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Abstract

This chapter presents an overview of goals and directions in machine learning
research and serves as a conceptual road map to other chapters. It investigates
intrinsic aspects of the learning process, classifies current lines of research. and
presents the author’s view of the relationship among learning paradigms. strategies.
and orientations.

1.1 DO WE NEED LEARNING MACHINES?

Artificial intelligence (AI) is now experiencing extraordinary growth. and
applications of its ideas and methods are appearing in many fields. Among its most
visible and important successes are the development of expert systems. practical
implementations of natural language-understanding systems. significant advances in
computer vision and speech understanding, and new insights into building powerful
inference systems. This rapid expansion of activities in Al leads one to believe that
new successes are forthcoming.

* .
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In this context, it is important to ask what the limitations of the current
methods are and what new directions research in this field should take. One of the
obvious limitations, and hence a direction for further research, relates to machine -
learning—a field concerned with developing computational theories of learning and
constructing learning systems.

Except for experimental programs developed in the course of machine learning
research, current Al systems have very limited learning abilities or none atall. All of
their knowledge must be programmed into them. When they contain an error, they
cannot correct it on their own; they will repeat it endlessly. no matter how many times
the procedure is executed. They can neither improve gradually with experience nor
learn domain knowledge by experimentation. They cannot automatically generate
their algorithms, formulate new abstractions, or develop new solutions by drawing
analogies to old ones, or through discovery. Generally speaking. these systems lack
the ability to draw inductive inferences from information given to them. One might
say that almost all current Al systems are deductive, as they are able to draw conclu-
sions from knowledge incorporated and/or supplied to them. but they cannot acquire
or generate new knowledge on thetr own.

By contrast, when we look at human intelligence we see that among its most
striking aspects are the abilities to acquirc new knowledge. to learn new skills. and to
improve with practice. [ntime. usc of these learning abilities can turn a young, inex-
perienced person into a journcyman engincer. educator. artist. or physician. Our
common perception is thata person who would repeat the same error again and again
could hardly be called intelligent. The ability to learn from error is considered
fundamental to the individual and to the society at large (Popper. 1939, 19812 Kuhn.
1970: Lakatos. 1970; Berkson and Wettersten. 1984: Haves-Roth. 1983 —Muachine
Learning I, chap. 8. see below).

Because learning ability is so intimately entwined with intelligent behavior and
research in Al gives us new insights and powerful tools to study it. many researchers
postulate that one of the new central goals for research in artificial intelligence
should be understanding the nature of learning and implementing learning capabili-
ties in machines (McCarthy. 1983: Schank. 1983). Overcoming the above-mentioned
limitations sets an agenda of rescarch tasks.

Questions then arise about whether this goal is achievable. and if so. whether it
s desirable. Let us start with the question of achievability. Answering it involves us
immediately in questions of definition. Can we identify some general criteria such
that. if satisfied by a machine, we would agree to call this machine learning system?

As machine learning research has shown, learning ability manifests itself notas
an all-or-nothing quality but as a spectrum of information-processing activities.
ranging from the direct memorization of facts and acquisition of simple skills by imi-
tation to very intricate inferential processes leading to creation of new concepts and
discovery of new knowledge. It always involves a change ina system. whether human
or machine. that makes it better in some sense.
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of the definition of learning aside (it is dis-
cussed in more detail in the next section of this chapter) and observe that machine
learning is experiencing a renaissance after its past steady but sl.ow. grqwth. Effortsto
develop programs exhibiting some forms of learning have multiplied in recent years.
This young field has already achieved a number of successes. A sun.\mary of some of
these efforts is found in Machine Learning: An Artificial Intelligence Approach
(Michalski, Carbonell, and Mitchell, 1983), henceforth referred to as Machine
Learning I. The current book is a sequel; it reports some key subsequent efforts char-
acteristic of the state-of-the-artin machine learning.

On the basis of the results achieved so far, it is clear that some rudimentary
machine learning abilities are possible. Already there exist programs able to formu-
late new concepts and discover previously unknown regularities in data: develop
decision rules that can outperform human rules; draw interesting analogies: automat-
ically learn problem-solving heuristics; or develop generalized plans for achieving a
goal. Many of these programs are discussed in Machine Learning I. What s less clear
is the level of progress that can be achieved in machine learning using conventional
computer hardware and present programming methods. As always in science, such
questions can be answered only by conducting further research and continuing to
develop experimental learning systems.

New dimensions of research in machine learning will open with the develop-
ment of connection machines, fifth generation computer systems, and other novel
computer architectures, currently under development (e.g., Hillis, 1981: Kawanobe.
1984). For example, Hinton, Sejnowski, and Ackley (1984) describe how learning
may occur in Boltzmann machines. The knowledge acquired by such systems is rep-
resented by the strengths of the connections between simple, neuron-like elements.
The research in this direction should address the problem of overcoming the limita-
tions of early systems of this type, such as the Perceptron (Minsky and Papert. 1969).
New potential for research in machine learning also emerges in connection with the
development of new programming systems, in particular. logic programming and its
first embodiment in PROLOG (Robinson. 1983).

