
A Teehnieal Deaeription of the

ADVISE.1

Meta-expert System

BY

R.S. Michalski, 8. Baskin,

C. Uhrik, T. ChanOlc, S. Borodkin

A.G. Boulanger, L. Rodewald, R.E. Reinke

Department of Computer Science

University of lllinois

March 6, 1986

This research has been supported in part by grants from the Office of Naval Research No.
N00014-82-K-0186 and No. NOOOl4-83-G-0030, by grant from the National Science
Foundation under grant DCR 84-06801, and grant from the Defense Advanced Research
Project Agency under grant No. N00014-K-85-0878.

Table of Contents

Chapter Page

Chapter 1 The ADVISE System: A General Overview •.••....•..••..•..........•••.......•...•.... 1

1.1. Novel Features of ADVISE .. . 2

1.2. Conceptual Organization of ADVISE .. 3

1.2.1. Control Block and User Interface ... 3

1.2.2. Knowledge Base ... 5

1.2.3. Query Blocks ... 7

1.2.4. Knowledge Acquisition Block ... 8

1.3. The Architecture of ADVISE .. 9

Chapter 2 The User Interrace ... 12

2.1. Introduction ... 12

2.2. Philosophy or the In terrace .. . 12

2.3. Historical Development of Interrace Tools 14

2.3.1. The Display Module .. . 15

2.3.2. Advisecore .. . 15

2.3.2.1. The Screen Manager Process 17

2.3.2.2. The Window Filter Process 18

2.3.3. The SunWindow Interrace .. 18.

2.4. The Current User Interrace 18

Chapter 3 The Network Editor .. 25

3.1. Introduction .. . 25

3.2. The ADVISE Network Representation : 25

3.3. Features or the Network Editor 26

3.3.1. Screen Representation of Networks 26

3.3.2. Local Editing Options 27

3.3.3. Global Editing Options 29

3.4. A Sample Interaction .. . 30

Chapter 4 QUIN 39

4.1. Introduction ... 39

4.1.1. The Relational Model ... 40

4.1.2. Relational Tables ... 40

4.1.3. Keys 41

4.1.4. Normalization .. 41

4.1.5. Relational Operations 42

4.2. Data Language VL .. . 43

4.2.1. Table Creation 43

ii

4.2.1.1. Define .. 43

4.2.1.2. Define Event .. 44

4.2.1.3. Add ... 44

4.2.2. Table Retrieval .. 46

4.2.2.1. Relational Table Expressions ... 47

4.2.2.2. VL Conditions ... 50

4.2.2.3. Ordering oC Rows .. 51

4.2.3. Table Modi6.cation ... 51

4.2.3.1. Change .. 51

4.2.3.2. Delete .. 52

4.2.3.3. Save :.. 52

4.2.4. Help .. 52

4.3. InCerential Operators .. 52

4.3.1. Fetch and Results .. 54

4.3.2. Cluster .. 54

4.3.3. Dilf .. 57

4.3.4. Esel ... 60

4.3.5. Varsel .. 60

4.3.6. Varcon and Varcont ... 60

4.3.7. Other Operations ... 60

4.4. Macro Language 61

4.5. Program Dest:ription .. 62

Chapter 5 Rule Acquisition and Refinement ... 63

5.1. A Paradigm Cor Rule Base Development ... 63

5.2. The Standard Rule Acquisition Paradigm ... 63.

5.3. A New Pa.ra.digm Cor Rule Acquisition .. 65

5.4. The ATEST Tool Cor Rule Refinement ... 66

5.4.1. Terminology .. 67

5.4.2. The ATEST Evalua.tion Routines ;....................................... 67

5.4.3. Consistency and Completeness ... 68

5.5. Future Work .. 71

Chapter 6 The Rule Parser .. 72

6.1. Introduction ... 72

6.2. Language for Rule Representa.tion 	.. 72

·6.2.1. Rules ,... ~..... 72

6.2.2. Right Hand Sides (RHS) ... 72

6.2.3. Left Hand Sides (LHS) ... 73

6.2.4. Rule Groups .. 73

6.2.5. Variables 9 	 73
.......... ,..

6.2.6. Functions .. 74

6.2.7. Properties .. 77

6.3. Parser Construction ... 78

6.4. Basic Features .. 78

iii

6.4.1. The PARSER Production Cycle ... 78

6.1.2. Operation and Use of the Parser .. 80

6.5. Updating the P ARSER .•...........•••..........••...••.......••..........•....•..•.....••..... 80

Chapter 7 The Rule Evaluator ... 82

7.1. Introduction ... 82

7.2. User Procedures ... 82

7.3. Configuring the Evaluator .. 84

Chapter 8 Knowledge Base Paraphrasing ... 86

8.1. Design of a General Paraphraser .. 86

8.2. The Existing Rule Paraphrase Module .. 88

Chapter 9 The Tuple Manager ... 90

9.1. Introduction ... 90

9.2. The Data Types ... 90

9.3. The User-Visible Procedures .. 91

9.4. Important User-invisible Procedures .. 94

Chapter 10 General Utilities ... 95

10.1. The Low Level Network Debugger .. 95

10.1.1. How to Use the Tester Program ... 95

10.1.2. Tester Commands .. 96

10.2. The Trap Module ... 98

Chapter 11 Rule Based Inference Control (PLANT/ds) ... 102

11.1. Introduction ... 102

11.2. The Knowledge Base .. 102

11.3. Using the PLANT Program .. 105

11.3.1. Data Structures .. 105.

11.3.2. Control Scheme Tools Package ... 109

11.3.3. PLANT/ds Tools Package .. 110

Chapter 12 Rule Based Inference Control (PLANTled) .. 114

12.1. Introduction ... :....................................... 114

12.2. User Description ... 114

12.3. Control Scheme Details .. 114

12.4. Future Research Goals ... 117

Chapter 13 Context Driven Data Annotation (BABY) .. 119

13.1. Introduction ... 119

13.2. Clinical Perspective .. 120

13.2.1. Role of BABY in Diagnosis ... 120

13.2.2. Clinical Patterns .. 121

13.3. Clinical Context and Patient State ... 122

13.4. Knowledge Engineering Environment ... 123

13.4.1. Clinical Data .. 123

13.4.2. Uncertainty in Medical Data .. 124

13.4.3. The Knowledge Base .. 124

13.5. Baby Implementation ... 124

iv

13.5.1. User Interface•...............••..•...•........•.•. 125

13.5.2. The Knowledge Representation .. 125

13.5.3. The Inference Engine .. 128

13.5.4. The Patient State ... 129

13.5.5. Variable Suggestion .. 129

13.5.6. Network PI!.rser .. 130

13.6'0 Conclusion ... 131

Chapter 14 The ALFALFA Entomology Pest Identification System 133

14.1. Introduction ... 133

14.2. Preconditions and Termination Conditions ... 135

14.3. Multigoals .••. ~... 135

14.4. Disjunction on the Right Hand Side of Rules 136

14.5. Data Acquisition .. :......................... 137

14.6. Additional Research Goals .. 137

14.6.1. Describing Variable-Value Relations with Semantic Nets 137

14.6.2. Dynamically Changing Value Sets for Variable 139

14.7. Future Research Extension ... 142

Chapter 15 Summary and Future Work ... 144

Literature Cited .. 145

Appendix A Rule Parser Details ... 149

A.1. Basic Lexical Notions .. 149

A.2. Error Information ... 149

A.3. Mark Type Definition .. 150

A.3.1. Within a V A.RS Block ... 150

A.3.2. Within a RULES Block ... 151.

Appendix B GVL i Grammar .. 153

Appendix C Internal Representation of a BABY Network 161

Figures

1. A conceptual level diagram of the ADVISE system.....•...........•.............•.....•..••..•.••. 4

2. A technical level diagram of the ADVISE Architecture... 10

3. Multi-question frame from PLANTI ds.. 13

4. Single question frame from PLANTI ds.. 14

S. Screen Management in Advisecore... 16

6. The textual representation or tuples for "arches" ... 38

7. Operations available in QUIN.. 39

8. The knowledge refinement cycle ... 40

9. Clinical Laboratory Values 41

10. Results of Selection Operation ... 42

11. Results of Projection Operation ... 43

12. Format of File "vIs".. .. 45

13. Result of Retrieval. 46

14. Relational Table Expression Operators .. 47

15. The "spec" Table 47

16. Join of "spec" and "labvals" ... 48

17. Projection & Join 49

18. Ordinary Projection 49

19. Projection &, Count 49

20. Projection with Redundancy 49

21. Use of "min" .. . 50

22. Original Table to be Changed 53

23. Table with Modiied Hgb Column 53

24. Clustering Criteria 55

25. Parameters Table 56

26. Criterion Table .. . 56

27. Events to be Clustered ... ; 56

28. Meanings of Values in Events Table... .. 58

29. Results of Clustering 58

30. OEM Parameters Table .. . 59

31. GEM Events Table 59

32. Domain Values or Days of the Week 59

33. 	 The standard paradigm for rule base development ... 64

34. 	 Paradigm Cor rule base development

using automated refinement and testing 66

35. Sample input and ATEST output for a toy problem.. .. 69

36. An example of consistency testing .. 70

37. An example of completeness testing..................................:.................................... 71

38. Relation of Compiler Components.. . 79

39. A Sample Paraphrase Program... . 87

40. Flowchart depicting the top-level structure of PLANTIcd................................... .. 115

41. Flowchart depicting the FINDOUT procedure... . 116

42. 	 Flowchart depicting the INFER procedure... 117

43. System Structure ... 120

v

vi

44. A Pattern to Match SIADH ... 126

45. 	 Network Description of Figure 44 .. 130

46. 	 Goal Structure of the ALFALFA System.. 133

47. 	 Abstract Outline of Algorithm

Converting Variable/Value Graph to Rules... 137

48. 	 The Case of a Common Subtree in VariblejValue Graphs...................................... 138

49. 	 Typical Order Independent Rules

Derived from Variable/Value Graph. .. 139

50. 	 Relevant Value Set of Variable COLOR at Various Points in Consultation 140

CHAPTER 1

The ADVISE System: A General Overview

We are currently witnessing a rapid increase of interest in building expert systems for a wide
variety of practical problems. Among the many application domains where expert systems have
been already tried are medicine, geology, chemistry, agriculture, accountancy, computer system
configuration, accountancy, engineering design and VLSI circuit design. Current systems,
however, suffer from a number of limitations that restrict their utility. They typically employ a
single form of knowledge representation (production rules), no learning ability, only one type of
inference mechanism and control strategy and poor user interaction facilities.

The research described here represents our attempts to overcome some of these limitations.
We have developed a general purpose inference system, called ADVISE, which consists of a set of,
modules for the development of and experimentation with expert systems in a variety of
application domains. Among the important and novel ideas in ADVISE are the incorporation of
three different types of knowledge representation, inductive learning capabilities and several
inference control strategies. We feel that ADVISE represents a substantial advance in expert
system design and functionality and can be viewed as a "second generation" general purpose expert
system.

Before going any further let us start by examining the notion of an expert system. Usually,
an expert system is defined as a computer system that exhibits high performance in a specific
problem domain due to a large amount of formally encoded domain knowledge and the ability to
conduct formal reasoning on this knowledge. An expert system is designed to perform a host of
tasks that a human expert would typically perform: diagnose, interpet, consult, classify, identify,
search through a space of possible solutions, explain and analyze [Buchanan83J.

The domain knowledge is represented in an expert system as a set of production rules.
These rules take the form of:

IF <condition> THEN <action>

where

< condition> is a logic expression which must be satisfied to
a certain preset degree, and

< action> is a set of actions to be performed if the < condition>
part of the rule is satisfied. The <condition> may include both
the context within which the rule is applicable, and the specific
conditions to be satisfied by the situation in order to apply to
it the <action>.

The set of production rules that characterize a given application area is termed the knowledge
base. The knowledge base is oue of the three major components or an expert system.

1

2

The second major component is the inference mechanism by which the knowledge base is
used to perform given tasks. The inference mechanism is divided into two parts:

.. a rule evaluator /executer that doe,., nference within a rule, and

.. a control 8cheme that does inference among rules.

In many expert systems, some form of probable or plausible reasoning is used in the inference
procedure to handle uncertainties. Data are often represented as object/value/confidence triples.

The third major component of an expert system is the memory needed to store intermediate
results of rules when they are actuated or fired. Some architectures term this component the
blackboard.

A favorite starting point for expert system architecture is to organize these three components
as a production system. This production system organization contains a recognize-act cycle in
which a control scheme decides which rules to evaluate and, if any fire, executes their right-hand
sides. For more details on production systems see [NiIsson80] , [Davis76J and [Michie80j. Many
expert systems are not pure production systems, however. Many are more like Markov algorithms
in that the productions are ordered.

There is another way to view the architecture of an expert system that turns out to be
isomorphic in many respects to the view of an expert system as a production system. In this view,
the expert knowledge is in the form of a network. The control scheme becomes a network
traverser/updater. This is the view incorporated in PROSPECTOR [Duda78J. See [Gevarter82],
[Michie80j, and [Stefik82J for more detailed overviews of expert systems. The next chapter shows
how the general purpose inference system ADVISE goes beyond the simple expert system
architecture described above.

1.1. Novel Features of ADVISE

ADVISE has been designed to provide the knowledge base engineer with an expert system
workbench. It provides a number of facilities not commonly found in existing expert systems.
These features include:

.. representation of knowledge in three different forms: a rule base, a network base, and a
relational data base,

.. use of a very flexible representation for inference rules,

.. modular design,

.. freedom to choose and design a host of inference control strategies,

.. inductive learning capabilities,

.. implementation of the system in Pascal (a popular language widely available on many
computer systems),

.. common virtual memory representation for data,

.. selection of rule evaluation schemes,

.. philosophy of separating control of flow specification (strategic information) from non
procedural information (tactical information) in the system, and

.. emphasis on simplifying man-machine interaction.

Many of these features will be discussed in the next section. As this list shows, there is an
emphasis on user and developer flexibility and convenience in ADVISE. The user interface is
designed as an independent module and supports the idea. of friendly user interaction. This
interaction can be developed almost independently of the rest of the system and supports

3

multiple terminal types.

There is the design goal of getting ADVISE out to the public. This is a major reason why
Pascal was chosen as the implementation language. Good versions of Pascal are available on
many microcomputer systems. A micro-based version of ADVISE has not been implemented yet
but there are two methods to support them. One method is hand tailoring ADVISE to the
microcomputer environment. The other more a.ttractive option is automatic tailoring. ADVISE
would eventually have a tool for doing this.

There is a goal of a dean design in ADVISE. In many expert systems the tactical and
strategic knowledge is intertwined. This causes problems in explaining the reasoning of the
inference process to the user. ADVISE is being designed to avoid this problem by maintaining a
separation between control or meta knowledge, and factual knowledge of the domain. While the
exact method of maintaining this separation has not been found, active research is under way.
This goal of a dean design is also supported by a. common representation for data at the lowest
level of ADVISE. ADVISE was designed in the form of modules that provide support tools for
expert system development. tools for inference systems. This modular design makes ADVISE
flexible and elegant.

1.2. 	Conceptual Organization of ADVISE

Figure 1 shows a conceptual level diagram of the proposed system. The system consists of
four major components:

(1) 	 Control Block and User Interlace

(2) 	 Knowledge Base

(3) 	 Query Block

(4) 	 Knowledge Acquisition Block

Each component supports operations on three types of knowledge representations: a network
structure, a rule base. and a data base. The functions of these four components are described in
the corresponding sections below.

1.2.1. Control Block and User Interface

The control block and user interface manages the user's interaction with the other
three portions of the system. It handles three distinct mod.es of operation of the system:

.. Query mode

.. Knowledge acquisition mode

.. Explanation mode

The user interface portion of the system provides utility routines to manage the
terminal screen and supports the explanation of internal data representations and operations
in a textual and graphical form.

Query mode (Q-mode)

. Query mode is used during consultation. In this mode, the system:

.. selects questions to ask the user,

• 	 accepts user answers and

• 	 conducts an inference process involving the knowledge base and informa.tion provided
by the user, in order to compute advice with an associated strength of supporting
evidence.

4

Qa• ..,. BI.d,

Ql~ O',.,ct Re,,.I : Fo,. A. 8, 5 C
Q2. U. In" '"flr'OnCI: For At Bt & C

Knowledlt Ba..

A. Nelwort 8....
B. H. Hutr. 8a••
c. Relationa' O.t. 8•••

Control Blodt
and

US4!ir J"H,r.e..
(a. Q\,I'''~ nod.

K......I.d•• A.....i...i.n BI••k

':1. Da.-'et R • .,,. ...n'.. ,.'" For R, 8, " t
1:.2. Uelnc, Infe,.,ftCI: Fo,. Al 8, & C

C2. J:nowted'i' Acqr,l,.ltlon nodi
I C3. Ewp ,.",at i on 1106_

USER

Figure 1: A conceptual diagram of the ADVISE system.

In one respect, the consulting portion of the system is radical in design. In particular,
there is no single problem solving strategy. Rather, loca:lized problem solving behavior is
defined by the choice of an evaluation scheme (of which several are planned) and global
problem solving behavior is governed by a control scheme within and among groups of rules.
Specific provision has been made in the design for the inclusion of multiple control schemes
and multiple evaluation schemes.

Knowledge aequisition mode (K-mode)

The knowledge acquisition mode coordinates both the encoding of expert derived rules
into the knowledge base and the interactive invocation of the separate induction programs.
This mode includes handling specific components for defining expert rules, manual
refinement of rules, induction of rules from examples, and au~,ated correction and
improvement of the rules. The system also provides facilities for te;; :~g rules in interactive
mode on individual cases, as well as in batch mode on a collection of cases.

5

Explanation mode (E-mode)

The explanation mode paraphrases decision rules in English, enables a user to
understand the organization and functioning of the system in query and knowledge
acquisition modes, allows simple interrogation of the contents of the knowledge base, and
displays the steps in the process which led to a given advice.

1.2.2. Knowledge Base

The network structure consists of three types of representation:

.. a network base (e.g., conceptual network),

.. a rule base, and

.. a relational data base.

A unified "access protocol" is used for all three types of representation.

A Network Base

The network base contains network structures representing general domain knowledge
about interrelationships among various conceptual units. For example, it can include
hierarchies of terms from the application domain indicating the level of generality of such
terms (a "generalization tree"), a representation of the structure of the rule base, and
precedence relations defined over questions for the user. Links between nodes in the network
represent "static" relationships between concepts. The network organization is a form of the
"Logic Net" formalism described in [Baskin80J.

Rule Base

The rule base contains rules in the basic form:

CTX CONDITION ::> CONCLUSION : ('(,3

where

CTX is a lexical expression describing the context within
which the rule is applicable; •

CONDITION is a formal expression (in VL2 [Michalski78]) which
involves elementary conditional statements (called "selectors"),
linked by various logic operators (including quantifiers);

CONCLUSION defines the decision or action which is executed when
the CONDITION is satisfied by a given situation;

Q is the strength of the evidence which supports the
CONCLUSION when the CONDITION is completely satisfied
(0 S (¥ S 1) and

fJ is the strength of evidence which supports the negation

of CONCLUSION when the CONVlTlON is not satistied

(0::; .iJ S 1).

6

The rule above is read: CONDITION implies CONCLUSION with forward strength "a"
and backward strength ",a". Specifically, the rule states that: if the left hand side (LHS) of
the implication (::» is satisfied, then the right hand side (RHS) is asserted with a degree of
confidence a, and if the RHS is satisfied, then the LHS is asserted with a degree of
confidence /3. This rule is equivalent to the following group of rules:

CONDITION ::> CONCLUSION : a
not CONDITION ::> not CONCLUSION : a
CONCLUSION ::> CONDITION : /3
not CONCLUSION ::> not CONDITION: ,8

By providing both "a" and "P" for each rule, it is possible to use rules for inference in both
forward and backward directions.

The use of parameters (0',/3) above can be illustrated by an example taken from
contract bridge. In bridge, each member of a partnership learns the same set of rules for
bidding (called a bidding convention). Qualifiers such as "must," "should," "usually,"
"seldom" and "never" are used in the verbal description of the rules for the strength of
implication. A bidder uses the rules in the forward direction to decide what bid to make.
The partner of a bidder uses the rules in the reverse direction to decide about the strength
of bidder's cards.

One well known rule in the Standard American bidding convention is an opening bia
of one no trump. A textbook description of this rule can be paraphrased:

If you have a strong hand (16 to 18 high card points), (i)
a balanced hand (at worst one doubleton suit), and strength in
all four suits (four stoppers) then you should definitely bid 1
no-trump.

This rule can be expressed in the formalism which we are developing as:

[high card points = 16..181 [shortest suit = 2] (ii)
[number of doubletons ::; 11 [number of stoppers = 4]
::>
[bid suit = no_trump] [level = 1] : 0'=1, /3=0.8

where (r=1 follows from the use of "definitely" in the rule. The value of "P" is the strength
with which a bid of one no trump implies the hand described on the left hand side of the
rule. The value of '',;'" is less than 1.0 because one no trump may be bid with other hands,
as shown below .

.The novice bridge player soon learns that like any other expert skill, bidding in bridge
does' not always deal in the absolutes described above. An experienced player will often use
the following more general rule:

If you have a hand which meets the above requirements (iii)
for a 1 no-trump bid, except that it has less than three stoppers,
then you should usually bid 1 no-trump.

7

The rule above can be represented using our formal language in the following way:

[high card points = 16..18] [shortest suit = 2} (iv)

[number of doubletons ?:: IJ [number of stoppers?:: 3J

::>

[bid suit = no_trump] [level = 1] : a=.8, ,8=1

The parameter a=0.8 in the rule above indicates that if the left hand side of the rule is
satisfied then the strength of confidence for a 1 no trump bid is somewhat less than it was in
(ii). On the other hand, once this bid has been made, the partner can be certain (,8=1.0)
that the bidder's hand conforms to the requirements set forth in the left hand side.

The rules (ii) and (iv) above can be combined into a single rule by using "weights"
associated with individual values of the variables. The following rule is a. formal
representation for both (i) and (iii) above:

[high card points = 16..18] [shortest suit = 2] (v)

[number of doubletons = 0,1] [number of stoppers = 3:0.7, 4:1.0]

::>

[bid suit = no_trump] [level = 1] : 11=1, 3=1

The coefficient 0.7 associated with "number of stoppers = 3" reflects the weakened strength
of implication if there are three stoppers. Both the weights on the "number of stoppers" and
the value of "Qn are used to determine the strength of supporting evidence for the
CONCLUSION. Since the weights have been associated with individual values, the global
strength of implication, "Q", can be assumed to be 1.

Relational data base

The relational data base contains relational tables which represent any factual
information, e.g., examples of experts' past decisions. A modified relational algebra has
been developed using constructs from Variable-valued Logic to make the user access more
natural and more concise [Shubert77].

1.2.3. Query Blocks

The query block supports two types of queries: those which can be executed by direct
retrieval from the knowledge base, and those requiring inference. Both types of queries are
defined for all three types of representations in the knowledge base. .

Query block using direct retrieval

Direct retrieval is used to display the contents of the knowledge base. The network
base, the rule base, and the relational data base can each be retrieved and displayed using
the query block. Direct retrieval is heavily used in the explanation mode of the system and
also during knowledge acquisition.

Queries using direct retrieval on the relational data base include the traditional
relational table operations such as as "project," "select" and "join" as well as various
arithmetic or other transformations of the data items in the tables.

8

Query block using inference

One of the most important functions of the system is to compute the most plausible
advice for thl! Iiser in a specific situation. Queries involving inference (deductive and/or
inductive) ,ue supported for each form of knowledge stored in the knowledge base.

Queries lIsing inference for the network involve "path following" within the network,
e.g., "climbing the generalization tree." Inference over the network also occurs whenever the
hierarchy is used to answer questions by searching the network for specified relationships
between given concepts.

Queries using inference for the rule base are particularly important for providing
expert advice. Rules are evaluated for a given situation using an "evaluation scheme" (a
method of propagating uncertainties) in the order decided by a "control scheme." In this
system, there is no single problem solving strategy. Rather, local problem solving behavior
is defined by the choice of an evaluation scheme (oC which several are planned), and global
problem solving behavior is governed by a control scheme within and among groups of rules.
We plan to implement several different evaluation schemes and a few control schemes in the
system. In this way, a single knowledge base can be used for research into the performance
of differing problem solving strategies for consultation.

The QUIN relational data base (Chapter 8) has been enhanced to allow queries using
inference. These additional operations allow the inference of rules Crom examples.

1.2.4. Knowledge Acquisition Block

The knowledge acquisition block supports knowledge acquisition by the direct
representation of knowledge provided by human experts and also by inductive inference
from facts provided to the system. The design of the proposed system includes knowledge
acquisition for each type oC knowledge stored in the knowledge base.

Knowledge acquisition by direct representation

The direct representation of networks, rules, and data bases oC facts or examples-'
constitutes "learning by being told." This is the major way that knowledge bases are being
constructed today. The direct representation of expert knowledge is particularly important
in problem areas where "rules of thumb" or other generalizations about the problem domain
are known. 1.1aterial which is supplied by the expert for direct representation is entered into
the knowledge base as specified, but it may be modified by Curther knowledge acquisition
using inference as described below. Special user interCace ("debriefing") for interactive
specification of rules and networks is provided. Batch submission of sets of examples is
supported as well.

Knowledge acquisition using inference

The inclusion of machine based inference as a part of the knowledge acquisition
process is intended to reduce the burden on human experts. By defining inference
procedures over each component oC the knowledge base, the system no longer relies solely on
the human expert to organize and present a co:-:~ Dlete, concise, and error free knowledge
base.

Knowledge acquisition using inference fo; ~he network involves both deductive
extensions to the knowledge base and the inductive derivation of new or improved network
structures. As new information is added to the network base, rules of inference are
"executed" to enforce the logical consistency and completeness of the network. This
corresponds to inference of new concepts and relationships from existing ones. Also,

9

machine derived categorizations and hierarchies can be inferred from the knowledge base
using conceptual clustering techniques implemented in the program CLUSTER [Stepp80J.

Knowledge acquisition using inference for rules includes the derivation of new or
modified rules from existing rules or groups of rules using examples in the relational data
base. This process will be implemented by adapting already developed inductive learning
programs AQVAL [Michalski73], INDUCE [Larson77J, and ID3 [Quinlan79J. Preliminary
results by both principal investigators in this area suggest that the "refinement" of existing
rule bases using induction is both possible and fruitful [Michalski80, Baskin78]. The
derivation of patterns of rules or rule groups from the isolated rules is also supported by the
proposed system. Although results in this area are siill tentative. the inference of patterns
in groups of rules should allow the iterative improvement of the control scheme by which
rules are selected for evaluation.

Knowledge acquisition using inference for the data base corresponds to a form of
clustering. In our previous experimeuts. clustering algorithms have been used to partition
.the set of examples into groups which are "similar." This operation corresponds to having
a teacher label each example in the training set. The important property of the clustering
algorithms is that they do not rely on a domain expert to categorize the examples. In
addition, when the categories are not known, the clustering process can still be used. (The
clustering operation corresponds to inductively deriving a relational operation which a
human expert might have used to supply examples for the inductive derivation of rules.)

In addition to clustering, inference over a set of examples involves selection of the best
"Representative" examples for use in the inference of rules. The program ESEL
[Michalski78] has been developed for choosing examples from a large set of examples which
are "representative" of the set. The proper selection of examples becomes particularly
important when rule inference is computationally expensive. examples from a large set of
examples which are "representative" of the set. The proper selection of examples becomes
particularly important when rule inference is computationally expensive.

1.3. 	The Architecture of ADVISE

Figure 2 illustrates the architecture of the ADVISE system from a technical standpoint.
Figure 2 shows the basic software modules in the ADVISE system and their interactions. A
short description of each module is presented below:

• 	 USER INTERFACE
The user interface provides a set of software tools for creating sophisticated user
interactions with the ADVISE program. It supports graphics, windows and menu driven
user input. It is designed primarily to drive the Sun-2* Workstation, but is designed with
minimum modification for portability in mind.

• 	 CONTROL BLOCK
This dispatches the major functions of ADVISE: parsing rules or networks using the
parser modules, running a consultation using the rule base or network base modules,
relational table query and inference using the QUIN module, and testing parts of ADVISE
using the TESTER module. Currently tlte control block functions are implemented in a
top-level window created using the user interface above.

RULE EDITOR
This module is an interactive menu-driven editor for rules. It uses both the rule parser
and paraphraser. This module has been designed but not implemented.

*Sun-2 is a. tra.demark of Sun Microsystems, Inc.

10

TERMINALI I
I USER INTERFACE I

f CONTROL BLOCK I - :::::::;.;- ~

I RULE RULE aASE INETWORK NETWORK !:lASE , I RELATIONAL TABLE I ITaTER JEDITOR INFERENCE CONTROL EDITOR INFERENCE CONTROL QUERT AND INFERENCE J
- forward. c.haininl IQUIN)

- 'backward da.inin~
dint,- mu:imiu.Lion

- approxima'. ba7 ..ian ...

I RULE J II NETWORK IPARAPHRASER PARAPHRASER INFERENCE
OPERATIONS

- di.c.rlmia,H
- chuter

IRULE EVALUATOR INETWORK
- utiI RULE - "" ... 1 PARSER PARSER ...

