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ABSTRACT

Conceptual clustering is concerned with problems of grouping observed entities into conceptually simple
classes. Earlier work on this subjeet assumned that the entitics and classes are described in terms of a priori
given multi-valued attributes. This researeh extends the previous work in three major ways:

e  entilies are characterized as compound objects requiring structural descriptions,

s relevant descriptive concepts [attributes and relations) are not necessarily given a priori but can be
determined through reasoning about the goals of classification,

e inference rules ace used to derive useful high-level descriptive concepts from the initially provided
low-level concepts.

The created classes are described using Annotated Predicate Caleulus (APC), which is a typed predicate

caleulus with additional operators. Relevant descriptive concepts appropriate for characterizing entities

are determined by tracing links in a Goal Dependency Network (GDN) that represents relationships

between goals, subgoals, and related attributes.

An experiment comparing results from the program CLUSTER/S that implements the classification

generation process and results obtained from people indicates that the proposed method might offer a

plausible cognition model of classification processes as well as an engineering solution to the problems of

automatic classification generation.

1. Introduction

The process of rorm]_n; n',-:;n_ing[ul c[assiﬁcﬂ.l‘,icns of ohbserved entities is a difficult .II'ItE”E‘:tﬂﬂl tﬂak. and

usually precedes the development of a theory about the entities'. According to the machine learning

* Auther is on leave of absence from the University of llinois at Urbana-Champaign.

1. By the term entilies we mean a0y objects, phenomena, processes, ete that are of interest and that can be described by statements
in our representation language



ARTIFICIAL INTELLIGENCE 2

terminology proposed by Carbonell, Michalski, and Mitchell [4], this process is a form of learning from
observation (learning without a teacher). Until recently, problems of developing computational methods
and a theory underlying classification construction procedures have not received much attention from
the Al community. Classification was studied primarily under the headings of numerical taxonomy and
cluster analysis [1]. Thu-nse methods utilize 2 mathematical measure of similarity between entities, defined
over a finite, a priori given set of multi-valued or continuously-valued attributes. Generated classes are
collections of objects with high intraclass and low interclass similarity. The methods assume that all
relevant attributes for characterizing entities are provided initially and that they are sufficient for
creating a classification. The methods do not take into consideration any background knowledge about
the relationships among object attributes or global concepts that could be used for characterizing object
configurations. Likewise, they do not take into consideration possible goals of classification that seem to
underly human classification processes.

As a result, classifications obtained by traditional methods are often difficult to interpret conceptually
and may not reflect the goals a data analyst might have in mind. Moreover, the classes generated by a

aiven method require interpretation since no conceptual deseription is provided ..

Another aspect of traditional classification-building methods is that they deseribe abjects by attribute
value sequences and therefore are inadequate for ereating classifications of complicated objeets enmposed
of various interrelated component parts. A description of such entities must involve not only attributes

of whele entities but alse attributes of their parts and relationships among them.

This research is concerned with the problem of automating the process of generating classifications of
structured entities through conceptual cluctering, In this approach, classes (clusters of entitios) are
generated by first formulating conceptual descriptions of these classes and then classilying the entities

according to the descriptions.

2., The Goal of This Research

The idea of concepiual clustering leads to an entirely new approach to the problem of creating

classifications [12, 17, 18, 21]. It is based on the assumption that entitics shoukd be arranged into classes
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that represent simple concepts rather than classes based solely on a predefined measure of similarity.

In the earlier work on conceptual clustering, events (entities) were deseribed by attribute value
sequences, The method arranged the events into a hierarchy of classes described by conjunciive
concepls. These concepts were described by logical products of relations on selected attributes. The
generated sibling classes of any node in the hierarchy represented the most preferred classification from
this nede according te a given preference crilerion. The background knowledge consisted of the
definitions of the attributes used in event descriptions, their domains and typ!fS, and the classification

preference criterion.

This research extends the previous work in three ways:
® Objects and classes are described by structural descriptions, which are expressed in
Annetated Predicate Caleulus [APC), a typed predicate calculus with additional
operators.

® The background knowledze includes inference rules for deriving high-level deseriptive
concepts from the low-level concepts initially provided.®

® The system is supplied with a general goal of the classification that provides the means

for identifving relevant deseriptors and inference rules for deriving new descriptors.
(This avoids the neeessity of delining them explicitly as in the previous method.)

An important aspect of this approach is the emphasis placed an the role of background knowledge for
constructing meaningful and useful classifications. In this method the background knowledge consists of
a network of goals of the classification, inference rules and heuristics for deriving new deseriptors,
definitions of attribute domains and types, and the classification preference eriterion. The network of
goals, called the Gual Dependency Network (GDN), is used for guiding the search for relevant dcsfripltnrs

and inference rules.

The necessity of using background knowledge in any form of inductive learning is indicated in the
theory of inductive learning put forth by Michalski [15]. Important work invelving background
knowledge has been done by Winston [23], who deseribes an incremental learning process in which the

background knowledge conruns relevant precedents, exercises, and unless condilions. Delong [5]

2 The descriptive concepta are called deseriplors and include attributer, reary lumctioms, or refations used to
charactenze events,
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presents a method of using background knowledge to acquire explanatory schemata that describe
sequences of events presented as stories. Background knowledge is also used by Mitchell and Keller [19]
to guide an inductive learning program for acquiring problem-solving heuristics in integral calculus. In
learning by analogy described by Burstein [2], a large body of causal knowledge is used to “fill out”
incomplete deseriptions and guide analogical inference. Carbonell [3] presents a method for acquiring
problem-solving strategies by analogy to solutions of similar problems. Rendell's Probabilistic Learning
System [20] demonstrates the usefulness of clustering points in the solution space according to localized
penetrance scores in order to reduce the amount of search required in problem solving., Various aspects

of the problem of learning structural descriptions from examples are discussed in [22] and [7].

