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CLUSTERING

Clustering is usually viewed as a process of grouping physical
or abstract objects into classes of similar objects. According to
this view. in order to cluster objects, one needs to define a
measure of similarity between the objects and then apply it to
determine classes. Classes are defined as collections of objects
whose intraclass similarity is high and interclass similarity is
low, Because the notion of similarity between objects is funda-
mental to this view, clustering methods based on it can be
called similarity-based methods. Many such methods have
been developed in numerical taxonomy, a field developed by
social and natural scientists, and in cluster analysis, a subfield
of pattern recognition (qv). Various similarity measures and
clustering algorithms utilizing them are presented below (see
also Concept learning; Region growing.)

Another view recently developed in Al postulates that ob-
jects should be grouped together not just because they are
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similar according to a given measure, but because as a group
they represent a certain conceptual class. This view, called
conceptual clustering, states that clustering depends on the
goals of classification and the concepts available to the cluster-
ing system for characterizing collections of entities. For exam-
ple, if the goal is to partition a configuration of points into
simple visual groupings, one may partition them into those
that form a T-shape, an L-shape, and so on, even though the
density distributions and distances between the points may
suggest different groupings. A procedure that uses only simi-
larities (or distances) between the points and is unaware of
these simple shape types clearly can only accidently create
clusterings corresponding to these concepts. To create such
clustering, these descriptive concepts must be known to the
system. Another example of conceptual clustering is the
grouping of visible stars into named constellations. Concep-
tual clustering is contrasted with the classical view in the next
section and described in more detail in the section Conceptual
Clustering.

Clustering is the basis for building hierarchical classifica-
tion schemes. For example, by first partitioning the original
set of entities and then repeatedly applying a clustering algo-
rithm to the classes generated at the previous step, one can
obtain a hierarchical classification of the entities (a divisive
strategy). A classification schema is obtained by determining
the general characteristics of the classes generated.

Building classification schemes and using them to classify
objects is a widely practiced intellectual process in science as
well as in ordinary life. Understanding this process, and the
mechanisms of clustering underlying it is therefore an impor-
tant domain of research in Al and other areas. This process
can be viewed as a cousin of the “divide and conquer” strategy
widely used in problem solving (qv). It is also related to the
task of decomposing any large-scale engineering system into
smaller subsystems in order to simplify its design and imple-
mentation.

The Classical View versus the Conceptual Clustering View

In the classical approach to clustering mentioned above. clus-
ters are determined solely on the basis of a predefined measure
of similarity. To define such a measure, a data analyst deter-
mines attributes that are perceived as relevant for character-
izing objects under consideration. Vectors of values of these
attributes for individual objects serve as descriptions of these
objects. Considering attributes as dimensions of a multidimen-
sional description space, each object description corresponds to
a point in the space. The similarity between objects can thus
be measured as a reciprocal function of the distance between
the points in the description space.

Let V, and Vp denote the attribute vectors representing
objects A and B, respectively. The distance of object A to object
B is defined as a numerical function of the attribute vectors of
A and B and is written as d(V,, Vp). For example, assuming
that vector descriptions of objects A and B are V, = (x(A),
x:(A), . . ., x,(A) and Vp = (x((B), x2(B), . . ., x.(B)), re-
spectively, where x|, xa, . . . ,x, are selected object attributes,
a simple measure of distance is:

n

S x5 (A) - 5B

d(VA, VB) =
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Because distance is a function of only the attributes of two
compared objects, the similarity-based clustering can be per-
formed relatively easily and without a need for knowledge
about its purpose. The similarity-based approach has produced
a number of efficient clustering algorithms, which have been
useful in many classification-building applications.

The classical approach suffers, however, from some signifi-
cant limitations. The results of clustering are clusters plus
information about numerical similarities between objects and
object classes. No descriptions or explanations of the generated
clusters are supplied. The problem of cluster interpretation is
simply left to the data analyst. Data analysts, however, are
typically interested not only in clusters but also in their expla-
nation or characterization.