SPECIAL I
FUNCTIONS

MODULE

I

TUPLE MANAGERI 	 J

Figure 2: A technical diagram of the ADVISE Architecture.

.. 	 RULE BASE INFERENCE CONTROL
The ADVISE system supports several types of knowledge base inference control (control
schemes). They access knowledge in the tuple manager, request values for unknown
variables and determine the truth value of pieces of knowledge via the rule evaluator.

RULE PARSER
This module parses an extended form of GVL [Michalski80]. It outputs a parse tree that

1

is read by the TUPLE rvlANAGER and stored in the tuple format.

A NETWORK EDITOR
This module is an interactive menu-driven editor for networks. Its implementation is
discussed in a chapter to follow.

.. 	 NETWORK PARSER
An inference network is an alternate form of representing domain knowledge. This
module parses the network representation into the tuple representation manipulated by
the tuple manager.

A NETWORK BASE INFERENCE CONTROL

This module is used to carryon inference on networks.

11

.. QUIN
This module is used to do queries and inference on relational tables. QUIN [Schubert77]
calls a host of data analysis and learning modules such as AQ11 [Michalski78], ESEL
[Michalski78], CLUSTER [Stepp80j, PROMISE [Baim82], and CONVART [Davis81J.

.. TESTER
This module is used to manipulate the tuple network directly. It also serves as a testing
and debugging vehicle during the development of other modules in the system.

.. PARAPHRASERS
These modules are responsible for explaining to the user how rule and network inference is
being used during a consultation. Another function of the PARAPHRASE module is used
to "unparse" a rule from its parse tree form to the human readable form. This module is
also used to explain the evaluation of particular rules to the user.

• RULE EVALUATOR
This module is responsible for evaluating the premise part of a rule and asserting its
consequent if it fires. It evaluates and asserts rule pa.rts under a variety of semantics for
logical connectives ina multi-valued logic interpretation.

.. SPECIAL FUNCTION EVALUATION
This module, also known as the TRAP module, is used to evaluate special functions.
These functions can do such things as permit special displays, start up sensors, run models
or simulations, etc. Presently there is one version of this module for PLANT/cd.

.. TUPLE MANAGER
The basic structure for storing information in ADVISE is the tuple. (Information is also
stored in Pascal local variables, but this type of data is particular to the local
environment and is not meant to be preserved.) An ADVISE tuple resembles the
mathematical definition of a tuple (an ordered set) in which a set of tuples form a graph
or network. Tuples, much like LISP property lists, are accessed by context. The tuple
manager is based on the work in [Baskin80j.

The overall system architecture outlined in this section has served as a guide for the.
development of the ADVISE system. In the following chapters, a detailed account of the
current state of ADVISE is presented ..

CHAPTER 2

The User Interface

2.1. 	Introduction

This chapter describes the development and current state of the ADVISE user interface.
The problem of human-computer interaction has received much attention [B082J. The study of
computer user psychology. an outgrowth of earlier work in human-computer interaction, has
emerged as a viable subfield in computer science [Moran81J. A difficulty in working in this area
is that so many factors are involved in designing such interactions that cannot be pinned down
with algorithms. The designer must rely on his own intuition, which can be remarkably
deceptive. The aesthetic aspect of this problem (i.e., what is the most appealing way of
presenting information) is most certainly a matter of personal taste. In view of these problems,
our approach has been to refine our program interfaces by subjecting them to several cycles of
group criticism. Some general guidelines that evolved from this effort are presented in the next
section.

2.2. 	Philosophy of the Interface

Although computer scientists seem often to lose sight of this fact, the human user is a far
more sophi5ticated "computing device" than any current computer program. With this in
mind, we offer some general principles that have proved useful in the development of the user
interface.

• Feedback: This can be as simple as verifying the user's input by prompting, or
highlighting his response (in the case of option selection from a menu). If processing time"
between user responses is too long (as little as two seconds) it is important to indicate
that the computer is doing something. This feedback should be placed somewhere near
the current text insertion point. Particularly long response times are acceptable only if
the user thinks that something particularly useful and important is being accomplished.

• Help: Help should always be made available to the user. With regard to expert systems,
some indication of the status of the consultation should be provided. The program should
distinguish between novice and experienced users. The novice should be provided with
introductory material and perhaps more specific prompts. The user's name is requested
prior to a session, and a history of interaction is maintained with the program, in order to
determine his user class. The novice user learns a great deal about a program in the first
encounter, and the program should respond to this within a single session. For example,
explanatory prompts may be presented the first few times they are used and then become
more brief a.s the consulta.tion progresses.

.. Backup and Error Accommodation: The user should be allowed to "undo" anything
he/she has done. A related issue is that the user should be allowed ') query the program
about answers to previous questions. A useful mechanism with res: '.0 user errors is to
provide immediate feedback after a user response (a definitive statc'~ of what has been
requested).

• Consistency; The display should be logically laid out. Option menus should always be
placed in the same area of the display. Each keyboard character should have a single

12

13

function and user typing should be minimized.

• 	 User Bandwidth: We favor a block based interaction where a block is a single screenfull
of information. Each block should provide multiple options and allow several questions
to be answered before moving on to the next block.

These guidelines alone do not guarantee a successful interactive program. Each interaction
should be be analyzed to minimize false expectations in the user. This analysis should not be
performed by the program designer, but by a variety of outside sources. To illustrate some of
these concepts, some blocks from the PLANTIds program are presented.

Figure 3 shows a multiple question block that is used to gather information concerning
the leaves of a diseased plant to be diagnosed:

Leaf Mil de~ Gro~th: () Absent II On Upper Leaf Surface

II On Lo~er Leaf Surface

Premature Defoliation: II Absent () Present

Shotholing: 	 II Absent () Present

Shredding: 	 (I Absent () Present

Withering and Wi It i ng: () Absent II Present

Type U M " to register an entry.

Press SPACE bar to move for~ard to the next entry.

Press BACK SPACE to move back to the previous entry.

Press "7" to get help for the current question.

Press RETURN to terminate entries on this screen.

Figure 3 : Multi-question frame from PLANTIds.

The user moves back and forth between questions, answering those appropriate to the situation.
A single key press guides all of these functions. Help concerning these questions is always
available.

14

Figure 4 shows a block that gets the value for a single variable. The user urst enters the
value (or any option), then he mayor may not be asked to enter a confidence in that answer.
After input is complete, the program prints the message that it is preparing the next question.

How would you describe the pattern of leaf spots growth?

1 - From edge of leaf inward.

2 - Scattered and plain.

3 Scattered with concentric rings.

4 - Brown veinal necrosis.

5 - Does not apply.

b - go back one question

d - display a rule

e - explain how to ans>ler the question

p - lis t pursued hypotheses high - >85%

r - lis t rejected hypotheses low - >35%

w - >lhy is the question being asked certain - 190%

Type one number or letter indicating your choice

with confidence in the answer: c (certainl I h (high) / I (low)

Preparing next question
I ___________________..•..•............•..........•.................•.. I

Figure 4 : Single question frame from PLANT/ds.

Although PLANT/ds manages to meet the guidelines stated above, its interface has

become outdated by the advent of windows, mice, and workstations. The next section traces

the development of the user interface from the beginning of the ADVISE effort, from the blocks

of the display module to windows a.nd pop-up menus.

2.3. Historical Development of Interface Tools

As long as ADVISE has existed, a user interface has been needed. Along with the

evolution of the ADVISE computing environment, the user interface has developed

considerably. The first attempt was called the display module. Many ideas emerged from the

display module work to shape further development. The display module lacked a sophisticated

degree of terminal independence w '~h Advisecore [Channic84j, the second generation interfa.ce,

sought to resolve. When devek'lt settled into the workstation environment, the third

generation interface, the Sun Wine . interface was born. Each of these interface generations

is described briefly below.

·SunWindows is a trademark of Sun Microsystems, Inc.

http:interfa.ce

15

2.3.1. 	The Display Module

The primary goal in the design of the Display Module was to provide tools for the
construction of a user interface that is as independent as possible from the rest of the
ADVISE system. By doing this, the interface designer is freed from concerns regarding the
rest of the program and can concentrate on the the user interface alone. It is important to
be able to cycle through an interface design in order to arrive at "friendly" interaction.

With this in mind, the Display Module was developed as a separate, independent
module. Some concepts which guided its development draw from the work of [Thursh80J.
In that work, the authors address the problem of developing a teaching tool for general and
systemic medical pathology. The software that evolved, Blockr, views a man-machine
dialog as consisting of a series of blocks of single screenfulls of text and diagrams. These
blocks can point to each other or themselves, forming a very general network structure.
Blocks are treated as data, consisting of text and instructions that, when interpreted, Cause
an organized page of information to be presented at the terminal. Since the system is data
(block) driven, the interaction can be prepared independently of the program that interprets
it. We have, in effect, an expert system for user interface design.

As mentioned earlier, the primary data structure manipulated by the Display Module
is the block. Since blocks consist primarily of data, they can be created via a simple editing
process. One consequence of the single screenfull of information organization is that it
encourages the presentatioIl of several questions on a single block. This is consistent with
the goal of high bandwidth discussed in the previous section.

The Block Manager controls the interface between the blocks and the user program (in
this case the Control Scheme). This interface was organized in co-routine fashion; the block
manager would be invoked, cycle through a series of help blocks and return control to the
Control Scheme for user input. All user input was passed to the Block Manager which
would handle range checking and error processing. One component of the Block Manager,
the Block Interpreter, was be responsible for translating blocks into a form that can drive a
specific output device. It had access to a set of low-level routines of the form consistent
with the proposed CORE graphic standards [Foley82J.

2.3.2. 	Advisecore

As computer interfaces developed outside Advise, the display module became outdated
since it had no facilities for overlapping windows or pop-up menus. The display module
abo lacked terminal independence. To utili.ue windows and menus and to facilitate terminal
independence, Advisecore was developed. Advisecore was also based on the CORE graphic
standard, primarily for (but not limited to) use with the SunCore graphics package on a Sun
Workstation. '" There were two major goals for Advisecore as described below.

Concurrent Processes with Status Reporting. Multiple active windows should
be able to co-exist on a single screen if desired. Effective screen management must allow
several processes to be active at any given time.

Processes Bound to Windows. In a window system, it is usually desirable to be
able to choose the location and size of a window in which a program runs. Being able to do
this without any modification to an existing program is also desired. To accomplish this,
screen management must provide a means for running a program which runs on a standard
terminal within a window of any reasonable size.

'SunCore and Sun Workstation are trademarks of Sun Microsystems. Inc.

http:utili.ue

16

In the Advisecore interface, screen management consisted 0; :) aspects. The first is a
screen manager process which handles window requests from all other modules. The second
is a window filter process which allows a program to be bound to and run inside a window
as if it were running on a standard terminal. Figure I) shows how these two processes fit
into the Advise system. The screen manager process handles all calls to display or receive
information to/from the user's terminal. It an Advise module does not use screen manager

............".................

SCREEN MANAGER

Network
QUIN

Editor

Figure 6 : Screen Management :n Advisecore.

17

calls for such information, it must use an instantiation of the window filter process for
communication with the screen manager process. Both the screen manager and window
filter processes are described in detail in the appropriate section below. The processes are
described in terms of their existing or proposed implementation.

2.2.2.1. 	The Screen Manager Process

The main feature of the Advisecore screen manger is interprocess communication.
As mentioned earlier, screen management loses a lot of functionality if multiple processes
cannot be concurrently active within different windows. For this reason, some sort of
interprocess communication is essential. The Advise screen manager uses sockets in the
UNIX* operating system for interprocess communication. The sockets are represented in
Figure 5 by bidirectional arrows. Sockets are a reliable means of two-way
communication between processes. The Advise screen manager is designed to receive
window requests from a process and also to deliver any input directed to that process
from any window that process may have on the screen. This communication between a
process and the screen manager is accomplished through a socket which is established
during initialization of the Advisecore interface. Once the socket is established, further
window routine calls merely send the request along with its parameters to the screen
manager via the socket. The screen manager then executes the appropriate output
action.**

Delivering input to a window is somewhat more involved. The screen manager
must maintain a list of which windows belong to which processes and whether or not the
process is awaiting input in those windows. At any given time, only one window is
active with regard to input. The active input window is the window in which the mouse
device is currently located. Any input which occurs is delivered to the appropriate
process if that process is awaiting input. Otherwise, the input is ignored.

In order to handle input properly, a facility for polling the terminal input must be
available so tha.t the screen manager isn't stuck waiting for input when it could be
processing other window requests. This facility is referred to as non-blocking.
input/output which means that a process does not get blocked if input is not available or
if output is not currently possible. The screen manager must not be blocked when
looking for input either from the terminal or from any socket for window routine
requests. UNIX supplies this mechanism via the select system call. This call is essential
to the Advise screen manager design.

The main algorithm of the Advise screen manager is briefly described below.

(1) Poll (select) socket for new connections to processes calling the coreinit routine.

(2) Poll (select) connections on socket for a request and process if present.

(3) Poll (select) standard input.

(4) If input is pendinll; find out if the active window is expecting input. If it is, echo
the input (if indicated by request) and send the input over the appropriate
connection. Otherwise ignore the input.

(5) Go to (1).

·UNLX is a r'!gistered trademark of Bell Laboratories.

UExeeuting the appfopriate output action, however, is much easier said than done. Problems or overlapping windows and
redrawing damaged regions are non-trivial but afe not dealt with here. These problems are solved by the screen packages used
by the Advise screen manager and not by the Advise screen manager directly.

18

2.3.2.2. The Window Filter Process

The window filter process allows processes which run on standard terminals to run
within a window in the Advise interface. The window filter process currently exists only
on the Sun version of the interface as part of the Sun Window screen manager package.

In the VAX version, the filter is designed as follows The filter uses a socket to
communicate with the screen manager and pipe8 to communicate with the process.
Pipes are represented as dashed arrows in Figure 5. The window filter performs the
following functions.

(1) Requests that a window be opened on behalf of the process.

(2) Receives output from the process via an output pipe and translates the output into
window routine requI'sts which are sent to the screen manager over the socket.

(3) Receives input to the process via socket from the screen manager and passes that
input to the process over the input pipe.

(4) Requests that the window be closed when the process terminates.

2.3.3. The SunWindow Interface

As the ADVISE effort has progressed, the workstation environment proved
increasingly productive until it clearly became the environment of choice. Development of
the user interface focused largely on utilizing the existing window management features of
the workstation to satisfy the interface goals. A Pascal interface to the SunWindow
package was created to facilitate the use of existing window management programs,
obviating the need for sockets and pipes. The SunWindow package was sufficiently flexible
to be adapted to meet the screen management goals.

Two applications of the Sun Window interface have been developed. The first was a
screen-oriented network editor which is described in a later chapter. The second is a top
level window which provides the necessary "hooks" and tools for existing ADVISE programs
to run within a unified window format. The following section describes the top-level
interface to ADVISE.

2.4. The Current User Interface

This section contains six screens that represent a flavor of the initial entry into the
ADVISE interface. The first slide is the top-level screen. It offers a variety of options via static
menus.

Following slides show entry into a consultation system (PLANT/ds) and into an
interactive editor (the Network Editor). A knowledge base (backup file) is passed to knowledge
base editors as an argument if a knowledge base has already been selected at the top level.
Once an editing session begins, the options are sufficiently different as to make impractical a
common editing language for rules, networks and tables.

These screens represent an approximation of the final interface. Continued use of the
interrace warrants regular refinements and modifications.

19

The first screen is the top-level screen for ADVISE. At the top of the screen are two
windows - status and history. The purpose of the status window is to capture diagnostic
output from other ADVISE modules (that mayor may not run in the background) and allows
the user to examine that output at will. The history window was designed so that the user can
see where he's been in the system. The history window might indicate, for example, what
windows if any are currently overlapped. At the bottom of the screen is a global menu that
may change from time from time, depending on the interaction with the user. Options here will
generally be extraneous things to do and not directly related to knowledge engineering tasks.
The main window on the left allows the user to select a way of looking at a knowledge base.
The right window offers control scheme strategies, as well as manifestations of these control
schemes - actual consultation systems.

Here the user is selecting the PLANT/ds consultation system.

·,,1 stor~

ADVISE 1.0

Knowledge AcquisItion and Malntenence

(Rules)
(Networks)
(Examples)

Consultation Systema

(Backward ChaIning Theorem Pravlng)
(InformatIon TheoretIcal Utility Me_surs)

(PLANT/cd) ,
(TURF)
(8A8Y)

(Selec~ Kn~ledg8 Base) (Help) (UtilItIes) (QUIl)

20

This screen shows the initial entry into PLANT/ds. Note that the plant window obscures
all the other options on the top-level window (except for the extraneous ones at the bottom).
PLANT is not open to modification by the naive user, hence he is not allowed to play with
control schemes or knowledge bases at the time he runs PLANT.

ADVISE
PLANT Ids
Version 4.6

PLAtiT is a computer!;ted agrtc Ituea 1 consul t.nt
for providing assistance in diagnosing soybean
diseases common in Illinois. You will be asked
to answer specific questions about the diseased
crop and its environment.

Press RETURN key to continue I

ADVISE 1.8

rllstory

(Select Knowledge 6ase) (Help) (Utilities) (QUIT,

21

The PLANT window allows plant to run in a window as if it were on a terminal. This
allows programs to run in the window system without any modification whatsoever. Of course1

programs being developed now make explicit use of window management routines 1 such as the
network editor. (See later screens.)

ADVISE 1.8

Quest10n Form 1. Diseased Areas,
17 working hypotheses.
a rejected hypotheses,

Condit ion of Fruit Pods:

Condition of Seed:

(;ondl t Ion of It!!avQs:

Condition of Roots:

Condition of Stem:

":-< I, - make ;}f'l entry
"4?" er~se an '9nt,.ry

(I) Normal

tJorma I

Normal

Normal

() Norma I

) Abnorma 1

Abnorma 1

Abnormal

() Abnormal

() Abnormal

SPACE -- move cursor fOf\~~rd
BACKSPACE - move cursor back"Juds
ESC - leave this page of q'J!!st ions"?" get help for this question

"0" see other options (editing. Info. hypotheses. rUles. QUiting)

(Select Knowledge Base) (Help) (Utilities) (QUIT)

liistory

22

After exiting PLANT, the user returns to the top-level window. Here the option of
looking at a knowledge base as a network is being selected.

1story

ADVISE 1.8

Consultation Systaas

(Backward Chaining Theorem Proving)
(Rules)

Knowledge Acquisition and Maintenance

(Information Theoretical Utility Measure)

"'31!·mnJ.,
(Examples)

(PlAMT/d!I)

(PlANT/cd)
(TURF)

(BABY)

(Select Knowledge Base) (Help) (Utilities, (QUIT)

23

The screen below shows the initial entry into the network editor. If there were other
facilities relating to networks the user would instead get a menu of available options from
which to select. Since no knowledge base was selected prior to selecting networks, the network
editor prompts the user for one. If a knowledge base had been selected, the network editor
would have tried to open that knowledge base.

Unlike the PLANT window, the editor does not obscure all the options on the top-level
window. Conceivably, a user may want to view the same knowledge base as rules, networks,
and tables. In addition he may want to transfer data. between the two. For example, a user
could create a rule in the rule editor and add it as a node in a network by using the mouse to

"pick up" the rule from the rule window and "ca.rry" it to the network editor window:

.
.....,. . .
1istory3tatua

ADVISE 1.9

Consultation Systems

(8ackward Chaining lheorem Proving)
(Rules)

Knowledge AcquiSition and Maintenence

(Infonnatlon lheoretlcal Utility Meaaure)
(Networks)
(Examples)

ADVISE

Network Editor

Enter a network name:

P ter r~ UDstDd in ut

(Select KnOWledge Base) {Help) {Utilities) <QUIT)

'Currently this transfer of data is not implemented.

24

This screen shows the display of the selected network along with the main menu of
options. At this level, options are peculiar to the individual programs and the menus are the
individual program's responsibility. The top-level menus provide all the options by which
these lower levels may be entered, and are meant to be as flexible as possible without imposing
any arbitrary language for starting up a variety of knowledge engineering tools.

Istory

ADVISE 1.8

Consultation Systems

(Backward Chaining Theorem Proving)
(Rules)

Knowledge Acquisition and Maintenance

(Information Theoretical Utility Measure)
(Networks)
(ExlIII1ples)

a I' C h 1
contain-top

b-3
lsa

...brick

. ing-unit
orient,tlQn

horlzontll
~cntajn-left-sjde

b-2
is.

brick
lsa

bu nding-un It
support

b-3
isa

brick

,. . <lIp. or R! ht. I"""'l B'lttons f",. M... "

(Select Knowledge Base) (Help) (Utilities) (QUIl)

ile-,v I·ia '" Ilode

Vlsibl'i! Arcs

Ghange Arc Sf Hdth

Ch~nge Tuple ,;ceadth

Help

CHAPTER 3

The Network Editor

3.1. Introduction

The network editor provides the facility for directly manipulating and editing Advise
knowledge bases. Previously, when a knowledge base needed to be changed, either a text file
(which is frequently not an accurate representation of an ADVISE knowledge base) had to be
edited or the program that created the knowledge base must also include code to alter the
knowledge base. For example, the only way to alter the PLANT knowledge base was either to
text edit backup knowledge base files or run a rule parser on new input rules. QUIN, a
program for editing knowledge bases represented as relational tables (Spackman 1983), is
available but has miniufal benefit for the rules and network representations of currently
implemented systems.

This chapter describes the network editor, which provides ADVISE with the capability for
interactive manipulation of knowledge bases. A brief description of the ADVISE knowledge
representation is provided below followed by the features of the editor and a. presentation of a
sample interaction.

3.2. The ADVISE Network Representation

The basic structure for representing knowledge in ADVISE is a tuple. A tuple is similar
to a list in LISP. Nodes are like LISP atoms (nodes cannot be tuples), and a tuple is just a list
of nodes. The second node of the the tuple usually has specia.l meaning as a relation or arc
between the head node and subsequent nodes in a tuple. A typical tuple looks like the one.
below.

(headnode arc subnode1 subnode2 subnode3 ...)

or course, the same head node can have many arcs (relations) under it. These can be
represented simply by additional tuples as follows.

(headnode arc! subnodell subnode12 ...)

(headnode arc2 subnode21)

'(head node arc3 subnode31 subnode32 subnode33 ...)

For efficiency reasons the above tuples would be represented internally as follows.

(head node (

(arc! subnodell subnode12 ...)

(arc2 subnode21)

(arc3 subnode31 subnode32 subnode33 ...)

))

25

26

In the actual implementation of this representation, nodes are memory addresses. Nodes
have printnames associated with them as well as being associated with the tuples in which they
appear as head node. The ADVISE tuple manager (see Chapter 11) handles all the
manipulations of the knowledge base on the tuple level. The network editor simply makes the
appropriate calls to the tuple manager based on its interaction with a user.

The tuple representation represents an important generalization over the basic concept of
semantic networks (as described, for example, in [Winston84J). Thinking about tuples in light
of these networks, each tuple with the same head node can be considered a slot, each slot has a
name (arc) and a value. Slot/value combinations are also known in ADVISE as attributes. The
generalization over other representations is that slots or attributes can have many values
associated with them. Thus, _-::nilar slots can be combined into a single slot

(house «has-room living-,.'Ym dining-room bedroom kitchen)))

or a. single slot may have several values associated with it, for example, both a qualitative and
quantitative value.

{block-l ((orientation vertical 89.5»)

The ADVISE representation of knowledge via tuples is a general mechanism for representing,
not only networks, but rules and relational tables as well. These representations, however, are
beyond the scope of this chapter.

3.3. Features of the Network Editor

The network editor is a menu-driven interactive program with modest use of graphics,
which runs on a Sun-2 Workstation. The interface is written on top of the SunWindow
package developed by Sun Microsystems, Inc. (See Chapter 4). Naturally, being menu-driven,
it is easy to figure out how it works just by pressing the right buttons. Hands-on
experimentation is the best way to learn to use the editor. For a detailed user's guide see'
[Channic85j

The following sections describe the display of networks and the options available for
editing networks,

3.3.1. Screen Representation of Networks

In displaying a network, a non-graphic approach was taken to allow minimum
modification for running the program on machines without graphic capabilities,
Nevertheless, the network structure is readily apparent as the screens in Section 5.4
demonstrate. Nodes are represented in boldface. Arcs under nodes are not in boldface, and
are set one line below and indented from the main node. SubnodeB under arcs are placed
similarly under the arc. Additional subnodes are placed on the same line immediately
following the preceding subnode.

- The only other thing a user need know in order to use the network editor is how it
clips the network to fit on a display. Ther ere three parameterB which alIect the display
namely, depth, arc breadth and tuple breat:.~n. Depth is the number of arcs down Crom the
main node to display. Arc breadth is the "':mber of arcs to traverse from each node. And
tuple breadth is the number of subnodes >0 display under the head node. How these
parameters affect the display will be seen in the interaction section.

27

If in spite of these parameters the network still cannot fit on the screen, the network
editor leaves markers that indicate information has been clipped from display. At the top
level of the network, these markers are arrows that point in the direction of the missing
information. Menus are available at these markers to scroll the top level of the network in
order to see the missing information. Beyond the top level of the display, missing
information is indicated by a string of dots - " ... ". Missing information at this level can
usually be viewed only by descending the network to make this level the new top level and,
if necessary, scrolling or changing the appropriate parameters.

3.3.2. Local Editing Options

At each node or arc in the network, two sets of options are available. One set of
options affects the node or arc itself, the other set affects the environment around the node
or arc. An example of a local option is changing a printname of a node. An example of a
global option is adding an attribute after a node. Various local options are discussed in the
remainder of this section. The following section describes the global options.

Options Available When Not At an Arc or Node

New Main Node 	 Allows you to enter the name of a node

which will become the new top node in the display.

Visible Arcs 	 Allows you to select a subset of arcs to follow

in displaying the network

Change ***** 	 Allows you to enter a new value for uu* depth,

breadth, or tuple breadth which will affect

the display accordingly

Back Up 	 If present in menu, allows ascension of the network

to the previous top node

Help 	 Prints this message

28

Change Arc

Change Printname

Delete Attribute

Yank Arc

Yank Attribute

Make Invisible

Enter Dictionary

Help

Change Node

Change Prin tname

Delete From Tuple

Yank

Make Focus

Enter Dictionary

Help

Options Available from Ares

Allows a new arc to be inserted in place

of the arc in the current attribute.

Allows the printname of the current arc to be

changed EVERYWHERE it occurs in the network.

Removes this arc and all subnodes from underneath

the head node, i.e. the entire tuple is removed.

Places this arc into the arc buffer to be used
in subsequent Put Arc operations

Places the attribute (this arc and all nodes

underneath it) into the attribute buffer to be

used in subsequent Put Attribute operations.

Inhibits the display of this arc and all other

occurrences of this arc as well as everything

underneath them.

If an arc, does not appear in the dictionary,
this option allows you to put it there.

Displays this message.

Options Available at Nodes

Allows you to change a numeric node to a new
number or to a new node.

Allows you to change the printname of this
node EVERYWHERE it occurs in the network

This node is removed from its current tuple position.

Allows you to yank this node into the node
buffer for subsequent 'Put Node' operations

This node becomes the new top node in the
display of the network.

If the node is not in tbe dictionary, you

may enter it there if this option is present.

If and only if a node is in the dictionary,

it can be made the main node via the

'New Main Node' option on the Main Menu

Prints this message

29

3.3.3. Global Editing Options

Global editing options reflect options that affect the environment of the node or arc
pointed to by the mouse.

Options Available When Not at an Arc or a Node

Edit/Create 	 Start a new session with a new network

Write (Backup) 	 The edited network will be written to the

file given at startup

Write {Text} 	 A text representation of the edited network

will be written to a specified file.

Quit 	 Graceful exit from a session, updating the

network

Abort 	 Immediate exit from editor, no update.

Help 	 This message

Options Available from Arcs

Add Node 	 Allows a node to be added immediately under

the current arc in the attribute in which

the current arc occurs. Nodes presently

under the arc are shifted to the right.

Add Attribute 	 Allows an attribute (an arc followed by zero

to 254 nodes) to be added under the main node

below the attribute which contains the current

arc.

Put Node 	 The contents of the node buffer will be put

immediately under the current arc in the

attribute in which the current arc occurs.

Any nodes presently under the arc are shifted

to the right.

Put Arc 	 The contents of the arc buffer will be put

under the main node below the attribute which

contains the current arc.

Put Attribute 	 The contents of the attribute buffer will be put

under the main node below the attribute which

contains the current arc.

Help 	 This message is displayed.

30

OptioIi." Available From Nodes

Add Attribute 	 Allows an attribute (an arc followed by zero

to 254 nodes) to be added under the main node

Put Arc 	 The contents of the arc buffer will be put

under the main node as the first attribute.

Put Attribute 	 The contents of the attribute buffer will be put

under the main node as the first attribute.

Add Node 	 Allows a nod~ be added to the right of

the current n,~ , . :n the ait.nbute in which

the current noc: ,)ccurs.

Put NodI! 	 The contents of the node buffer will be put

to the right of the current node in the

attribute in which the current node occurs.

Help 	 This message is displayed.