For now, let us put the question

Why is it desirable to develop learning machines? It appears that the develop-
ment of such systems is necessary to ensure further progress in artificial intelligence
or closely related disciplines. This seems to be particularly true in areas such as
expert systems or any large-scale. knowledge-based systems: computer vision and
speech understanding; natural language understanding; intelligent tutoring systems:
and (truly) friendly human-machine interfaces. As more and more complex tasks are
set for Al systems. more and more knowledge must be represented in them. Such
kpowledge must encompass domain-specific facts and rules. commonsense heuris-
tics and constraints, and general concepts and theories about the world. The scope of
knowledge in any system must be widened to avoid a common problem with the
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current systems. sometimes referred to as falling off the knowledge cliff (Feigen-
baum, 1984) or brirtleness (Holland, 1975, chap. 20; see also Larkin et al., 1983).
The problem is that a system performs well within the scope of knowledge provided
to it, but any slight move outside its narrow competence causes the performance to

deteriorate rapidly.

Introducing all the required knowledge into any new system is a very complex.
time-consuming, and error-prone process. requiring special expertise. For example.
building an expert system involves a collaborative effort of highly trained experts—at
least one domain expert and one knowledge engineer (Davis and Lenat. 1982: Hayes-
Roth, Waterman. and Lenat, 1983; Buchanan and Shortliffe, 1984). This task can be
simplified by using machine learning techniques. Such techniques would enable a
system to develop decision rules from examples of experts’ decisions and through the
automated analysis of facts in a database.

With the rapid increase in the amount of data and knowledge that the society
generates, there is a growing need not only for storing. organizing. and delivering
this information but also for using it in new. creative ways. Knowledge can be viewed
as compressed information (Rendell, 1983), and we now nced machines that can
compress databases and information systems into knowledge bascs automatically via
conceptual analysis of their contents. As envisioned by Michic (1982). “the most
technicallv gripping challenge, even if not immediately the most economically impor-
tant, will be how to spread the computer wave from the front end of the scientific pro-
cess. the telescopes, microscopes, . . . spark chambers and the like. back 1o the recog-
nition and reasoning processes by which the chaos of data is finally consolidated into
orderly discovery.” :

This chapter’s author might add that the computer will have a role not only as
scientists” and technologists’ intelligent assistant but also as an intetligent personal
assistant. Individuals in the expanding information society will need such assistants
to cope with the overwhelming amounts of available information and the complex-
ities of evervday decision making. In order for such assistants to play the designated
roles. their function and knowledge should by dvnamic. These assistants should be
able to adapt to changing demands and be self-modifiable: that is. they should be able
to learn. '

A similar need for learning abilities exists in the areas of computer vision and
speech understanding. To build a computer vision system. one has to incorporate into
it a variety of vision-specific transformations: concepts of geometry: physical and
functional descriptions of visual objects the system is to recognize: and related intor-
mation (e.g.. Winston et al., 1983; Winston. 1984). To “handcratt™ all this informa-
tion into a system is difficult. It would be much easier to teach the system by showing
it examples of given concepts and have it learn the appropriate generalizations and
descriptions. just as we teach visual concepts to humans.
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A system capable of understanding and interacting with humans in natural lan-
guage has t0 be equipped with knowledge of syntactic properties of language
(Marcus, 1980), as well as with many concepts and concept structures (such as
frames, scripts. and schemata) capturing semantic and pragmatic aspects of the lan-
guage (Winograd, 1981: Schank, 1982; see also chaps. 19 and 2! of this volume): One
may estimate that in an advanced natural language understander. the number of such
concepts and concept structures may easily reach tens of thousands or more. Prg-
gramming all this knowledge into a computer is a monumental task. [t is very desir-
able to simplify this task by employing a learning system. [n addition. even if at some
point all this knowledge were incorporated in a machine, a language understander
would not work well for long without learning abilities. The meaning of human con-
cepts is dynamic; it changes with time and adapts to new contexts and requirements.
Novel concepts are continuously being created and developed. and some are being
outgrown. Therefore, as in the cases above, we need a learning system capable of
acquiring new concepts and concept structures by generalization from examples or
by analogy to prior knowledge. Sucha system should be able to modity. specialize. or
generalize old concepts in a flexible fashion. '

Intelligent tutoring systcms must be able to present material ata level of ditfi-
culty and detail suited to the state of knowledge of the student. In order to do so. the
system must know and follow the student’s changing knowledge. A desirable way of
acquiring this information is not by repeated direct testing but by learning from
clues, behavior. and the implicit model of the student during tutorial sessions. Thus
learning abilities are required not only from the student but from the tutor as well
(Sleeman and Brown, 1982: Sleeman. 1983—Machine Learning I, chap. 16).

Through learning capabilitics future computers should be able to acquire
knowledge directly by using documents and books. by conversing with humans. and
by generalizing observations of their environment. which they make with their artiti-
cial senses. They should be capable of improving through practice and experience. It
is possible that future machine learning systems will suffer little. if atall. from some
human limitations, such as poor memory. distracted attention. low etficiency. and
the difficulty of transferring acquired knowledge from one learner to another. Once
one learning system is developed. a theoretically limitless number of copics of itean
be built, which. one hopes. can be employed to learn new knowledge in diverse
domains. In addition. any new knowledge acquired by a learning system van be
copied to other systeni~ rapidly and relatively inexpensively (unlike human Knowl-
edge, which must be ;instakingly reacquired by each new student).

Of course. we oo still far away from such idealized vision. but it has now
become conceivable .+t such learning systems might be developed in the future. ftis
then desirable to con~...cr not only expected advantages but also possible undesirable
consequences. The latter issue could be dismissed by observing that any new tech-
nology brings new opportunities for misuse. and that this has never stopped us from
developing it. Morcover. such aspects are usually considered an issue outside scientific
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or technical research. Yet we need to examine this particular issue carefully. for the
creation of machines that can self-acquire knowledge brings about new dimensions
of complexity in the development of technology and reflects on the way the field of
machine learning should be developed.