To overcome this, one may postscript the similarity-based
clustering process with an intelligent interpretation that tries
to learn the conceptual significance of each cluster through the
use of Al techniques. Such a process, however, is not easy. In
fact, it may be even more difficult than that of generating
clusters themselves. This is because it requires inducing cate-
gory descriptions from examples, which is a complex inferen-
tial task. Even if one ignores this difficulty, this process may
not produce desired results. Clusters generated solely on the
basis of some predefined numerical measure of similarity may
in principle lack simple conceptual explanations.

One reason for this is that a similarity measure typically
considers all attributes with equal importance and thus makes
no distinction between those that are more relevant and those
that are less relevant or irrelevant. Consequently, if there is
cnincidental agreement between the values of a sufficient
number of irrelevant attributes, objects that are different in a
conceptual sense may be classified as similar. Even if one as-
signs some a priori “weights” to attributes this will not change
the situation very much, because the classical approach has no
mechanisms for selecting and evaluating attributes in the pro-
cess of generating clusters. Neither is there any mechanism
for automatically constructing new attributes that may be
more adequate for clustering than those initially provided.

Another reason for the difficulty of the postclustering inter-
pretation is that in order to generate clusters that correspond
to simple concepts, one has to take into consideration concepts
useful for characterizing clusters as a whole in the process of
clustering and not after clustering.

The following example illustrates this point. Consider the
problem of clustering the points in Figure 1. Typically, a per-
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Figure 1. How would you cluster these points?

son looking at this figure would say that it is a letter S inte;
secting with a letter M. One should observe that points A an
B, which are closer to each other than to any other points, ar
classified into conceptually different clusters. The reaso
seems to be that people are equipped with concepts such a
letter shapes, straight lines, and so on to help them recogniz
certain concepts in the figure. Thus, clustering in this case i
not based on local closeness of points but on global concept
characterizing collections of points together. A conceptuz
clustering program would solve this problem by matching th
descriptions of the letter shapes (contained in its memory a
background knowledge) against the given collection of point:
The best match would be obtained for shapes “S” and “M.”

One may add that, in general, classical techniques do no
seem to be much concerned with the ways humans cluste
objects. They do not take into consideration any Gestalt con
cepts or linguistic constructs people use in describing objec
collections. Observations of how people cluster objects sugges
that they search for one or more attributes (out of many poten
tial attributes) that are most relevant to the goal of clusterin;
and on that basis cluster the objects. Objects are put to th
same cluster if they score similarly on these attributes. A de
scription of the objects in the same cluster can therefore b
expressed as a single statement or a conjunction of statements
each specifying one common property (attribute value) of th
objects in the cluster. The above remark does not mean, how
ever, that individual statements could not include a disjunc
tion of values of the same attribute (the so-called internal dis
Jjunction). For example, a cluster may be characterized as *
set of large boxes, made of cardboard, and colored either blu
or yellow.” Different clusters are expected to have description
with different values of the relevant attributes.

Conceptual clustering has been introduced as a way to over
come the above-mentioned limitations of classical methods. It
basic premise is that objects should be arranged in classes tha
represent simple concepts and are useful from the viewpoint o
the goal of clustering. Thus. objects in the same cluster do no
necessarily have to be similar in some mathematically define
sense but must as a group represent the same concept. In orde
to cluster objects into conceptual categories, the notion of simi
larity must be replaced by a more general notion of conceptua
cohesiveness (1) (see also Learning, machine).

The conceptual cohesiveness (CC) between two objects -
and B depends on the attributes of these objects, the attribute
of nearby objects. and the set of concepts available for describ
ing object configurations. Thus. it is a function CC(Vy, Vg. &
(), where V4 and Vg are vectors of attribute values for A an
B, respectively, E denotes objects in the environment of A an
B, and C is the set of available concepts. Thus, the conceptua
cohesiveness is a four-argument function in contrast to a two
argument distance or similarity function.

In conceptual clustering there is a constant duality betweel
category descriptions and cluster membership. Specifically
the result of conceptual clustering is not only a set of cluster
(a classification of the initially given objects) but also a set o
concepts characterizing the obtained clusters (a classificatiol
scheme).

One may say that from the viewpoint of Al, the similarity
based approach represents the so-called weak method, that ix
a general method that uses little problem domain knowledge
Such a method can be called domain-general knowledge-poor



In contrast, the conceptual clustering approach that is depen-
dent on the background concepts and clustering goals can be
called domain-generic knowledge-modular. It requires an in-
terchangeable module of knowledge defined for the problem at
hand. A goal-dependency network (GDN) (27) may be used to
indicate which attributes are relevant to which goals of classifi-
cation. Various algorithms for classical methods and concep-
tual clustering methods are presented below.