:'i.4. A Sample Interaction

In this section, screens are presented that show steps in the construction of a simple
network. The example is chosen to illustrate the features of a network editor, and is not
intended to have any semantics in the context of ADVISE. Therefore any resemblance of the
network to ADVISE systems, living or dead, is purely coincidental. The network represents a'
arch made of building blocks.

31

In the first screen, the network editor has been invoked and a node, 'archl', to be taken as
the root node for the display has just been typed in. The editor must be supplied with a
network name and a root node before it can begin a session. The network name can be passed
as argument or typed in when the editor starts up. If "archl" already existed in the network,
the structure under this node would be displayed under the default parameters. The default
parameters are set to not affect the display, i.e. the window size is the only limiting factor to
the display.

A prompt for menus appears at the bottom of the screen. The user moves the mouse to
the "arch!" node, which becomes highlighted. Pressing the middle button while at the node
reveals the desired option of adding an attribute (slot).

Press Middle or Right Mouse Buttons for Menus

32

Selecting "Add Attribute" brings up a prompt (or the number of nodes (printnames)
including the arc in the tuple which the network editor will add into the network.

Next the user is prompted (or the printname or the are. The user types in this name.
When the users presses return, the are appears in the network and the names or the expected
number or nodes are solicited. The user is prompted for each node name.

Mter entering all the nodes in the attribute, the attribute is displayed in the network.
The user can now move to the are to add the next attribute below the first. Continuing as with
the first attribute the user has added all the arcs under "archl". He now wishes to add ares
under the "b-l" node. To do so he must first make b-l the new focus node.

on.lool 1.2.. ' ''' •• • .., .,~. .

arch1
contaIns-top

b-3
contains-left-slde

b-2
conta

33

"b-l" becomes the new focus node. The user has used "Add Attribute" as before to add
all the appropriate nodes and is now ready to "Back Up" to the previous root node. "Back
Up" is an option from one of two menus that aren't associated with any node. The other is a
global menu with options such as editing a new file, writing this file, quitting, etc.

-1
Isa

brick
!fupport

b-3
orientat ion

vert lea 1

Visible Arcs

Change Arc 8re'ldth

Chong .. lUll Ie Br'?'Jth

Help

.•

34

Now the network for "archl" is complete.

At this point the user may enter a new root node, such as "arch2", and create a network
from there or he may choose to alter the display by changing depth, for example.

a I' C It 1
contains-top

b-3
isa

brick
!sa

build lng-un It
orientation

horizontal
conta1ns-Ieft-side

b-2
isa

brick
isa

bu tld lng-un it
support Mat", MIII'IU.:' , • •

b-3
Isa

brick ',j,,\lJle Arcs
isa

but ld tng-un tt
or 1o;,nt. t ion ... CI'IIIl1ge. OepUq..· .•

hal' izonta I ('h~nfJ9 Arc flr e~or.h
orlent~tion ';I"nge \'Jple Bre.dth

vert ica I

containw-right-side
 Help

b-l
tsa

brick
isa

bu Od ing-un it
support

b-3
lsa

brick
isa

but Id lng-un tt
orientation

horizontal
orientatton

vertical

35

The user has indicated he wishes the depth changed from an "unlimited" default to 2.
The network display is clipped accordingly.

Il " C h 1
contains-top

b-3
lsa

brick
orientation

hor lzonta 1
contalns-left-s1de

b-2

brick
suppoo·t

b-3
or1entation

vert Ica'
eontains-rjght-sjd~

b-l

brick
support

b-3
orientation

vert lea 1

36

Instead of limiting the depth, the user may have chose to limit the breadth of the network
instead. Another way to alter the display is by making arcs invisible. With the breadth a.nd
depth reset to their default values, the user wants the "isa" links to disappear from the display.

;ill'chl
contains-top

b-3
Isa

brick
lsI.

bu lId lng-un It
orientation

hor Izonta I
contains-left-side

b-2
In

brick
lsa

bul1dlng-unlt
support

b-3
lsa

br

orIentation
vertical

contalns-rlght-slde
b-l

Isa
brick

Isa
bu lId lng-un I t

support
b-3

Isa
brick

Isa
bu lId lng-un It

orientation
horizontal

orientation
vertical

37

This action, as did the change depth option, also caused significant clipping to the
display. Still another way to limit the display would have been to specify a subset of the visible
arcs as the only ones to be displayed. For example, the user has could select the "contains"
arcs and the "isa" arcs to be the only ones visible. This would allow the user to see inheritance
relationships.

Now the user decides to end the session. He presses the'middle mouse menu for the the
global option menu. To get a textual representation of the network written to a file the user
can choose "Write (Text)". After the user has typed in a file name for the text file, the system
notifies the user of success (or failure). The textual representation for this network is shown in
Figure 6. Now the user "Quits". The actual network is written to file given at the start of the
program.

• n I' C h 1
contains-top

b-3
orientation

hor izonta 1
contains-left-side

b-2
support

b-3
orientation

hor izonta 1
orientation

vertical
contains-right-side

b-l
support

b-3
orientation

hor Izonta 1
orientation

vartical

Enter name of text file: arches.text
arches.text : Successfully Written

38

(archl (
(contain-top b-3)
(contain-left-side b-2)
(contain-right-side b-l)))

(contain-top ())
(b-3 (

(isa brick)
(orientation horizontal)))

(contain-left-side ())
(b-2 (

(isa brick)
(support b-3)
(orien tation vertical)))

(contain-right-side ())
(b-l (

(isa brick)
(support b-3)
(orien tation vertical)))

(is a ())
(brick (

(isa building-unit)))
(support ())
(orientation ())
(vertical ())
(horizontal ())
(building-unit ())

Figure 6: The textual representation of tuples for "arche~" .

CHAPTER 4

QUIN

4.1. Introduction

This chapter describes the QUIN (QUery and INference) program. QUIN is a tool for
database management and analysis. It represents a marriage between relational database and
inductive inference technologies. Its purpose is the management of large amounts of data for
input to and output from several programs that use induction to generate knowledge from
examples. It has potential applicability in the logic-based analysis of data and in the creation
of knowledge for expert systems. This description is adopted from the Masters thesis by
[Spackman82] and the user is referred to that document for a detailed description of the system.

QUIN may be used for the management and analysis of data. Management here refers to
the creation, retrieval, and modification of the data, while analysis refers to activities that
attempt to discover more about l)interrelationships within data and 2) phenomena that
produce those interrelationships. These operations can be either data management (relational)
operations or machine inference (inductive) ope~ations (Figure 7).

INF"E?E:SCEREL'-T:C!'-lAL
0/"5:1'< ... 7:0SS OP5:R~7:0SS

Figure 1 : Operations available in QUIN.

39

40

ra.....,
data

)
inference: rules &.

operation:; " descrip
tions

'" ,...-----,/
human
critic

Figure 8 : The knowledge refinement cycle.

The induction programs that QUIN interacts with form a set of inference utiHties that
can be useful in sequence or in cycles with each other and the human critic. The databases
to test and experiment with these algorithms are more easily handled with databa,.
management techniques that store, modify, and restructure data for input to the inference.'
programs. The cycle of knowledge refinement by iteration of the mechanized inference with a
human critic is illustrated in Figure 8.

4.1.1. The Relational Model

This chapter gives a brief overview or the relational model of database organization
and describes the interpretation of the model by QUIN. The concept of a table of data and
the way it represents the mathematical notion of a relation is fundamental to the relational
model of data used by QUIN. The model also includes the concepts of keY8, normalization,
and relational operationa, each of which will be discussed in turn.

4.1.2. Relational Tables

A relational table is simply a table that represents a relation. Tables are familiar as
a format for representing data. Consider Figure 11, an example of a table of clinical
laboratory values obtained from blood specimens.

In Figure 9 each column corresponds to an attribute and each row represents an
individual data object. The values within each row of the table represent the description of
an object with respect to each of the attributes. Thus 8pec# refers to the specimen number,
while Hgb, MeV and RBC . ..morph refer to the hemoglobin, mean corpuscular volume and
red cell morphology of the specimen. These four names (spec#, Hgb, MCV and

41

labvals

spec# Hgb MCV RBC.JDorph

1024 10.3 78 microcytosis
891 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 9 : Clinical Laboratory Values

RBC.JDorph) comprise the attribute list of the table. The values obtained from each
specimen occupy a single row in the table.

A relation is a set of ordered rows each of length n, (called n-tuples), where the value
of the ith column in a tuple (V;) is drawn from a domain Dr The relation has domain sets

Dr. D
2
••••, Dnl where n is the degree of the relation. Table 2 is of degree four. Its domain

sets include the set of all possible specimen numbers, the set of all possible Hgb values, the
set of all possible MCV values and the set of all RBC morphologies. These domain sets need
not be explicitly delineated in a database, but are important in the mathematical definition
of the concept of a relation. For further reading see [11].

Relations are intuitively well represented as tables, but relational tables in QUIN differ.'
in some ways from the strict interpretation of a mathematical relation. First, the attributes
(columns) are named, and therefore two tables in which the only difference is altered column
order are considered to be equivalent. Second, in relations the rows are not considered to be
ordered, but QUIN allows rows to be ordered according to the values of attributes, e.g. in

increasing order by index number (value-controlled ordering). Third, the" zeroth" row of a
table in QUIN is occupied by the attribute list, and data then follows beginning with the
next row.

4.1.3. Keys

A key is an attribute or combination of attributes that have unique values for each
tuple in the relation. In other words, no two tuples in a relation may have identical values
of the key attributes. This constraint ensures against duplication of data records. Some
examples of keys include an identification number (such as specimen number in Figure 11), a
uniqlie name, or a unique combination of two more attributes, such as name and date. To
allow purposeful duplication of data for use in the inference programs, a table may
optionally have no key defined.

4.1.4. Normalization

A table is said to be normalized (in first normal form) if each entry in the table is
non-decomposable, i.e., a table or set of values cannot constitute an entry in a normalized

42

table. Several levels of normalization have been defined (1st, 2nd, 3rd, Boyce/Codd, 4th,
Projection/Join - see [11]) but the attainment and management of normalization beyond
first normal form in QUIN is left entirely to the discretion and effort of the user.

4.1.5. Relational Operations

The relational model includes operations that take relations as input operands and
give a relation as output. These operations can be classified as traditional set operations
(union, intersection, difference and Cartesian product) and special relational operations
(project, select and join). These relational operations are incorporated within the query
language provided in QUIN. They are briefly introduced here and examples of their
implementation are given in the next chapter.

Union The union of two relations is the set 'If all tuples contained in both relations
(without duplication). To perform the union of two relational tables in QUIN,
they must be union compa.tible, which means they must have identical
attribute lists. The same constraint applies to the operations of intersection
and difference.

Intersection Intersection comprises the set of tuples common to both relations.

Difference The· difference of two relations
relation but not in the second.

is the set of tuples contained in the first

Product The Cartesian product of two relations is the set made up of the concatenation
of each of the tuples in the first relation with each of the tuples in the second.

Selection Selection provides a subset of tuples from a relation that meet certain
selecting criteria. It produces a row-wise or horizontal subset of the relation.
For example, a selection requiring the specimen number to be less than 500
from Figure 9 would give the result found in Figure 10.

Projection Projection, on the other hand, provides a column-wise or vertical subset of the
relation. Redundant tuples are eliminated from the resultant relation. For
example a projection of the RBCJllorph column would yield Figure 13.

Join Join is slightly more complicated than selection and projection. It produces a
combination of two (or more) tables based on all attributes they have in
common. There are really several different kinds of join, the one referred to

labvals

spec# Hgb MCV RBCJllorph
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 10: Results of Selection Operation

43

labvals

RBCJIlo~ph

microcytosis
normal
poikilocytosis
anisocytosis

Figure 11: Results of Projection Operation

here being the natural ;'oin. The resultant table will have a tuple for each pair
of tuples in the original tables that share identical attribute-values for every
attribute the tables share. If the original tables have no attributes in common
then the resultant table is the Cartesian product of the two tables. If no pairs
of tuples have identical attribute-values (assuming a common attribute) then
the join results in a null table. For examples, see sedion 4.2.1. and Figures 17
and 18.

The operations of Figure 16 can be incorporated into a powerful retrieval language
called a relational calculus. The following chapter describes the fundamental constructs of
the language QUIN uses as such a calculus and retrieval language.

4.2. Data Language VL

This chapter describes the capabilities and use of the VL data language used by QUIN ..
VL instructions provide the capabilities for relational table creation, retrieval and modification.
The language is easily learned and requires a minimum of procedural specification so that it is
reasonable to expect that users with minimal computer background could quickly learn and use
it.

4.2.1. Table Creation

The instructions for creation of tables are define and add. Define creates an empty
table and sets up the specifications for the attribute list and the key, while add places new
tuples into a table.

4.2.1.1. Define

This instruction specifies a new table, its name, the names of the attributes, and
(optionally) the name(s) of the key(s). The names of tables and attributes must begin
with a letter and can contain any combination of letters, numerals, and the characters
"#" and "--':'. No two tables may have the same name, nor can a table-name be the
same as any attribute-name or reserved word. A table may not have two identica.l
attribute-na.mes, but two different tables may (a.nd often do) share a. common
attribute-na.me. Keys are optional but if declared they should be the first (i.e., leftmost)
attribute(s) in the table.

http:attribute-na.me

44

Consider as an example the definition of a database that keeps track of results of
blood tests on patients, as in the example in the previous chapter, Figure 11. The table,
called "labvals", stores the information on specimens and the values measured. The
unique attribute (key) of each record would be the specimen number. The way to create
this table using the define instruction would be:

define labvals (spec#, Hgb, MCV, RBCJIlorph) key:= spec#

We could also define a table called "spec" to keep track of the dates of individual blood
specimens:

define spec (spec#, ID#, day, month, year) key:= spec#

Another table called "ptrc" would store a patient's identification number, his name, and
his admitting diagnosis:

define ptrc (ID#, name, dx) key:= ID#

4.2.1.2. 	Define Event

An event is a table with only one row. Its purpose is to specify a complete single
data object with attributes that may be found in several different tables, 50 that adding
the event to each of those tables is easier and more reliable. Events are defined by the
define event instruction followed by the event name and then a parenthesized list of
attribute-value pairs. Continuing the previous example, we could define an event that
contains all the attributes of the three tables (ptrc, spec and labvals):

define event El
(ID# := 988,

name := Jones,

dx := iron_deficiency,

spec# := 1024,

day := 25,

month:= 6,

year := 1982,

Hgb := 10.3,

MCV:= 78,

RBCJIlorph := microcytosis)

Event "El" records that a blood test was done on patient number 988 whose name
is Jones and whose diagnosis was iron_deficiency. The blood, specimen number 1024,
was drawn on 25 June 1982 and the results showed a. hemoglobin of 10.3, a mean
corpuscular volume of 78, and red cell morphology was microcytosis. The attribute
value pairs in the event definition can be arranged in any order.

4.2.1.3. 	Add

The add instruction places tuples (rows) into a table. There are four forms of the
instruction: one for single row addition, another for multiple rows, one for adding an

45

event to a table, and one for adding an external file of tuples to a table.

(1) 	 A single row may be added as follows:

add (365, Smith, aplastic....anemia) to ptrc

(2) 	 Multiple rows are added in similar fashion:

add to ptrc

(398, Clark, folate_deficiency) (404, Blake, iron_deficiency)

(425, Smith, hemolytic....anemia) (241, Jones, iron_deficiency)

end

(3) 	 Adding an event to several tables is simple:

addEI to ptrc

add El to spec

add El to labvals

(4) 	 Adding an external file named "vIs" to the "labvals" table would be done as
follows!

add vis to labvals

The external file must be set up in tabular form. For example, the file "vIs"
might appear as in Figure 12.

Addition of tuples may be done at the beginning of the table, the end, or before or
after any specified row in the table by using a row condition. All four forms of add may.
be used with a row condition. If no row condition is specified then the addition is done
after the last row of the table. For example, the following places a new tuple at the first
row:

add (425,404,26,6,1982) to specs: [row< 1] .

The 	colon is to be read "such that" and the row condition is of the same form as

891 13.1 90 Normal
555 14.2 88 Poikilocytosis
423 15.5 85 Anisocytosis

Figure 12. Format of File "vIs"

46

re', <1 conditions (see section 4.2.2). The reserved word last may be used to insert
before the last row:

add datafile to specs: Irow< last]

The condition "[row> last]" would be redundant because that is the default. If there are
not as many rows in the table as specified in the row condition, the new tuples will be
added at the end of the table.

4.2.2. Table Retrieval

The retrieval commands are get and let. Simple retrieval of an entire table requires
only listing the table name after the keyword get. Selected portions of the table can be
retrieve:; and displayed also (see sections 4.2.1. and 4.2.2.). A new table can be created with
the key~-"ord let followed by the name of the new table, ":=", and the description of the
new table. For example, the following command creates a new table called "tests" which is
the same as the "labvals" table:

let tests := labvals

The new table would be created but not displayed. The command to display the table is:

get tests

Figure 13 would then be displayed. It would be identical to the "labvals" table except for
its name.

The combined effect of the get and let could have been accomplished by simply saying:

get tests := labvals

tests

spec# Hgb MCV RBCJDorph

1024 10.3 78 microcytosis
891 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 13: Result of Retrieval

47

Symbol Meaning

*
v
&
-
+

Join
Union
Intersection
Difference
Append

Figure 14: Relational Table Expression Operators

The let command is used to create temporary tables that can be used as working
copies or can be saved as new permanent tables. It never displays the results of its work.
The get command always displays its results, and can also be used to create temporary
tables. A wide variety of more complicated retrieval instructions can be specified by
appending the appropriate modifying expressions to these two commands. These additional
expressions are specified by a relational table expre86ion (see section 4.2.1.) optionally
followed by a VL condition (see section 4.2.2.).

4.2.2.1. 	Relational Table Expressions

The table expression specifies the table or tables and the attribute or attributes to
be retrieved. All operations described in section 3.4 except selection can be specified with
a table expression. When more than one table is listed in an expression, tables must be
separated by an operator. The operator symbols and their meanings are given by Figure
14.

spec

day yearspec# monthID#
1024 988 25 6 1982
425 404 26 6 1982
850 405 27 19826
455 I 406 27 6 1982

Figure 15 : The "spec" Table

48

These operators take precedence over all others in the :val instruction. All tables
listed together with the logical operators (union, inters,,: .. difference) and the append
operator must be union compatible, which means that' , _, must have identical lists of
attributes, in the same order, and of the same type (e.g. if attribute N is an integer in
one table, it must also be an integer in the other table{s) in the instruction).

To illustrate the use of operators in table expressions, let us assume we have a
table named "spec" as shown in Figure 17.

The following instruction would create a table called uTI" which is a join of the "spec"
and "labvals" tables (the common descriptor being the specimen number):

let T1 := spec ... labvals

The join of tables "spec" and "labvals 'nuld appear as in Figure 16.

If no attributes are listed in th -- ,rieval command (as in the example in Figure
16) then the full set of attributes for tables is retrieved. If a subset of attributes is
specified then the projection of those attributes on the table is retrieved. For example:

get spec'" labvals (ID#, Hgb)

will retrieve a table with two columns. It will be the projection of ID# and Hgb on the
join of spec and labvals. Figure 17 shows the result.

For the purposes of the inference algorithms it is sometimes not desirable to
eliminate redundancy when doing projection, so QUIN provides two other methods of
specifying projection. One method, using &, simply does a "column selection" and
retrieves all rows even if redundant. The other method, using --IF, eliminates redundancy
but provides an additional column that shows the number of times that a particular row
occurs. All three forms of projection instruction are illustrated in Figures 20, 21, and
22.

An attribute may be replaced by a function of an attribute in the retrieval
expression. Available functions include min, max, sum, count and domain. Figure
21 gives an example of the use of the min runction.

1'1
days,pec# month year Hgb MCV RBCJ1lorphID#

1024 988 25 6 78 microcytosis1982 10.3
425 404 26 microcytosis6 1982 11.1 78
455 406 77 microcytosis27 6 1982 10.4

Figure 11}: Join of "",ec" and "labvals"

49

ID# Hgb

988 10.3
404 11.1
406 lOA

Figure 17: Projection & Join

get labvals(RBCJllOrph)

labvals

RBUJIlorph

microcytosis
normal
poikilocytosis
anisocytosis

Figure 18 : Ordinary Projection

get labvals(RBCJnorph,#)

labvals

RBCJnorph #
3microcytosis

normal 1
poikilocytosis 1
anisocytosis 1

Figure 19 : Projection & Count

get labvals(RBCJnorph,&)

labvals

RBCJnorph
microcytosis
normal
poikilocytosis
anisocytosis
microcytosis
microcytosis

Figure 20: Projection with Redundancy

50

get labvals(min(Hgb))

labvals

Hgb

10.3

Figure 21: Use of "min"

4.2.2.2. VL Conditions

A VL condition is the part of a retrieval command which specifies selection. The
following example illustrates the major features of a VL condition. The condition begins
with a colon which should be read "such that."

get Iabvals : [Hgb = 14•. 16.1 [RBC.Jllorph < > normal] v [Hgb < 14]

The command would retrieve all rows from table "labvals" in which either a) the Hgb is
in the range 14 to 16 and the RBC.Jllorph is not normal, or b} the Hgb is less than 14.

A VL condition thus consists of a disjunction of one or more complexes.
Complexes consist of a conjunction of one or more selectors. In the instruction in Figure
21, "[Hgb = 14 .. 16j" is a selector. Selectors may be separated by the conjunction
operator &, or simply listed one after the other, :1S in the complex "[Hgb = 14..16]
[RBC.Jllorph < > normal]" in above. Selectors or ~':"'JUpS of selectors (complexes) may
be separated by the disjunction operator v. Thus a condition is a "sum of products" of.
logical (VL) selec tors.

VL selectors are used to specify the body of the condition. They can be of two
types, row-oriented selectors ("tuple calculus") and set-oriented selectors ("domain
calculus"). The example given in the Figure uses row-oriented selectors.

A row-oriented selector consists of a left square bracket, an attribute name (the
referee), a comparison operator (=, < >, <, >, <=, >=), a comparison value (the
reference), and a right square bracket. The comparison value may be a single value (e.g.
"normal"), an arithmetic range of values (e.g. "14 .. 16"), an arithmetic expression (e.g.
"Hgb + 2.5"), or a list or values, ranges, or expressions separated by the "or" operator
(e.g. "3.. 5 v 7 v Hgb/lO").

A domain-calculus selector consists of a referee set, a set comparison operator and
a reference set. The referee set is called an image set of the attributes being retrieved.
An image set is the set of values of the image attribute (or of unique combinations of
values of the image attributes) corresponding to each retrieval value (or unique
combination of retrieval values). The comparison operator is the same as those in the
tuple-calculus selector (using =, <>, <, >, <=, >=) but the meanings are set
comparisons instead. Thus "=" tests set equality and" <" tests to see if the first set is
a proper subset of the second. The reference set has the same attribute list as the referee
set but may contain a VL condition within it, as in this example:

51

get spec(ID#) : {day,month,year} = {day,month,year:[ID# = 365]}

Day, month, and year are the image attributes. {day,month,year} specifies the referee
set. It may also be written {day ,month,year : ID#}, which reads "the set of day
month-year triples corresponding to each ID#." It is calculated anew for each unique
value of ID#. the retrieval attribute. [ID#=365j is the VL condition within the
reference set. The meaning is that the user wants to retrieve the ID# of all patients who
had specimens done on precisely the same days as patient number 365. The same thing
could be accomplished using the tuple-oriented calculus only by repeatedly doing the
following for every value of n:

get spec(day ,month,year):[ID# = nJ

The results would then have to be compared with the result of:

get spec(day,month,year):[ID#=365!

and those values of ID# for which the results matched that of 365 would be the final
result.

4.2.2.3. 	Ordering of Rows

All retrievals may optionally have an ordering condition. The phrases "order up
on" and "order down on" are appended to the retrieval instruction, along with the name
of the attribute to be ordered on. For example, the instruction

get ptrc order up on ID#

will retrieve the table "ptrc" in ascending order of ID numbers.

4.2.3. 	Table Modification

The table modification instructions are change, delete, and save.

4.2.3.1. 	Change

The change instruction is used to assign new values to existing rows in a table or
to change the name or type of an attribute. When the user types:

change tablename

he enters a "sub-instruction" mode in which all commands refer to the table being
changed. A working copy of the original table is made for security in case of error, and
the user's prompt is "> > ". To leave the change mode the user types abort or exit,
with only the latter exit resulting in factual modification of the original table.

There are several commands available in the change mode. The user may use
ordinary assignment statements to change the values of each attribute. Some examples
are given in Figures. The assignments may be followed by a VL condition that restricts
the assignment of values to specific rows of the table. Attribute names may be changed
by specifying the condition "[row=O]". The display sub-instruction displays the
working table; the get sub-instruction displays the original table before any changes. A
simple change instruction sequence ma.y be entered as shown with Figure 22.

52

The commands in Figure 23 illustrate how the table might be modified within the
change mode.

4.2.3.2. 	Delete

Delete is used to remove rows or columns from a table, or to remove a table from
the database. Each of these three functions is accomplished by a different form of the
instruction.

(1) Deleting rows is accomplished by specifying a VL condition:

delete ptrc : IID# = 250 •• 500]

This will delete all rows in table "p" where the ID number is in the range 250 tc
500 inclusive.

(2) Deleting columns is accomplished by specifying a projection:

delete spec(day ,mon th)

This will delete the day and month columns from table "spec".

(3) Deleting an entire table or event is done by simply giving the table name:

delete Tl

This will remove the table named "TI" from the database.

4.2.3.3. 	Save

Any tables created with the get or let instructions will be given temporary status;
save is the instruction that changes temporary to permanent status. Tables with
permanent status will stay in the da.tabase after a session is completed, '.vilereas tables
with temporary status will be deleted at the end of a session.

4.2.4. Help

The system has on-line help available to describe the use of each command. Help can
be obtained by typing help or by simply typing a question mark at a prompt. If specific
information is desired about a particular command, the command name should be entered
following the word "help," followed hy a carriage return.

4.3. 	Inferential Operators

This chapter describes the inferential operations on an informal conceptual level.
References are provided for more detailed explanations of the algorithms and the theories
supporting th~m. fn the current implementation, only cluster and diff are operational.
However, the same methods of interaction can, in principle, be used with all the inference
programs mentioned here. There are many inference commands described for QUIN. These all
interface with otill'f c')i'tware through relational tables. The general format of the commands
is:

command(pa.rameter 1 ,parameter2,...).
Each command has at least two variants. One variant allows the user to wait for results, and
the other aHows him to run the inference command as a background process (allowing him to
proceed on other QUIN commands concurrently with the execution of the inference command).
Other variants exist for some commands for specifying a result table name or giving non

53

> change labvals /* enter change sub-mode * /
ok /* system response * /
> > get /* look at original table * /

labvals

spec# Hgb MCV RBCJIlorph

1024 10.3 78 microcytosis
891 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 22: Original Table to be Changed

> > Hgb := high :[Hgb>16l
> > Hgb ;= low :[Hgb<14J
> > Hgb := normal :[Hgb=14:16]
> > display /* look at changed table * /

chanlte$table

spec# f!gb MCV RBCJIlo~h

microcytosis1024 low 78
891 normal 90 norma.l
555 normal 88 poikilocytosis
423 high 85 anisocytosis
425 low 78 microcytosis
455 low 77 micro~osis

> > end /* exit, making the changes permanent * /
change completed r system response '* /

Figure 23: Table with Modifed Hgb Column

54

default parameters. The current implementation of QUIN has clearly defined the arguments
required for the following commands:

command program format

diff GEM diff(tablel,table2, ... iparmtable,results)
aqll AQll aqll(tablel,table2, ...)
cluster CLUSTER cluster(table,parmtable,results)
esel ESEL2 esel(table,parmtable,results)
varsel PROMISE varsel(tablel, table2, ... ;parmtable,results)
varcont CONYART convart(tablel,table2, .•.;parmtable)
sparc SPARC sparc(vars, vars.con,advices,events,results)

Other commands which are not yet implemented are:

command program format
apply AQll 11
treecon OPTREE !?
varcon NEWVAR ?!

4.3.1. Fetch and Results

In addition to the basic induction commands, there are a couple oC commands Cor
managing processes which have been run in background. These are RESULTS, which
reports the status oC each induction job submitted since the beginning of the current QUIN
session, and FETCH, which permits the results of a background job to be read back into a
QUIN table (the deCault action oC induction programs is to create files which need to be
reread or letched). RESULTS takes no arguments and reports something like the following.

Job-Number PrOlIram Status

1 Varsel done
2 Esel done
3 Gem running

Here, the results of job #1 and job #2 could be fetched. The format of the FETCH
command is :

Cetch(job-n umber ,result-table) ,
where job-number reCers to an entry in the table reported by RESULTS and results-table is
the name of a table to be created for storing the results of that job.

4.3.2. Cluster

The purpose oC the duster operation is to divide a collection oC objects into smaller
groups oC similar objects based upon some criterion or meMure of similarity. Clustering is
the process oC developing a taxonomy or classification scheme for the objects of a study.