To provide the necessary background, section 3 presents a brief overview of the authors’ earlier method
of attribute-based conjunctive conceptual clustering. Section 4 focuses on the role of background
knowledge and goals in building classifications. Following that, section 5 presents a sample problem
invelving building a classification of struetured entities. Finally, section 6 presents two methods that

employ background knowledge for constructing classifications of structured entities.

3. Attribute-based Conjunctive Coneeptual Clustering (Previous Work)

This section briefly describes the authors’ carlier wnlrk on automatic construction of classifications using
the method of Attribute-based Conjunciive Conceptual Clustering (AC*). The main idea behind AC? is
that a confizguration of events forms a class only if it can be described by a conjunctive concept involving
relations on their attributes. AC?is a special case of general conceplual ¢lustering that generates a
network of concepts to characterize a collection of entitics. The problem posed in the framework of AC?
is delined as follows:
Given: A set of events (physical objects or abstract entities),
A set of attributes to be used to characterize the events, and
A hody of background knowledge, which includes the problem constraints, properties of

attributes, inference rules for generating new attributes, and 2 eriterion for evaluating the
quality of candidate classifications;
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Find: A hierarchy of event classes, in which each class is described by a single conjunctive concept,
Subclasses that are descendants of any parent class should have logically disjoint descriptions
and optimize a clustering qualily crilerion,

As mentioned before, in conventional data apalysis classes of events are formulated solely on the basis of
a measure of event similarity. The similarity between any two events is characterized by a single
number: the value of a similarity function applied to symboelic descriptions of the events. These
symbolic descriptions are vectors, whose components are scores on selected attributes in event
descriptions. Such measures of similarity are conlezi free; that is, the similarity between any two events
(objects) A and B depends solely on the properties of the objects and is not influenced by any context
(the environment surrounding the events). Consequently, methods that use such measures are
fundamentally unable to capture the gestalt properties of object clusters, that is, properties that
characterize a cluster as a whole but are not derivable from properties of individual entities. In order to
detect such properties, the system must be equipped with the ability to recognize conlizurations of

evenls representing certain concepts.

This idea is the basis of conceptual clustering. Rather than group entities together on the basis of the
similarity between two entities such as A and [, the method groups entities together on the basis of the
eanceplual cohesiveness between A and 0. The conceptual cohesiveness between two events depends not
only an those events and surrounding events E [the environmeni) but also on a set of concepts O that
are available for deseribing A and B together. Thus, the conceptual cohesiveness between two events 4
and B is a four-argument function f{A,8,E£.C) in contrast to an ordinary similarity function of two
arguments .4, 3).

The algorithm for conjunctive conceptual clustering can be described as consisting of two parts: a
clustering part and a hierarchy-building part. The clustering part of the algorithm arranges abjects into
classes using conceptual cohesiveness, so that the obtained clustering optimizes the given context-based
clustering quality criterion. The hierarchy-building part of the algorithm starts by building first-level
conceplual classifications of all objeets (the root of the hierarchy). Then it recursively builds a

elassification fur cach sibling group of abjects from the previous elassilication until the step growth
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criterion is met (for example, until the height of the hierarchy reaches a certain level or the sizes of the

clusters fall below a certain size).

The clustering algorithm works by alternately selecting a set of seed objects (one per class) and using the
seeds to guide inductive inference over positive-only events to produce generalized, but mutually
disjoint, descriptions of object classes. This process insures that each seed object is placed into a
separate class. Each cluster description is as general as possible {various generalization transformations
are exhaustively applied) so that it covers the given seed but no other seeds. Different seeds are used
aver several iterations while the clustering quality criterion is monitored. The algorithm balts when the
clustering quality criterion does not improve for a dynamically determined number of iterations. The

algorithm is described in detail by Michalski and Stepp [18].

4. The Use of Background Knowledge and Goals

Suppose that we are observing a typical restaurant table on which there are such objects as food on a
plate, a salad, utensils, salt and pepper, napkins, a vase with flowers, a colfec cup, and so on. Suppose a
person is asked to build a meaningful classification of the objects on the table, One way to create a
classification is to perform the following ehains of inferenees:
® :salt and pepper are seasonings
seasonings are used to add zest to food
seasoned food is something to be caten
things that are to be eaten are edible
salt and pepper are edible
#® salad is a vegetable
vegetables are food
food is something to be eaten

things that are to be eaten are edible
salad is edible

A similar chain of inferencrs applicd to meat on a plote or cake on a dessert plate will also lead to the
concept iz edible, On the . her hand, 2 napkin is not food and is therefore not edible, A vase
eontaining Howers is not [ .| ind is therelore not edible. Consequently, one meaningful classification of

objects on the table is simy '- - Jble ubjects versus inedible ohjects,
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When the background knowledge contains many such rules of inference, a large number of different but
equally meaningful candidate classifications can be created. The problem is how to select the best or
most approprizte classifications from among the candidate classifications. For example, il inference rules
about food types, suppliers, processing, and packaging were contained in the knowledge base, they could
be used for generating other classifications. Some new classifications might produce categories such as

damestic versus imported or perishable versus nonpertshable.