" A Classification of Clustering Problems

From the viewpoint of applications, it is useful to classify clus-
tering problems on the basis of the dimensionality of objects to
be clustered. Three classes of problems can be distinguished:

1. One-dimensional clustering (quantization of variables). For
continuous variables or discrete variables with ranges of
values that are significantly larger than necessary for a
given problem, one wants to reduce the number of distinct
values of the variables by identifying equivalence classes of
values. Clusters of values of individual variables are then
treated as single units. For example, in image processing
the scanners usually distinguish between a large number of
gray levels, but only a few levels may be needed for solving
a given problem (see Image understanding). Rosenfeld (2)
has shown that clustering methods can be used for making
such a reduction. Nubuyaki (3) proposed a clustering algo-
rithm for this purpose in which the clusters have minimal
sums of squares of intracluster distances. Clustering tech-
niques have also been used to analyze LANDSAT im-
ages (4).

2. Two-dimensional clustering (segmentation). This type of
clustering occurs most often in image processing. where one
searches for segments of an image in which all picture ele-
ments share some common properties. For example, they
may have a similar gray level or similur texture. Coleman
(5) defined region segmentation as a problem of clustering
twhich he calls nonsupervised learning’ and used the &-
means algorithm of MacQueen 161. Haralick and Shapiro
(71 have used clustering to analyze object shapes.

3. Multidimensional clustering. In multidimensional cluster-
ing objects are partitioned into clusters in a description
space spanned by many attributes characterizing the ob-
jects. As mentioned earlier, the basis for clustering is typi-
cally a similarity measure. Traditional clustering tech-
niques may assume different geometric distributions of the
points in the space by the use of diffvrent normalization.
transformation. and statistical treatments of the attri-
butes. The next section gives more du.1:i~ on the similarity-
based methods. In conceptual clti--+ -2 the concept of de-
scription space is also useful; how. - =ere the space is not
fixed but may change as new . .~ are generated by
background knowledge heurixt whition, the method
is equipped with a set of concey - an be used to char-
acterize object configurations.

Classical Methods of Clustering

The thrust of research in cluster analy -1~ and numerical tax-
onomy has been toward determining various object similarity

CLUSTERING 105

or proximity measures and developing clustering techniques
utilizing them. A large number of such measures and corre-
sponding clustering methods have been developed to date.
Comprehensive surveys can be found in Sokal and Sneath (8),
Cormark (9), Anderberg (10), Gower (11), and Diday and Si-
mon (12). A summary of various distance measures is de-
scribed in Ref. 13.

Clustering techniques can themselves be clustered in many
interesting ways. One classification partitions the techniques
on the basis of the type of control used in building the clusters.
The categories of clustering techniques according to this clas-
sification are agglomerative, divisive, and direct.

Agglomerative Techniques. Agglomerative techniques are
often used in numerical taxonomy. These techniques form
clusters by progressive fusion, that is, by recursively joining
separate entities and small groups together to form larger and
larger groupings. Eventually a single universal group is
formed and the process halts, leaving a record of the merges
that took place. The history of merges is often displayed in the
form of a dendrogram (see Fig. 2¢) that shows, by the position
of the horizontal location of the merge, the between-group
similarities. As the groups encompass more and more entities,
the between-group similarity scores decrease.

By adopting a threshold of minimum similarity, the ag-
glomeration process can be halted before all entities are
merged into a single group. Conversely, the complete dendro-
gram may be “cut” apart across some similarity boundary.
This yields a number of clusters, each containing those enti-
ties that were merged at a similarity score above the given
threshold.

During the agglomerative clustering process it is necessary
to calculate the similarities between groups of entities. There
are three standard ways to compute between-group similari-
ties (measured as the reciprocal of distances). Suppose two
groups are identified as X and Y. The single-linkage methods
calculate between-group distance between one entity in group
X and another entity in group Y. The complete-linkage meth-
ods use the maximum distance between one entity in group X
and another entity in group Y. The average-linkage methods
use the average of the distances between all possible pairs of
entities with one taken from group X and the other from
group Y. .