The program invoked by the du!!ter command in QUIN i!! called CLUSTER/pal [14J.
The ,reader is urged to consult the references cited for more complete explanations of the
details oC the program's operation and theoretical background. Unlike most numerical
taxonomic techniques, this program uses a "concept-bMed" method of clustering that
produces descriptions of the clusters (categories) that it derives. It also permits the user to
specify the criteria which are to be used to evaluate clusters. One or several criteria can be
maximized simultaneously to produce the optimal dusters. Some of the criteria availabJe to
characterize clusters include:

55

.. the fit between the clustering and the data (sparseness),

• the total inter-cluster differences (degree of intersection),

the number of attributes which singly distinguish between all the clusters (essential
dimensionality), and

• the simplicity of cluster descriptions (number of selectors).

The names and numbers of criteria currently available appear in Figure 24.

The cluster operation is invoked by the following instruction,

cluster (even ts,parameters,results)

where "events" and "parameters" represent the names of relational tables within QUIN,
and "results" is the name of a table which mayor may not already exist (if not it will be
created). Any legal table names may be used in the command. The events table must
contain the descriptions of the objects to be clustered with each object occupying one row in
the table. Each column represents an attribute of the objects in the table. The parameters
table is used to indicate K (the number of clusters to be formed), the criteria to be used and
other optional parameters. The optional results table is the table in the database to which
the results of the clustering will be returned. If no results table is specified, the output of
cluster can be found in a file in the user's working directory.

A simple example of clustering follows, using data similar to the previous examples in
chapter four. In addition to the events table, a parameters table and at least one criterion
table must be prepared before issuing the cluster command. Figure 25 illustrates a
parameters table and table 14 illustrates a criterion table.

The parameters table (Figure 25) has two tuples (rows). The clllSter algorithm will
therefore be run twice, once for each row in the parameters table. The first time it will split
the events into three groups (k=3) and the second time it will create only two groups
(k=2). Criterion "crl" (found in table 13) is defined in the criterion table called
"crl_criterion" (Figure 26). Criterion "1" is sparseness, (see Figure 24). It is the only·

criterion
number

brief
description

1
2
3
4
5
6
7
8

sparseness
degree of intersection
number of events occurring in more than one complex
share of even ts (evenness of cluster size)
number of selectors (simplicity of cluster descriptions)
essen tial dimensionality (dimensionality of differences)
relevant-variable sparseness
relevant-variable-set sparseness

Figure 24: Clustering Criteria

56

parameters

k criterion i

3 crl
2 crl

Figure 25: Parameters Table

crl criterion

criterion tolerance

I 0.0

Figure 26: Criterion Table

events

mcv hgb mchc

0 I 0
2 2 0
1 1 1

3 4 3
3 4 3
4 I 4
5 2 4
4 I 4

Figure 27 : Events to be Clustered

57

criterion which will be used by the program in this example. The tolerance is a measure of
the degree oC error allowed in fitting the clusters to the criterion. The events table Cor this
example is shown in Figure 27.

The values in the events table must all be integers. Attributes, such as those
represented here, which ordinarily have continuous linear values must be made discrete
before cluster can deal with them. The meanings oC the values in the events table are given
in Figure 28, with the values from the events table in the "#" column followed by the range
of real values which have been assigned to each value.

When the sample given in Figures 28-30 is run, cluster splits the events into three
groups as in Figure 29.

This is a particularly simple example, but it gives the flavor of the clustering
operation. In this case, cluster has discovered three groups which can be interpreted as
being cases of microcytic anemia (group one), normal blood counts (group two). and
macrocytic anemia (group three). For Curther examples of the use of cluster see [22].

4.3.3. Diff

Diff (differentiate) takes a number of classes oC events that have already been
categorized, and attempts to find the conceptually simplest rules that will predict the
category oC each event, i.e., discriminate between the categories. The algorithm invoked by
the command is called .t1q and is incorporated in the program called GEM [15].

The following is an example of the use of the diff instruction to create rules for
differentiating the groups of objects represented in three tables named grp1, grp2 and grp3.
There are a number oC differences from the cluster operation:

(1) 	 No criterion tables are needed.

(2) 	 The parameters table, an example of which is shown in Figure 30, has a different
format from the cluster parameters table which was illustrated in Figure 25.

(3) 	 The values in the events tables need not be integer only. Discrete nominal values are
allowed in addition to integers. An example of the wayan events table might appear
is given in Figure 31

Note that there still must not be real-valued attributes (e.g. 50.2) but nominal attributes
are allowed. In addition, the type and domain oC an attribute can be declared or the use of
"diff." In the table in Figure 31, the "day" attribute clearly can take on seven values which
are ordered and cyclic. Only three of these appear in the table and they are not in order.
To define the domain of this attribute one must first prepare a relational table with one
column containing all possible values which the attribute ma.y have. The values should be
listed in order, as in Figure 32.

Given such a table, the following command will set up a permanent domain for the
attribute "day" which will automatically be referred to whenever the system needs to
prepare "day" as an attribute or the "diff" operation:

domain (day) := weekdays

The "diff" operation recognizes three types of attributes:

• 	 nominal (discrete unordered)

• 	 linear (discrete ordered, such as "rainfall" in Figure 32), and

• 	 cyclic (discrete with cyclical ordering, such as days of the week).

58

mcv
o <60

1 60 to 69

3 80 to 94

5 >104

2 70 to 79

4 95 to 104

hgb

<8= 0

9 to 10

4 15 to 16

7 >20

2 11 to 12

3 13 to 14

5 17 to 18

6 19 to 20

mchc
o <27

1 27 to 32

2 33 to 38

3 to 44

4 '3

(mcv normal = 80 to 94 eu microns)

(hgb normal = 14 to 18)

(mche normal = 33 to 38 %)

Figure 28: Meanings of Values in Events Table

Group one : events 1,2,3
Group two : events 4,5
Group three: events 6,7,8

Group one is described as:

mcv<80 and hgb=9..12 and mchc<33

Group two is:

mcv=80..04 and hgb=15.. 16 and mchc=33..38

Groilfl three is:

mcv > 94 and hgb=9..12 and mchc=39•.44.

Figure 29: Results of Clustering

59

params

echo maxstar

pcve 10

Figure 30: GEM Parameters Table

lup1

day rainfall hours...sunlight

Monday light 6
Saturday none 12

; Wednesday heavy 2

Figure 31: GEM Events Table

weekdays

names

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Figure 32 : Domain Values or Days of the Week

60

The system assumes that integer values are linear and that alphabetic values are
nominal. When the opposite is true or when the attribute is cyclic, the following instruction
can be used to define the type of the attribute for use by "diff:"

type (day) := cyc

The abbreviations for nominal, linear and cyclic are nom, lin and eye, respectively.

The instruction format for invoking "diff" is as follows:

dif(grp1, grp2, grp3; params, results)

": "params" and "results" tables are optional. The system ::vides default parameters
GEM if a. parameters ta.ble is omitted. If the "resu!.. ta.ble ill included, the

o.iiicrimination rules produced by GEM will be placed in it. A niable number of groups
(event tables) may be submitted, A semice.on indicates the end of the list of event tables, as
after grp3 above.

4.3.4. Esel

The operation esel invokes Esel [17], a program that takes a large number of examples
and selects a small subset of examples that is most representative of the larger group. The
smaller sample will require less execution time in inference programs such as CLUSTER/paf
or GEM. Very large numbers of examples (more than 200) would probably require
inordinate amounts of processing time, making it useful and efficient to choose a
representative subset.

4.3.6. Varsel

The varsel instruction invokes a program called PROMISE [16] which selects the
most "promising" attributes for differentiating between classes of events. Its output is
therefore intended for use with GEM. The elimination of irrelevant attributes is a
horizontal reduction of the database somewhat comparable to the vertical reduction'
accomplished by esel. The reduction results in reduced execution time in GEM but also
results in the elimination of attributes from consideration by the inference process.

4.3.6. Vareon and Vareont

The vareon instruction (variable construction) invokes a program called NEWVAR
[18] which attempts to use mathematical operations (multiplication, addition) to create new
attributes from combinations of existing attributes. The use of ratios or differences of
existing attributes sometime~ provides simpler and more accurate rules for distinguishing
one class froUl another.

The command vareont, j, Ilsed to access a program named CONVART [19J, a system
for inducing time-dependent information from data. Multiple measurements of an attribute
over time can be changed into a single attribute based upon its time-dependent
characteristics, The induced description of the time-dependent attribute can then be used
in data or input to other inference routines.

4.3.1. Other Operations

The apply • operation tests the performance of induced rules on new events. It
currently a part of the AQll [20) program. The output is a confusion matrix that gives the
percentage of alse positive and false negative decisions for each decision category.

http:semice.on

61

Another inference operation, treeeon • uses program OPTREE [21J to produce
optimal decision trees from extended entry decision tables [23]. It performs the conversion
of VL rules to decision trees (branching logic) for the convenience of the user.

There are three low-level inference operations that are used in CLUSTER/paf that
also could be invoked separately.

(1) 	 Sim' (similarity) takes any two events and calculates a syntactic similarity measure.
The similarity of two events is the inverse of the syntactic distance measure used in
CLUSTER/par.

(2) 	 Reun' (reference union) takes the values of attributes and "collapses" several events
into one event with multiple-valued attributes. For example, the events

(12, medium)
(13, large)

could undergo reference union to become

(12 v 13, medium v large).

(3) 	 Oen' (generalize)' planned operation not currently implemented goes one step
further to take the events that result from reference union and generalizes the results
into more intuitively succinct values. Thus

(12 v 13 v 14 v 15, medium v large v verylarge)

would become

(12 .. 15, >small).
There are other inference programs that may be useful tools or the generation of
knowledge from examples, and they too have the potential to be integrated into the
system.

4.4. 	Macro Language

A macro processor is available to the QUIN user. This is simply a modified version.
of the standard preprocessor (/lib/cpp) for the C language compiler (/lib/ccom) which runs
under Berkley standard UNIX. This handles macro expansion and include file copying for the
C compiler. The significant modifications are a change to the #define directive to allow
multiline macros (the original cpp allowed escaped newline characters in definitions, but they
were essentially deleted from the macro as soon as processed) and a change to the I/O to allow
the preprocessor to communicate with QUIN over a pair of sockets (a standard UNIX message
passing system for concurrently running tasks or processes).

A macro definition begins with #define and ends with the symbol "@". Thus,

#define x(y) sqrt(y) (~IJ

is a macro which does not contain any embedded lines, and

#define x(y ,z)

print("y*z = %d",y*z);

@

contains embedded lines.

62

The other constructs (#ifdef,#ifndef,...) are allowed within macros, an,:,e processor is
noticeably more powerful than the original cpp. For full details, refer to documentation on the
C language or to the UNIX documentation for "cpp". Note that arguments may be omitted
from a macro call with the effect that they become instantiated to null strings and returns
TRUE for "#ifndef'.

4.6. Program Description

QUIN is written in Berkeley PASCAL for the UNIX operating system. It consists of three
major segments of about 2000 lines of code each. The files containing these segments are
named qqmain.p qqparsr.p and qqex.p. Qqmain.p contains the initialisation routines, the
session handling routines, and the utility routines. Qqparsr.p contains the command parser,
and qqex.p contains the command executor.

Flow of control through the code follows the pattern of:

1) start in the session routine,
2) parse a command into PT (the parse table).
3) go to the executor and execute the command,
4) cycle

There are also three other small pieces of code, in files named qqprocs.h, qqconst.h and
qqcunc.c. Qqprocs.h contains the external declarations of procedures which are accessed by
more than one segment. Qqconst.h contains the constant, type, and variable declarations as
well as the definition of the qqstatic area. Qqcunc.c is written in the C language and contains
the system dependent operating system caUs or process communication that are not available
directly from PASCAL.

When inference commands are invoked, there are two options .' ''1'' ';':'-~;~'l of the
inference program. If the session is interactive and the user specifies a ,,
inference program is forked and QUIN waits for it to finish before COll.~"l" r
circumstance, (not interactive or no results table specified) the inference program is ;1.3

a separate process independent of QUIN. The 'qq' prefix is attached to every procedure In

QUIN to avoid name conflicts with other ADVISE modules.

The modified macro processor "cpp" is also spawned as a separate process, but input is
only directed into that process when the $sma directiv~ has been given. In fact, the process is
never spawned until the first time $sma is issued.

CHAPTER 5

Rule Acquisition and Refinement

5.1. A Paradigm for Rule Base Development

A standard method for forming an expert system's knowledge base is a generate-and-test
process. There are difficulties, however, in both the generation and testing of knowledge bases.
The source of these difficulties is twofold. First, the expert is trained to make decisions, not to
explicitly state his knowledge. Second, the expert is provided with virtually no aids in either
stage of the process. He must generate his knowledge base from scratch with only the
knowledge engineer's guidance to help him. He must then produce test examples which show
faults in the knowledge base he himself just constructed.

Some relief is provided by expert system development systems, which establish a
framework for expressing knowledge. Such systems give the expert a pre-defined knowledge
representation method, and therefore make the knowledge acquisition process somewhat easier.
However, they may also force the expert to channel his knowledge into a format which does not
fit it. The knowledge representation problem will not be dealt with here. Instead, we will
carefully delineate an area of applicability, and describe new tools for knowledge acquisition
within that area.

Many different knowledge representation formalisms, each applicable to a range of
domains, have been developed in the last twenty years. Unfortunately, some of these
formalisms have been used in areas for which they are not really acceptable. In order to avoid
this trap, the knowledge representa.tion to be used will be exactly defined. Such a presentation
will naturally suggest certain problem types.

The methodology described in this chapter deals only with rules. In a variety of
application areas, an expert's knowledge can best be expressed in the form of if-then rules.
With some extensions to the if-then format, a rule formalism can deal with uncertainty in
information, with weighted conditions and with multiple decisions and associated confidences.
A detailed discussion of the syntax and semantics for rules is presented in [Reinke84].

In this chapter, we are restricting discussion to rule based knowledge. Rules will be
written in terms of discrete, finite attribute values. If a rule specifies a decision, that decision
will be one of a known set of decision classes. If the expert is to present examples of his
decisions, the examples will be presented in terms of the same attributes, and each example will
have a defined decision associated with it. We develop a method which will provide, within this
restricted framework, useful tools for building and debugging rule bases.

6.2. The Standnrd Rule Acquisition Paradigm

Figure 33 shows a How chart of the standard knowledge engineering process. In the
figure, circles represent processes and blocks represent objects (both humans and computer
programs) which participate in the processes. The rule base specification process shown consists
of two major subparts. First, the knowledge engineer must obtain from the domain expert a
list of the variables that are relevant to the problem area. In medical diagnosis systems, for
example, this would be a list of relevant symptoms, patient data and laboratory data. Once the

63

6

KnowledgeDomain

EngineerExpert

Expert

System

Figure 33: The standard paradigm for rule base development.

attributes are defined, the expert may write the rules for the initial knowledge base. At this
stage, in consultation with the domain expert, the knowledge engineer must decide exactly what
needs to be represented and how to represent it in the form of rules. He must consider, for
example, how to deal with uncertainty, with weights on conditions, and with how the rules
should be evaluated.

65

Once this process is completed, the knowledge engineer must proceed on his own to encode
the rules and the inference mechanism which will use them. Due to the complexity of the next
stages of knowledge acquisition, the engineer must be certain that his system is easy to modify
and that he has provided sufficient explanatory facilities so that the expert, when debugging the
knowledge base, can find the causes of problems.

This leads to the third, and most difficult, stage of the expert system development
process. During the rule base refinement stage, the domain expert must test his "pupil" on
pre-classified examples. This process often involves several domain experts using the systems
over a period of months. Once enough difficulties have been noted, the domain expert must go
back to the rule base and make additions and changes to it and possibly to the list of relevant
attribu tes.

6.3. A New Paradigm for Rule Acquisition

The problem with the standard paradigm is that the process relies very heavily on the
time and effort of the very expert whose job should be eased by the system. The entire process
also depends on the domain expert's ability to elucidate and explain his knowledge. All of this
suggests that the expert needs help in building and refining a rule base. Figure 34 shows a new
paradigm for knowledge base construction, aimed at giving the expert help in those areas in
which he is weak. The tools aligned with the expert are intended to work with examples of
expert decisions, as well as with explicit declarations of an expert's knowledge. These tools
should also aid the expert in producing examples that will be of importance.

Under the new methodology, the development of a rule base begins with the expert
specifying the attributes relevant to the problem. Some work has been done in aiding the
expert here through a program that picks important attributes out of an exhaustive list [Baim
82]. At this point, the expert has two options. He may proceed in the standard way, aided
only by a rule editor, or he may choose to present the induction tools with a set of tutorial
examples. The tools will produce a rule base which is guaranteed to work correctly for the
examples given. In either case, the initial knowledge base is constructed, and the expert enters.
the knowledge refinement stage.

Here, the expert needs to produce examples that will demonstrate problems in the rule
base. The testing tools shown in Figure 34 really consist of two parts: a mechanism to suggest
areas where the rule base may not work correctly (i.e. it should suggest testing examples) and a
mechanism that rapidly tests examples provided on the knowledge base and presents the results
in a usable format to the domain expert.

If problems have been revealed in the knowledge base, it must be refined to deal with
those cases which it handled incorrectly. Again, the expert is given the option of doing the
W"ork himself. However, he ma.y present the examples which ca.used problems to the induction
tool, which will refine the knowledge base so that it deals with these new examples correctly.

Note here that the new paradigm completely subsumes the old one. Within the context of
the new method, the expert may still, if he chooses, do all the work himself, aided by the
testing and editing tools. The most desirable course is probably a hybrid, wherein the expert
may define some knowledge which is used to guide the induction process.

Given this paradigm, we can create a description of the software tools that should be
available to the expert system builder. First, we need an efficient, correct method for
generating and refining a rule base using examples. Next, we need tools that will help the
expert generate testing examples and run those testing examples on the knowledge base.
Additional tools to aid the expert in attribute definition would also be desirable. All these tools
should work in the context of a powerful rule language which will be of use in a wide variety of

66

Acquisition

Tools

Domain

Expert

Testing

Tools

Expert

System

Figure 34: Paradigm for rule base development using automated refinement and testing

domains.

The next section presents a program which partially fills the and testing tool slot in the
new paradigm.

5.4. 	The ATEST Tool for Rule Rn'Jnement

For the new rule base acqu 'LlOn paradigm to be effective, the domain expert must be
able to produce testing examples l.vt his knowledge base and apply those examples in order to
assess rule base performance. ATEST is a tool developed specifically for that purpose. It
provides the domain expert with two new capabilities. First, ATEST allows the expert to
rapidly test a rule base on numerous examples under a variety of evaluation schemes. These
evaluation facilities provide information about the overall performance of the rule base and
about the performance of specific rules on specific examples. Second, ATEST provides routines
that check a rule base for consistency and completeness. These routines can be used to point

67

out problem areas in the rule base and to help the expert generate new examples.

Section 5.4.1 presents an introduction to the rule testing terminology used throughout the
rest of this thesis. Section 5.4.2 presents the evaluation parameters available in ATEST and
describes the program's evaluation and trace abilities in detail. Section 5.4.3 presents a
discussion of the consistency and completeness problems and describes the algorithms used by
ATEST to test consistency and completeness in a rule base.

5.4.1. Terminology

ATEST views rules as expressions which, when applied to a vector of attribute values,
will evaluate to a real number. This number is termed the degree of consonance between
(the left hand side of) the rule and the event. The method for arriving at the degree of
consonance, given a syntactically correct rule and an event, varies with the settings of the
various ATEST parameters (see next section). When ATEST is run on a set of pre
classified testing examples, it simply applies each rule to each example and reports the
degree of consonance. However, with a large number of testing examples, and a large
number of rules, output of this sort is likely to get unwieldy. Therefore, ATEST has the
ability to summarize the results.

Rule testing is summarized by lumping together the results of testing all the events of
a single class. This is done by establishing equivalence classes among the rules that were
tested on those events. Each equivalence class (called a rank) contains rules whose degrees
of consonance were within a specified tolerance (called tau) of the highest degree of
consonance for that rank. When ATEST summarizes the results, it reports, for each rule,
the number of testing events for which that rule was a first rank decision.

The only remaining term to be defined is satisfication. Satisfaction applies to
disjunctive normal form (DNF) expressions. A DNF expression is said to be satisfied if some
complex in it is satisfied. A complex is satisfied by an event if every selector in the complex
is true Cor the event. In other words, satisfaction is a boolean logic conditional, and
thereCore applies to selectors and DNF expressions, but not to modules or rule groups (which
may have weights associated with their conditions).

5.4.2. The ATEST Evaluation Routines

ATEST takes as input a set of attribute definitions, a set of rules (and an optional
structuring on the rules), a set of testing events, and a set of parameter values. The
parameters control what ATEST does with the rules and how it evaluates the rules on the
testing events. There are nine different parameters involved with rule testing. Six of these
determine how rules are evaluated. The remaining three control which of ATEST's
capabilities will be used during a given run. This section presents a discussion of the six
evaluation parameters.

Three evaluation parameters provide definitions for the logical operators "and" and
"or". The operator "and" ("A") may be evaluated as minimum or as average. The operator
"or" ("V") may be evaluated as maximum or as probabilistic sum. The final evaluation
parameter controls the the definition of the elementary conditions, called selectors. A
selector may be treated as a boolean conditional (i.e. it may evaluate to 0 or 1), or as a
function which when applied to an event evaluates to a normalized real number between 0
and 1. Given a selector in some attribute x whose domain is the ordered list (a1'a2,. .. ,a),
and an event where x = a , the normalized value for the selector [x = a.] is nk

1 - (: a. -ak : / n). J

If the selector has several values on its right -hand side, the value closest to a is used.
k

68

The tau parameter mentioned in the previous section controls the assignment of rules
to equivalence classes when testing on a single event. This parameter allows the user to
determine what kind of range in degree of consonance he may expect when actually using
the rule base for consultation. Increasing tau will increase the number of first rank
decisions, and therefore increase the number of (possibly contlicting) actions associated with
a given testing event. By varying the tau parameter, the expert can determine how robust
his rules are in discriminatory terms.

The dropaf! parameter controls the use of the a weight on rules. It specifies the truth2
threshold a module must exceed before that module can be included in the weight of
cumulative evidence.

The remaining parameter, thresh.old, controls the degree of consonance threshold for a
rule. ATEST reports, for every class, how many testing events caused the correct rule to
have a degree of consonance greater than th.relShold. Figure 35 shows a sample problem
input to ATEST and the resulting output if all of ATEST's evaluation capabilities are being
utilized. The output shown consists of two parts. The table is a confusion matrix showing
the performance of the rules on class B events. The numbers in the matrix are the degrees
of consonance; numbers surrounded by asterisks indicate correct first rank decisions. If
ATEST is told to summarize the results, only the first and last rows of this table will be
output. The second portion of the output is a trace of evaluation for those cases where the
rule base did not perform correctly. The selectors surrounded with question marks are those
which were not satisfied. Selectors in double brackets are those which were satisfied. In a
structured rule base, this trace is considera.bly more complex, as it details the paths taken to
reach the final degree of consonance.

6.4.3. Consistency and Completeness

In some domains, it is essential that no two rules in the rule base conflict, Le. that the
rule base is consistent. Inconsistency occurs if there is a ~:';,ation (event) in which two rules
would indicate different, mutually exclusive actions. In,ermi,'.ology of Section 5.4.1, an
inconsistency exists if there is an event which causes two rules 01 different class to evaluate'
to first rank decisions.

There are also cases in which it is necessary for some conclusion to be reached for
every possible input. We say a rule base is incomplete if there is an event for which no rule
has a degree of consonance greater than threshold.. The threshold used in ATEST is defined
by the user, but has a default value of 0.50.

Testing consistency and completeness in a rule base are relatively easy if we are
dealing with unweighted, non-structured rules and applying a boolean logic scheme for rule
evaluation. However, the rule bases in Advise allows weighted, structured rules which may
be evaluated in multiple ways. Therefore, ATEST does consistency and completeness
checking under more general conditions. The routines in ATEST use a generate and test
method for recognizing consistency and completeness problems. This methodology takes
advantage of the speed and flexibility of the evaluation procedures already present for
testing examples.

'onsistency and completeness are handled in essentially the same mar:
, calls routines that apply logical and set theoretic oper,:; ,< -3 to the rule:
·)nlplexes". The test complexes are fed through the e,:l::ion routin
a.re examined to determine if there is indeed a problem.

'irst,
'uce
the

fhe generating routines for consistency operate by forming the intersection ot £he left
hand sides of the rules that are to be tested. A standard logical intersection will not work

69

Rule A

RuieB

Testing Events for class B:

xl x2 x3 x"
Bl 1 1 1 0

B2 0 0 1 1

Parameters:

Operator Interpretation

AND average

OR maximum

ATEST OUTPUT!
TEST RESULTS FOR CLASS B

EVENT #TIES A B

B-1 0.00 0.50

B-2 0.00 *1.00*

#1st rank events 0 1

Number of events satlsfymg rule for cor red clus : I

The rule for class B was evaluated all follows for testing event B-1:

Figure 36: Sample input and ATEST output for a toy problem.

70

• If rules Rl and R2 are being tested for consistency:

Rl : IXI = 311 x2 = 4 .. 6l!x3 = 41[xS = 71!xS = 91 : O.S
+

[x6 = 0 .. 31 : 0.4
::> [dl = 01

R2 : [xl = 0llx2 = 6 .. SJlx3 = 411xs = 411xs = 91 : 0.9
+

[x6 = 4,,6J : O.OS

::> Id l = 11

• Then ATEST will generate tbe test complexes:

IXI = FALSEllx2 = 611x3 = 411xS = 7Ux7 = 411xS = 9J

[xS = 4.. 61

[xS = 0.,31

• These complexes, if "and" is evaluated as average. will cause ATEST to report:

The complex; IX2 = 611x3 = 411xS = 7lh = 41[xS = 91
produces a. de of 0.S8 with rule Rl and a de of 0.91 for rule R 2.

Figure 3li: An example of consistency testing.

for two reas' . First, there are cases where such an intersection will be empty even
though, unde:ertain evaluation schemes, the rules will produce conflicting decisions.
Second, the f1\.; 'I1ber of intersections to be performed grows exponentially with the number
of complexes in the rules.

The first problem is dealt with by changing the definition of intersection. The
consistency testing routine mUltiplies rules together in the standard fashion except that the
existence of non-intersecting selectors in a conjunct does not reduce the intersection to the
empty set. Instead, a special selector, which always evaluates to zero, is inserted. In this
way, events'that may satisfy two rules to a high degree of consonance may be generated.

The second problem is handled in two ways. First, the consistency checking routines
accept a parameter (dweight) which specifies a minimum weight for modules. If a module
has an '-'I weight below dweight, the module is simply not used when forming the
intersection of two rules. Second, the fact that the knowledge base is structured should tend
to decrease the number of test complexes produced. Since consistency checking is only done
between children of the same parent in the rule base structure, the number of rules that are
involved in consistency checking is reduced. Figure 36 shows an example of how the
consistency and completeness routines work.

Completeness checking is done by ta.king the union die left hand sides of all rules
that have the same parent in the rule base. Again, the dwelght parameter is used to exclude
modules whose weiJ!;hts may be too low. Once the union is formed, it is subtracted from
that portion of the event space which should be covered. If the rules being tested are at the
top of t.hl' knowll'dge bltSe stru('tnre, then the union is suhtracted from the entire eVl'nt

71

• Given four boolean variables xl'xZ,x3,x and the rules: 4

RI : !xI = ~Ixz = tJlx3 = tl : 0.80
+

IX3 = ~ : 0.60

::> Id1 = 01

RZ : IXI = tllxz = tl
::> [d l = 11

• The union of all complexes is subtracted from the entire event space yielding the test complexes:

IXI = fl[xz = fJlx3 = t]

IXI = t1!xz = fllx3 = tl

• Causing ATEST to report that neither complex satisfies any rules.

Figure 37: An example of completeness testing.

space. Otherwise, the union is subtracted from that portion of the event space covered by
the parent node. Figure 37 shows an example of the steps involved in completeness testing.

This process again generates test complexes. These complexes are applied to every
rule used in the union. If none of the rules have a degree of consonance greater than the
defined threshold, then the test complex is reported a.s an area of the event space that the
rules should cover but do not.

6.6. Future Work

The ADVISE system provides an excellent framework for research in this area to proceed.
The ATEST tool will be attached to the QUIN relational data base system, which, with
associated editors for modifying knowledge, will provide an integrated interface for the domain
expert bllilding a knowledge base. Similarly, the ADVISE architecture provides a strong
founda.tion for the addition of further learning and testing tools.

CHAPTER 6

The Rule Parser

6.1. Introduction

This chapter describes the GVL
1

rule parser. The parser takes a knowledge base written
in GVL 1 and puts out a network representation compatible with the tuple manager. The parser
was originally coded by Robert Stepp. Carl Uhrik has made numerous additions to the
original. This documentation was prepared by Carl Uhrik. Bob Reinke contributed the
sections describing the language for representing rules.

The network output by the parser is simply a stream of parent nodes and descendant
nodes. The basic unit sequence is a parent followed by a list of descendants. This list is
internally a vector, called a TUPLE. Hence, the input to the PARSER is a specification of
variables, constants, rules and functions, and the output is a series of tuples which are
subsequently assigned an interpretation in the context of a control scheme during execution of
an application system. This interpretation is partly fixed by a convention of predefined symbols
called P ARtv1ARKs (See appendix A).