One way to resolve the classification selection problem is by assuming a general goal of the classification.
For example, assume that the general goal is to survive. Among other things, this goal dictates that a
person has to ingest food and liquids and be safe. Furthermore, the subgoal ingest can be linked to the
two modes of ingestion, that is, by consuming food and by drinking liquids. In the context of the
subordinate goals reached by links from the most general goal node, the relevant attributes might be, for
example, is_edible, i=_polable, and tastes_good. The attribute tastes_good can be linked by an
implication relation to the attributes fs_edibie or is_polable (if something tastes good then it is either

edible or potable).

Thus, the classification building proeess can be guided by a general goal that leads to subgoals and then
to ane or more attributes that are relevant in the contest of the goal. Such relationships are captured in
the Goal Dependency Network (GDN) mentioned earlier. This network links tegether goals, subznals,
and relevant attributes. Part of a hypothetical GDN headed by the surrive goal is shown in figure 1. In
the illustration. main goals are denoted by double ellipses, and subgoals and relevant descriptors are
denoted by regular ellipses and rectangles, respectively. The solid ares between nodes are directed fraom
goal nodes towards subordinate goal nodes. The dashed ares between nodes and attributes are directod
from goal nodes to relevant attribute nodes, and the dotted ares link an attribute with an implisd
attribute,

Suppose that the gouls for a classification include not only survive, but also de healthy and beautiful,
When both geals are involved, a GDN such as the one in figure 2 is used. [lere, the links from the twa

top-level goals converge at the consume diclary food subgonl which links to the subordinate goals
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I tastes_good _' )or

& A general goal

> A subordinate goal * __.-""
3 A relevant :lttl‘li.bulle or predicate is_edible et
—= A goal subordination relation

-=+ An aribure relevancy relation
----- = An implication relation between attributes

Fiz. 1. A Goal Dependency Network headed by the goal to survive.

consume lean foods and consume balanced diel, Attached to these latter nodes are the relevant
deseriptors faf conlent and fz_{ean, and nulrient content, respectively. The two subgoal nodes
mentioned above have subordinate goal nodes of their own. These include cal {can meal and cat
vegetables. The relevant deseriptors attached to these nodes include the predicates fa_{ean, iz_meal,
and is_regelable. Thus, by the addition of the top-level goal be healthy and beautiful, five additional

relevant attributes are proposed by the GDN.

Adding a top-level goal may reduce the number of attributes thought to be relevant. Suppose we add a
vegelarfan life-style goal. Link paths from the three top-level goals converge at the subordinate goal cal
vegelables. This increases the relevancy of the fz_rvegelable predicate which now dominates in relevancy

over the other attribures. The GDN for this last situation is illustrated in figure 3.

Let us now consider a specific problem: the system is given symbolic deseriptions of objects on the table
in terms of their physical attributes (including structure) along with survive as a general goal of the

classification, and we want it to create the classilication into edible versus inedible obhjects,
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Fic. 2. A GDN for the goals survive and be healthy and beautiful
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Notice first that creating such 2 classification solely on the basis of original attributes is practically
impossible because objects that are in the same functional class (edible or inedible) can be vastly
different in terms of their physical properties (see [22] for a discussion of this problem). A program that
could classify objects on a table as edible or inedible would have to be equipped with background
knowledge consisting of the previously described inference rules and with the ability to use them in a
goal-directed way.

Background knowledge built into the program can be classified as general purpose or domain specific.
General purpose knowledge consists of fundamental constraints and criteria specifying general properties
of classifications. This includes a specification of the domain of each descriptor, the type of domain
(umordered. lincarly erdered, or tree-structure ordered), and 2 sequence of elementary criteria to be
applied lexicographically with tolerances to evaluate classifieations. The Lezicographical Evaluation
Funclional with tolerances (LEF) (sce section 6.2) is used to help select [rom among candidate
clazsification schemes ane classification that is appropriate for the problem at hand and that directs the

algorithm towards solutions that meet a given goal.

Domain-specific background knowledgze consists of inference rules for deriving values for new deseriptars
and 2 GDN to infer which deseriptors {attributes, functions, or predicates) are likely to be relevant to

the zoal of classification.

Event descriptors can be divided into initial descriplors and derived deseriplors. Both kinds of
descriptors can appear attached to goal nedes in the GDN. The initial descriptors can be divided into
those that are relevant with respect to the goals and those that are irrelevant, In some problems, the
relevant descriptors are unknown and not necessarily provided as initial descriptors. A solution can still
be obtained in such cases il backzround knowledge can be used to derive relevant deseriptors from those
that are initially given. Inference rules in the knowledge base are used to infer the values of the derived
descriptors, Domain-specific knowledge in the GDN is used to guide the application of inference rules

towards descriptors that are likely to be relevant and thus worth the computational cost of their
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derivation.
Derived descriptors can be divided into two categories:

[ ] Descriptors derived by logical inference. These descriptors are predicates and lunctions obtained
by the application of general and problem-specific inference rules to the initial descriptions of the
objects. In this work, inference rules consist of a condition part and a consequence part.
Whenever an object description matches the condition portion of a rule, the consequence portion is
applied to the object description. The consequence may be composed either of new predicates and
functions to be asserted or of arithmetic expressions that are evaluated. [n either case, the new
descriptors (unless already present) are appended to the object description and become available as
attributes that are potentially relevant for building classifications of the objects,