Divisive Techniques. Divisive techniques form a classifica-
tion by progressive subdivision, that is. by repeatedly break-
ing the initial set into smaller and smaller clusters until only
single entities exist in each cluster. The result is a hierarchy of
clusters. The divisive technique of Edwards and Cavalli-Sforza
(14) examines all 2 — 1 partitions of .V objects and selects the
one that gives the minimum intracluster sum of the squared
interobject distances. The computational cost of the method
limits its use to cases involving the clustering of only a few
objects.

Direct Techniques. The direct techniques neither merge en-
tities into clusters nor break large clusters into smaller ones.
A direct technique is given the number tusually denoted k) of
clusters to form and proceeds to find a partitioning of the enti-
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1. MP (Microprocessor)
Type: structured
Domain: 13 values

2. RAM memory size
Type: linear
Domain: 4 values

4. Display type
Type: structured
Domain: 4 values

8080a 16,000 bytes Terminal

8502 32,000 bytes B/W-TV

280 48,000 bytes Color-TV

1802 64,000 bytes Built-in

6502C 3. ROM memory size 5. Keys on keyboard
6502A Type: linear Type: linear
68000 Domain: 7 values Domain: 5 values
6800 1000 bytes 52 keys

6805 4000 bytes 53-56

6809 8000 bytes 57-63

8048 10,000 bytes 64-73

28000 11,000-16,000 bytes 92

HP (Hewlett-Packard
Co. proprietary)

26,000 bytes
80,000 bytes

(a)

MP

8080x 6502x
/]\ N

1802 68000 6800 6805 6800 Z8000

8080A 780 8048

6502 6502A 6502C

The structured domain for the variable “MP."

Display

type

say TV

External terminal  B/W TV

Color TV Built-in

The structured domain for the variable "display type.”

{bi

Figure 2. ta} Variable used to describe microcomputers. (b} The structure of domains of variables
“MP” and “Display type.” (c} A dendrogram generated by NUMTAX with descriptions generated
by Aq. td' A conceptual clustering of microcomputers.

ties into k clusters that optimizes some measure of the good-
ness of the clusters. Two early direct clustering techniques are
k-means developed by MacQueen (6), and the center adjust-
ment method developed by Meisel (15). A generalization of the
k means and center adjustment techniques called the dynamic
clustering method has been developed by Diday (16).
Another classification of clustering methods separates the
monothetic techniques from the polythetic ones. A monothetic
clustering algorithm divides the set of objects into clusters
that differ in the value of one attribute. For example, such a
technique might form one cluster in which attribute X, has the
value 1 and another cluster in which attribute X, has the value
0. A polythetic clustering technique forms clusters in which
the values of several attributes differ for different classes.
Traditional clustering relies on measures of similarity and

the requisite need to “fold” the attribute values together to
measure object-to-object similarities. When this occurs in a
multidimensional space. the question of attribute weighting
comes up, and there is much controversy over what weighting
scheme is best for various purposes.

Weights on attributes have to be given a priori by the re-
searcher. Problems with such an approach are that it is usu-
ally difficult to define such weights. and that some attributes
may be dependent on other attributes. For example. attributes
B and C may be important only if attribute A has the value 1.
A similarity metric uses some static weights for attributes A,
B. and C. The attributes B and C are weighted too high when
attribute A takes the value 0 (since they should receive zero
weight in that case), and they may be weighted too low when
attribute A takes the value 1.
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Figure 2. ('

Conceptual Clustering

As described above, conceptual clustering arranges objects
into clusters corresponding to certain conceptual classes. for
example. classes characterized by conjunctive concepts (i.e.,
concepts defined by a simple conjunction of properties:. The
basic theory and an algorithm for conceptual clustering have
been developed by Michalski (17). Implementation and experi-
mentation with the algorithm has been performed by Mi-
chalski and Stepp (1,18) and Stepp 119! and has produced the
programs CLUSTER. 2 and CLUSTER . S. Other programs that
work differently but provide conceptual clustering features
include DISCON (20), RUMMAGE 21). and GLAUBER (22).