8.2. Language for Rule Representation

This section outlines the language provided by ADVISE for describing and entering rule
. based knowledge.

6.2.1. Rules

Rules have two major components: right hand sides (RHS) and left hand sides (LHS).
LHS are conditions to be satisfied, and RHS initiate actions or decisions based upon the
values of variables. The LHS and RHS have weights (n and .3 respectively) that correspond
to the strength of the assertion in either a backward or forward direction (See Section
2.2.2.2).

6.2.2. Right Hand Sides (RRS)

A RHS is a concatenation (conjunction) of one or more of the following constructs:

[variable = value!
[variable = variable]

[variable = expressionj

An p.xpre<q!'lion i!'l an int.eger, feal, Rymholk v:tI1H~, vafiahle, rllnction Of any arithmetic
combination of these. The action caused by evaluation is to take the expression value on
the right of the equal sign and assign it to the variable on the left of the equal sign. The
strength associated with the implication is attached as a confidence to the value assigned to
each variable.

72

73

6.2.3. Left Hand Sides (LHS)

The structure of the LHS features a wider variety of constructs than the RHS. These
constructs are listed at increasing levels of detail below:

(1) 	 A LHS: consists of one or more linear modules. Linear modules are separated by
disjunctions (V).

(2) 	 A Linear Module: consists of one or more linear module parts. Linear module parts
are separated by sums (+). An optional weighting coefficient or pair of coefficients
may be placed before each linear module. In the former case, the coefficients must
sum to one. In the latter case, the coefficients represent Bayesian Is/In pairs as
described for the BABY System (see section x.x.x).

(3) 	 A Linear Module Part: consists of one or more selectors. Selectors are separated by
one of the following logical operators: 1) OR (V), 2) AND (no symbol), 3) implication
(-»,4) equivalence «-» or 5) exception O.

(4) 	 A Selector: consists of an expression, a relational operator and a reference surrounded
by square brackets ([]). The relational operator is one of {<, >, =, < >, <=,
>=}.

(5) 	 An Expression: can be either a value, integer, real, variable, function or an
expression separated by arithmetic operators. This operator is one from the set {+, -,
*, /, %}. The symbol (%) denotes modulus.

(6) 	 A Reference: consists of one or more reference values separated by commas. Each
reference value can have a weight associated with it. The value/weight pair is
separated by a colon. Each weight can be one or two real numbers. In the second
case, the first number is the truth weight and the second number is the falsity weight
(i.e., how much the selector's failure contributes to the falsity of the condition
containing it). A reference can be an expression, and a weight can be an expression.

6.2.4. Rule Groups

A rule group consists of a named set of rules. Rule groups provide a mechanism for'
focusing the evaluation of rules toward a particular problem solving strategy or subproblem
area. Each rule group references a block of variable declarations and, optionally, a block of
function declarations.

Examples of the use of mUltiple rulegroups Can be found in the PLANTIds expert
system (see Chapter 13) and the ALFALFA expert system (see Chapter 16). In the first, one
set of rules (derived inductively by machine) focuses the consultation on a short list of
canqidate soybean diseases, while a second rulegroup (written by a human expert in plant
pathology) performs a more detailed evaluation of the plausible diseases. In the second
system, twelve distinct rule groups are employed to descend through various levels of
identification of insect pests fonnd in alfalfa fields, using dynamicly changing goals,
preconditions and postconditions on rule groups expressed in the rule language to direct the
control scheme in execution of appropriate rule groups.

6.2.5. Variables

Variable definitions are parsed independently of the rules and define each variable's
domain. Variables in ADVISE can be of two types:

(1) 	 Nominal: The values are simply symbolic names and no ordering is implied between
the names. For example, the colors "blue", "green" are might be values of a nominal
variable.

74

(2) Interval: The values of the variable can be a range of integer or real numbers, or
5ymbolic names. In the case of interval variables, an ordering is implied.

Variables are declared in blocks, and each block is assigned a name. If a variable is declared
from the special GLOBALS block, it is implicitly known to all of the rule blocks following.

6.2.6. Functions

Since the ability to parse functions constituted a major impetus Cor this project, fuller
details oC the syntax and semantics are given here. Functions come in two varieties: 1) trap
Cunctions or 2) memo Cunctions. Both the bodies and calls to memo Cunctions are parsed by
the parser, but only the calls to trap functions are handled by the parser, not their
definitions. Trap Cune' correspond to procedural knowledge and are handled as jumps
to specific pieces of P A :_ ~ode. An example of the use oC trap functions is described in
Chapter 12. Memo CI. ';lS correspond to the classical notion of Cunctions, except that
two simultaneous speci); . :;ns of their definition may be active: I) a tabular definition
consisting oC a table of domain/range values or 2) a formula definition from which function
values can be computed. When a Cunction is called, a check is made to see if a table exists.
If the table does exist, and the values for the arguments are Cound in the table, the Cunction
value is simply retrieved Crom the table. If no table is present or no entry for the function
arguments is found, the formula definition is used to calculate the value and a new table (or
table entry) is added.

Different rule groups can share the same Cunction or variable blocks. In general, it is
the responsibility of the user to verify the compatibility oC the variables and functions
between their definition and their use in the rule group.

A function in ADVISE is a mapping of values of arguments to a (value,confidence)
pair. The confidence here is a deCault which may be alternately specified by a control scheme
override in the evaluation of a rule set. To represent the description of the correspondence
F(arg i ,arg2, ...) = (value,confidence), we have in tabular form:

Funcname [arg1,arg2,arg3,...J

(varvaI11, varval12, •••) (funcvaI1 , conval)1

(varva!21' varval22, ...) (funevaIZ' eonva(2)

(varval l' varval 2'''') (funcval ,eonval)n n n n

Where ...

Funcname is the name of the function;

val' is a variable name;

vnl'val is the value of the variable;

funcv1\1 is the fUIlction value Cor some argument values and

eonval is the corresponding confidence.

Note that Cor the use of weights, a convention was adopted to set the function value to the
weight and set the confidence to unity (1.0) if no confidence is explicitly given. This also
serves the purpose of functions used as a reference value.

75

Imposing an outer structure to allow for multiple function definitions in a block,
consistent with the block structure of variable declarations and rule definitions, we have the
function grammar specification indicated in Appendix B. Note that there is no provision for
type specification. This is due to the fact that basically two types of domains exist in
ADVISE:

(1) 	 NUMERIC - real and integer which can take on any of an infinite number of values
which are in common with other variables,

(2) 	 SThfBOLIC - identifiers which are unique to a variable by virtue of its declaration
(even when two ids have the same printname, Lhcy have separate internal names) •

In the latter case, a function defined with one set of arguments is bound to those arguments.
In the former case, the generality of the internal representation allows the liberal
interpretation desired. The responsibility is left to the control scheme to verify that a rule
utilizing a function is calling the function with proper arguments. This is facilitated by the
elements of the function tuple, which indicate the number of arguments, a,rgument
chara.cteristics, etc ..

Functions can take one of three possible forms which are distinguished both by their
declaration syntax and their use in rules. The 3 forms are illustrated in skeletal form below
to give the abstract notion:

1) numeric for integer/real values in weights, number variables, etc.
which have the declaration,

function name (argl , arg2 J ...)

{ nll n12 funcfJall}
{ n21 n22... funcfJa12}

•
•
•

:= arithmetic expression of argl , arg2, ... ,

where the arguments, the table of values, and the expression are optional;

2) boolean for the representation of selectors or logical components of
a rule's LHS which have the declaration form,

function name (argl:typel , arg2:type2, ...) : BOOLEAN
{ fJal11
f val21

val12
vaI22 ...

funcvall}
funcval2}

•
•
•

.- VL expression of argl , arg2, ... ,
where the table of values or the expression are optional, (but types are explicit,

or implicitly assumed to be integer/real if omitted;

3) symbolic for the representation of variable values within selectors,
having the form,

function name (argl:typel , arg2:type2 , ...) : ftype

76

f valll val12 Junc'vall!
f val2l val22 Juncval2!

•
•
•

where the table of values is mandatory and types are explicit,

or implicitly assumed to be integer/real if omitted.

Note that the expression forms are functions that return either the reserved type
BOOLEAN (TRUE/FALSE) or numbers. No expression can return a symbolic value. The
user is encouraged to do as much type specification as possible, as the parser does little in
this area. Any variable which is declared in the variable block assigned to this function
block may appear in the expressional definition of the function (or even a global) not just
the argument "dummy" variables. Note that a variable is first checked for a possible local
context and failing that, the variable is assumed global. Further, any use of a global in a
function declaration temporarily makes it local in scope. A GLOBAL block is int~nded to
affect all the blocks to follow it by entering symbols permanently into the symbol table. The
syntax is similar to PASCAL. An example follows (note however that the TYPE keyword is
unreliably implemented).

GLOBALS
TYPE
BINARY = (PRESENT. ABSENT) ;
COLOR = (RED, BLUE, GREEN);

VARS
RULE GROUP : (INDUCTION, EXPERT, TREATMENT) ;
DAMAGECOST: INTERVAL (0.. 1.0) j

USER : (INEXPERIENCED, EXPERIENCED, SUPERUSER);
END

VARSXVARS
Xl (DRY, WET, NORr,lAL);
X2: BINARY j

X3: BINARY j

X4 = (BIG, S~1ALL) j

T = (0.0 , 1.0) j

Z = (0.0 .. 10.0) j

END

77

FUNCXFUNCS
V ARS = V ARSXj
Fl [Xl:PRES.J\BSENT,Z3965,W235] : COLOR

(ABSENT, 25.3 , 0.01 , RED ,1.0)

(PRESENT, 0.23 , -6.7 , BLUE, 0.9)

(ABSENT ,0.0 , 0.0, GREEN,0.8}

F2 [Z3966,W236j
(PRESENT, 0.1 ,0.1 ,0.5 ,1.0)
(PRESENT, 0.2 , 2.5 ,0.7 ,0.1)
:= 3.0 .. Z3966 - 2.3 * W236 * Z3966 + 8.789

END

RULESX RULES

VARS = VARSX

FUNCS = FUNCSX

"

•
[Xl=PRESENTj[X2=ABSENT:F2(ABSENT,23.1*12.6,Z*8.2)] :> IT=1.0ji

END

Note: The VARS declaration in the func tion block is optional unless a function requires
an implicit parameter for a functional expression computation. The type of a
function or arguments not specified are assumed to be integer/real. The only
predefined type is LHS, and it is reserved for function typing (ie., it may not ap'
pear on a variable). Further, a function of type LHS may not have any predefined
tabular values. There is a local override in effect if a variable is declared to have
a symbolic value already possessed by a GLOBAL type. Possible local context of a
symbolic value is checked before it is deemed GLOBAL. Both variables and the
symbolic types that occur in the GLOBAL block are global. This means that a glo
bal variable will be entered into the dictionary for the network. Also, a global need
never be used as a variable, i.e., it may exist solely lor the purpose of sharing a
type between 2 or more variables that are local {but wish to pass their symbolic
values into functions or back from functions or test for equality of symbolic
values.

6.2.7. Properties

Properties can be attached to rule groups, rules, variables or functions. These
properties are used by the control scheme to perform various tasks. For example, in the
PLANT/ds expert system (Chapter 13) uses properties to:

1) 	 provide text for asking questions,

2) 	 determine whether, for a particular variable, the user should be asked to provide a
confidence in their response,

3) 	 to provide a detailed description of variables and

78

4) 	 to bias a variables importance.

Properties are treated as simple pieces of text and are not involved in rule evaluation.

6.3. 	Parser Construction

Some of the code that makes up the compiler was generated by the YACC compiler
compiler. YACC provides a general tool for imposing structure on the input to a computer
program. The Yacc user prepares a specification of the input process. This includes grammar
rules describing the input, code to be executed when these grammar rules are recognized as
applicable, and a low level lexical routine to do basic input. Yacc then generates a procedure in
the from of a C-program to control the input process. This is in fact the PARSER. When
compiled and executed, it calls the low level input routine (lexical analyzer) to detect the basic
input symbols (tokens). These tokens are organized according to the input rules; when one has
been recognized an applicable grammar rule, the user code supplied with the grammar rule is
invoked, returning values and using the values returned by previously executed such rules.

This allows the PARSER to be specified by a number of production rules involving
nonterminal symbols and terminal tokens. Precedence of operators may be specified to resolve
any ambiguities in the grammar and certain error actions can also be invoked. The nature of
the PARSER as consequence of YACC, specifically that it is a left-accept left-reduce (LALR)
shift PARSER, restricts the form of many constructs. For instance, recursion is prererably
left-recursive: A - Aa , rather than A - aA. For a full discussion or YACC, the reader is
referred to the YACC user manual available through Bell Labs [* ref *].

6.4. 	Basic Features

All parser input is free-format. Blanks between lexical entities are ignored. Line
boundaries are not significant, but the user should be aware of a limited print buffer. Use of
wide line input is consequently not recommended. In the case or reading an empty file, the
PARSER does nothing. Some information regarding input rormat and error handling is
presented in Appendix A.

6.4.1. The PARSER Production Cycle

The YACC compiler takes as input a context free grammar with calls to semantic
action routines supplied among the production rules. These routines are designed and coded
by the implementor and ultimately produce any output apart from duplication or the input
symbols. They accomplish the unit operations of the PARSER based on the current input
symbol in the context of the particular current state of the parse tree. One or the most
important of these routines is the lexical analyzer which recognizes the surface forms
(terminals) of the grammar and is called somewhat implicitly (ie., it does not occur within
any production rules of the grammar).

YACC output is a file called y.tab.c, which is intended to feed the C-compiler to
generate a load module containing a simple automaton which executes an LR parsing
algorithm whenever a parse is desired and in effect has two components:

(1) 	 Parser St"t(! Table - an integer representation of the states needed in execution for
maintainilll; the !<Iatus of a parse. It is similar to the states in a deterministic finite
automata.

(2) 	 Parser Semantic Invocation Code - the core or the interpreter which actually calls the
semantic routines given the proper states as they arise based on the input stream and
the given grammar. It is essentially a case statement indicating which semantic actions
to call at any point in execution.

79

Normally, YACC generates C-code for use by the standard compiler supplied with the
UNIX system, but the semantic actions are more naturally expressed in PASCAL routines
which draw on the rich library of the existing ADVISE system, especially the TUPLE
MANAGER module which places and manipulates tuples in a network. Since the code
implanted in the grammar is functionally only a specification of calls to procedures, the C
compiler is easily displaced with a PASCAL PREPROCESSOR which edits the C-code to
conform to Pascal code.

This is accomplished by splitting off the state table to be read by our Pascal program
and editing the executable C-code to look like Pascal. Part of this code is static for all
generations of the PARSER and remains untouched, hence the program that does the
conversion is somewhat simplified. The files "edparsem" and "edpartab" contain edit
commands to extract the constituents (1) & (2) from the file y.tab.c and produce the files
"parsem.i" and "partab" respectively. Then, partab is instated in the ADVISE "kbtext"
library, and parsem.i in "kblib", reduced to a case statement as to what semantics to invoke,
is automatically transplanted into the file "prsourc.p" upon compilation by a "#include"
statement. The lexical analyzer and semantic action routines are already resident there and
remain relatively static as they are completely oblivious to the YACC compiler (see Figure
38).

PARTAB INPUT

RUt.ES. VAR!A8l E DEFS

FUNCTION CUS

LEXICAL
ANALYZER

MSG OUTPUT

Figure 38: Relation of Compiler Components.

so

In general, this system succumbs to two types of errors. One is in the grammar and
the mechanics of grammatical parsing devoid of the semantic routines. The grammar can be
ambiguous or allow undesired language constructs. The other type of error is in the coding
of the semantic action procedures. These can be changed directly without touching the
interpreter code installed from P ARSEM. Usually, fair consideration should be given to
interaction between the two types of errors.

6.4.2. Operation and Use of the Parser

The file prsourc.p is compiled to produce a load module which reads in the PARTAB
file as its first priority. Subsequently, it reads input from the file specified as standard input,
generates tokens, parses these tokens, generates tuples, and writes to the assigned OUTPUT
file. Additional textual information, mainly diagnostics, is written to the file 'msg'. This
process is illustrated in Figure 3S.

On the VAXll-7S0, the current host computer for ADVISE, the parser is executed by
typing the following:

SADVISE/parser/prsoure <input >output

where the following files are involved .•.

input is a set of variables, functions, and rule knowledge bases;
output is a trace of the input file with error messages;
msg contains program debugging and performance information and
baekup contains a network representation of the knowledge

base in a form that can be read by the TUPLE MANAGER.

The knowledge base can at this point be examined by running the "tmtestr" program as'
below.

$ADVISE/kblib /tmtestr
? os open standard network
? rb read backup file
backup file: backup
? wt write text file
text file name: net
? q exit

At this point, a text format of backup file "backup" will have been written to "net", and this is very
useful for debugging.

6.6. 	 Upda:ting the PARSER

The process of updating the PARSER is outlined as follows:

(1) 	 Assess the need for any new token:!, :!ymbols, or PAIU"WlKs. Modify the lexical analyzer
to accept these and return a valid token.

81

(2) 	 Derive a set of grammatical productions which unambiguously parse the desired
constructs.

(3) 	 Determine the desired convention for the structure of a tuple to represent the construct in
network form. This will depend on the intended use in the rule evaluator or control
scheme.

(4) 	 Write any new semantic action routines that are required to build the network of (3).
These routines should ultimately go into "$ADVISE/kblib/prsourc.p".

(5) 	 Insert the semantic action routine calls in the proper points in the grammar of (2). The
current grammar is in U$ADVISE/parser/gramf'.

(6) 	 In the directory "$ADVISE/parser", type the UNIX command, ''YACC <infile>", where
<infile> denotes the name of the file containing the grammar. The file "y.tab.c" results
which contains the compiler written in the "C" language.

(7) 	 This step and the following two steps edit the "y.tab.c" and extract portions that are
inserted in the PARSER. If the shell script "pyacc" can be executed successfully (w /0
errors). these steps can be eliminated. First a portion of the grammar, represented by a
large "case statement", is generated by typing: "ed <edparsem y.tab.c". The file parsem.i
results.

(8) 	 The state table is extracted by typing: "ed <edpartab y.tab.c".

(9) 	 This step searches for labels in "y.tab.c" in order to construct the "OTHERWISE" portion
of the code that encapsulates the case statement. Type

prlabels > prlabels.i
to collect together all the allowed labels that occur in the case statement of "parsem.i".
Both "parsem.i" and "prlabels.i" are automatically transplanted into "prsourc.p" at
compilation by "#include" statements. The case statement portion (parsem.i & prlabels.i)
should be installed in the ADVISE library "$ADVISE/kblib".

(10) 	 Install the partab file back in the library "$ADVISE/kbtext",

(11) 	 Remake the prsourc file (i.e., compile prsourc.p and load prsourc.o), according to the file..
"Makefile" in kblib.

To assist users in making changes to the parser, the current grammar definition as seen by
YACC is presented in Appendix B. Note that steps 6-9 can be built into a convenient shell
script.

CHAPTER 7

The Rule Evaluator

7.1. Introduction

This chapter describes the some aspects of the Rule Evaluator, that portion of the
ADVISE system that combines the evidence represented as a rule. The Parser module parses
rules into a tree structure in pre-order form. The rule evaluator recursively descends into this
tree in order to determine the "truth value" of some portion of it. In its simplest form, the rule
evaluator returns the "truth value" of the left-hand side of a rule. Another user procedure, the
rule interpreter, executes a rule's right-hand side if such action is called for .. ,.hese decisions are
made in the Control module). The rule evaluator was originally coded by ~nn Davis. Kent
Spackman has made significant additions to this original work and is the author of this
documentation.

7.2. User Procedures

The rule evaluator IS accessed via three p!ocedures. A description of these three
procedures follows:

reinit (schema,schematuplen)

Where...

schema is a tuple where the user specifies the evaluation

scheme to be used (please see the next section). Each

address in this tuple corresponds to a user selectable option

that specifies how certain rule structures are evaluated,

schematuplen is an integer value corresponding to
the number of options specified in the schema tuple above.
There are 15 possible options the User might specify, if fewer
than 15 are selected, those not selected are set to their default
values.

The reinit procedure must be called before using the rule evaluator. It can be called multiple
times if the user wishes to use different evaluation schemes within a single consultation session.

82

83

evaluate (Ihs,val,errnode,error)

Where...

Ihs is a rule's left-hand side or some structure within

a rule's left-hand side (down to a single selector). It represents

the item to be evaluated;

val returns the result of the evaluation

as a real number (val). It corresponds to the truth value

of the rule part passed to the evaluator. In the current

implementation, val will range between 0.0 and 1.0;

errnode returns the internal name of the node in which

an error (if any) occurred and

error is the error type encountered above.

These errors may correspond to unexpected

conditions that arose during evaluation, but might also contain

information useful to the Control module. For example, the

error that a rule was not completely evaluated may prompt the

Control module to gather more information form the user.

As mentioned earlier, the schema tuple determines how various rule structures are evaluated.
Another mechanism for controlling the behavior of the evaluate procedure is via accessory
control (ACCTRL). The variable ACCTRL is a Pascal set type which can take on none or
more of the values listed below:

• 	 storintres : This instructs the evaluate procedure to store intermediate results obtained.
during evaluation. •

• 	 useintres: This instructs the evaluate procedure to use the results stored above.
Storintres and useintres are most commonly used together. They can significantly
speed up the time it takes to evaluate a rule, but are .not appropriate in certain cases.
For example, if the both of these values are added to the ACCTRL set, intermediate
results are stored and used at all levels of the parse tree descent. If the Control module
has changed the value of a variable in a rule already evaluated (for example, if the user
has asked to change the answer to a question), then the evaluator will not descend into
the parse tree deep enough to detect this fact.

• 	 continue: This instructs the rule evaluator to continue evaluating even if it encounters a
variable that has never been assigned a value. The evaluator will still return the error
that the rule is not completely evaluated. Variables who have no value assigned are given
a "truth value" of 0.5.

• 	 min : Used in conjunction with continue, this causes the truth value 0.0 to be assigned to
variables that have no value. Useful in determining a worst case evaluation of a rule.

• 	 max: Used with continue, causes the "truth value" 1.0 to be assigned to variables that
have no value. Determines the best case rule evaluation.

84

interpret (rhs,strength,reset,errnode,error)

Where...

rhs is the rule part you wish to interpret; normally
a rule's right-hand side;

strength is a real number corresponding to the degree
of truth returned by the evaluate procedure
combined in some fashion with the strength of the assertion
of the decision symbol (Q).
This value is control scheme dependent;

reset is a variable which no longer has a functionj

errnode is the node that caused an error (if any) during
interpretation and

error is the name of the error (if any) that occurred.

In the current implementation, the interpret procedure will function correctly only if the rhs
consists of a simple selector or conjunction of simple selectors.

7.3. 	Configuring the Evaluator

As mentioned before, how the rule evaluator evaluates a rule is specified in the schema
tuple. Each position in the schema tuple corresponds to some rule structure and can be
assigned values from several available. The meaning of each position in the schema tuple and
available options is listed below.

(1) 	 Linear module (evaluation) : default.

(2) 	 Conditional statement (evaluation) : default.

(3) 	 Disjunction of rule parts other than selectors (evaluation): default,max,suppes.

(4) 	 Conjunction of rule parts other than selectors (evaluation): default,min,prod,ave.

(5) 	 Disjunction of selectors (evaluation) : default,max,suppes.

(6) 	 Exception (evaluation) : default,exeptl.

(7) 	 Equivalence (evaluation) default,equivmaxmin.equivmaxprod,
equivmaxave,equivsuppcsmin,cquivsuppesprod,equivsuppesave.

(8) 	 Implication (evaluation) : default,impmax,impsuppes.

(9) 	 Conjunction of selectors (evaluation) : default,min,prod,ave.

(10) 	 Selectors (evaluation) : default.

(11) 	 Conjunction of rule parts other than selectors (interpretation): default.

(12) 	 Disjunction of rule parts other than selectors (interpretation): default.

(13) 	 Selectors (interpretation) : default.

(14) 	 Conjunction of selectors (interpretation) : default,min,prod, ave.

85

(15) 	 Functions (evaluation) : default.

(16) 	 Behavior (evaluation) : default.

(17) Functions (interpretation) : default.

The definitions of the possible options are listed below:

• 	 min: minimum.

• 	 max: ma.ximum.

• 	 ave: average.

• 	 prod: product.

• 	 suppes:x+y-(x*y)

• 	 excptl : x / y (if y 0 then the result is the truth value of x).

• 	 equivmaxmin : value max(min(x,y),min(1-x,1-y))

• 	 equivmaxprod : value = max{x*y,(1-x)*(1-y))

• 	 equivmaxave : value = max{ave(x,y),ave{1-x,1-y))

• 	 equivsuppesmin : value = min{x,y)+min(1-x,1-y)-min(x,y)*min(1-x,1-y)

equivsuppesprod : value x*y+(1-x)*(1-y)-x*y*(1-x)*(1-y)

• 	 equivsuppesave : value = ave{x,y)+ave(1-x,1-y)-ave(x,y)*(ave(1-x,1-y)

• 	 impmax : value = max{1-x,y)

• 	 imp:mppes : value = (l-x)+y-(l-x)*y

CHAPTER 8

Knowledge Base Paraphrasing

This chapter describes the paraphrasing capabilities in Advise. Section 8.1 describes the
design of a general paraphrasing mechanism that has yet to be implemented. Section 8.2
describes a pre-existing implementation of a rule paraphrase module based on the rule
evaluation module.

8.1. Design of a General Paraphraser

A general paraphrase mechanism has been designed to paraphrase any tuple in a network.
Remember that interna.lly, every rule or table can be represented as a tuple in the low-level
Advise network. Given a tuple, the paraphraser first locates a paraphrase program for that
tuple, then executes that program to produce the appropriate paraphrase e.g. a GVL rule, an
English rule, or a fancy table display. The paraphrase program for that tuple may be located
in one of several places. First, it may located directly under the main node of the tuple to be
paraphrased. Second, the program may be found under subnodes (nodes other than the main
node) of the particular tuple. Finally, it may be at another node in the network, locatable
through an inherit relation or indirection mechanism from nodes in the tuple. For example, the
paraphrase program for a selector in a rule may be found directly under the main node of the
selector, under a subnode of the selector (e.g. a marktype that determines the type of selector),
or under the rule or rule group in which the selector appears.

The paraphrase program consists of a series of tuples under a given node. The second
node in each tuple (the first node would be the main node) is a keyword that identifies the tuple
as being part of a paraphrase program. This identifier will be one of MKPARAPHRASE, .
MKPROG, and MKPROGEND. These are defined below. Subsequent nodes in each tuple will
determine a specific paraphrase action. Commom actions are finding a new tuple to
paraphrase, printing text associated with a node, and setting up a means to paraphrase the
tuple iteratively.

The following are the definitions of the keywords recognized by the paraphraser.

MKPARAPHRASE Denotes the start of a paraphrase program. Optional arguments denote
the style of paraphrase (i.e. rules, networks or tables) and may also
denote a restriction on the tuples that can be paraphrased by this
program.

MKPROG Identifies statements in a paraphrase program.

MKPROGEND Marks the end of a paraphrase program.

MKLOOP Marks the hl'ginning of a loop in a paraphrase program.

MKPARAlNDX This serves as a "program counter" in the sense that it denotes what
node in the current tuple is being paraphrased

MKSHIFT Assigns a specific node to the "program counter" relative to the current
position. Default is the shift one node. Further shifts may be specified
by an additional argument.

86

87

MKABSHIFT Assigns a specific node to the "program counter" absolutely.

MKLOOPEND Marks the end of a loop.

MKPRINT The printname of the node argument which follows is output.

MKPARAPRINT Paraphrase the tuple that matches the following left context of this
tuple.

MKPRINTPOS Output the printname of the node found at the postion in the current
tuple specified by a position argument

lvIKPARAPOS Paraphrase the tuple that matches a tuple constructed by adding the
remaining left context of the MKPARAPOS tuple to the node at the
position in the current tuple specified by a position argument.

Figure 39 shows a sample paraphrase program. The first tuple in the program is the
MKPARAPHRASE tuple. It marks the start of this particular program. (There may.be other
programs under the main node RULEGROUP.) The MKPARAPHRASE tuple also says that it
can only paraphrase tuples with left context MKEXEC MKAND, which translates to
conjunctions of selectors in rules. Note that this program is located under a RULEGROUP
node, a likely place to be inherited by all rules in the rule group.

If this paraphrase program has matched the tuple to be paraphrased, then that tuple
becomes the current tuple and must be a conjunction of selectors from a rule. With this in
mind, the paraphrase actions can easily be understood. The first MKSHIFT causes the current
position to become 3 in the current tuple. This is always a node representing the first 5elector
in the conjunction. The next step (MKP ARAPOS) is to paraphrase the node at the current
position followed by the remainder of of the l'VlKPARAPOS tuple (i.e. MKEXEC). In other
words, paraphrase the tuple matching «selector node> MKEXEC). The paraphraser then
recursively finds this tuple, makes it the current tuple, and paraphrases the selector. Assume
now that the first selector has been paraphrased and the paraphraser has returned to this
program.