L Descriptors derived by special compulations, experimenis or devices. These descriptors are
obtained from the initial descriptors by the application of specialized descriptor generation
procedures, by running experiments, or by activating some external device, that is, any procedure
other than the application of condition-consequence rules. Examples of such descriptors generated
by the INDUCE/2 program [8] are “the number of object subparts,” “the number of subparts with
some specific property,” “the aumber of different values observed for an attribute,” and
“properties common to all subparts.” The program can also automatically generate multiplace
predicates to assert “same function value” for several parts—for example, samecolor(pl.p2)—and
single-place predicates to assert head and tail pesitions in a ehain of properties—[or example, to
assert most-ontop(pl) and least-ontop(p3) when given ontop(pl,p2) and ontop(p2,p3).

5. Building Classifications of Structured Objects

Let us turn mow to the problem of classifving struetured objects. Consider for example the problem of
finding a classification of some trains,” shown in figure 4. The trains are structured objects, each
consisting of a sequence of cars of dilferent shapes and sizes. The individual cars carry a variable
numhber of items of different shapes. The problem presented is in a class of learning problems known as
learning from observalion or concepf formalion. It is interesting to both Al researchers and cognitive
psychologists.

Human classifications of the trains shown in figure 4 have been investigated by Medin, Wattenmaker,
and Michalski, [12]. The ten trains were placed on separate index cards so they could be arranzed into
groups by the subjects in the experiment. Each subject was instructed to partition the trains according

to three methods and to state the rationale used:

3 This example i3 a refarmulation of the problem known as “cast- apd west-bound tramns” [16). lo the original farmulation,
two collections of trains were given— those that were east-bound (A to E) and those that wers west-bound (F to J). The
protlem was to learn a simple rule to dirtinguish between the east-bound aad west-bound trains. Thus the onginal problem was
that of learming from ezamples, ar concepl acquinihion
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PR I=1=1 = U= 1

Fic. 4. How would you classify these trains?

1 Arrange the trains into any number of groups.
2 Arrange the trains into two equal groups.

3 Arrange the trains into any number of groups of conceptually similar objects plus an “other”
gronp to hold any unusual or hard-to-classily trains.

The experiment was completed by thirty one subjects who formed a total of ninety three classilications
of the trains. The most populir concepts used to form a classification (seventern repetitions) involved
the number of cars in the trams. The three classes formed were deseribed by the following concepts:

“trains containing 2 cars,” “trains containing 3 ears,” and “trains containing { ears.” The second most
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frequent classification (seven repetitions) was based on the engine wheel color. These two classifications

are shown in figure 5. Of the ninety three classifications produced, forty of them were unigue. Thus,

although there was no explicit goal given for this classification, there was some pattern among the

subjects. In this case, the pattern was not a very strong one, as indicated by the wide spectrum of

singleton solutions.

This problem is an example of a class of problems for which the implicit classification goal is to gencrate

classes that are conceptually simple and based on easy to determine visual attributes, When people are

asked to build such classifications, they typically form classes with disjoint descriptions, as in the study

b L S—tas\a 3
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Class 1: “All engine wheels are white.”
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F Lo gog-iy)

Class 2: “Not all engine wheels are white”

Class 1: "Train contains two cars.”
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Class 2: "Train contains three cars.”
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Class 3: “Train contains four cars.”

m

=

Fiz. 5. The two most popular classifications produced by people.
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by Medin. People typically do not suggest intersecting classifications, and it is for this reason that we

focus on methods that produce disjeint deseriptions.

The problem of classifying toy trains represents a general category of classification problems in which
one wants to organize and classily observations that require structural descriptions, for example,
classifying physical or chemical structures, analyzing genetic sequences, building taxonomies of plants or
animals, characterizing visual scenes, or splitting a sequence of temporal events into episodes with simple
meanings. As an example of the latter problem, consider splitting a kidnapping story into episodes such

as kidnapping, bargaining, and exchange [3].

One problem of concern here is to develop a general method that when applied to the collection of
structured objects, such as trains, could potentially generate the conjunctive concepts occurring in
human classifications or invent new concepts having similar appeal. We first assume that there is only a
very general goal for a classification, such as simplicity of descriplions or colegories or good fit of the
categories to the ezamples. The method should be able to generate conceptual categories that ean be
described by a conjunction of predicates. These conjunctions should represent a minimal
avergeneralization of the ohserved events in the class so as to insure a good “fit” between cach class

description and the events.

Figure 6 shows a hypothetical GDN for a classification for which the general goal is to find simple visual
patterns. A subordinate goal is to look for simple geometrical regularities in ohject descriptions. For the
trains problem, this goal node leads to relevant variables such as number of cars, color of wheels,
number of wheels, number of itcms carried, and so on. The simple geometrical reguiaritics goal links to
the two subordinate goals shape of components and similarity of components, The first of these subgoals
leads to relevant attributes involving shape (cargo shape, engine shape, car shape). The second subgoal
leads to a variety of relevant attributes relating one component of a train to other components. The
nurnber of different shapes attribute gives the count of the different car shapes in a train. A count of
the number of different cargo shapes in a car would be another attribute of this same type. The zame

car shape and same color of wheels attributes are predicates of two or more variables that denote the
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Fic. 6. A GDN for the goal of finding simple visual patterns.

equality of feature values across several components in the train. If all components have the same value

for some attribute, then a forall predicate, such as all wheels in the train are black, is a relevant

attribute for describing the situation.