From the viewpoint of Al clustering is a form of learning
from observation tor learning without a teacher). It is a pro-
cess that generates classes (conceptually defined categories) in
order to partition a given set of observations. It differs from
concept learning (qv) in that the latter creates descriptions of
teacher-provided classes by generalizing from the examples of
the classes.

Below, one method for conceptual clustering is briefly out-
lined. The method is based on the idea that conceptual cluster-

ontinued)

ing can be conducted by a series of conceptual discriminations
similar to those used in learning concepts from examples. The
method uses the extended predicate calculus proposed by Mi-
chalski (17). Such a language is used to describe objects,
classes of objects, and general and problem-specific back-
ground knowledge. The method employs a general-purpose cri-
terion for measuring the quality of generated candidate classi-
fications. Finding classifications that score high on the quality
criterion is the most general goal of the method. Additional
problem-specific goals may be supplied by the user or inferred
by the system from a general goal dependency network. Goal
dependency is important to reduce the space of hypothetical
classifications the method investigates.

Creating a classification is a difficult problem because there
are usually many potential solutions with no clearly correct or
incorrect answers. The decision about which classification to
choose can be based on some perceived set of goals as described
by Medin, Wattenmaker, and Michalski (231, a goal-oriented.
statistic-based utility function as described by Rendell (24), or
some other measure of the quality of the classification.

One way to measure classification quality is to define vari-
ouj elementary, easy-to-measure criteria specifving desirable
properties of a classification, and to assemble them into one
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general criterion. Each elementary criterion measures a cer-
tain aspect of the generated classifications. Examples of ele-
mentary criteria are the relevance of descriptors used in the
class descriptions to the general goal, the fit between the clas-
sification and the objects, the simplicity of the class descrip-
tions, the number of attributes that singly discriminate among
all classes, and the number of attributes necessary to classify
the objects into the proposed classes.

Building a meaningful classification relies on finding good
classifying attributes. The method presented below uses back-
ground knowledge in the search for such attributes. Back-
ground knowledge rules enable the system to perform a chain
of inferences to derive values for new descriptors for inclusion
in object descriptions. The new descriptors are tested by apply-
ing the classification quality criterion to the groupings formed
by them. .

Concept Formation by Repeated Discrimination. This section
explains how a problem of concept formation (here, building a
classification) can be solved via a sequence of controlled steps
of concept acquisition (learning concepts from examples).
Given a set of unclassified objects, k seed objects are selected
randomly and treated as representatives of & hypothetical
classes. The algorithm then generates descriptions of each
seed that are maximally general, form a good match with a
subset of the objects given, and do not cover any other seed.
These descriptions are then used to determine the most repre-
sentative object in each newly formed class (where the newly
formed class is defined as the set of objects satisfying the gen-
erated class description). The & representative objects are then
used as new seeds for the next iteration. The process stops
either when consecutive iterations converge to some stable
solution or when a specific number of iterations pass without
improving the classification (from the viewpoint of the quality
criterion).

This approach requires that the number of classes is speci-
fied in advance. Since the best number of classes to form is
usually unknown, two techniques are used: varying the num-
ber of classes and composing the classes hierarchically.

For most purposes, it is desired that the classification
formed be simple and easy to understand. With this in mind,
the number of classes that stem from any node of the classifica-
tion hierarchy can be assumed to be in some modest range
such as from 2 to 7. With this small range, it is computa-
tionally feasible to repeat the whole clustering process for
every number in the range. The solution that optimizes the
=corc on the classification quality criterion (with appropriate
adjustment for the effect of the number of classes on the score)
indicates the best number of classes to form at this level of the
hicrarchy.

The above method of repeated discrimination for perform-
ing clustering has been implemented in the program CLUS-
TER 2 for a subset of extended predicate calculus (see Logic,
predicate) involving only attributes (zero-argument func-
tions). Besides its relative computational simplicity, this ap-
proach has other advantages stemming from use of quantifier-
free descriptions (for both objects and classes). It should be
noted that classifications normally have the property that they
cun unambiguously classify any object into its corresponding
class. To have this property, the class descriptions must be
mutually disjoint.