The first dimension of complexity is the predictive opacity of self-changing
systems. Predicting the behavior of machines that can learn inductively is consider-
ai)Iy more difficult than predicting the behavior of machines without such an ability.
The key idea behind learning machines is that they should be able to create knowl-
edge that can surprise their human creators. This might cause unexpected difficul-
ties, or even dangers, if someone would apply such a system to solve important prob-
lems without understanding the system's limitations. In addition. the increased
unpredictability of learning machines implies increased possibilities for their
misuse.

Some experts argue that predicting behavior of complex computer syvstems is
very difficult already. They look at the addition of learning capabilities to our com-
puters as further amplification of these difficulties. but not as a quantum leap to a
new state. Whether we sce a leap or merely an amplification of unpredictability. a
strong expectation is that potential benefits from this technology will amply compen-
sate for such undesirable consequences. And with regard to the increased potential
for its misuse. why not use these smart learning machines to “police™ other machines
to prevent or combat attempted misapplication?

In addition to the difficulty of predicting the behavior of learning machines.
another dimension must be considered. which stems from the very nature ot any
knowledge other than factual observation. As has been observed by Hume (see. ¢ e,
1888) and later by Popper (1959) and others. such knowledge is inhierently conjec-
tural: thatis, any knowledge created by generalization from specitic observations or
by analogy to known facts cannot in principle be proven correct. though it may be
disproven.

This results from the fact that inductive inference is not rrurh preserving but
only falsity preserving (Michalski. 1983). As an illustration. consider this statement:
“All scientists at MIT's Al Laboratory are bright.™ A deductive conclusion rrom this
statement can be that Roger Light. who works at the Al Laboratory. must be bright. It
the original premise is true. then this conclusion must be true also. An example of
inductive inference from the initial premise might be this statement: “All scientists it
MIT are bright.” In this case. even if the original premise were true. such an induc-
tive conclusion might not be. However. if the original premise is false. then this
inductive conclusion must be false also. Thus. in contrast with a deductive system.
correct inputs 1o an inductive system do not guarantee the correctness of the outputs.
Morcover. for any given input there is theoretically an infinitc number of possible
inductive conclusions. The ones we actually make reflect the preferences, assump-
tions. and constraints that we use in formulating our generalizations ( Medin, Watten-
muaker. and Michalski. 1985: Utgott. chap. 5).
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For the above reasons, if learning machines are to generate knowledge useful to
us. it is important that they be equipped with knowledge of all the relevant human
constraints and assumptions. As it is unlikely that all subtle human and societal con-
straints and preferences will ever be made known to machines, there is the possibility
that machine-generated knowledge will violate some human constraints. A quote
from Hofstadter (1980) is pertinent here: “Unless [the program) had an amazingly
faithful replica of human body . . . it would probably have enormously different per-
spectives on what is important, what was interesting, etc.” Because the perception of
what is important and what is interesting is a necessary component in guiding crea-
tion of new knowledge (Lenat, 1983), such differences are significant. Thus when
such machine-created knowledge is used, it may lead to solutions that are technically
flawless but socially undesirable.

A related concern is that people may give too much credibility to the knowl-
edge created by machines. This phenomenon has already been observed in related
contexts, for example, when people are unduly influenced by results of computer sta-
tistical analysis without clearly understanding its assumptions, or when people
ascribe personality to a computer consultation system, as in the case of ELIZA
(Weizenbaum, 1976). Furthermore. even if it may be well known to scientists that
inductively generated knowledge is inherently error-prone, this fact may be less
obvious to nonexperts.

An important implication of the above discussion is that any new knowledge
generated by machines should be subjected to close human scrutiny before itis used.
This suggests an important goal for research in machine learning: If people have to
understand and validate machine-gencrated knowledge. then maching learning sys-
tems should be equipped with adequate explanation facilities. Furthermore. knowl-
edge created by machines should be expressed in forms closely corresponding to
human descriptions and mental models of this knowledge: that is. such knowledge
should satisfy what this author calls the comprehensibility principle (Michalski.
1983). When designing explanation capabilities for learning systems. one should
strive to facilitate human understanding not only of the surface results but also of the
underlying principles. assumptions. and theories that lead to these results.

One may hypothesize that although the existence of advanced learning machines
would eliminate the current knowlege acquisition bottleneck. it could ultimatciy
create a knowledge ratification bottleneck. In this situation so much new knowledye
might be generated by machines that it could become difficult for human experts o
test and approve it. Should this happen—well. future researchers will have an inter-
esting problem with which to while away their idle hours. One may envision these
researchers inventing sophisticated learning machines that would design experi-
ments to test knowledge created by other sophisticated learning machines.

With these notes of concern. mixed with arguments stressing the importance of
machine learning. let us now look more closely at the intrinsic properties of the
learning process. '
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1.2 WHAT IS LEARNING?

As mentioned earlier. a common view holds that learning involves making
changes in the system that will improve it in some way. In this description. the term
improve needs more precision. Clearly, wine improves with time. but nobody would
call such an improvement learning.' Simon (1983—Machine Learning I. chap. 2)
gives a more precise characterization:

“Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population
more effectively the next time.”