As examples of solutions obtained by the method, figure 7 shows twe classifications created for the trains
problem. Given structured descriptions of each train involving the descriptors conlfains, infront, car
shape, number of wheels, wi- ! color, cargo shape, and number of items carried, the program
determined several new o1 -+ tors that were not in the initial descriptions, such as number of different

shaprs, same-shape prede o - came-color-of-wheels predicates and so on,
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Fiz. 7. Two sample claszifications found by one of the two presented methods.

The generated attribute vecters were processed using a classification evaluation criterion that attempts

to minimize the number of attributes used in a description, maximize the number of attributes that

sinzly discriminate ameng all classes, and maximize the number of attributes that take different values

in different classes. Minimizing the number of attributes used ternds to conflict with the other two

elementary eriteria. This was handled by specilying a high tolerance (ninety percent) for the first

elementary criterion and zero tolerances for the second and third elementary criteria in the LEF

evaluation eriterion deserilied in section 6.2,

The event partitioning into the two clusters shown in classification A of figure 7 was generated by the

program for two different conceptual clusterings. The top class [“There are two dilferent car shapes in
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the train”) was also described in a different clustering as “The third car from the engine (if it exists) has
black wheels.” The bottom class (“There are three or more different car shapes in the train™) was also

described as “The third car [rom the engine exists and has white wheels.”

Classification B in figure 7 is based on the derived predicate samecolor. Both classifications received the
same evaluation criterion score and were considered to be alternative classifications. Solutions of the

kind shown in figure 7 are appealing because the difference between classes is striking yet not obvious

from casual inspection.

8. Two Methods for Building Classiflcations

Conceptual clustering classification building problems such as those of the previous section can demand
great computational resources, In this section two resource limited methods for building a classification
of a collection of structured objects are outlined. One method is called RD for repeated discriminalion.

The other methed is called CA for elassifying atiribules.

The RD methnd is based on the authors' previous work and reduces the problem of building 2
classification into a sequence of concept acquisition problems, specifically, problems of determining
discriminant descriptions of objrcts with given class labels [18], Method RD has been implemented in
the program CLUSTER/S [21].

The CA method is based on generating candidate classifying atértbules either from the initially given
pool of attributes or from derived attributes generated with the aid of inference rules and a Goal

Dependency Network. An implementation of method CA is in progress.

The two methods are similar in that they both use the same representation language (APC) for
describing objeets, classes of objects, and general and problem-specific background knowledge. Both
methods also use the LEF as the general-purpose criterion for measuring the gualily of generated
candidate solutions. Of the two, method D is more data-driven while method CA is more medel-
driven. Our discussion of the two methods begins with an explanation of the Annotated Dredicate

Caleulus (APC) and the Lexicographical Evaluation Functional (LET) in the next two sections,
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8.1. The Description Language: Annotated Predicate Calculus

The Annotated Predicate Caleulus (APC) is an extension of predicate calculus that uses several novel
forms and attaches an annotation to each predicate, variable, and function [15]. The annotation is a
store of information about the given predicate or atomiec function, such as the type and structure of its
value set, related (more general ar more specific) descriptors in a descriptor hierarchy, and other
information. For example, the function shape can be annotated with its domain type {poneary
TyPE=UNCRDERED) and the structure of values in the domain (SQUARE V TRIANGLE V DIAMOND =3 POLYGON;

cIRCLE V ELLIPSE =% cURVED). The form of annotations adapts to encode any auxiliary information that

aids correct interpretation of the predicate, variable, or function.

In addition to all the forms found in predicate caleulus, the language also uses a special kind of predicate
called n selector. A simple selector is in the form
[atomic-function REL value-of-atomic-function]
where RREL (relation) stands for one of the symbols = # < > = = An example of such a selector is
[weight{hox) > fkgi

which means “the weight of the hox is greater than 2 kz." A more complex selector may invelve infcrnal
dizgjunciion or tnlernal conjunction. These two operators apply to terms rather than to predicates and
are illustrated by the two corresponding examples:

[eolor{hbox} = red V purple] “the color of the box is either red or purple.”

[rolor{box] & box2) = red] “the color of box1 and box 2 is red.”
The meaning of the internal disjunction operator is defined by

{f{x)=a Vv b] <=> [I{x)=a] Vv [f{x)=b]

and the meaning of the internal conjunction operator is defined by

[fx & y)=a] == [f{x)=a] & [f{y)=a] .

Selectors ean be combined by standard operators to form more complex expressions.
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Background knowledge is expressed as a set of APC implicative rules:
CONDITION => CONSEQUENCE
where CONDITION and CONSEQUENCE are conjunctions of selectors. Thus a rule in APC is more
general than the Horn clause used in PROLOG. If CONDITION is satisfied, then CONSEQUENCE is
asserted. To understand the implir.'::ti';re statement, consider the assertion “vegetables are food™ from
the example in section 4. [t can be expressed in APC by the following statement, which says, “il an
object is a vegetable then it is also a food™:
lis-vegetable(object)] => [is-food(object)]
An alternative way to express this idea in APC is
[object-type{object) = vegetable] == [object-type(object) = food]
which says, “if the type category of an object is vegetabie then the type category is alse foed.” In this
Inttar statement vegetable and food are treated as elements of the structured domain of the attribute
abject-type. This implication expresses a generalizing inference rule called climbing the generalization

tree. Further details on the APC lanzuage are given by Michalski ]lEf.