(RULEGROUP (
(MKP ARAPHRASE ~1KEXEC MKAND)
(MKPROG l'VlKSHIFT 3)
(!vlKPROG MKPARAPOS l'VlKPARAINDX MKEXEC)
(tvIKPROG l'VIKLOOP)
(MKPROG MKSHIFT)
(MKPROG MKPRINT .. & ")
(MKPROG MKPARAPOS l'VlKPARAINDX MKEXEC)
(l'VlKPROG MKLOOPEND)
(MKPROGEND))

Figure 39: A Sample Paraphrase Program.

88

The next tuple in the program is an MKLOOP. This begins an iteration of the
instructions from here until a matching MKLOOPEND. The loop terminates when an
MKSHIFT falls off the end of a tuple. The steps in the loop are easy to follow. The first is an
MKSHIFT which makes the next selector (node) in the conjunction (tuple) the current node
(position). If this succeed an "and" sign (&) is printed and the tuple corresponding to the
selector is paraphrased as before. This continues until there are no nodes (selectors) left in the
tuple (conjunction). Here the loop terminates and this paraphrase program completes. .

Implementation of the general paraphraser is pending decision on the adoption of an
object-oriented environment. The paraphraser's notion of inheritance would be well supported
by an object-oriented approach. The only existing paraphrasing mechanism in Advise is a rule
paraphraser which is described in the next section.

8.2. The Existing Rule Paraphrase Module

The existing paraphrase module is designed to "unparse" rules. It is capable of converting
rules in their network form to the GVL form. The rule evaluator was modified 90 that could

I

also paraphrase rules. The rule evaluation function was retained.

There are two user callable procedures, P AINIT and PARAPHRASE. P AINIT is used to
initialize the module and has the same calling sequence as REINIT, namely:

P AINIT (schemetuple,schemetuplelength);

Where ...

schemetuple is the tuple specifying the rule
evaluation schemes as in REINIT and

schemetuplelength is thf' Ipnltth of the above tuple.

PARAPHRASE was adopted from procedur UATE in the rule evaluator module and is
called thus:

89

PARAPHRASE (ru\epart,width,textfile,value,errornode,errorh

Where.•.

rulepart is the part of the rule to paraphrase

and can be a whole rule down to a selector,

width is the width for the text to be placed in

textfile,

textfile is the text file to place the results of

paraphrasing in,

value is the value of evaluating the rule part and

is not defined for whole rules,

errornode is the same as in procedure EVALUATE, and

error is the same as in procedure EVALUATE.

The internal structure of the paraphrase module is the same as the rule evaluator module.
The modifications done to the rule evaluator procedures are marked with the comment,
(*PA*). This is only a preliminary version of the PARAPHRASE module. Beware of
undocumented fea.tures.

CHAPTER 9

The Tuple Manager

9.1. Introdu~don

The ,Ie Manager is an implementation of a generalized network manager similar to
that describ~'! by Baskin [Baskin 1979] in his PhD dissertation. By offering a variety of high
level primitives with which to manipulate the network, it allows the user considerable
abstraction from the Pascal data types actually used to store the network. The user works
directly with n-tuples (n < 256) which are arrays of symbols to be manipUlated. T-here are
actually three networks simultaneously active which allows for separation of public and private
knowledge, and which enables one to experiment with a scratch network. The TM also
supports procedures that will write out backup files and text files to re-create the network
state.

9.2. The Data Types

A tuple is represented by a Pascal array of symbols, which in turn are represented by a
variant record. This is analogous to lists in LISP with the exception that the list elements
cannot themselves be lists, but must be atoms. Another difference is that the tuple manager's
list elements c~n be accessed directly rather than having to traverse the list with compositions
of 'cars' and -;'.

There a four types of symbols supported by the tuple manager; integers, reals,
textnodes, an /!neral symbol nodes. The most general type of symbol is allowed to have
attributes at";~d and manipulated. These attributes are similar to LISP properties, however'
the attributes a.re referenced and stored by keying on as many of the left most symbols as
desired, rather than one. This will be made clearer in the discussion of some of the tuple
retrieval procedures. The textnodes are designed for the efficient storage of text and therefore,
like the integer and real symbols, are not allowed to hl!-ve attributes. From the user's
perspective these n-tuples of symbols are just entities that can be stored, retrieved, and
modified in a variety of ways. The semantics of tuples is defined by the user program, but the
capabilities of the tuple manager allow for representation of any specialization from, and
including, a generalized graph. So far use of the tuple manager has been limited to rules, tables
in a relational data base, and a directed acyclic graph.

For efficient storage and retrieval of the tuples, they are indexed by their first symbol. A
symbol consists of a node and its (possibly empty) set of attributes. A node is represented by a
Pascal variant record which contains its printname, internalname (a unique node identifier), a
pointer to its set of attributes, and various housekeeping variables. The attributes are stored as
a linked list o(linked lists of subnodes, each subnode consisting o(the internalname of the node
that it is "'presen·jng. By referencing other nodes in the attribute list using only their
internaln" rath~' ,han a pointer, the TM is more easily able to make disk versions o(the
networks rereau them into main memory.

The ouple manager supports a dictionary for retrieval of a symbol given its printname.
When a network is read in from a backup file only the symbols in the dictionary, and any
symbols reachable Crom those, a.re accessible to the user. The function of the dictionary is

90

91

similar to the function of the LISP ob-list. During a session, though, not all of the network's
symbols may be reachable from the dictionary due to local creation and storage of symbols.
The LISP analogy is a 'gen-sym' atom. The tuple manager implementation of the dictionary is
a hash table that uses an intable collision resolution scheme. The procedures for entering,
removing, and looking up a symbol are discussed in the next section.

9.3. The User-Visible Procedures

The user-visible tuple manager procedures are listed in alphabetical order below.

Procedure ADDATTRIBUTE. ADDATTRIBUTE takes a tuple as a parameter and adds
it to the existing network. This is done by first finding the parent node of the tuple using
FINDNODE. The proper place for the remainder of the tuple (the attribute of the node) is
determined by a parameter passed to the procedure. This slot is then located and the incore
subnode structure of the attribute is created.

Procedure ASCIINT. This procedure converts the ASCll representation of an int,eger into
the machine representation of that integer. This is a ma.chine independent algorithm.

Procedure ASCIIREAL. The real number counterpart of ASCIINT. Also machine
independent.

Procedure CLOSENETWORK. CLOSENETWORK saves the state of all three levels of
networks in the user's files. See OPENNETWORK. The dictionary is saved in the global level.
The housekeeping pointers and variables are saved in each of the files. If one closes a network,
signs off the system, and then opens the network, the state of that network will be unchanged.

Procedure CLOSENODE. This procedure takes as parameters the internalname of a
node, a flagword to store with the node, and a level on which to find the node. It then locates
the node with a call to FINDNODE, stores the fiagword with the node, and then decrements the
open counter (opencount) of the node. It does not alter the status of the node. A node with an
opencount of zero is considered to be dosed, and unavailable for access until opened.

Procedure CREATENODE. This procedure takes a fiagword as a parameter and a level
on which to work, and creates a new regular node, assigning a unique internalname to the new'
node. The node is not opened - it is just created. The opencount, usagecount, and
attributecount are all set to zero. The printname is set to the null word so it will need to be
filled in by ,calling the procedure SETPRINTNAME.

Procedure CREATETEXTNODE. This is a simple procedure that will create a new text
node and assign it a unique internalname to it. An integer flagword is passed to this procedure
and this is placed in the new text node. The intcrnalname is returned by
CREATETEXTNODE. This procedure does not open the node - it just creates the node. The
new node is initialized with the opencount, currentline, and number of lines of text all set to
zero.

Procedure DELETEDICT. DELETEDICT removes an entry from the dictionary. If it is
not found then it does nothing. The stringpool is unaltered by this procedure, but its
information is made unusable as is its storage area occupied by the printname. Therefore
repeated calls to this procedure will create wasted space in the stringpool that cannot be
recovered in the present implementation.

Procedure DELETESLOT. This procedure is the inverse of ADDATTRIBUTE. Given a
particular attribute to be removed, it just deletes it from the in-core representation. It does
this by first locating the node using FINDNODE, and then traversing the linked list of
attributes until it has traversed as many as passed in the parameter slot. The subnode
structure of the attribute is then removed. The value for slot that is passed as a parameter
must be found by using the procedure GETATTRIBUTE.

92

Procedure DELETETUPLE. This is also the inverse of ADDATTRIBUTE. Unlike
deleteslot, however, it takes a tuple as input. DELETETUPLE locates its parent node using
FINDNODE, locates the slot under the parent node containing the tuple, and then deletes the
tuple using DELETESLOT.

Procedure DESTROY. DESTROY takes as parameters the internalname of the node to
be destroyed and the level on which to destroy it. It will then wipe out the node by first finding
the node with FINDNODE, and then returning the node structure to the free node pool. This
procedure will not remove a node from the dictionary. This is because a node can exist
simultaneously on different levels. An error is returned if a request is made to destroy a real or
integer node.

Procedure ENTERDICT. This procedure takes as input an internalname and its
printname and stores it in the dictionary if it is not already in the dictionary.

Function EQ. This boolean function takes two internal names as parameters and returns
TRUE if they are equal or FALSE if they are not. It first checks the . type of
internalname(node, text, real, or integer) and then checks for equivalent values depending of the
type. In the case of a real node the numbers must match exactly, there is no allowed error.
This can create problems if any arithmetic is done with a real number and comparisons are
made using that number.

Procedure GETATTRIBUTE. This procedure takes a tuple and its length as parameters
along with a location to begin the search, and returns the complete tuple and the slot under
which it was found. The tuple passed to GETATTRIBUTE can be a left context tuple or a
complete tuple. If a left context tuple is given then ~>nly the first matching complete tuple will
be returned.

The procedure works by first finding the node using FINDNODE. It then counts down
the attribute list looking for the attribute at which to begin the search for the particular tuple.
From there it searches the attribute list in order looking for a tuple that matches as much of
the tuple that was passed for the search. As soon as a matching tuple is found, the entire tuple
is loaded into the return tuple and the slot under which it was found is loaded into the return
slot.

Procedure GETPRINTNAME. This procedure takes as a parameter the intern.:::.::,ame of
a node and returns either its printname or its value, depending of the type of node. Ii' it is a
textnode or a regular node then the printname is returned. If it is a real node or an integer
node then its ASCII representation is returned. For the latter, two types of nodes the procedure
converts the node value to the ASCII representation with calls to either ASCIIREAL or
ASCIINT. In the case of a text node or a regular node the procedure first has to find the node
with a call to FINDNODE. It then packs the printname into the return parameter.

Procedure INHERITATTRIBUTE. Like GETATTRIBUTE, this procedure takes a tuple
and its length as parameters along with a location (slot) to begin the search, and returns the
complete tuple and the slot under which it was found. The tuple passed to
INHERITATTRIBUTE can be a left context tuple or a complete tuple. Unlike
GETATTRIBUTE, however, the search is not restricted to tuples under the main node of the
given tuple. INHERITATTRIBUTE also follows inheritance arcs to other nodes to match
tuples (ignoring the main node, of course). INHERITATTRIBUTE also looks under subnodes
or the tuple (by substituting the subnode for the main node) for the desired at.tribute (tuple).
The search is exhausted vertically (along inheritance arcs) at each subnode before beginning
recursively rrom the next subnode (horizontally). Additional parameters specify the maximum
numbers of inheritance arcs and subnodes to search. The number of inheritance arcs and the
number of subnodes searched are also returned. INHERITATTRIBUTE calls
GETATTRIBUTE with the appropriate substitutions for the main node.

93

Procedure INTASCII. This procedure is a machine independent algorithm that converts
an integer into its ASCII representation.

Procedure INTERINT. This is a bidirectional conversion procedure that converts
to/from internal name representation from/to the Pascal integer representation. Presently
there is no differenct between the two and the procedure just outputs the proper part of the
internalname record passed as the parameter, or fills the proper part of the record depending on
the direction of conversion.

Procedure INTERREAL. This is the real number counterpart of the INTERINT
procedure.

Procedure LOOKUP. LOOKUP is the dictionary access procedure which takes a
printname as input and returns an internalname and nodetype. If a real node or a.n integer
node is passed to LOOKUP, then the ASCII representation is returned. LOOKUP works by
searching the dictionary hash table for a match of the printname.

Function NTYPE. This function takes as input an internalname and returns as its value
the nodetype of that node. The function is very fast and should be preferably to opening a
node just to find out its type.

Procedure OPENENTWORK. OPENNETWORK opens three user networks at the three
different levels (global, local, private). It creates the lists of free nodes and subnodes, and
arranges all of the housekeeping pointers and variables. The dictionary is also read into the
memory.

Procedure OPENNODE. Open node takes as a parameter the internalname of a node and
the type of access desired and opens the node if the access matches the allowed type of access
for that node. The node is opened at a particular level, depending on what level is requested,
also a parameter. Values returned by the procedure are the number of attributes, the flagword,
and the type of node. If one is opening a node merely to determine its nodetype, then a better
option would be to lise function NTYPE.

OPENNODE works ;>5 follows. If the node requested is a regular node or a text node then
FINDNODE is called to lreate then node and bring it into the core memory if it is on disk. If.
the node was not located. and if the level requested was not global, this procedure will look at
progressively higher levels for the node and copy it to the requested level if the node is found.
If the node is located then its opencounter is incremented and the return parameters are set. If
the node is not located then an appropriate error message is returned.

Procedure READBACKUP. READBACKUP takes a backup file and re-creates the
network exactly a.:J it was when the backup file was written.

Procedure READTEXT. This procedure takes a text file of the network and creates a
new network based on the contents of the text file. Every node in the network is entered into
the dictionary, making this procedure of very limited utility except for small networks. The
procedure will have problems if one attempts to load more nodes than will fit in the dictionary.
Currently the limit is 499. This procedure is in need of some modification in the future.

Procedure REALASCII. This is the real counterpart of INTASCII. It is also machine
independent.

Procedure SETPRINTNAl'vlE. This procedure is the inverse of GETPRINTNAlv1E. This
procedure does different things for different types of nodes. For real or integer nodes it sets the
value of the node to the Pascal implementation of that value. This is done with a call to either
ASCIIREAL or ASCIINT. For regular nodes the node is first located with FINDNODE. Then
the node's printname is assigned the printname that was passed as a parameter. For text nodes
the node is located and then the printname, passed as a parameter, is interpreted as a line of
text which is added to the end of the existing text for that text node.

94

Procedure WRITEBACKUP. This procedure writes out a backup file that will allow the
exact state of the network to be preserved. The dictionary is included in the writeout
procedure. Nodes having the same printname are not merged, as in WRITETEXT below.

Procedure WRITETEXT. This procedure will write a text file of the network to a
specified filename. The algorithm used will cause nodes having the same printname to be
merged. The dictionary is not saved.

9.4. Important User-invisible Procedures

Procedure FINDNODE. By far the most frequently used procedure in the Tuple
Manager, FIND NODE is designed to be as fast as possible given the limitations of a linked list
representation of the network. It takes as a parameter the unique node identifying number and
returns a pointer to the internal memory representation of that node. It works as follows. All
of the nodes in the memory are hung onto a hash table using a linear chaining collision
resolution scheme. The proper hash table entry is determined from the node identifier ,and that
particular linked list is searched sequentially for the node.

In an earlier implementation, the tuple manager was directly responsible it for virtual
memory management i.e. ensuring that memory used for nodes did not exceed the core limits,
and swapping nodes from disk to core when core memory was full. In that implementation, if
FIND NODE did not find the node in core then the area on the disk that should be occupied by
the node was examined. If the node was on the disk then it was brought into the core network.
A return pointer was then set to the node. If the node was not in memory and not found on the
disk then nil was returned.

In the current implementation. all virtual memory management is performed by the Unix
operating system. From the user's point of view all of the nodes are in core at the same time.

CHAPTER 10

General Utilities

This chapter describes two utilities availabe for use in Advise. The first is the Tester
Program which can be used as a low-level network debugger for Advise knowldege bases. The
second utility is a set of trap functions, hard-coded functions available for reference from rules
in the knowledge base.

10.1. The Low Level Network Debugger

The Tester program was originally developed as a tool for testing the tuple manager. It
has evolved into a program that can be used to perform tests on the rule evaluator, the
paraphraser and the tuple manager. In addition, it allows the user to debug or otherwise
manipulate a knowledge base after it has been parsed. This section describes the functioning of
the Tester module. The program was coded originally by Heinrich Juhn. Lance Rodewald and
Albert Boulanger have supplied additional enhancements.

10.1.1. How to Use the Tester Program

The Parser reads in a rule base and outputs a network or backup file. The Tester
program allows the user to examine the backup file and ·edit it. Before looking at an
example of a portion of the backup file some definitions are in order:

(1) 	 node: A node is simply a symbol. Each node has an internal name that is hidden
from the user and is accessed via a printname. A printname is simply a string of
characters that represents a unique identifier for a node. These printnames are
collected into a dictionary that is manipulated by the tuple manager.

(2) 	 tuple: A tuple is a vector of nodes, integers or real numbers. A knowledge base is
represented internally as tuples. The node in the first position (slot 1) in a tuple has a
special significance. It represents the place where information about the node is
stored. This same node may appear in other tuples· (but not in the first position) in
which case it can be viewed as a pointer back to that tuple in which the node appears
in the first position.

(3) 	 slot: A tuple's slot corresponds to its vector address. For example, a tuple is declared
as:

tuple: array [1..tuplelength] of internalJlames;

Slot number n (1 < = n < = tuplelength) is the nth element of the vector (tuple[n]).

(4) 	 aUl"ibut.e: An attribute is a tuple representing a property about that node that
appears in position 1. A node may have several properties "hung under" it.

For example, consider an attribute in a knowledge base called TEMPERATURE. It can
take on the values BELOW.-NORMAL, NORlVlAL, or ABOVE.-NORMAL. It would appear
in the following form when viewed via the Tester program:

95

96

(TEMPERATURE (
(MKDOMAIN MKNOMINAL BELOW1\lORMAL NORMAL ABOVE1\lORMAL)

»

The node TEMPERATURE (its printname) has under it a single attribute that specifies the
possible values for the node. The identifiers lvlKDOMAIN and MKNOMINAL a.re semantic
markers used internally by the program to identify this attribute as representing the domain
of the variable TEMPERATlJRE, and that domain is scaled nominally.

10.1.2. Tester Commands

This section contains a list of commands available in the Tester program. Each
command is one or two letters, and the user may be prompted for additional information
after requesting a particular operation.

Basic Commands

These commands perform the basic network manipulation functions.

h: 	 The (h)elp command displays a list of commands available to the user.

os: 	 The (o)pen (s)tandard command prepares the program for (r}eading a (b)ackup file. In
general, this is the first command a user should issue. More than one backup file can
be manipulated in a single interactive session with the Tester program. In this case,
the user should issue the (c)lose command before another (o)pen (s)tandard command.

rb: 	 This command (r leads a (b)ackup file. The user is prompted for the name of that file.
The user should not issue another rb command in the same interactive session without
issuing the (c)lose command first.

wb: 	 Used to (w)rite out a (b)ackup file. The user is prompted for the name of the file to
create for storing the network. This is useful when the user wishes to keep changes
that have been made to the network.

wt: 	 This command will output the entire network in a readable form. It is useful for
hand-checking parser output and gaining some insight into how a knowledge base is
stored.

rt: 	 This command reads a file in the readable form that· is output by the wt command. It
is particularly useful for adding new rules to a network without going through the
trouble of re-parsing.

Cl 	 The {c)lose command frees internal storage used by the Tester program. It should be
issued before reading another backup file in the same session.

or: 	 This command functions identically to the 08 command in the current
implementation.

b; This command allows the user to set the level of tuple manager debugging
information. This information is always placed in the file named "msg" which can be

. examined at the end of a session.

n: 	 Display a (n)ode and all of its attributes. The user is prompted for the name of the
node to be displayed. The command may fail if the node's printname is not in the
dictionary (initially, very few nodes are in the dictionary). A nodes printname can be
entered in the dictionary using the (m)ark command.

g. 	 This command can be used to (g)et an attribute hung under a node. It establishes this
attribute (if the command does not return an error) as the current tuple. A current

97

tuple is assumed to exist when using other commands (See, for example, the (m)ark
command). The attribute tuple is accessed by specifying node printnames beginning
with the node in slot 1. The user is asked to provide a "left context" for identifying
the attribute he wishes to access. This "left context" is simply one or more
printnames in the order they appear in the tuple, beginning with slot 1. The user is
prompted for the number of printnames he wishes to use as a "left context" and then
is asked to enter those printnames. For example, in the TEMPERATURE tuple
presented earlier, this tuple could be accessed by entering the number "2" when
prompted for length and then the names "TEMPERATURE" aD:d "MKDOMAIN"
when prompted for the printnames. remember that the printnames must be in the
dictionary for this command to succeed (you may have to use the (m)ark command to
enter them). Also note that the case of the letters is significant when matching
printnames. A simpler mechanism for looking at the network is provided by the "s"
commands (sw,sp,etc.).

gil This command also gets an attribute from the network as does the g comma.nd.
Ii command, however, uses an inheritance mechanism to find an attribute.
inheritance mechanism is described in the chapter on the tuple manager.

The
The

s: This command (a)dds a tuple to the network. As in (g)et, the length of the "left
context" is requested and printnames of that context. The tuple is hung under the
node in slot 1 of the "left context" if that node exists in the dictionary, otherwise the
node is created.

d: This command is used to (d)elete a tuple. It functions just like (g)et and (a)dd.

m: Used to (m)ark a node (Le. enter its printname into the dictionary). The user is
prompted for which slot (element) in the current tuple he wishes to mark. These slots
are referenced one of two ways: either by its slot address as a positive integer
(counting from the left) or by its slot address as a negative integer (counting from the
right). For example, if the current tuple has length 3, its last slot can be referenced by
either 3 or -1.

h This command causes a (l)evel change. Three copies of each knowledge base are
maintained: the global, local and private level copies. Initially, the global level copy is
manipulated by the Tester program. For more information on levels, see the tuple
manager chapter.

1: This command no longer has a function.

p: Used to
name.

(p)urge a printname from the dictionary. The user is prompted for that

x: The x command deletes a node that has no attributes. If the node has some attributes
hung under it this command will fail (the d command should be used first to delete all
attribu tes).

tr: Retrieves and displays a line of text from a textnode.

ta: This command will retrieve and display all the lines of text in a text node.

ts:This command will store a line of text under a textnode. The user is prompted for
that line of text.

Network Traversing Commands

The group of commands that follow have been added in order to simplify the process
of descending into a knowledge base network. In particular, they a.llow the user to look at
parts of the network without having to enter a series of (m)ark commands followed by (g)et

98

attribute commands to descend into the network.

sg: This comma.nd gets the first tuple in the network. The user is prompted for its

printname and it becomes the cur~ent tuple.

aWl Prints all of the attributes under the current tuple.

an: This command is followed by a space and then an integer. It prints the n-th attribute
under the current tuple.

sd: This command is followed by a space and then an integer. It descends to that node in
the current tuple as specified by the integer.

sri This command goes back one descent level.

sa: This command will add an attribute under the current descent level.

stl This command is used to transfer the current tuple as seen by the "s" comma.nds into
the current tuple as seen by the "d" command. It is useful for deleting tuples:

Module Testing Commands

The commands below are used to test the rule evaluator and the rule paraphraser. All
of these operations affect the node in slot 1 of the current tuple. This node in most cases
corresponds to the printname of a rule.

js: Initializes the rule evaluator. This command must be issued before attempting to
evaluate or interpret a rule.

jg: Used to put a value/confidence pair under a rule. Before attempting to evaluate or
interpret a rule. the variables involved in the left-hand side of that rule should have
vahles. These values can be inserted by using this command.

jg: This will get the value/confidence pair under a node (if it exists). For example, the
user may want to see if a value/confidence pair was placed under the rules right-hand
side after interpreting that rule.

jel This command will evaluate the current node (usually a rule).

ji: This command will interpret the current node.

jUt Used to initialize the rule paraphraser. Must be issued before attempting a jt
command.

jt: Used to paraphrase the current node.

10.2. The Trap Module

This section describes the 21 TRAP functions used in PLANT/cd. These functions
implement the deep model of black cutworm damage (BeW) as developed by Steve Troester
[Troester82a, b,c,dj. The BeW development model by Kimpel [KimpeI78! and used in Steve
Troester's programs [Troester82c,dJ, was not used in PLANT/cd. Instead, a simplified
simulation was developed. The TRAP module and this documentation was written by Albert
Boulanger.

The rule evaluator uses the Special Functions Module (also known as the TR.'\..? module)
to evaluate TRAP functions that are in the rules. A TRAP function has the form:

http:comma.nd

99

TRAP(number,pl,p2,••• ,pn)

Where ...
number is the TRAP number, and

pl,p2,•••,pn are the parameters to the trap Cunction.

The rule evaluator passes the TRAP number and the parameters to procedure TRAPFUNC in
the TRAP module. Procedur~ THAPFUNC has a case statement in which the TRAP numbers
serve as case labels. Upon branching, several operations are perCormed. The TRAP parameters
are converted Crom their network representation to a Pascal representation. Parameters that
are nominal are usually mapped into a Pascal scalar variable. Next the semantics are executed.
This is usually a call to a procedure or Cunction. Finally the outgoing parameters are converted
from their Pascal representation to their network representation. These procedures are 'lexically
scoped within procedure TRAPFUNC, although there are several utility procedures outside.
One procedure that is outside is procedure TRINIT that the backward control scheme code calls
to initialize the TRAP module. Each of the current TRAP functions is described briefly below:

.. TRAP 1. This was used for developing the TRAP module and is no longer used.

TRAP 2. This calls TRASKSTATION which asks for the closest weather station from
the user, by a special protocol. This procedure was necessary because STACODE (the
station code) is a nominal type variable with too many domain elements to be handled by
creating a set oC touch targets.

• TRAP 3. This calls TRASKTRAP to obtain the moth trap counts over a span of 11
weeks beginning March 17. The user can enter unknown for any of the entries and the
system will assume a value of O. It will also set the certainty of the first parameter to the
TRAP function to 0.5. Also provided is a check for proper number format. If something
entered was not a number, the user is asked to reenter his data. This type checking is
performed for all the user input routines in the TRAP module.

• TRAP 4.. This calls TRASKATTR to obtain the field attractiveness rating for the same
11 week time span. Unknown values are handled in the same way as in TRASKTRAP.

• TRAP 5. This calls TRASKBCWPOP to get the larval age spectrum in the field. This
works like TRASKTRAP and TRASKATTR. TRASKTRAP, TRASKATTR, and
TRASKBCWPOP use TRDSPWEEKS and TRDSPLCNTS to produce the appropriate
column headings. They also use TRGSTUFF to get the user input.

• TRAP 6. This calls TRCTOEGGS to convert the moth trap counts to an egg popUlation.
Egg population is equal to 5.7 times the moth trap counts [Troester82a].

• TRAP 7. This calls TRCTOFLD to c{'fI ,crt the eggs laid in the region to eggs laid in the
consultation field. This is done by mulliplying the egg population by the attractiveness
rating.

.. TRAP 8. This calls TRDSPEGGS to display the egg population in the consultation field
and the surrounding area.

• TRAP 9. This calls TRDSPTAB to display tl!e results of the cutworm development
model. This is in the form of a transition matrix which shows the dates when different
instars will undergo age transitions.

• TRAP 10. This calls TRDSPLTAB to display the results of plant development.

100

• 	 TRAP 11. This calls TRDSPPOPVSSTAGE to display the results of putting cutworm
development in terms of corn development. This is called matrix K in [Troester82a].

• 	 TRAP 12. This calls TRGETDDTABLE to get the degree day data necessary for the
corn and cutworm development models. The two incoming arguments, STACODE and
OBDATE, are used to specify the location and start day of the data respectively.

• 	 TRAP 19. This calls TRPLANTDATE to backward develop the corn in order to estimate
the planting date (PLANTDATE) given the observed fractional leaf stage (FRACT)) the
corn variety (VARIETY), and the observation date (OBDATE). This relies on work
described in ITroester82aJ. This procedure calls TRLEAFLOOKUP.

• 	 TRAP 14. This calls TRCORNDEVELOP, the corn development model. Inputs are the
planting date (PLANTDATE) and the corn variety (VARIETY). This also relies on the
work referenced above.

• 	 TRAP 15. This calls TRBCWDEVEl.OP, the cutworm devek. o::ent model. Inputs are
OBDATE and PLANTDATE. This ;;: r~el has two different One sectioft is used
only if eggs are forward developed frem an observation date Ie.::.; ."an planting date. This
section is bypassed if actual larval counts are input. In Steve Troester's work, eggs are
developed with a model built by Kimpel (Kimpel78] and simulated using GASP 5. For
PLANTIcd, another approach was used. The egg population was forward developed until
planting date. Then the differ'· , 3.ged larvae are classified into the closest instar category.
The simulation from there L, ., , same as described in (Troester82aJ and is the same one
that simulates cutworm dey~ ;~ment given actual larval counts. This procedure calls
TRAVERAGE as a utility procedure. The procedures TRSMOOTH and TRSURVIVE
are provided for experimenting with smoothing the egg distribution, and simulating larval
mortality. Currently these are not used.