The requirement that a system improve performance for learning to tuke place
is widely accepted. There are, however, activities that can be categorized as learning.
in which the improvement criterion is difficult to apply (as will be seen ina discussion
below). Minsky (1985) in his insightful theory of thinking. The Society of Mind,
replaces this criterion with a more general one requiring that changes are merely
useful:

“Learning is making useful changes in our minds.”

He subsequently observes that such a definition is too broad to be of any usc.
Let us then approach the problem of capturing the fundamental aspects of learning in
another way. [t may be observed that learning is often equated simply with acquiring
new knowledge. as in the statement: ““As the satcllite burned in the atmosphere. the
spacelab astronaut learned that the satellite had an auxiliary antenna”™ [n this case.
the astronaut simply acquired a picce of information. but this will never improve his
performance with rhis satellite. The knowledge acquisition aspect of learning seems
to be the essence of most learning acts. Those acts where it appears to play only a
small role are cases of what is usually termed skill acquisition. The latter refers to
gradual improvement of motor or cognitive skills through repeated effort. sometimes
involving little or no conscious thought (Carbonell. Michalski and Mitchell, 1983 —
Machine Learning I, chap. 1). In this discussion, however. we will concentrate on the
knowledge acquisition aspect of learning. a theme that recurs throughout the book.

In order to acquire knowledge of anything. one. obviously. has to represent this
knowledge in some form. whether as declarative statements. procedures. a mixture
of the two. or as something else (McCarthy. 1968). This fact and the ubove consider-
ations lead us to the following characterization of learning:

Learning is constructing or modifying representations of what is being
experienced.

"This counterexample was suggested by Steve Tanimoto from the University of Washington in Scattle.
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The concept of experience includes here any sensory stimuli. as well as internal
Gedanken processes. These stimuli and internal processes arc the vehicles through
which the learning system perceives the reality that it is trying to represent. The
internal thought processes can themselves be a subject of learning.

Thus, from the above view, the central aspect of learning is the process of con-
structing a representation of some reality, rather than improving performance. Per-
formance improvement is considered to be a consequence and often the purpose of
building the representation, but it can be asserted only in the context of the learner’s
goals. Because most learning acts indeed involve improvement of performance and
because it is easier to measure performance than to read minds. naturally we link the
two. Yet, performance improvement does not seem to be an invariable condition for
every act of learning. There are situations in which it does not appear to be of primary
relevance, as in learning to appreciate beauty. There are also situations in which it
may even be misleading. The latter situations occur when itis difficult to accurately
assess the learner’s goal. For example, workers in a labor camp may want to learn
how to do less and appear to do more, yet they keep this goal secret. From the view-
point of an external observer, these workers will appear not to be lcarning. as their
performance will be decreasing with practice. Thus it scems clear that to determine
learning by measuring performance may not be possible without knowing the goals
of the learner.

Three dimensions seem to be particularly important for evaluating the con-
structed representations: validity, effectiveness, and abstraction level. Validity (or
truthfulness) refers to the degree of accuracy with which the representation fits the
reality. It characterizes the precision of the mapping between the reality and the rep-
resentation. The second criterion. effectiveness. attempts (o capture the performance
aspect of learning. It characterizes the usefulness of the representation for achieving
a given purpose or goal. The more effective the representation. the better the perfor-
mance of the system. Thus this criterion is central for tasks in which pertormance is
of primary concern. The third criterion. abstraction level. reflects the scope. detail.
and precision of concepts used in the description. It defines the explanatory power of
the representation. These three dimensions together determine what may be called
the qualiry of learning.

_ The representations can be in the form of symbolic descriptions. algorithms.
simulation models. control procedures. plans. images. or general formal theories. It
one stretches the concept of representation to include physical or physiological
lrpprints occurring in the nervous system when one is acquiring a skill. the above
view of learning seems also to cover skill acquisition.

From this viewpoint. a fundamental problem in any research on machine
learning concerns the form and method used to represent and modify the knowledge
gr the skill being acquired. With regard to the question of modifving knowledge. itis
important to identify the components and the propertics of the representation that are
modifiable by the system and those that arc not.
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In the taxonomy of machine learning research given in chapter 1 (Carbonell.
Michalski, and Mitchell) of Machine Learning I, three criteria were suggested as
especially useful for classifying and comparing machine learning investigations:
learning strategy, knowledge representation, and application domain. The learning
strategy refers to the type of inference employed by the system during learning. Some
additional ideas reflecting recent progress on this topic are presented in section 1.4
below. The criteria of knowledge representation and application domain were well
covered in the above-mentioned reference and will be omitted here. Instead, two
other classification criteria will be discussed in some detail: research paradigms
(section 1.3) and learning orientations (section 1.5). The research paradigm criterion
refers here to the approach taken to construct a systeri, and the learning orientation
refers to the scope and the subject of study.

1.3 RESEARCH PARADIGMS

Since the inception of machine learning in the fifties. research efforts have
placed the emphasis at different times on different approaches and goals. One can dis-
tinguish three major research paradigms or approaches in this area: neural modeling
and decision theoretic techniques; symbolic concept acquisition; and knowledge-
intensive, domain-specific learning. These research approaches differ chictly in the
amounts of a priori knowledge built into the learning system and in the way knowl-
edge is represented and modified in the system.