8.2. Directing the Process by Measuring Classifleation Quallty

Creating a classifieation is a difficult problem because there are usually many potential selutinons with nn
clearly correct or incorrect answers, This proliferation of answers was seen in the experiment with
human classification building presented in section 5. The decision about which classification to choose
can be based on some perceived set of goals [12], a goal-oriented, statistic-based utility function [20], or

some measure of the gualily of the classification,

One way to measure classification quality that has been successful in both INDUCE/2 and CLUSTER/2
is to define various elementary, easy-to-measure criteria specifving desirable properties of a classification
and to assemble them together into one general criterion, called the Lezicographical Evaluation
Funectional with telerances (LEF) [14]. Each elementary criterion measures a certain aspeet of the
generated classifieations. Examples of clementary eriteria are the relevance of deseriptors used in the

class descriptions to the general goal, the lit between the classification and the objects, the simplicity of
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the class descriptions, the number of attributes that singly discriminate 2mong all classes, and the

number of attributes necessary to classify the objects into the proposed classes [18].

The LEF consists of an ordered sequence of elementary criteria along with tolerances that control to
what extent different solutions are considered equivalent. First, all classifications are evaluated
according to the first elementary criterion., Those that score best or within a given tolerance range from
the best are retained. Those retained are then evaluated according to the next elementary criterion, and
5o on, until either a single classification remains or the list of elementary criteria in the LEF is
exhausted. In the latter case, all classifications that remain are judged equal and the algerithm picks

one arbitrarily.

The LEF can be used to select the best classifications from an exhaustively generated set of candidates,
but that kind of exhaustive generate and test is not practical for most problems. DBesides its use for final
selection of classifientions. the LEF is also used during the assembly of candidate classification
deseriptions as a heuristic for a variation of beem search. Classification descriptions are assembled by
adding a few selected selector conjuncts at a time. The candidate classification descriptions are
evaluated by the LEF and all but 2 user specified number of best deseriptions are disearded prior to
extending the deseriptinns with additional selectors. In this way the LET provides a powerful heuristic
for searching the huge space of hypothetical classifications using only a small fraction of the effort
required for exhaustive senerate and test. This latter application of the LEF is used to build bounded

stars, described later in section 6.4,

8.3. Using background knowledge

Building a meaningful classification relies on finding good classifving attributes (high-level attributes
used to define classes). For example, the attribute fs_edible discussed in scction 4 15 such a high-level
classifying attribute. The repeated diserimination and classifying attributes methods described in section
6.4 and 6.5 both use background knowledge in the search for such attributes. The Goal Dependency
Network is traversed to lind the interactions between the classification goalls) and potential descriptors.

Dackground knowledge rules enable the system to perform a chain of inferences to derive values for new



ARTIFICIAL INTELLIGENCE 21

deseriptors for inclusion in object descriptions. The new descriptors are tested to determine if they

make good classifying attributes by applying the LEF to the classification defined by the classifying
attribute.

As described in section 4, the backlground knowledge rules can represent both built-in general-purpose
knowledge and the domain-specific knowledge provided by the data analyst. In the latter case,
knowledge for generating inferentially derived descriptors is supplied in the form of an inference rule
(called a background rule, or b-rule). Special types of b-rules include expressions of arithmetic
relationships (s-rules), such as

% object, girth{object) = length{object) + width{object)
and implicative rules that specily logical relationships ({-rules), such as

¥ pl,p2.p2, [above(pl,p2)|[above(p2,p3)] => |above(pl,p3)]

or
V p1.p2.p3, [mother(pl,p2)] & ([mother(p2,p3)] V [father(p2,p3)]) <= [grandmother{pl.p3)].

Each rule is associated with a condition defining the situations to which it is applicable.

8.4. Concept Formation by Repeated Diserimination: Method RD

This section cxplains how a problem of concept formation (here. building a classification) can be solved
via a sequence of controlled steps of concept acquisition (learning concepts from examples), We start
with a brief description of the program INDUCE/2, which solves concept acquisition tasks involving

structured ohjects.

Given a set of events {symbolic descriptions of objects or situations) arranged into two or more classes,
INDUCE/[?2 used inductive inference techniques to build a general description of each class in the form of
an annotated predicate caleulus expression. The generated class descriptions are consistent with the
training data {the description for class i is satisfied by each training event in class i and no others) and

optimizes a given evaluation criterion.

The descriptions are generated in the following manner, First, all events are divided into Lwo sets: set

F1 contains events belonging to the class currently being considered and set FD contains events
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belonging to any other class (counterexamples to set F1). One event at a time is selected from set F1
(the seed event), and a star is built that covers the seed event againsi all events in set F0. The star is
the set of all alternative most general descriptions that describe the seed event (and possibly other

events from F1), and no events from FO. (Star generation is described in [15, 18].)

To control combinatorial explosion, INDUCE/2 determines bounded stars rather than complete stars. A
bounded star contains only a fixed number of most promising descriptions selected according to the
LEF. The highest-rank description in the bounded star is chosen as a part of the solution and the
events covered by that description are removed from set F1. If any events remain in F1 another seed
event ([rom among those not yet covered) is selected and the whole process is repeated. When all events
in the set F1 have been covered, the deseription of the class is complete— it is the disjunction of the
descriptions selected in cach iteration.

