed
in the same logic-based formalism. Thus, in such a “flexible
logic” approach the total meaning of a concept is distributed
between its formal description and the function evaluating the
degree of consonance. The description gives the basic meaning
to a concept, and the evaluation function allows for its flexibil.
ity. Major questions, then, are how to properly distribute the
concept meaning between these two components and how to
express context-dependent meaning.

An adequate concept representation should include not
only a description that permits one to recognize the given con-
cept among other concepts or to evaluate the typicality of its
members but also a number of other components. It should
specify the constraints and correlations among the defining or
characteristic attributes, the relationship of the concept to
other concepts, its typical and nontypical examples, the depen-
dence of meaning on different contexts, the purpose and use of
the cancept., and its position and role in knowledge structures
and theories in which it is embedded. Many of these compa-
nents are present in the representation described in Ref. 48.
Murphy and Mcdin (24) argue that the role a concept plays in
a theory that uses it provides a basis for conceptual coherence,
that is, for explaining why certain classes of entities constitute
a meaningful concept and some others do not. Further prog-
ress on concept learning is predicated on progress in concept
representation.

Conclusion

Concept learning has been presented as a process of construct-
ing a concept representation on the basis of information pro-
vided by an external source. a teacher. or an environment.
The type of transformation performed by the learner defines
the learning strategy. The main emphasis of this entry is on
inductive learning, which is divided into learning trom exam-
ples and learning from observation and discovery. Principles
are described that underly inductive inference. and several
methods are presented for concept learning from examples.

A number of topics in concept learning have not been cov-
ered. Among these are methods for creating new concepts,
noninductive learning strategies. techniques for evaluating
learned concept descriptions, and learning from noisy or in-
completely defined examples. The general references include
papers on these topics.
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CONCEPTUAL DEPENDENCY

Conceptual dependency (CD) is a theory of natural language
and of natural-language processing tsee Natural-language
generation; Natural-language understanding). It has been de-
veloped by Schank with the motivation to enhance one's abil-
ity to construct computer programs that can understand lan-
guage well enough to summarize it, translate it into another
language, and answer questions about it. At the heart of the
theory lies the conjecture that language is a medium whose
purpose is communication. Therefore. the central issue dealt
with by the theory is the kinds of things that can be communi-
cated. the meaning content of the communication.

What inferences are made?
When are these inferences made?
Where do they come from?

For example, most people would agree that the sentence “John
sold his old car” contains a reference to money even though the
word “money” is not mentioned in the sentence. Furthermore,
most people would agree that as a consequence of John's
action, he no longer owns that car. Any computer program
that understands this sentence must answer no to the question
“Does John own the car?” and yes to the question “Did John
receive money?” )

How could a program know that? To model language under-
standing on a computer, one needs a strong theory of human
inference that operates on the level of conceptual manipula-
tions. Furthermore, in order for a theory of language to have
relevance in the field of Al, it must provide a representation of
meaning as well as the means to map into and out of that
representation (see Representation, knowledge).

Conceptual dependency theory is a theory of the represen-
tation of meaning. It is a representation of everyday concepts
and events in a way that reflects natural thinking and com-
munication about those concepts and events. At the time of its
development, the approach taken by Schank was not consid-
ered unusual within the Al framework. Since Al is largely an
experimental field, the theory and its computer implementa-
tions were viewed as investigation into the dynamics of natu-
ral-language understanding. However, in the field of linguis-
tics thoughts about the nature and the purpose of language
were oriented in a direction opposite to that reflected by
Schank’s theory, and the latter was considered radical.

Conceptual Structures

Conceptual dependency theory views understanding of natu-
ral language as a process of mapping linear strings of words
into well-formed conceptual structures. A conceptual structure
is defined as a network of concepts, where certain classes of
concepts can be related in specific wavs to other classes of
concepts (see also Semantic networks). The basic axiom of the
theory is:

For any two sentences that are identical in meaning, re-
gardless of language, there should be only one represen-
tation. ’

A corollary that derives from it is:

Any information in the sentence that is implicit must be
made explicit in the representation of the meaning of that
sentence.

The rules by which classes of objects combine may be
viewed as conceptual syntax rules. It is important to note that
these rules underly the language. but they are independent of
it. They are rules of thought as opposed to rules of a language.
The initial framework consists of the following rules (1);

The meaning of a linguistic proposition is called a concep-
tualization or CD form.

A conceptualization can be active or stative.

An active conceptualization consists of the following slots:
actor; action; object: and direction, source (from) destina-
tion (to) (instrument).