The neural modeling approach strives to develop general-purposc learning sys-
tems that start with little initial knowledge. Such systems are usually referred to as
neural nets or self-organizing systems. A system of this type consists of a nctwork of
interconnected elements. typically neuron-like. that perform some simple logical
function. usually a threshold logic function. Such a system learns by incrementally
modifying the connection strengths between the elements. tvpically by changing
continuous (i.e.. non-discrete) weights associated with these connections. The sys-
tem’s initial knowledge is provided by the choice of the input elements that represent
selected attributes of objects under consideration and by the structure and initial
strength of the connections in the network. This can be a random structure. one pre-
arranged by the Jesigner. or a mixture of the two. Such learning systems include the
Perceptron 1Rosenblatt, 1958). Pandemonium (Selfridge. 1959). and any learning
machine usi:s Jiscriminant functions (Nilsson, 1965). More recent examples stermn-
ming from *his paradigm are various adaptive control systems (Tsypkin. 1972:
Caianiello .-t Musso. 1984). Research in this area has led to the decision-theoretic
approach i patern recognition. Related to this approach is research on evolutionary
learning (Focci. Owens, and Walsh, 1966; Conrad. 1983) and on genetic algorithmns
(Holland. 1975 sce also chap. 20). As mentioned earlier. there is a resurgence of
interest in this learning paradigm with  the recent efforts to develop connection
machines (Hinton. Sejnowski. and Ackley. 1984).
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Characteristic features of systems built under this paradigm include low levels
of a priori built-in knowledge and the use of continuously changeable pfxrameters to
achieve jearning. A related feature is the numerical character of learning methods
and algorithms. This strongly contrasts this paradigm with the next two paradigms.
in which the main emphasis is on creating and manipulating complex symbolic struc-
tures during the process of learning.

In symbolic concept acquisition (SCA), the system learns by constructing a
symbolic representation of a given set of concepts through the analysis of examples
and counterexamples of these concepts. The representations typically are in the form
of a logical expression, a decision tree, production rules. or a semantic network.
Some of the systems developed under this paradigm have multipurpose applicability
and have demonstrated practical usefulness. Examples of such systems are Winston's
ARCH program (Winston, 1975), the AQVAL program (Michalski. 1975). and ID3
(Quinlan, 1979). In this paradigm, the attributes or predicates relevant to the concept
are provided to the system by the teacher.

In knowledge-intensive, domain-specific learning (KDL). the system contains
numerous predefined concepts. knowledge structures, domain constraints. heuristic
rules, and built-in transformations relevant to the specific domain for which the
system is built. Not all the relevant attributes or concepts arc proved initially: the
system is expected to derive new ones in the process of learning (this author refers to
such a process as constructive induction). Thus the main ditferences between the
KDL and SCA paradigms lic in the amount and the kind of background knowledge
supplied to the system and the richness of knowledge structurcs generated by the
system. Learning systems based on this approach are typically developed for a
specific domain and cannot be used directly in another domain. The rescarch in this
paradigm has explored not only the strategy of learning from examples, butalso strat-
egies such as learning by analogy. and learning by observation and discovery (see
section 1.4). Examples of systems based on this approach are Meta-DENDRAL
(Buchanan and Feigenbaum. 1978) and AM (Lenat. 1983—Machine Learning IR
chap. 9).

Many systems developed in the past represent a certain mixture of the above-
mentioned approaches. An interesting combination of the SCA and KDL approaches
is a system based on the idea of an exchangeable knowledge modiule. Such a system
combines general-purpose learning mechanisms with built-in facilities for detining
and using domain-specific knowledge. When such a system is applied to a given
problem, domain-specific knowledge is supplied to it by the teacher via the system's
knowledge representation facilities. By separating general inference capabilities
from the domain-specific knowledge. such a learning system can be applied toa wide
spectrum of different domains and still take advantage of domain-specific knowledge
in the process of learning. This philosophy underlies the INDUCE system. which
learns structural descriptions of objects from examples (Michalski. 1980). Winston’s
program for learning by analogy is another example (Winston. 1982). The LEX
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system for acquiring and refining problem-solving heuristics (Mitchell, Utgoff, and
Banerji, 1983—Machine Learning I, chap. 6) and the EURISKO program for discov-
ering new heuristics (Lenat, 1983) are other examples. Several chapters in this
volume describe learning methods that also fall into this category.

For a historical review of these three research paradigms the reader is referred
to chapter 1 in Machine Learning I. A sample of contemporary research on self-
organizing systems is found in Caianiello and Musso (1984). A recent review of
approaches to machine learning has been made by Langley and Carbonell (1984).
The primary concerns of this book are symbolic concepts acquisition and knowledge-
intensive. domain-specific paradigms of learning.

1.4 LEARNING STRATEGIES

In every learning situation, the learner transtorms information provided by a
teacher (or environment) into some new form in which it is stored for future use. The
nature of this transformation determines the type of learning strategy uscd. Several
basic strategies have been distinguished: rote learning, learning by instruction,
learning by deduction. learning by analogy, and learning by induction. The latter
subdivides into learning from examples and learning by observation and discovery.
These strategies arc ordered by the increasing complexity of the transformation
(inference) from the information initially provided to the knowledge ultimately
acquired. Their order thus reflects increasing effort on the partof the studentand cor-
respondingly decreasing effort on the partof the teacher. In any act of human
learning. a mixture of these strategics is usually involved. It is usetul to distinguish
these strategies not only for tutorial purposes but for the purpose of designing
learning systems as well. Though most current systems focus on a single learning
strategy. one may expect that machine learning research will give increasing atten-
tion to multistrategy systems. Chapter 1 of Machine Learning [ describes these
learning strategies in detail. Because of their importance to this book and because of
some changes in their classification brought about by recent research. they will be
reviewed briefly here.