This algorithm for concept acquisition can be adapted for solving classification construction problems,
Given a single class of events, & seed events are sclected randomly and treated as individual
representatives of £ imaginary classes, The algorithm then generates descriptions of cach seed that are
maximally grneral and do not cover any other seed. These deseriptions are then used to determine the
most representative event in each pewly formed class (defined as the et of events satisfying the class
description). The representative events are used as new sceds for the next iteration. The process stops
cither when consecutive iterations converze to some stable solution or when a specific number of

iterations pass without improving the classification (from the viewpoint of the criterion LEF).

This approach requires the selection of a defined number of representative events (corresponding to the
number of classes). Since the best number of classes to form is usually unknown, two techniques are

used: varying the number of classes and composing the classes hierarchically.

Since the classification to be formed should be simple and easy to understand, the number of classes that
stem from any node of the rlassification hierarchy is assumed to be in the range of two to seven. Since
this range is small, it is computationally feasible to repeat the whole process for every number in this

range. The solution that optimizes the score on the LEF (with appropriate adjustment for the ¢ect of
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the number of classes on the score) indicates the best number of classes to form at this level of the

hierarchy.

The above idea of repeated discrimination for performing concept acquisition has been implemented in
the program CLUSTER/2 for a subset of annotated predicate calculus involving ooly attributes [zero-
argument functions). Besides its relative computational simplicity, this approach has other advantages
stemming from descriptions (for both events and classes) that are quantifier free. It should be noted
that classifications normally have the property that they can unambiguously elassily any event into its

corresponding class. To have this property, the class descriptions must be mutually disjoint.

For conjunctive descriptions involving relations on attribute/value pairs, the disjointness property is
easy to test and easy to maintain. For the larger subset of APC involving existentially quantified
variables, predicates on these variables, and function/value relationships over quantified variables, the
test for mutual disjointness of descriptions and the maintenance of disjointness are difficult, As a result,
the approach taken for concept acquisition from structured chjects involves two processing steps. The
first step, using algorithms of INDUCE /2, finds an optimized characteristic generalization of the entire
eollection of events ond then applies it to generate a quantiﬁcr-frec description of each object [a vector
of attribute values). The second step processes Lhe h_u:mliﬂr:lr free object descriptions with the
CLUSTER/2 algorithm to form optimized classifications. These two processes are combined in the
program CLUSTLER/S.

A characteristic generalization expresses a common substructure in all structured objects that facilitates
binding a subset of the free variables (representing object parts) to specific parts. That portion of the
structure of each object that is deseribed by the characteristic generalization is called the core of each
object. With corresponding parts identified in all objects, the cores may be described by a vector of
attribute values. The attributcs are the original functions and predicates stripped of their arguments
with the same assigned values as before. The descriptions of object cores thus need neither quantified
variables nor multiplace predicates in their descriptions. At this point, the derived descriptions of object

cores can be handled by the CLUSTER/2 program,
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It is recognized that some structural dilferences between objects could be lost by the above approach
because it focuses on the commaon substructure found in all given objects. To retain some unique
structural Teatures of individual objects that might otherwise be lost, an inspection is made of connecting
relations between object subparts within the core and object subparts outside the core. New predicates
are generated and added to object descriptions to denote the attachment to the core substructure of

different kinds of object substructures that lie outside the core.

The descriptions of each substructure connected to the cores of objects are collected and classified by
recursive application of the conjunctive conceptual clustering procedure. The resulting types of
substructures are given labels (for example, a unique class number) which are used in the generated
predicates that show wha! kind of additional structure is attached where to the core structure. The final
abject descriptions contain attributes for core parts and predicates denoting the kind of attached
substructures as well as derived descriptors for both core subparts and the object as a whole. Alter this

transformation, objects are deseribable (with reduced detail) by attribute vectors.

The follawing extension of the trains problem will further illustrate of the use of a GDN and problem-
specific background knowledse. Suppose that the knowledge base includes an inference rule that can
identify trains carrying toxic chemicals. Suppose also that the general goal survive has a subordinate
goal menitor dangerous shipments. This additional background knowledge can be used to help build a

elaszification.

In the illustrations of the trains, a toxic chemical container will be identified as a single sphere [circle)
riding in an open-top car. The logical inference rule (/-rule) supplicd to CLUSTER/S is

[con[uins[lrnin.cnr]“car~sh ape{car)=apentop|cargo-shape(car)=circle][items-carried fear)=1|
<=> [has_toxic_chemicals(train]|

In the above rule, equivalence is used to indicate that the nezation of the condition part is sufficient to
assert the negative of the consequence part. After this rule is applied, all trains will have deseriptions
containing cither the toxic=chemical predicate or its negation. The characteristic description generated

by CLUSTER/S will now contain the additional predicate has_tozic_chemicals{{rain/ or its negation.
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Fic. 8. A hypothetical GD'N for dangerous train shipments

In the GDXN we find the main goal surefre and a chain of subordinate goals beginning with be zafc and
monilor dangerous shipmenizs, Two additional subgoals are moniter chemicals shipments cnd moniter
toxic chemicals shipments. Attached to these nodces are relevant attributes such as fs_rrplosive,
ie_radioactive, 1s_fTammable, t2_corrosive, has_lozic_chemicalz, and so on, This GDXN is illustrated in
figure 8 The GDXN signals the relevancy of these descriptors to the goal survive. Assuming that this
goal takes precedence over the goal find simple vizual patterns, classifications that make use of the
has_tezic_rhemicals descriptor in formulating conceptual classes score higher than those that use

descriptors related to visual patterns. The classification produced in this case is shown in figure 9.