• 	 TRAP 16. This calls TRPOPVSSTAGE to put the results of cutworm development in
terms of corn development. Th',. based on the work described in [Troester82aJ.

• 	 TRAP 17. This calls TR1DAlvlAGE to estimate cutworm damage without recovery
and without regrowth. Input to this function are MUCHWEEDS, VARIETY,
MOISTURE. The parasitism rate is set to a constant. Output of this function are the corn
yield without insecticide treatment and without recovery (YIELD1) and the percent
damaged corn (CORNDAMAGE). This and the following three TRAP functions rely on
work described in {Troester82a].

• 	 TRAP 18. This calls TR2DAMAGE to estimate cutworm damage without recovery but
with insecticide treatment. This function uses FRACT and MOISTURE (soil moisture) to
compute YIELD2 (yield without recovery and with insecticide treatment).

• 	 TRAP 19. This calls TR1RECOVER to estimate corn recovery without insecticide
treatment. This function uses MOISTURE and HOTWINDY (whether it is hot and
windy) to compute YIELDINC1 (yield increase due to recovery without insecticide
treatment) and TOTRECOVER (percent total recovery of the corn).

• 	 TRAP 20. This calls TR2RECOVER to estimate corn recovery with insecticide
treatment. It uses FRACT and MOISTURE to compute YIELDINC2 (yield increase due
to recovery with insecticide treatment.)

• 	 TRAP 21. This is used to prompt fo~ :\nd obtain the value Cor the date variables used in
PLANTled. It returns the number of-.e day entered in mm/dd/yy format. To obtain the
date from the user, it calls TRASKDArE. TRASKDATE checks Cor proper date format.
The year is stored internally in the TRAP module.

http:TRBCWDEVEl.OP

101

• 	 TRAP 22. This calls TRGETLSTAGE which is used to calculate the rractionalleaf stage
(FRACT) given PLANTDATE and OBDATE.

• 	 TRAP testnum. This is used to call the trap module exerciser routine, TRTESTR.

The TRAP module also has a driver program that is used to run it in test mode. In this
mode, the major functions are exercised, and damage estimates can be obtained without the use
or the knowledge base (Le., it runs in stand alone mode.) The main program calls
TREXERCISE to do the exercising functions. This procedure calls TRAPFUNC and has it
branch to testnum in the case statement.

CHAPTER 11

Rule Based Inference Control (PLANT/ ds)

11.1. Introduction

The PLANTIds consultation program is an experimental expert system used to advise
brmers on diseases common to soybeans in Illinois. The program acts as a diagnostician, by
lsking the user questions regarding problems observed in the diseased crop and returning a list
{)i the most likely disease candidates. A general description of the problem domail1 and an
~ariier program can be found in !Chilausky79j. This section describes the realization of
PLANTI ds within the environment of the ADVISE knowledge programming system, with a
particular emphasis on the control strategy employed. The program and this documentation
was prepared by Mark Seyler.

The responsibility of the control scheme is to make the knowledge embedded in the
program available to the user by conducting a consultation. The search space represented by
the PLANT/ds problem domain is of sufficient size that the control strategy utilizes search
heuristics that attempt to focus the consultation on .only that knowledge relevant to the user's
problem. An approximate reasoning method found useful in this particular domain is selected
(from the several available in the ADVISE system). The control scheme is also responsible for
explaining some aspects of its reasoning process and providing access to the knowledge it
contains. Each of these aspects of control will be discussed in turn.

11.2. The Knowledge Base

Knowledge in the PLANTIds system is represented as decision rules in the GVL
I

formalism [Michalski80J. There are two types of rules, those that represent hierarchical
relationships among variables (candidate rules) and those that refiect the relationship between
the variables and the SOYBEAN DISEASE goal variable (goal rules). An example candidate
rule is:

[LEAF ...sPOTS = ABSENT]
::>

[LEAF...sPOTS.MARGIN = DOES~OT...APPL Yj
[LEAF...sPOT...sIZE = DOES~OT...APPLY]

In this case, the variable LEAF ...sPOTS represents a grosser level of detail than the other two
variables. This use of two levels of detail is one mechanism by which attention can be focused
as early as possible on that class of diseases relevant to the problem at hand. An example goal
rule is:

102

103

0.8 [TIME_OF _OCCURENCE = AUGUST .. SEPTEMBER]
[CONDITION_OF -.LEAVES = ABNORMAL]
!CONDITION_OF.J3TEM = NORMAL]
[LEAF --MILDEW _GROWTH = °N_UPPER-.LEAF ...sURF ACE]

+
0.2[PRECIPITATION < NORMAL]

[TEMPERATURE >= NORMAL]
::>

[SOYBEAN~ISEASE = POWDERY--MILDEW]

There is one rule of this sort for each of the possible diseases (currently 20). All of the variables
in the rule's left hand side are those deemed relevant to that disease. They are grouped
together and weights assigned to each group (linear module) according to the impottance of
that variable to the disease in question. The weights sum to unity and evaluating a rule of this
type can be viewed as accumulating positive evidence that the disease in the rule's right hand
side is present.

There are two sets of goal rules (rule groups): those output by the inductive learning
program AQ-ll [Michalski78J and those compiled by the expert plant pathologist. The AQ-ll
program attempts to find the minimum number of of variables that successfully discriminate
the various classes of soybean disease. These rules are used to reduce very quickly the number
of disease candidates considered by the program. Once the number of candidates is reduced to
5 or fewer, the expert compiled rules are evaluated and used in the remainder of the
consultation.

It was recognized early that knowledge regarding the consistent diagnosis of soybean
diseases was not complete. For this reason, a method of representing and combining
approximate reasoning is employed. Furthermore, confidence in a particular observation may
be prone to error and for this reason the user is asked to select a confidence in his answer.
Details of the evaluation scheme used in PLANTIds can be found in [Michalski82].

Aside from the candidate rules, which are used to reduce the search space, the PLANTIds
knowledge base is two-leveled. This does not lend itself well to classical chaining (backward or
forward) control strategies that establish intermediate goals. Instead, the problem is one of
selecting among one of many possible terminal goals (soybean disease). The primary
PLANT/ds control loop is outlined in a Pascal-like pseudo code below:

104

repeat
select the most useful variable;
if the value is not known ask the user for it;
find all those rules in which this variable occurs;

(in the left-hand side)
ror all of the rules found above do begin

evaluate the rule;
if its value is below the threshold then

eliminate it from consideration;
until all of the variables have been selected;

The control scheme attempts to minimize the number of questions asked of the user. In
this respect, it acts in much the same fashion as the human expert, who eliminates those aspects
of the problem irrelevant to the task at hand and focuses on what is most relevant. PLANT/ds
uses two mechanisms for focusing attention to the most likely disease candidates. The first is
by the use of a hierarchical variable structure (the candidate rules). The second is rule
elimination by thresholding. Any time a goal rule falls below a certain threshold (determined
by the knowledge engineer and domain expert) it is eliminated from consideration. The
algorithm for selecting the most useful variable can then be formulated as follows:

select a variable that may satisfy one of the
candidate rules;

ir none of these are available then
select a variable with the maximum utility where utility
is defined as the number of rules in which the variable
occurs;

By defining utility in this fashion, the program will attempt to eliminate as many goal
rules as it can as early as possible. The viability of a rule in the PLANT system is defined as
the degree of truth of its left hand side. This degree of truth cannot be calculated exactly until
all of the variables on the left hand side have a value. However, a best case truth value can be
calculated at any stage by assuming those variables that do not currently have a value are
satisfied. If a rule's best case truth value falls below the threshold, the rule can also be
eliminated from consideration. By eliminating goal rules, any variables they involve can be
eliminated, thereby reducing the number of potential questions. In experiments done to date, of
a possible 40 questions possible only about Ui-20 are asked by the program.

Another aspect of control embodied in PLANT/ ds is that of allowing the user access to its
knowledge and some aspects of its reasoning. This aspect of transparency is highly desirable in
expert systems both because it increases user acceptance and can be used :I.S 11 tool for testing
new knowledge bases. During the variable value request portion of the pro(;ram a number of
options are made available to the user:

105

(e) Provides assistance in clarifying the question being asked.

(v) Lists those diseases still being considered and their best case confidence.

(w) This option displays the change that would occur in the confidence in each disease for
each possible response.

(r) Displays those rules in which the current variable is found.

(b) Allows the user to return to the previous question.

(m) Allows the user to modify his answer to the current question.

After the program has displayed its conclusions, the user can make further inquiries of the
knowledge base:

.. 	 Program execution statistics can be examined.

.. 	 Any rule in the knowledge base can be displayed.

.. 	 For any goal rule, a list of those selectors that failed can be displayed. This can be used
to determine why a particular disease was ruled out or how the confidence in the most
likely disease might be improved.

In addition to the capabilities mentioned above, the control scheme can be reconfigured prior to
entering its consultation phase. The user can elect to use only the machine generated or expert
rule groups. The breadth of the search can be adjusted by choosing to gather packets of
information before evaluating. These packets represent groups of variables whose values are
asked of the user prior to evaluating any rules. The thresholds used for rule elimination can be
set as a means of balancing the performance of a particular rule set. A final option allows the
user to select a novice or experienced mode of con:mltation. In the novice mode, additional help
and guidance is given throughout to consultation as a means of training new users in its
function and operation.

11.3. Using the PLANT Program

The PLANT program resides on the VAX-ll/780 at the University if Illinois, Urbana
Champaign. It represents one of the earliest experiments in expert systems to be developed
within the ADVISE environment and is still undergoing improvement. In parallel, the PLANT
program was being "downloaded" onto a small computer (the IBM PC). A sister system TURF
was subsequently developed by Greg Smith, and later Bob Reinke and Jiarong Hong readapted
this for the vax-sun Unix environment for rapid compiled execution.

The PLANT program can be executed on the VAX by typing $ADVISE!kblib!plant.
It generates diagnostic and performance messages which can be examined after the session in a
file called mll!;_ The program can be configured to run on a particular terminal by re-loading
the program with the appropriate device driver or loading the "gkuniversal" and "gktermcap"
routines developed 10 support UNIX termcap conventions (in which case the shell TERM
variable should be properly initialized).

11.3.1. Dntn Structures

The architecture of the Pascal modules is such that each should remain active
throughout the life of program execution. This means that a static memory area is set aside
for each module. In the case of the control scheme modules, such as PLANT/ ds, this area.
contains a number of useful data structurespertinent to the regulation of rules and
variables. This section elucidates the various elements to the PLANT/ ds control scheme
static area as defined in "csconst.h",

106

The following constants are available:

esc ascii escape character (note: UNIX cbreak/raw mode required to detect this),

bs ascii baskspace character,

sp the space or blank character, also available as the constan "blnk"

qm the character "1",

e the ascii character "e",

o the ascii character "0",

maxnumvars the maximum number of variables = 500, simply to set array dimensions,

maxnumrules maximum number of rules = 1000, also determines array size,

mnblocklen refers to the' "tal number of blocks

(rule group~ var defns + function defns = 14.

The following types are declared:

byte a single byte quan tity,

intype a half byte quantity,

foldtype for possible options (min,prod,aver,full) of folding together truth value
weights, (noprotect is delete old valcons, protect is save them)

updaietype for specifying what to do with old value/confidence pairs of variables,
noprotect is delete old valcons, protect is save them,

pktypes specifies question packet options (pkone = one at a time, pkall = all at one,
pkhalf = more important half of the questions first),

rwt.ype form generation options = (readin,writeout).

Within the master record type, csstatic, the folowing fields are declared:

error main error indicator, there is art extensive errortype declared to indicate
which oC multiple errors have occurred

answers array of variables' state values,

goodrules list of the currently viable rules,

frmenbl a boolean array indicating whether or not a predefined Crame (screen
image) is enabled or not (to be asked); certain frames or Corms are
preconstructed, but exactly which ones should be filled in are a Cunction of
the state of the consultation

backUg . whether or not the current state is go backward8, i.e., the option to go back
to a previous state has been requested,

fastexit whether or not to immediately exit consultation,

ipHlg whether or not to reinitialize the session, i.e. completely reset system and
start over

earlyexit boolean !lag, whether or not a premature exit is ig taken, not exactly
the same as immediate exit,

exitmsg what to print out as we exit session,

rg pointer to current rule group,

107

viablegoals

expert

machine

stop

escexit

changed

current # of viable goals,

intnamerec of expert rulegroup,

intnamerec of machine rulegroup,

number of viable goals to stop with,

boolean condition which indicates ESC exit of form,

boolean array of variables, indicates if a
changed/updated,

variable value was

unpropogateable boolean array of variables, indicates if a variable can not propagate

currform

maxform

lastform

scrn8in

scrnout1

scrnfil

scrnout2

startslot

trerr

dummy

debug

evalenable

thresh

erthresh

mrthresh

usemachine

useexpert

firsttime

level

backup

paraf

noopen

dspname

memavail

elapsedtime

job time

wal1time

number indicating the current form in the consultation,

number indicating the maximum form number, including dynamically
constructed forms at a particular point in the consulation

number indicating the form asked in the consultation, not the ,same as
currform-1, and useful to the "back" operation

file pointer to the scrn8in file, which is used to dynamically construct new
forms beyond the static forms,

file pointer for a work file, used in dynamic form construction

file pointer for a work file, used in dynamic form construction

file pointer for a work file, used in dynamic form construction

csget-getattribute startslot, cstools global

trap function error-unused here, cstools global

dummy intnamerec parameter to cstools

boolean flag indicates whether to spit out debug messages,

boolean flag (true = turn on evaluator)

machine/expert rules confidence threshold, optional to erthresh/mrthresh

expert rules confidence threshold

machine rules confidence threshold,

boolean flag, if true use machine rules,

boolean flag, if true use expert rules,

used to convey 1st variable in consultation,

indicates one of 3 network levels: global, local, private,

text file pointer to backup file to be read/written,

text file pointer to paraphraser scratch file,

boolean flag tells if any nodes open,

boolean flags, if true dump printname else dump property,

param to szestimate, gives available memory (on stack),

time since last call to plreport,

total elapsed jobtime,

wallcIock time at start of program,

•

108

waye

wayw::l.; oack

approxeval

packetoption

newuser

olduser

confirmed

nqueries

xintnamerec

vars

rules

erules

goal

imkzzzzz

boolean flag (if true back to beginning of a rulegroup),

boolean flag (if true back from expert to machine rules),

boolean flag (if true enable approximate evaluation).

option as to number of questions to ask before sending a question, can be
one, half, all,

if true, then is new users,

if true, then is old users,

boolean flag, tells whether hypothesis is confirmed,

number of questions asked

a spare pointer, for development work,

a record with the following elements:
list - an array of records, one for each variable, giving following'

id - the variable internal "intnamerec" reference

asked - boolean flag, if true variable was asked of user

propogated- 0 = unpropagated, 1..n = when propapagated

tells whether all consequences of a variable

value have been spread (number indicates which

frame actually solicited the variable value)

candidate-- boolean flag, true = candidate for this rg

freq integer indicating lhs frequency of variable

nvars - integer indicating length of variables list

npropogated - integer indicating # of variables propagated

a record with the following elements:
list - array of records, one for each relevant rule with following

name - the rule designation as an intnamerec

viable - boolean flag, if true rule still viable *)

nrules - integer giving length of rules lbt

a record with rules to be evaluated after variable query with the following
elements:

list - tuple having intnamerecs of relevant rules
cp whether to use printname or blanks in printing
nrules - number of rules in list

status of goal node record, contains following items
id - intnamerec representation of goal varaible
val - array records pertaining specific goal variable values

id - intnamerec representation of value

conf - real number specifying confidence of value

viable - boolean flag indicating whether value is viable

nvals - integer number of goal variable values

nviable - total number of viable goals

network is ;,;,~cessed by determining the internal names of the mark types
of form imkxzzzz; allows convienent access to the tuples used by the
control schema; procedure plinitmk determines the internal names of the
necessary mark types as part of the control schema. initialization by
looking them up in the dictionary,

109

icsxxxxx similar to imkxxxxx, but more control scheme use than general use

11.3.2. Control Scheme Tools Package

The code in "cstools.h" was felt to be of general utility to both PLANTIcd and
PLANTIds in writing control schemes. A brief description of each procedure follows. Note
that each routine takes a pointer to a csstatic area as its initial argument.

csherror

cseqpname

csgetpname

csput

csmakename

csgetreal

csputreal

csginteger

csputinteger

csrealp

csintegerp

csopen

This procedure is used to handle error conditions. Given an errortype and

msgstr, it displays the error to the user and puts a dump in the message

file.

Given 2 nodes, this function returns true if the printnames of the two

nodes are equal.

This procedure gets the printname of a node. notice that it uses dynamic

dimensions for the array that is holding the print name.

Given a tuple and tuplelength, this procedure puts it in the network,

however first checks to see iC there is a tuple with the same left context up

to a specified tuplelength (possibly of shorter length than the whole tuple).

If there is one it deletes it, then adds tuple. Thus, this procedure can also

replace.

This procedure make a node with a print name in the dictionary if it is not

there already.

This converts the network representation of a real number to the Pascal

representation.

This procedure puts the Pascal representation of a real number into

network Corm.

This converts the network representation of a integer number to the Pascal

representation.

This procedure puts the Pascal representation of a integer number into

network form.

This Cunction is used to check to see if the node represents a real value,

generating real value if it is.

This function returns true if testnode represents an integer, generating

integer value if it is.

This procedure is used to open nodes under a restricted protocall. This is

meant to be used to mark the fact that a node should not go away through

several closely placed (in time) calls to tuple manager routines that use the

node. This assumes that a use counter is now implemented for nodes. One

further note: most of the routines in cstools are node-open-or-close-status

preserving iC a use counter is implemented. Thus to keep the use count

above 1 to state that a node will be around for a while, then do a csopen

on the node at the beginning of transactions on the node, then do a csclose

at the end of the transactions. This procedure and its companion are here

for efficiency reasons.

110

csdose 	 This is the companion routine to csopen. It decrements open count.

cshasprop 	 This boolean function is used to check on the existence of a property
(intnamerec) under a node.

csputvalcon 	 This procedure is used to store value (intnamerec), confidence (intnamerec)
pairs under the variable, vari (intnamerec). It calls in turn the system wide
procedure to do this. Assumes updatetype = (protect,noprotect), i.e.,
how to handle previous values, is defined on top of this procedure.

csgetvalcon 	 This procedure is used to get the tuple "duples" containing
value/confidence pairs under a node. The returned tuple has its 1st elt the
"node" intnamerec, its 2nd elt the "mkvalcon" intnamerec, and the
following elts will be the value/confidence pairs. The boolean argument
"novals" indicates whether no value/confidence pairs were found.

csdumptext 	 This is used to dump the text of a property under a node out to, a textfile
(to be later displayed on the screen).

csgetint 	 Given a marktype, this procedure returns its internal name by looking in
the dictionary. If it isn't in the dictionary, a new node is created.

csrevaluate Given a rule (intnamerec) to evaluate, this routine sends the necessary
information to the evaluator and returns the rules truthvalue and a
boolean flag indicating whether evaluation completed (e.g., whether all
necessary variable values were present). If the rule Ihs has been completely
evaluated, complete is set to true.

cspresults 	 Prints to a file the confidence values of a variable which is assumed to be a
goal variable. If no values are viable, a boolean flag is set.

csgetlabdata 	 This procedure is used to get a E,,· ,)f labdata variables for the ruleset
(intnamerec). The tuple of labdata y ; abies are asked for at the beginning
of trying a rule group.

csget 	 Gets an attribute tuple under main node c1 by matching context (c1 c2 c3
c4). note that level is global to this and other procedures in this utility
package. Accnotfound flag specifies whether to error out if not found.

csstrengthtofire 	 Given a confidence from the evaluator, this routine calculates the strength
to fire the rhs from alpha. Four schemes for folding the confidence with
alpha are available:
1) min (minimum of confidence and alpha) (default)
2) product (confidence * alpha)
3) average ({confidence + alpha) / 2.0)
4) full (alpha).

csrinterpret 	 Given a rule{intnamerec), its truthvalue and foldscheme, this routine
invokes the interpreter with the necessary information after calculating its
strength to fire.

11.3.3. PLANT/ds Tools Package

The PLANT/ ds system was originally encoded simply in terms of the appropriate
"cstools" constructs and a set of procedures and functions. Subsequently, these were modified
to be of more general value in generating "PLANT/ ds-like" systems. This package is
referred to as "pltools" and is summarized here.

111

plgetstr

pldumptext

plemptyvar

plrankresults

pldispname

plreport

plputbanner

plpage1

pusers

plpage2

plresdump

plgrabresults

plresults

plputdomain

plparaf

plreqrule

plrelrules

plstatusofgoal

plagoalrule

plisgoalviable

plgetrhsval

plrulesdump

Gets a msgstr from file or terminal and determine length as integer value.

Dumps property under node to standard output.

Clears avar (intnamerec) of all its valcons.

Sorts and prints results (i.e., goal variable value/confidence pairs) in

descending order according to confidence.

Puts in ames (intnamerec) printname in iofile and returns its integer

length.

Reports msgstr on some current job statistics.

Puts advise banner on screen.

Displays a PLANTIds specific introductory panel on screen.

Asks the user his name to check if he is a priviledged user, checking

against the names file for number of times he has previously used the

system (>5?). Update in nnames by incrementing his entry ther~.

If a priviledged user, various options can be set as to the control scheme.

This is meant to follow a check for priviledged users (pusers).

Dump to msg the results data structure along with note msgstr.

Assumes rule (intnamerec) has fired; looks under the goal node for results

of firing and stores the results.

Print results of plant consultation. Print indicated diseases (within .2 of

max confidence and > erthresh). Also print contra-indicated diseases
(diseases ruled out).

Outputs the variable name, its domain and provides selection of items for

each domain element. Also returns the domain tuple and its length:

for integer-domain[1J- start of domain, domain[2] - end of domain
domlength - negative of # of values in domain

for real-domain[1] start of domain, domain[2J - end of domain
domlength - 0 *)

Paraphra.ses item (intnamerec) which is a rule or rule subexpression and
places text on the screen. It handles paging through text which is too big
to fit on one screen.

Prompts the user for a rule option request, i.e., asks user which rule he

wants to see, then calls plpara/.

Prepares display of all rules relevent to a variable (intnamerec).

Copies all viable rules in the goal record onto a screen frame. If boolean

Hag pviable = true then prints viable goals, otherwise prints non-viable

goals.

Returns true if rule (intnamerec) has a rhs which contains a goal.

Check whether goal value of rule (intnamerec) is amongst the viable

candidates.

Given a rule (intnamerec) and the goal variable (intnamerec) gets the

internal name of the reference in the first selector of its rhs. If the selector

found is not a goal selector plgetrhsval returns false.

Dump to msg file the rules data structure, along with note msgstr.

112

plerulesdump

plgetvars

plcandidates

plgetrules

plisruleviable

plruleviable

plgoalviable

plvarunknown

plvarselect

Dump to msg file the erules data structure, along with note msgstr.

Gets a lhs variable list for a rulegroup designated by rg in the control

scheme static a.rea and copies the information into the vars data

structure.

Marks as candidates for network propogation every variable in van that

occurs in the "ulegroup's lhs.

Loads the rules data structure with the rules in the current group (rg) and

initializes that data structure.

Returns plisruleviable = true if the rule (intnamerec) passed is currently

viable.

Marks the rule (intnamerec) as no longer viable: if settrue = true then

rule set to viable else rule set to not viable.

Marks the goal value sought by specified rule (intnamerec) as no longer

viable: if settrue = true then goal is set to viable else goal is set to not

viable.

Returns true if their are no values under variable avar (intnamerec) or its

value is unknown.

Select a variable avar (intnamerec) that has yet to be propogated thru the

network. Use precedenc:

1) select var whose value is k,nown but not yet
propogated(a rhs non-goal variable),

2) select the first biased variable encountered,
3) select the variable with the max lhs frequency. If avar has no value,

aslcforit is set to true. If all the variables have been propogated, found is
set to false. loc returns a pointer in the var vector to the variable
selected.

plmarkpropogatedThe propogated flag of avar (intnamerec) is set to marlc.

plclearerules

plmatchrules

plselectrule

plbuildfreq

plsmstats

plsmfailed

plfailed

plsumm

plinit

plgoalinit

Clear the erules data structure.

Finds all the rules in rulegroup rg that have avar in their lhs's and places

them in the erules data structure. It will only insert those rules that are

not already there.

Select next rule from erules data structure. If none is available, found is

set to false.

For each candidate, un-propogated variable in the vars record sets its

frequency field to an integer value corresponding to the number of viable

rules' lhs's in which it occurs.

Display some job statistics.

Given a rule node and the loca.tion of its corresponding location in the

goals list, displays all failed selectors.

P:- :ts the user for the goal rule he wishes to examine, then ca.lls

p, '~d to display it.

Dis; program summary information.

Init, ,:es system, reading in backup file backup/no

IniL . ~s the goal structure. This should not be so intimately bound as it

is to the other initializations.

113

plexprep

plhypelim

plgetdomain

plwhy

plvarsdump

plevalall

plcloseout

Prepare expert rules for use.

Displays a frame listing all eliminated hypotheses since the last call. Also

provides several user options similar to plgetdomain.

Given a variable varcurrent, retrieves a value and confidence pair for it

from the user. If back is true the user requested going back to a previous

question.

User option that looks at all the possible answers to the current question

and reports to the user how they would effect the status of the goal.

Dump to msg file the vars data values.

Evaluate all the rules in the rules list using the threshold threah regardless

of current viability.

Perform various closing tasks.

CHAPTER 12

Rule Based Inference Control (PLANT Icd)

12.1. Introduction

This chapter describes the backward chaining control scheme used with the PLANT/cd
knowledge base. The program was written by Albert Boulanger.

12.2. User Description

The PLANT/cd control scheme was patterned after the EMYCIN [vanMelle791 view of
control. In addition to this basic control, PLANT/cd features antecedent rules (limited forward
chaining), "labdata" variables (variables that are marked to be asked before any other variable),
and multiple goals for a rule group.

This control scheme makes use of properties. Properties are pieces of text a rule or
variable can possess. These are very much like LISP properties; i.e. they have a type and
contents. (See description of the parser.) The control scheme uses the PROMPT property of a.
variable to ask for the value. The TRANS property of a variable is used to display the value(s)
of the variable. This property is a better description of the variable trran the variable's name.

ANTECEDENT rules allow for limited forward chaining in a backward chaining
mechanism. Whenever a variable is asked for, or it is updated by the execution of a RHS (right
hand side), all Al"lTECEDENT rules that refer to that variable on their LHS (left hand side)
are tried.

GOAL variables are variables whose value/confidence pairs are displayed to the user at
the end of a session. They usually represent the entities that the user seeks advice on. This
present PLANT/cd control scheme allows for more than one GOAL variable.

LABDATA variables are variables that are used often and usually represent basic
information. LABDATA variables are sought out (either by asking or inferring) before GOAL
variables. Unlike EMYCIN, in which such variables were always asked, PLANT/cd allows
these variables to be inferred.

12.3. Control Scheme Details

The most important parts of the backward chaining control scheme, a program called
BWARD, are illustrated in How chart form in Figures 40,41 and 42. The called procedures are
in capital letters in these figures. The procedure names are idealized a bit since the actual
names start with the module 2-letter prefix BC to abide with ADVISE module naming
conventions. Also many of the low level procedures are in a set of utility procedures, called
CSTOOLS, that is shared between PLANT/cd and PLANT/ds. These procedures are prefixed
with CS.

The top level (Figure 40) contains a loop that enables multiple consultations to be
performed within one session. The items that need to be initialized once across several
consultations are initialized in procedure START. The initialization tha.t is needed before each

114

--

115

TC? level

Q9C1\ nccwo,. ..

'nl"." •• .nc.~'
h'tc ... , Ise o'the...
~llI!s

"a& [0'- ""•• VOwO
try s"'tCCC'Olln't
"-tIes

fl'!!'COJT 'ab4at:& fI'"'S

i

Figure 40: Flowchart depicting the top-level structure of PLANTIcd.

consultation is performed in procedure LOOPSTART. In LOOPSTART, the rule group (the
knowledge base) name is requested, the GOAL variables for this rule group placed on a list, a
list of ANTECEDENT rules obtained, a list of "simple" ANTECEDENT rules obtained, and
the list of LABDATA variables retrieved from the network. The simple ANTECEDENT rules
are next tried. Finally, values for each of the LABDATA variables are searched for using the
FINDOUT procedure described below.

Mter this initialization, each of the GOAL variables is assigned a value using the
FINDOUT procedure. This is the main part of the consultation. After the GOAL variable
values are obtained, they are printed with their confidences using procedure
PRINTCONCLUSIONS. The consultation is ended by cleaning up for a new consultation and
calling LOOPSTART again.

The FINDOUT procedure (Figure 41) is responsible for finding the value of a variable;
either by asking for it, or by using rules to infer it, or both. It first uses the ASKFIRST
function to check if the current variable has the ASKFffiST property.