In rote learning there is basically no transformation: the information from the
reacher is more or less directly accepted and memorized by the learner. A major con-
cern here is how to index the stored knowledge for future retrieval. In learning by
instruction (or learning by being told). the basic transformations performed by a
learner are selection and reformulation (mainly at a syntactic level) of information
provided by the teacher. In deductive learning. the learner draws deductive. truth-
preserving inferences from the knowledge given and stores useful conclusions (this
strategy was identified as a scparate catcgory only recently: sce Michalski. 1983
1985). Deductive learning includes knowledge reformulation. knowledge compila-
tion. creation of macro-operators., caching, chunking. cquivalence-preserving
operationalization. and other truth-preserving transtormations (sce Glossary).
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If the transformation process involves generalization of input information and
selection of the most plausible or desirable result, that is, the inductive inference.
then we have inductive learning. Learning by analogy is deductive and inductive
learning combined. Here. descriptions from different domains are matched to deter-
mine avcommon substructure, which serves as the basis for analogical mapping.
Finding the common substructure involves inductive inference. whereas performing
analogical mapping is a form of deduction. Learning by being reminded, des_cnbcd
by Schank (1982). can be viewed as a form of learning by analogy. Learning by
analogy is discussed in chapters 13 (Burstein), 14 (Carbonell), and 15 (Dershowitz).

Inductive learning can be subdivided into learning from examples and learning
by observation and discovery. In learning from examples (also called concept acqui-
sition), the task is to determine a general description explaining all positive examples
and excluding all negative examples of the target concept. The examples are provided
by a source of information. which can be a teacher who knows the concept or the
environment on which the student performs experiments and from which it receives
feedback. The latter case is called learning by experimentation (this includes
learning by doing and learning by problem solving). Stimudus-response learning can
also be classificd as a form of lcarning from cxamples.

Recent rescarch has revealed two interesting subdivisions within this form ol
learning: instance-to-class and part-to-whole generalization. In instance-to-class
generalization. the system is given independent instances (examples) of some class of
objects. and the goal is to induce a general description of the class. Mast rescarch
done on learning from examples has concentrated on such instance-to-class general-
ization. The objects can be structured blocks. geometrical shapes. descriptions of
diseases. storics. problem solutions. control operators. and so torth. Various aspects
of this problem are discussed in chapters 3 (Winston). 5 (Utgotf), 6 (Quinlan).
7 (Sammut and Banerji). 8 (Lebowitz). and 9 (Kodratoft and Ganascia). Fora review
of earlier methods for such generalization. sce Dietterich and Michalski (1983 —
Machine Learning I. chap. 3) and Cohen and Feigenbaum (1982).

In part-to-whole generalization. the task is to hypothesize a description ot a
whole object (scene. situation. process). given selected parts of it. For example.
given a collection of snapshots of selected parts of a room. reconstruct the total view of
that room. Another example is to determine a rule (a theory) characterizing a sequence
of objects or a process from seeing only a part of this sequence or process. Thistype of
learning problem i considered in chapter 4 (Dictterich and Michalski). A closely
related arca of research concerns the qualitative process prediction (Michalski. Ko. and
Chen, 1985).

In learning by observation and discovery (also called descriptive generaliza-
tion), one scarches. without the help of a teacher. for regularities and general rules
explaining all or at least most observations. This form of learning includes concep-
tual clustering (forming object classes describable by simple concepts). constructing
classifications. fitting cquations to data, discovering laws explaining a sct of
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observations. and formulating theories accounting for the behavior of a system.
Genetic algorithms (Holland, chap. 20) and empirical prediction algorithms (Zago-
ruiko. 1976) can be viewed as variants of this learning strategy. Various aspects of this
strategy are discussed in chapters 16 (Langley et al.), 17 (Stepp and Michalski).
18 (Amarel), and 19 (DeJong).

The primary focus of this book is on learning by induction and analogy. There-
fore. a few additional comments may be useful about inductive inference. which
is at the heart of these strategies. Inductive inference starts with a set of facts
(observations)—and optionally with an a priori hypothesis about these facts—and
produces a preferred generalization explaining these facts. As mentioned before, it is
a falsity-preserving inference accomplished by the application of generalization
inference rules (Michalski, 1983a). As noted by Popper (1981) and others. “pure’”
induction. that is. direct inference from facts to theories without any inzerpretive
(explanatory) concepts, is impossible. These concepts are needed to describe the
observations and are part of the learner's background knowledge. This background
knowledge is a necessary component of any inductive process. It also includes goals
of learning. domain-specific constraints, causal relationships, heuristics and biases
that guide the generalization process, and the criteria for evaluating competing
hypotheses.

One can distinguish two techniques for guiding and constraining generaliza-
tion: the similarirv-based and the constraint-based techniques. The similarity-based
technique explores inter-example relationships: that is, it examines the examples and
counterexamples of a concept in order to create a concept description. It searches for
features sharcd among facts or examples in the same class and looks tfor common
causes and explanations of why different examples belong to the same class. It gener-
alizes over the differences between examples either by ignoring the differing features
or by formulating concepts that encompass the differences. Some early learning
methods using this technique are reviewed by Dietterich and Michalski in chapter 3
of Machine Learning I.