For conjunctive descriptions involving relations on attrib-
ute-value pairs, the disjointness property is easy to test and
easy to maintain. For the more complex problems that require
object representations involving quantified variables, predi-
cates on these variables, and function-value relationships
over quantified variables, the test for mutual disjointness of
descriptions is much more complex. To cope with this diffi-
culty, the problem of clustering of structured objects is decom-
posed into two steps. The first step finds an optimized charac-
teristic description of the entire collection of objects and then
uses it to generate a quantifier-free description of each object.
The second step processes the quantifier-free object descrip-
tions with the CLUSTER/2 algorithm to form optimized classi-
fications. These two processes are combined in the program
CLUSTER/S.

Example 1: Microcomputers. The problem is to develop a
meaningful classification of popular microcomputers. Each mi-
crocomputer is described in terms of the variables shown in
Figure 2a. Variables “MP” and “Display type” are structured,
i.e., their value set forms a hierarchy (Fig. 2b). Two programs
were applied to solve this problem: NUMTAX, which imple-
ments several techniques of numerical taxonomy, and CLUS-
TER/2, which implements conjunctive conceptual clustering.
A representative dendrogram produced by NUMTAX is shown
in Figure 2c. The dashed lines indicate where the dendrogram
is cut apart to form two clusters (k¢ = 2). Accompanying the
dendrogram is a logical description of the clusters. These de-
scriptions were produced by an inductive learning program
that accepts as input a collection of groups (clusters) of objects
and generates the simplest discriminant description of each
group. For example, the first cluster is described as

IRAM = 16K . . .48K|", [Keys = 63|

This description suggests that the cluster is composed of two
kinds of computers. one that has [RAM = 16K . . . 64K] and
the other that has |Keys =63|. The presence of disjunction
raises the question of why these computers are in the same
cluster.

The program CLUSTER/2 was given the same data and
was told to use a classification quality criterion that maxi-
mizes the fit between the clustering and the objects in the
cluster and then maximizes the simplicity of category descrip-
tions. The clustering obtained is shown in Figure 2d. The first-
level clustering is done on the basis of type of microprocessor.

Example 2: Trains. Consider a problem of classifving struc-
tured objects, for example, the problem of finding a classifica-
tion of trains shown in Fig. 3a. The trains are structured ob-
Jects, each consisting of a sequence of cars of different shapes
and sizes. The individual cars carry a variable number of
items of different shapes.

Human classifications of the trains shown in Figure 3a
have been investigated by Medin, Wattenmaker. and Mi-
chalski (23). The 10 trains were placed on separate index cards
so they could be arranged into groups by the subjects in the
experiment. The experiment was completed by 31 subjects who
formed a total of 93 classifications of the trains. The most
popular classification (17 repetitions) involved the number of
cars in the trains. The three classes formed were “trains con-
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Figure 3. (a) Trains to be classified. (b) The most frequent human classification of trains. ()
Conceptual clustering of trains carrying toxic chemicals.
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taining two cars,” “trains containing three cars,” and “trains
containing four cars.” This classification is shown in Figure
3b.

This problem is an example of a class of problems for which
the implicit classification goal is to generate classes that are
conceptually simple and based on easy-to-determine visual at-
tributes. When people are asked to build such classifications,
they typically form classes with disjoint descriptions, as in the
above-mentioned study by Medin. For this reason methods
that produce disjoint descriptions are of prime interest.

The problem of classifying trains represents a general cate-
gory of classification problems in which one wants to organize
and classify observations that require structural descriptions,
for example, classifying physical or chemical structures, ana-
lvzing genetic sequences, building taxonomies of plants or ani-
mals. characterizing visual scenes, or splitting a sequence of
temporal events into episodes with simple meanings.

One problem of concern here is to develop a general method
that when applied to the collection of structured objects. such
as trains. could potentially generate the conjunctive concepts
occurring in human classifications or invent new concepts hav-
ing similar appeal.

An extension of the trains problem illustrates the use of a
goal dependency network and problem-specific background
knowledge. Suppose that the knowledge base includes an in-
ference rule that can identify trains carrying toxic chemicals
and that the gencral goal “survive™ has a subordinate goal
“mon:tor dangerous shipments.” This background knowledge
can be used to help build a classification.