8.5. Concept Formation by Finding Classifying Attributes: Method CA
This section deseribes ane ! r approach for building elassifications called classilying attributes (briefly,
CA). This approach attenipts to find one or more classifying attributes whose value sets can be split

inta ranges that define individual classes. The important aspect of this approach is that the classifying
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attribute can be derived through a goal-directed chain of inferences from the initial attributes. The

classifying attributes sought are the ones that lead to classes of objects that are best according to the

classification goal.

The promise of a descriptor to serve as a classifying attribute is determined by consulting the GDN and
by considering how many other descriptors it implies. For example, if the goal of the classification is
finding food, the attribute edibility from section 4 might be a elassifying attribute. The second way of
determining the promise of an attribute can be illustrated by the problem of classifying birds. The

question of whether cofor is a more important classifying attribute than fs-waterbird is answered in faver
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“These trains are not carrying toxic chemicals.”

Fiz. 0. A classifieation produced using the 'toxic chemicals’ inference rule,
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of is-walerbird because the latter implicatively leads to more implied attributes than does the attribute
color in a given GDN (for example, is-walerbird implies can-swim, has-webbed-feel, eals-fizk, and so cn)
(11).

There are two fundamental processes that operate alternately to generate the classification. The first
process Search searches for the classifying attribute whose value set can be partitioned to form classes
such that the produced classification scores best according to the LEF. The second process Generate
generates new descriptors by a chain of inferences using two forms of background knowledge rules:
logical implicative rules ([-rules) and arithmetic rules (a-rules). Descriptors that can be inferred are

ordered by relevancy indicated by the GDN and the goals of the classification.

Secarch can be performed in two ways, When the number of classes to form (k) is known in advance, the
process searches for attributes having k or more different values in the descriptions of the objects to be
classified. These values are called the observed values of the attribute. Attributes with the number of
observed values smaller than k are not be considered. For attributes with observed value sets larger
than k, the choice of the mapping of value subsets to classes depends on the resulting LEF score for the
classification produced and the type of the value set. When the number of classes to form is not known,
the above technique is performed for a range of values of k. The best number of classes is indicated by

the classification that is best according to the LEF.

Cencrate constructs new attributes from combinations of existing attributes, Certain heuristics of
attribute construction are used to guide the process. For example, two attributes that have linearly .
ordered value sets can be combined using arithmetic operators. When the attributes have numerical
values (as opposed to symbolic values such as smail, medium, and large} a trend analvsis can be used to
suggest appropriate arithmetic operators as in the BACON system [9]. Predicates can be combined by
logical operators to form new attributes through (-rules. For example, a rule that says an animal is a
reptile if it is cold-blooded and lays eggs can be written in APC as

[eold-blooded{al)]|ofipring birth(al)=cgg] => [animal-type(al)=reptile|.

The application of this rule to the given animal deseriptions yields the new attribute animal-type with
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the specified value reptile. Using this rule and similar ones, one might classily some animals into

reptiles, mammals, and birds even though the type of each animal is not stated in the original data.

7. Summary

This paper has discussed approaches to building classifieations of structured entities using goal-directed
inferences from background knowledge. Two methods for performing this task were outlined. The first
method, RD (repeated discrimination), transforms concept formation into a sequence of concept
acquisition tasks. The second method, CA (classifying attributes), forms classes by generating new
descriptors using a chain of inferences and testing them as candidate classilying criteria for partitioning
the set of events in a way considercd most appropriate according to a classification quality criterion
(LEF).

The classilying attributes are either sclected from the initially given ones or derived using background
knowledze. The selection is aided by the use of a Goal Dependeney Network, that relates goals to
subzoals and to relevant attributes. The ability to incorporate domain-specific background knowledge in
the form of inference rules and Goal Dependency Networks adds a new dimension to the proeess of

concept formation and datn analysis,

An extension of this work could be the development of a system capable of characterizing 2 collection of
observations (faets or events) not just by a hicrarchy of concepts by by a concepl nelwork in which
nodes represent coneepiual classes and links represent various relations among them. In the kind of
hierarchy considercd here, any two generated concepts are related by the relation is a generalizalion of
or s a specialization of or 15 disjoint from. In a concept network (a form of semantic network) a much

larger set of relations would he allowed.
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Class 1: “There are two different car shapes
in the train.”

5. GO a0

Class 2: “There are three or more different
car shapes in the train.”
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Class 1: “Wheels on all cars have the same color.”
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Class 2: “Wheels on all cars do not have the
same color.”




is_radioactive is_corrosive
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© monitor
chemicals
shipments

monitor
dangerous
shipments

Y Y

is_explosive is_flammable

has__toxic_
chemicals

@ A general goal A

> A subordinate goal
L1 A relevant attribute or predicate
— A goal subordination relation

monitor
toxic chem.
shipments

--= An attribute relevancy relation
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“These trains are carrying toxic chemicals.”

5. Eo— a0

“These trains are not carrying toxic chemicals.”