The constraint-based technique exploits the intra-example relationships.
which constrain the interpretive or explanatory concepts applied to one or more facts
or examples. Any generalization of these facts or examples must satisfy these con-
straints. For example. when generalizing the fact that a box is on the table. one should
satisfyv the constraint that whatever is on the table cannot be so heavy that it would
break the table or so large that it could not be placed on the table. A variant of this
technique is described by Andreae (1984), who uses the concept of justificarion for a
hypothesis. Another important variant, called an explanation-based generalization,
puts the emphasis on the role of explanatory knowledge (Mitchell. Keller. and Kedar-
Cabelli. 1986). It applies a system’s background knowledge to formulate a high-level
conceptual explanation or interpretation of a given fact or event. In chapter 19,
DeJonyg discusses a method implementing such a technique in the context of story
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understanding. The similarity-based and constraint-based techniques are comple-
mentary and can be used simultaneously in learning systems.

1.5 LEARNING ORIENTATIONS

The previous two sections discussed two important classifying criteria for
machine learning research: learning paradigms and learning strategies, respectively.
To recapitulate, the first criterion concerns the type of knoyvledge repres;nted and
manipulated in the system, and the second criterion deals with the type of inference
performed on the knowledge. This section will briefly discuss one more classifying
criterion, the research orientation, which concerns the scope and subject of study. By
analogy, a paradigm corresponds to one's point of departure and the terrain through
which one travels, a strategy specifies the means of locomotion, and an orientation
indicates the destination.

As described in chapter 1 of Machine Learning 1, research in machine learning
encompasses three interconnected orientations:

e Theoretical analysis and development of general learning algorithms

e The development of computational models of human learning processes (also
called cognitive modeling)

e Task-oriented studies concerned with building learning systems tor specific
applications (also called an engineering orientation)

Research in the first orientation investigates theoretical learning tasks. or
simplified practical ones. and tries to develop algorithms that accomplish these tasks
independently of application. There is no restriction on the type of algorithm devel-
oped. The algorithm need not be similar to the one a human might use to perform the
given task. As a variation. some authors postulate that at least the knowledge struc-
tures generated as an end result of learning should be similar to those a human being
might create. although the process of their creation can be different (Michalski.
1983a). In this orientation researchers strive to chart the theoretical space of possible
learning algorithms. Chapters 3 (Winston). 5 (Utgoff). 7 (Sammut and Bunerji).
and 9 (Kodratoft and Ganascia) represent a sample of work representative of this
orientation. '

In the second or: o~ tation, human learning is the focus. and the development of
computational theor:o~ and experimental models of human learning is the goal. This
research will likely % - important influence on human education as well as on the
techniques of implc: .- ting machine learning systems. Chapters 10 (Rosenbloom
and Newell). 11 (Anuc: . and 14 (Carbonell) are characteristic of this orientation.

Finally. work wn the third orientation undertakes specific practical learning
tasks and tries to develop engineering systems capable of performing these tasks. An
example here would be a program that learns to recognize dangerous conditions for
aircraft in tlight. Such ctforts usually have to address a host of other problems not
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directly related to learning, such as the appropriate interpretation of the input signals
or the development of problem-specific transformations of the data. Any useful ideas
from the other two orientations are readily adopted in this orientation. Often. when a
solution to a specific problem is found, it is generalized to a method for solving a
class of similar problems. An example of such research is déscribed by Dietterich and
Michalski in chapter 4. .

The above three research orientations make up a trichotomy of mutually depen-
dent and supportive efforts that fuel the machinery of learning research. Such a tri-
chotomy has come to pervade the whole of artificial intelligence.

1.6 READER’S GUIDE TO THIS BOOK

As indicated in sections 1.3 and 1.4 above, this book is concerned with the SCA
(symbolic concept acquisition) and the KDL (knowledge-intensive domain-specific
learning) paradigms and concentrates on inductive and analogical learning strate-
gies. Both major types of inductive learning—that is, learning from examples and
learning by obscrvation and discovery—are represented. The chapters are grouped
into six parts reflecting the major learning strategy or the research orientation
employed in the work.

Part One provides an introduction and discussion of general issues in the ficld
of machine learning. After the overview presented in this chapter, views from several
rescarchers on important problems in this field for the decade of the cighties are pre-
sented in chapter 2. These topics emerged from a panel discussion held at the 2nd
International Machine Learning Workshop at the University of Iinois in June 1983
(Michalski. 1983b).

Part Two describes a selection of results on learning from examples. In
chapter 3, Winston integrates ideas about several interrelated topics: learning from
precedents and exercises. using near misses in learning. gencralizing if-then rules.
and employing unless conditions to prevent incorrect rule application. The role of an
unless condition is to block a given if-then rule whenever facts at hand satisty this
condition. Such a condition facilitates an incremental improvement of rules.

In chapter 4. Dictterich and Michalski present a theoretical framework and
methodology for a certain type of parr-to-whole generalization. They describe a gen-
eral method using three models for discovering a rule that characterizes a sequence of
objects and predicts a plausible sequence continuation. Each object in the sequence is
deseribed by discrete attributes. which are either given a priori or derived by
applying various inference rules and sequence transformations.