In the illustrations of the trains a toxic chemical container
is identified as a single sphere (circle) riding in an open-top
car. A background-knowledge rule supplied to the program is

[contains(train,car)|[car-shape(car) = opentopl|
[cargo-shape(car) = circlel(items-carried(car) = 1]
¢ [has_ toxic_ chemicalsttraini]

In the above rule, equivalence is used to indicate that the
negation of the condition part is sufficient to assert the nega-
tive of the consequence part. After this rule is applied, all
trains will have descriptions containing either the toxic chem-
ical predicate or its negation. The characteristic description
generated by the program will now contain the additional
predicate “has_toxic.chemicals(train)” tor its negation). By
recognizing that this predicate is important to the goal “sur-
vival” through use of a GDN, the program produced the classi-
fication shown in Figure 3c.

Concept Formation by Finding Classifying Attributes. This
section describes an alternative approach for building classifi-
cations. This approach searches for one or more classifving
attributes whose value zets can be split into ranges that define
individual clusters. The important aspect of this approach is
that the classifving attributes can be derived through a goal-
directed chain of inferences from the initial attributes. The
classifying attributes sought are the ones that lead to classes
of objects that are best according to the classification goal and
the given classification quality criterion.

The “premise” of a descriptor to serve as a classifving at-
tribute is determined by relating it to the goals or derived
subgoals of the problem and by considering how many other
descriptors it implies. For example. if the goal of the classifica-
tion is “finding food.” the attribute “edibility” might be a good
classifying attribute.

The second way of determining the promise of an attribute
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can be illustrated by the problem of classifying birds. The
question of whether “color” is a more important classifying
attribute than “is-waterbird” is answered in favor of “is-water-
bird” because the latter leads to more implied attributes than
does the attribute “color” in a given GDN (e.g., “is-waterbird”
implies can swim, has webbed feet, eats fish, and so on), as
described by Medin, Wattenmaker, and Michalski (23).

There are two fundamental processes that operate alter-
nately to generate the classification. The first process searches
for the classifying attribute whose value set can be partitioned
to form classes such that the produced classification scores best
according to the classification quality criterion. The second
process generates new descriptors by a chain of inferences us-
ing background knowledge rules. Descriptors that can be in-
ferred are ordered by relevancy to the goals of the classifi-
cation.

The search process can be performed in two ways. When the
number of classes to form (k) is known in advance, the process
searches for attributes having & or more different values in the
descriptions of the objects to be classified. These values are
called the observed values of the attribute. Attributes with the
number of observed values smaller than % are not considered.
For attributes with observed value sets larger than k&, the
choice of the mapping of value subsets to classes depends on
the resulting quality criterion score for the classification pro-
duced and the type of the value set. When the number of
classes to form is not known, the above technique is performed
for several different values of k. The best number of classes, &,
is indicated by the classification that best satisfies the quality
criterion and goals.

The generate process constructs new attributes from combi-
nations of existing attributes. Various heuristics of attribute
construction are used to guide the process. For example, two
attributes that have linearly ordered value sets can be com-
bined using arithmetic operators. When the attributes have
numerical values (as opposed to symbolic values such as small,
medium, and large), a trend analysis can be used to suggest
appropriate arithmetic operators. as in the BACON system by
Langley and his associates (25). Predicates can be combined by
logical operators to form new attributes through background
knowledge rules. For example. a rule that says an animal is a
reptile if it is cold-blooded and lays eggs can be written as

[cold-blooded(uli]{offspring birthtal} = egg|
= fanimal-typetal) = reptile].

The application of this rule to the given animal descriptions
vields the new attribute “animal-tvpe” with the specified
value “reptile.” Using this rule and <imilar ones. one might

classify some animals into reptiles. m.ammals, and birds even

though the type of each animal 1= .+ ~.tvd 1n the original
data.

Summary

mueamingful catego-

Clustering objects or abstract en: -
.- from observation.

ries is an important form of lea:-
This entry has described a clas- ~aularity-based” ap-
proach and the more recent concep: . istering approach to
this problem. The fundamental nouti t. - conceptual cohesive-
ness that groups together objects thut correspond to certain
concepts rather than objects that are xumilar according to a
mathematical similarity function.
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COGNITION. See Reasoning.

COGNITIVE MODELING

A cognitive simulation model is a computer simulation of
mental or cognitive processes. Such a model is normally con-
structed by cognitive psychologists, who are members of the
branch of experimental psychology that is concerned with the
scientific and empirical study of human behavior, with an em-
phasis on understanding the internal mental mechanisms that
underlie behavior (see Cognitive psychology). The purposes of
cognitive modeling are to express a theory of mental mecha-
nisms in precise and rigorous terms, to demonstrate the suffi-
ciency of a set of theoretical concepts, and to provide an expla-
nation for observed human behavior.

Because cognitive models use many techniques and ideas
from Al they are similar to AI programs. But the goals of
cognitive modeling and Al tend to be substantially different
(see Ref. 1). Briefly put, the goal of Al is to build intelligent
machines. whereas the goal of cognitive modeling is to build
models of human mental mechanisms. These activities are
very similar, but they differ mainly in the criteria for success.
Again briefly put. the quality of a piece of Al work is measured
in terms of how well the machine is able to perform the task.
In a cognitive modeling effort the question is not only whether
the computer program is able to perform the task but also the
extent to which it behaves like 2 human performing the same
tuck and whether the mechanisms involved are plausible theo-
retical explanations for human mental processes. Notice that
in Al terms these mechanisms may be inefficient or unneces-
sarily complex for the task.

This entry touches on the contribution of cognitive model-
ing to AL It is not a commonly accepted idea, but cognitive
modeling work is relevant to Al in that some of the mecha-
nisms in cognitive models are applicable to Al problems.

COGNITIVE MODELING 1

Purposes of Cognitive Modeling

The rationale for cognitive modeling is best seen in terms of
the history of theoretical development in cognitive psychology.
Except for the temporary aberration of behaviorism, the goal
of experimental psychology over the last century has always
been to construct an adequate theory of the mental processes
that underlie behavior. An adequate theory of the human
mind would explain the observed behavioral data in terms of
plausible internal mechanisms. The traditional mode for de-
scribing such mechanisms has been in the form of verbal state-
ments. As the ideas get more complex, such verbal theories
become difficult to handle. Thus, there is a need to express
psychological theory precisely and to demonstrate that theo-
retical concepts are actually sufficient to explain the behavior
and to derive testable predictions about data in a rigorous
fashion.

The idea of rigorous theoretical models in experimental
psychology is a fairly old idea; an excellent early example is
the work of Hull during the 1940s, who constructed one of the
first large-scale mathematical theories of behavior. During the
fifties and sixties mathematical models of psychological pro-
cesses were developed. These models represented perceptual
and learning situations as stochastic processes, which were
very successful in accounting quantitatively for many details
of human behavior. See Ref. 2 for a summary of these ap-
proaches.

This combination of verbal and mathematical theory has
produced what might be termed the “standard” theory of cog-
nition, which is based on a decomposition of the human mind
into major components. These consist of structures such as
short-term memory and long-term memory and processes such
as recognition, memory storage, and memory retrieval, which
process and manipulate the information stored in the struc-
tures. This theory is the basic framework for most current
cognitive models.

As interest in cognitive psychology moved from simple
learning (qv) and perception (see Vision, early) to complex
behavior such as reasoning (qv! and reading comprehension
(see Natural-language understanding:, the mathematical
models seemed to be inadequate because they characterized
behavior in terms of a small number of continuous mathemati-
cal variables; it seemed that complex qualitative. or symbolic,
systems were needed instead, especially in order to represent
knowledge (see Representation. knowledgel. In addition,
many researchers came to feel that a psychological theory or
model should describe the processes going on in the mind
rather than simply providing a characterization of the statisti-
cal properties of the behavior (31. Thus. computer programs. in
which these complex entities can be represented directly. be-
came the ideal mode for expressing theory t4).

Perhaps the most important event in symbolic cognitive
modeling was the adoption of semantic networks tqv: from Al
For cognitive psychologists the significance of the semantic
network representation was that it provided a representation
of knowledge in a form that tied into the classical concept of
association very well (see Ref. 5 for a comprehensive review of
this topic). Semantic networks were so appealing theoretically
that Al quickly became of intense interest to cognitive psy-
chologists, and cognitive simulation models were the best way
to incorporate Al concepts-into cognitive theory. Currently,
there seems to be a consensus that cognitive simulation
models best represent the core theoretical concepts in cogni-