Ltgottin chapter 5 investigates the role of bias or preference criterion in deter-
mining a plausible hypothesis in inductive learning. He presents a methodology and a
program—STABB—for shifting bias in the course of learning from examples.
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In chapter 6, Quinlan examines the effect of noise in training examples on .[he
discovery of classification rules and their accuracy. He makes‘sc?,veral interesting
conjectures about how to formulate the learning task when training examples are
expected to contain noIse. N ' |

Next, in chapter 7, Sammut and Banerji investigate the role of previously
learned concepts in the learning of new ones and the problem of inductive learning
with an active learner. Such a learner is not just passively accepting examples from a
teacher but is also generating examples on its own and asking the teacher whether
they represent the concept being learned.

In chapter 8, Lebowitz discusses a somewhat related problem. He explores the
use of concepts stored in the memory for generalizing complex structural descrip-
tions. His Generalization-Based Memory method determines what concepts to learn
and formulates definitions of the concepts learned. The ideas are exemplified by two
programs, one for concept evaluation, the other for generalization of complex struc-

 tural descriptions.

Next, in chapter 9, Kodratoff and Ganascia discuss various theoretical aspects
of the generalization process. They show how generalization is accomplished by
creating links among training examples. These links are represented as variable
bindings.

Part Three takes up cognitive aspects of learning. In chapter 10, Rosenbloom
and Newell present idcas about modeling processes that underlie improvement of
performance by practice. Their model of practice is based on the concept of chunking,
that is. grouping subgoals into higher goals. They show that this model explains the
known power law of human practice.

Next. in chapter 11, Anderson discusses learning mechanisms involved in
knowledge compilation, that is, in the process by which subjects move from a declar-
ative representation of a skill to a procedural representation. He shows how mecha-
nisms of composition (collapsing multiple productions into a single production) and
proceduralization (building into productions information that resides in declarative
form in the long-term memory) can simulate the initial stages of skill acquisition in
the domain of learning how to program.

In chapter 12. Forbus and Gentner present their work on a computational
model of human learning of physical domains. They use Qualitative Process Theory

-to model human physical knowledge and Structure Mapping Theory, which charac-
terizes analogy and other comparisons, to describe processes of changing knowledge
representations.

Part Four focuses on the topic of learning by analogy. Burstein, in chapter 13,
presents a model of learning by analogical reasoning. He describes it in the context of
acquiring the semantics of assignment statements in the BASIC programming lan-
guage. According to his modcl. the use of analogies to learn concepts in a new
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domain depends strongly on causal abstractions previously formed in a familiar
domain. These analogies are extended incrementally to handle related situations.

In chapter 14, Carbonell presents his theory of derivational analogy and its

- implications for case-based reasoning and expertise acquisition. In essence, the deri-
vation of solutions to related problems is replayed and modified to solve new and
increasingly more complex problems. The method is proposed as a means of auto-
mating knowledge and skill acquisition for expert systems.

Dershowitz, in chapter 15, focuses on analogy as a tool for automatic program-
ming. He shows how analogies between program specifications (as well as between
their derivations) can be used to debug a program or to modify an existing program to
perform a new task. These analogies can also be used to derive an abstract schema of
a set of programs and to instantiate a schema in order to yield a particular program.

Part Five covers learning by observation and discovery. In chapter 16,
Langley, Zytkow, Simon, and Bradshaw describe four systems addressing different
aspects of scientific discovery. BACON.6 formulates empirical laws characterizing
any numerical observational data. GLAUBER takes on discovery of qualitative laws
of chemical reactions. STAHL undertakes the problem of determining components
of substances involved in such reactions. Finally, DALTON focuses on the formula-
tion of structural models for these reactions.

In chapter 17, Stepp and Michalski report on their recent work on conceptual
clustering, that is. creating a classification of observations by tdentitying subclasses
that correspond to simple concepts. Unlike previous work on generating goal-free
classifications of unstructured objects, the new research takes on the construction of
goal-oriented classifications of structured objects. The authors describe and illus-
trate by examples how a learner’s concepts and inference rules are used in con-
structing such purposive classifications.

In chapter 18, Amarel discusses problems of theory formation in the context of
program synthesis. He illustrates his method and ideas by a problem of inferring a
program from input-output data associations in the domain of partially ordercd struc-
tures. His method emphasizes the role of algebraic and geometric models and the
importance of shifting problem representations in the program synthesis task.

Taking a different tack. Delong in chapter 19 discusses a method of learning
from observation that exploits the inner constraints among explanatory concepts in
the system’s background knowledge to guide the process of generalization from a
single example. His examples are stories about people’s problem-solving behavior.
This knowledge-based generalization process is used to propose new schemata.

Part Six explores some general aspects of learning. In chapter 20. Holland dis-
cusses general-purpose learning algorithms based on a parallel rule-based system
architecture. He advances the theme that inductive processes in such rule-based
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systems are a way of overcoming the brittleness of current Al systems, which is due to
the narrow scope of their domain-specific knowledge. ' |

In chapter 21, Berwick explores the issues of general constraints underlying

rocesses of natural language acquisition. He discusses the relative importance of
general, domain-independent learning principles versus domain-specific learning,
and presents the subset principle for guiding generalization from positive-only
examples.

Finally, in chapter 22, Silver describes a learning technique called Precondi-
tion Analysis that allows a program to learn strategies for problem solving. He illus-
trates his method with examples from the domain of algebraic equations. |

The book concludes with a bibliography of research in machine learning since
1980, with a few major landmarks representing earlier research. (A comprehensive
bibliography of previous research in this field can be found in Machine Learning I.)
The bibliography is indexed by underlying learning strategy, domain of application.
and research methodology. An updated glossary of terms in machine learning is also
provided, as well as a bibliographical note about each author.
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