If it does have the ASKFffiST property, then procedure ASKFORIT is called to get the
value from the user. After obtaining the value from the user, procedure CHKANTE is called to
evaluate and possibly fire any ANTECEDENT rules that has the variable in their LHS. The
SHOULDINFER function is then called to see if the variable also needs to be inferred. The
decision to infer a value involves several considerations. In the most general case, there is the
value/confidence pair requested from the user and there is the value/confidence pair inferred
from the rules. The process of resolving any differences in these value/confidence pairs will be

116

FUlDOUT procedure

Figure 41: Flowchart depicting the FINDOUT procedure.

called voting. There is a scaler PASCAL variable, VOTESCHEME, that indicates the resolution.
method. The voting method used in this control scheme is to replace the current
value/confidence with the more current one. In the general case, the decision to inFer after
asking for the variable is a Function of the voting scheme used. In the case of this control
scheme, the variable is inferred after asking for it if the current value/confidences are below
SATISFYTHRESHOLD.

If the current variable should not be asked first, then the variable is first inferred. The
SHOULDASK function is called to see if ASKFORIT needs to be called. To be asked, the
variable has to have a PROMPT property. Also, the maximum certainty has to be less than
SATISFYTHRESHOLD. If the variable should be asked, then ASKFORIT as well as
CHKANTE is called. If the variable should not be asked and the maximum certainty is below
the F AIL THRESHOLD , then the value UNKNOWN is assigned.

The INFER procedure (Figure 42) uses the rules to determine the value of a variable.
INFER first gets the list of rules whose RHS update the current varia.ble. This is done by
procedure GETRULES. Next, RANKRUI..ES is called to rank this list. This procedure is
currently empty. At this point, a loop is set up to try the rules in the above list.
SHOULD CONTINUE is called to check if the maximum certainty of the value/confidences for
the current variable is above SATISFYTHRESHOLD. This is one terminating condition for the
loop; the other is when all rules have been tried.

Inside the loop, the list of variables used in the LHS of the current rule is obtained by
calling GETVARLIST. This list is ranked in procedure RANKVARS. A simple rule is one that

117

cot: 11'8" of
f"Ulcs t ~ COIoJi4
uoct..~~ "'... INt--e::R procedu.re

Figure 42; Flowchart depicting the INFER procedure.

does not use any variables in its LHS. There is a check after getting the list of variables for the
current rule whether the rule is a simple rule. If it is, then the LHS is evaluated and the rule is
checked to see if it fired. For rules that are not simple, then another loop is set up to use the
FINDOUT procedure on each of the variables in the LHS variable list. For each variable value
determined, the LHS is reevaluated to see if the certainty of the LHS falls below
F AlL THRESHOLD. If it does, the loop is terminated, and the rule will not fire. The other
terminating condition for the loop is running out of variables. Upon exiting the loop, the rule is
checked to see if it fired, using the function FffiED. If the certainty of the LHS is greater than
FffiETHRESHOLD, then DORHS is called to execute the RHS. Since executing the RHS may
update variables, CHECKANTE is also called on all the variables that are updated in the RHS
of the current rule.

12.4. Future Research Goals

There are a number of improvements that might augment the power of the present
version of the control scheme:

• 	 Self referencing rules.

• 	 EMYCIN contexts and between context reference.

• 	 Variable blocks. These are groups of variables that can be requested in a group. This
could be done by setting up an empty table for the user to fill in - a.:! in EMYCIN or by

118

multiple display module blocks on the same screen.

• Consultation typescript file.

• The ability to save and reload prior consultations.

CHAPTER 13

Context Driven Data Annotation (BABY)

13.1. Introduction

This section describes BABY, an expert system to aid clinicians who manage patients in a
Newborn Intensive Care Unit (NICU). BABY was developed and partially implemented by
Lance E. Rodewald. Throughout this section, 'user' refers to a clinician using BABY as a
monitoring aid; 'expert' refers to a person designing the medical knowledge b,asej and
'programmer' refers to a writer of expert system software.

Overview of the Clinical Environment. BABY's task is to find clinically important
patterns in the medical and demographic data about NICU patients. It is targeted specifically
on the NICU for two reasons-there is a need for a system like BABY, and the chance for
success is good due to peculiarities of neonatology. There are few areas in medicine where the
amount of data, especially numeric data, is as great as in a NICU. The volume of information
to be comprehended can be great enough to overwhelm the clinician, and much data is either
within normal limits or changing slowly, creating. the potential for a decreased index of
suspicion of new findings. In contrast with adult medicine, the relative importance of the
monitoring data to physical exam findings is greater because the babies often do not
demonstrate obvious physical signs with serious disease. The vast majority of data can be
made available on-line for a computer system [Frayer 80][La Gamma 80]. Machines already
monitor many physiologic parameters and have been used for extraction of significant events
from the stream of signals coming from monitoring equipment [Freedman 79]. Additionally,
the past medical history of a newborn is much more concise than that of an adult. Because the
number of diseases is limited, the amount of medical knowledge needed for interpretation of
findings is reduced.

Overview of System Function The design philosophy behind BABY is that the system
should metaphorically act as a neonatologist observing all on-line data in the nursery, keeping
tra.ck of the clinical states of the patients, suggesting further evaluation for important findings,
and answering questions about the pa.tients. This places BABY in the relatively benign role of
the observer, who answers questions, rather than that of the attending, who asks the questions.

BABY, although it uses a knowledge base, differs significantly from other medical expert
systems in that mandatory huma.n interaction is de-emphasized. This departure from the norm
is done for two reasons. Most important, it was felt that the expert system, to have a good
chance for success, should integrate itself into the daily routine instead of forcing a change in
this routine. The second reason is that there are many inferences to be made from the
automatically collected data that are either not attempted, or not done well, by current
laboratory computer systems. In other words, there is an environmental niche for an expert
system in the NICU to intelligently annotate the incoming data.

The role of BABY forces several requirements on the expert system structure. First, the
man-machine dialogue must be primarily initiated by the user. This, in turn, requires that the
the workings and current state of the machine be made as transparent as possible by the user
interface. In particular, the system's current impression of the patient must be explicit and
accessible, as should the means for inferring that assessment-the lab values and knowledge
structures.

119

120

The automatic nature oC the non-user input means that the system must be able to
interpret information not specifically requested. To do this accurately the machine must assess
the data in the context of global knowledge about the patient. A computer representation of
the patient's state which is capable oC conditioning the input interpretation is therefore needed.
BABY represents clinical states as prototypic data patterns that are matched against current
information in the patient's database. Embedded in these patterns is inCormation indicating
the clinical context required for an appropriate match so that interpretation will not be
attempted with a pattern that is out of context. .

Having BABY suggest Curther work-up to clarify problems identified in the automatic
data implies that the system be able to identify the tests most likely to supply valuable
information. Ideally, this ability should be derived from the machine'!! assessment of the
patient's condition in order to use global knowledge for test selection. Pattern prototypes that
can match partial or incomplete data and signal to the user the missing inCormation provide
BABY's solution to the problem.

Overview of System Strueture. There were two guiding Corces in the BABY design.
Most important, the system was designed from the user interface inward to maintain the
desired type of man-machine interaction. Second, it was integrated into the ADVISE system in
order to use the knowledge engineering tools developed at the University of Illinois.

The previously mentioned metaphor for the system poses a number of engineering problems. A
knowledge representation must allow data-driven interpretation; the control scheme has to be
semi-autonomous; and the representation of the patient state must be made available to the
user interface operators. The resulting BABY structure is shown in Figure 43. The patient
state and user interCace are central to the system 'since the other modules interact through
them. The ADVISE system provides the software environment for both system development
and operation.

BABY needs to interface with at least the hospital information system to obtain the lab values
and demographic information. In addition, iC monitoring input is to be used, the stream of raw
data must be preprocessed to extract significant events. In other words, BABY is not a machine
for data storage or signal enhancement; the existence of that capability is assumed. Rather,
BABY is a knowledgeable interface betw('en clinician and NICU computers that makes sense of
the patient's data by putting it into a clinical context.

13.2. Clinical Perspective

As an aid to the neonatologist, BABY aims to help with the tedious tasks rather than
those in which the clinician has the most individualistic approach and takes the most pride.
Therefore, it was felt that BABY should intelligently follow the data about the patients and not
eoncentrate on the differential diagnosis.

13.2.1. Role of BABY in Diagnosis

In their description oC clinical problem solving, Eddy and Clanton identify four main
tasks [Eddy 82J. They are: selection of a. pimt, generation oC a cause list, selection of a
diagnosis, and validation of the selection. As mentioned previously, a pivot is a
pathophysiologic state around which a differential diagnosis can be developed. BABY only
addresses the first step-it is strietly concerned with finding pivots in the data. Selection,
pruning, and validation are left to the clinician.

Sidestepping the medieal diagnostic process has at least two advantages. Most
important, false positives become acceptable beeause the burden of diagnostic proof remains
on the physician. Having BABY only provide pivots also has the advantage of simplifying
system architecture and knowledge base construction. The complexity and size of
CADUCEUS's knowledge base testifies to the difficulty of computer differential diagnosis

121

.'

/iOSll Till. H~lIlr.1A t10k'lr'>R MOulro" Nbat'Tol'
ZIJF'!2.t1 AT! OAI vill".l
S't'jTf"!t I 2 1 n

r- 1
\~
:::s 1.1
\u
::3
<:3

.1

1
:IJlFIiIfIi'u,F

E'/II6/NE

~
ex:
I
":2: 'to/QWI'£06i!0
u

f}f}sE
.

. PAl/eN'T

~T'I1U

-.1 I 1 ~

H. r.s. ill£~,ej
V.ttlIlWU

lWit/TI1Ht'1

""""$11.'"

t 1
UJIi"R Itvrf'RFI1'.tf'

Figure 43: System Structure

[Pople 82].

13.2.2. Clinieal Patterns

There are three pattern types that need to be distinguished: patterns annotating a
single variable, patterns composed of more than one variable or 8ubpattern, and patterns
that assign risk value. The risk assessment pattern is a specia.l ease of patterns composed of

122

other patterns, but its clinical usage is quite different.

Variable Annotation. Given a laboratory value or significant event from monitor
output and the clinical state oC the patient, an expert system should be able to decide iC the
value is low, normal, or high. Determination of the reference range Cor a single variable
depends on demographic and pathophysiologic parameters oC the patient. These
parameters, embodied in the patient state, drive the variable annotation. For example, the
relation of the serum sodium level to an appropriate normal reference range depends on the
state of renal maturation, which itself depends on the age and length of gestation.

In order for a system to be accurate in its annotation, global interpretation of the
variables is needed. In contrast, most computer systems that indicate a lab value's location
in a reference range use a single range for all patients, regardless of other values known
about the patient. Often the lab systems do not have demographic and clinical information
with which to make inferences, and without a large amount or patient inCormation any
attempt at accurate annotation is bound to fall short. Neonatologists notice this problem
often because adult normal values differ so markedly from newborn normal valu~s. After
some experience with inaccurate annotation, the clinicians tend to look only at the values
while ignoring the computer's assessment of those values.

Global interpretation puts a large demand on the accuracy oC the machine version of
the patient's clinical state. If annotation could be done well, there would be much value to
it. However, the problems of representing clinical information in machinable form is quite
difficult. BABY approaches the problem of global interpretation by having appropriate
pathophysiologic states condition the interpretation of incoming data. The portion oC the
knowledge base to use in annotating the data depends on the state of the patient.

Combination Patterns. Different lab values or monitoring events that must occur
together to signify a finding comprise patterns of the second type. These groupings of data
usually indicate pathophysiologic phenomenon in the patient. An example is the finding of
metabolic acidosis, which itself depends on more primitive patterns such as acidosis,
hypocapnia or normocapnia. and hypocarbia. The distinction between data annotation and
combination patterns is that one should always be able to annotate a variable, while the
presence of the latter type of pattern is less predictable. The combination patterns to expect
depends on the clinical situation.

Risk Assessment Patterns. While the above combination patterns represent
pathophysiologic states, another type of combination pattern could be used to assign a
degree of risk for the occurrence of an event or complication of therapy. Although they do
not strictly represent pathology, it is desirable to identify these patterns if they are evident
in the automatically collected data. As an example, consider a data pattern that tries to
predict the risk of an iatrogenic pneumothorax in a ventilator-dependent patient. Such a
pa.ttern would need data about the respirator pressures and rate, the patient's disease, his
age, a measure of the lung compliance and its trend of change, the breathing pattern
(fighting the ventilator?), and a history of prior pneumothoracies. A monitoring system that
could accurately assess the risk in different patients might be able to prevent this
catastrophic occurrence by raising the clinician's index of suspicion. This particular pattern
probably could be built and tested in the clinical setting.

13.3. Clinical Context and Patient State

The clinical context within which the data is gathered presents a problem. Few values
can be interpreted in isolation of other findings or parameter measures. Consider the value of
the variable AGE. The actual age of the patient is really a statistic used to help assess the
parameter of physiologic maturity of the patient. In a baby, knowledge of age is not enough
since the length of ge~tation is also needed to determine the degree of physiologic maturity.

123

Therefore, a system to analyze lab data containing variables whose reference range varies with
renal maturation, for example, should be prepared to take into account the patient's
physiologic age.

Although this seems straightforward enough, the problem becomes less clear when one
considers how the normal reference range is defined and used. The interpretation can vary
from a gaussian distribution of lab values to an aesthetic ideal of the most perfect value for an
individual [Galen 80J. In the former interpretation, the range is usually defined as those values
falling within two standard deviations of the mean. While this is the most common derivation
of "normal" and is easy to determine, it often is incorrect in a given clinical setting because
heterogeneity of the target population is accounted for statistically rather than individually.
More precise norms could be defined for smaller populations. This problem is seen in pediatrics
where normal growth and maturation are constantly changing the normal range. In general,
the creation of context-dependent normal ranges is difficult because of problems in defining the
context!!. In BABY the reference ranges are defined by the knowledge base author, as are the
contexts. Ideally, a system should allow clinicians to define their own contexts in order to tailor
the system to meet their own specific needs.

Searching for these three pattern types within the clinical context of a patient is the
primary purpose of BABY. The immune system provides a biologic analogy to the type of
information processing performed by BABY. The animal's antigenic stimuli become the data,
while the antibodies become the patterns to be matched against that data. Like the antibody
waiting for its antigen, the pattern does nothing until a match is found in the data which then
causes an action to take place. The clinical context of the patient is used to condition the
activity of individual patterns in the set of possible patterns. As with the immune system, and
unlike the nervous system, there is no centralized control for the patterns; it is distributed
among its individual elements. In practice, of course, BABY has to simulate this
decentralization because of its implementation on a non-parallel processing machine.

13.4. Knowledge Engineering Environment

13.4.1. Clinical Data

There are three sources of input to BABY: significant events extracted from monitor
equipment output, information available on a hospital information system, and user input
during an interactive session. BABY needs no user input at all; it will make whatever
inrerences it can from the antomatically collected data. If a user wishes to interact with the
machine, more inferences can be made with the additional information he or she supplies.

The data available in the NICU can be classified in two different ways-by function,
or by collection method. Functionally, it is either automatically collected, or it is requested
to answer a specific question. Distinguished by collection method, data is either obta.ined
continuously by machine, intermittently by machine, or is observed in the process of a
clinician's physical assessment. Continuously sampled physiologic indicators would need to
have significant events extracted from the analog signals.

The significance of this classification is that it delimits the function and structure of
BABY within the limits of the metaphor describing its purpose. Functionally, the standard
input is automatic data, while the standard output is assertions about the patient along
with new data to clarify clinical findings in the da.ta. Structurally, the standard input only
excludes physica.l signs. Often BABY will have to make its inferences within the scope or
the allowable data.

124

13.4.2. 	Uncertainty in Medical Data

Certainty of medical data decreases with time; the more time that elapses since a
measure was taken makes the value less reliable. The rate of certainty decline varies
considerably from test to test, and within the same test, depending on the stability of the
patient. To complicate matters further, the loss of certainty, although monotonic, can be
non-linear. It is desirable for the knowledge representation to express temporal uncertainty,
but to do it accurately is far from easy.

For a monitoring expert system, the NICU has the advantage that data is refreshed at
frequent intervals. Temporal uncertainty is reduced most by this mechanism. but by using
comparisons to previous values, uncertainty due to factors intrinsic to the test or collection
procedure can also be decreased. BABY deals with uncertainty in a probabilistic sense.
That is, certainty (and uncertainty) are explicitly represented as probabilities of truth in an
assertion. Combining different sources of uncertainty into a single probability is done with
a method similar to that used by the PROSPECTOR system [Duda 76].

13.4.3. 	The Knowledge Base

Two important aspects of a knowledge representation are its notational efficiency and
expressive adequacy [Woods 83]. Expressive adequacy is concerned with what the
representation is capable of stating about the world. Notational efficiency has to do with
the ease with which it can be stated. Of the two attributes, expressive adequacy is probably
the most important because it limits the potential of the representation.

The knowledge base often has a single representation format that limits its
expressiveness, but makes inference engine development easier and facilitates knowledge
base creation and modification. The representation method selected usually allows for some
degree of domain independence. In addition, modularization is strived for in expert system
design so that the component parts can be more easily modified. Therefore, control and
knowledge ought to be developed separately, but in practice it is often difficult to completely
remove elements of control from the knowledge base. For example, in MYCIN the
antecedent ordering in a rule affects evaluation order in the backward chaining.

As mentioned before, the BABY knowledge representation consists of rules connected
together by a network that guides the control scheme to a limited number of inferences.
BABY has a large element of control in its representation which is expressed with context
nodes that signal to the inference engine a portion of" the knowledge base is usable for
inferences. These context nodes act as keys, indicating that a pattern is potentially relevant
and should be searched for. During knowledge base design the context nodes let the expert
confine his or her reasoning to a smaller problem within the defined context, easing the
creation task somewhat.

13.6. Baby Implementation

The current implementation of BABY consists of two Pascal programs situated within the
ADVISE system on a Vax 11/780 computer at the University of Illinois. One program is a tool
for knowledge base creation and is responsible for translating a text description of the rule
network into a machinable form. The other program uses this machinable representation to
interpret the NICU data and run the user interface.

At any point during runtime, BABY is either updating information, waiting for
information, or interacting with a user. While updating information, the knowledge base is
unstable and unavailable for user queries or input. As inferences about the patient are made,
they are scrolled onto the appropriate output window where they remain until new information
makes them 'invalid. Following knowledge updating, the variables most likely to inlluence the

125

patient state are reported and the user has a chance to interact with BABY until new
information is supplied by the laboratory computer or patient monitors. The result is a
mixed-initiative dialogue with the user in control of the questioning phase a.nd the ma<:hine
intermittently supplying a summary of its findings.

13.6.1. User Interface

The user interface attempts to maximize the man-machine communication bandwidth,
while at the same time minimizing the need for a specific communication language. Using
windowing techniques and a pointing device, the number of verbs needed in the interface is
kept to a minimum. Central to the user interrace is a bit-mapped graphics terminal which
communicates serially with the ADVISE computer. All non-numerical user input is done
with a mouse pointer acting on pop-up menus.

There are five physical windows in the current implementation that correspond to Cour
conceptual views oC the system and one scratch window Cor interactive system output. Two
windows deal with output, and two windows deal with variables.

BABY has two types oC standard output-assertions about the patient state and
suggestions Cor refinement of that state. Assertions are scrolled onto one window and any
user queries concerning the patient state or list of current assertions takes place within this
window. The suggested variables are scrolled onto a second window. If the user wants to
supply any of these variable values, he or she would move the pointer into the window to
select the proper variable. If the variable type is nominal, a pop-up menu with its doma.in
appears and selection is again made with the mouse. The keyboard would be used only to
supply numeric values.

The third window gives a view into the variables oC the hospital lab system, and
would be used as a regular interface with the lab. The other window gives a view into the
BABY variables. Here requests can be made to see a variable's value or domain and values
can be provided Cor variables that were not suggested by BABY.

The graphics terminal supports many primitive Cunctions needed to manage windowsJ

including window creation, clipping, saving contents, context switching, and pointer
management. The programmer uses these procedures in routines which bind data base and
knowledge base information to the windows. For example, a menu can be placed in an
ADVISE textnode, which in turn can be executed by a user interface procedure. This
procedure is textnode independent, and the user choice is returned as a small integer Lo the
calling procedure where binding of the appropriate subroutine to that choice is made.

13.6.2. The Knowledge Representation

A BABY knowledge base provides a representation for a collection of prototypic data
patterns that are to be searched for in the laboratory and monitoring input. Any prototype
that matches an appropriate combination of data elements from the input will be asserted
to the user. Each of these prototypes has a truth value representing how well the data
substantiates the prototype, so an assertion is made only if the truth value is above the
pattern's threshold.

The pattern prototypes of BABY wait for data to justify them in a bottom-up, data
driven manner. The pattern prototypes that are active and thus trying to match data from
the input depends on the past history of the data. This is accomplished by having only
patterns present that are in clinical context; thus only appropriate patterns will be available
for matching.

126

The prototypes have the form of directed, acyclic graphs with unique roots. The
graph consists of nodes connected by directed arcs. At one end of the graph is a root that
represents a clinical or pathophysiological condition and always has a current truth value,
or degree of belief in that condition. At the graph's other end are leaves to act as data
entry points. The BABY leaves take the form of VLl rules [Michalski 74] which, at the
minimum, compare a variable's value to a reference value, returning a truth value as its
result.

See Figure 44 for an example oC a knowledge base pattern.

The BABY rules are used as predicates Cor matching a condition to a truth value. The
ADVISE subset of the VLl is the language that defines both variables and rules. For a
description oC variables and rules, see Chapter 6. Rules are connected to the graph structure
with arcs that act as conduits Cor propagation oC truth values. The variables contained
within these rules may be used in a large number oC unrelated rules, creating the problem oC
mapping variables to their respective rules, a necessity arising from the data-driv~n nature
of BABY. The VLl parser creates a symbol table for this mapping that is used by the
inference engine to locate the pattern leaves currently in context and available for matching.

Patterns are recursive structures composed of nodes, arcs, and rules in a manner
similar to a PROSPECTOR knowledge base network [Duda 78]. The inCormation content
oC a pattern is summarized with a single number between zero and one, its truth value,
representing the degree of confidence with which the pattern is believed to be supported by
the input data. The recursive nature of the patterns arises because they can be used as
intermediary nodes in other patterns, as their truth value is propagated upward to any
patterns of which they are a part.

The truth values travel along arcs in the direction of leaf to root, being processed
along the way at the intermediary nodes. These arcs are currently of two types,
EVIDENCE and CONTEXT, having quite different semantics. Both arc types carry
inCormation which, when present, supports the truth of the parent node. However, the
CONTEXT arcs have explicit control information that indicates whether or not the parent
node is clinically relevant. If in context, the parent node is made a part of the active
knowledge base and can be used to match input data. Otherwise it is essentially excluded
from the collection of current patterns until the context changes. Thus, the CONTEXT
arcs act as keys to their parent nodes, either locking them in or out. By this mechanism the
size oC the active knowledge base is reduced to a small subset of the global knowledge base,
resulting in both storage and computational savings.

Every node in the network has a truth value ranging from zero to one, which
represents both subjective probability and certainty of truth. Zero indicates certainty that
the assertion is false while one indicates certainty that the asser7,ion is true. Initially, no
information about an assertion is represented by the node's prior value. As the truth values
of the nodes change, increasing values represent rising certainty in the truth of the
assertions, and vice versa.

There are five node types supported by the BADY inference engine. They are the
logical types AND, OR, and NOT, the predicate type RULE, and a type responsible for
folding evidence and uncertainty together, the type BAYESIAN. The RULE nodes are the
leaves of the patterns and are evaluated by the ADVISE rule evaluator according to
semantics set by the' prc~~~\mmer. The three logical nodes have very simple semantics. The
truth value of an AND r:ode is the minimum of its children's truth values, while an OR node
takes the maximum vaiue of its children. NOT nodes invert their child's truth value by
subtracting it from the maximum truth value. A high truth value of anyone child will give
an OR node a high value, but all children of an AND node must have high values to cause it

127

.-____________________~I 1~______~(~O~~~j~e~l-~I__~

{IVLS c.s LtV
(/ 1"0<'

n~)-011

1IJIIPI'R"'/tIMfL (NOfiHfJL
(ONe ENT!.IfTEO

UIiIIVt:
hOIUf,vI1L

r .~)F" IV' TI" IrI .<f'I

'''N'T'Z}.j

.. III..~ ,,,..,

0

NOi\tfnt.
I1cJV"1.
FIJ.""fiUJf/

"S"

LfI/LS
('DO INO

HYPOtlIl1RfHlC'
.~-

.,

Q00"

Figure 44: A Pattern to match SlADH

to also attain a high value.

- The BAYESIAN node type is used to fold together independent pieces of evidence to
calculate a truth value. These nodes can have an arbitrary number of children attached by
EVIDENCE arcs, each with their own assertion strength that the child's evidence implies
the parent's hypothesis. In addition, these child nodes must have a prior truth value that
represents the probability of the evidence being true before anything is known about the
patient. Associated with each connecting arc are two numbers representing the strength of
the inference from child node to parent. The first number, LS, is the strength of the

128

inCerence iC the current child node probability is greater that that node's prior probability.
Conversely, LN represents the inCerential strength when the current child node probability is
less than its prior probability. An entirely equivalent method oC speciCying L8 and LN is to
specify the maximum and minimum posterior probabilities that the parent node can attain,
given maximum and minimum child node current probabilities. These numbers must be
supplied by the expert and he or she can use whichever form is most convenient.

The truth values of all five node types can be calculated with inCormation local to the
node, assuming that the values of its children are stable. Implied, then, is that a single node
can only affect the values oC nodes between it and the pattern root, limiting the number oC
nodes whose values need propagation when new data arrives. By locking out portions of the
knowledge base from activity, nodes connected by CONTEXT arcs also help reduce the list
of node values to propagate.

13.6.3. The Inference Engine

The network structure of BABY's knowledge base makes the inference engine quite
simple. It is a data-driven, forward-propagating algorithm that only needs a small
planning phase because of the context links. This is quite different Crom Prospector in that
the planning is minimized, propagation is a parallel process, and the context links are
central to control rather than to question planning [Duda 78]. It is easiest to understand the
algorithm by way of examples.

Initially assume that there are no context links in the knowledge base. When a burst
of lab data comes into BABY, the appropriate system variables are bound to the lab data
values. For example, when the serum sodium value comes in as 135 meq/l, BABY's variable
for serum sodium is located and set to 135. Next, all rules using serum sodium in the
currently active knowledge base are located via a look-up table and placed on a queue called
the NODE8-TO-PROPAGATE (NTP) queue. Each variable may be used by several
predicates, all oC which are enqueued. In other words, the serum sodium value may be used
in several different patterns. The table managing the binding of variables to predicates is
created by the ADVISE VLl parser.

Mter the rules are enqueued, they are dequeued, evaluated, and their truth value is
propagated to any reachable parent nodes. A node is reachable if there is a direct link to it
and if it is in the currently active knowledge base. Propagation implies calculating the
parent node's new value based on the value of the node just dequeued. Mter the new value
is calculated, that node is enqueued onto the NTP queue. If the parent node is a pattern
root, and if its new value is greater than its assertion threshold, its value is presented to the
user. This cycle of dequeing and enqueing is repeated until the NTP queue is empty. The
algorithm resembles a breadth-first graph traversal due to the use of a queue rather than a
stack.

Context arcs complicate the algorithm slightly, but also add considerable potential.
If, in the above example, a context link was crossed during an upward value propagation,
then a check would be made to determine if either the context node's value changed from
above the context threshold to below it, or iC it changed Crom below the threshold to above
it. In the Cormer case, the parent node would then be in context, and should be added to the
active knowledge base. A recursive algorithm is called that activates this new portion of the
knowledge base. The situation where a piece of the knowledge base can be a part of
different patterns, each with their own respective contexts, is handled by an ADVISE
primitive.

The activating algorithm activates all children of the node that is now in context. It
then calls itself to activate the children's children. If one of these nodes has a context link,

129

only that link is followed by the algorithm's recursion, otherwise all links are followed.
When a leaf is reached, a check is made to see if any of the rule's variables has a value. If
so, the leaf is added to the NTP queue so that the rule can be evaluated and the value
propagated to the now in context area of the knowledge base. If it were deemed desirable,
this is where a goal-directed, backward-chaining algorithm could be added. Then, if a
variable's value was not available a check could be made to see if that value could be
inferred. Currently such a capability is not available in BABY.

13.5.4. The Patient State

At any given time, the system's model of the patient is contained in the patient state:
that portion of the knowledge base that is in context and therefore has been activated.
Included in the definition of the patient state are a.ll the variable value bindings and the
intermediate node values. The size of the active network will be much smaller than the
entire knowledge base, since only a small portion will be in context at any time. This
storage economy also results in the processor time economy because inferences are Bot made
on any non-active portion of the knowledge base. Indeed, the inference engine cannot even
access non-active knowledge.

The use of reduced portions of the knowledge base for individual patients could allow
the system to keep track of more than one patient at a time by providing each with their
own patient state. The ADVISE system facilitates this capability by having its storage
divided into three levels: global, local, and private. Each lower level retains all the
connectivity of the higher levels, but only those parts of the graph requested from a higher
level will be explicitly stored at the lower level: Thus, an individual patient state could
reside at the private level, while the entire global knowledge base would be stored in the
global level. As the patient state is expanded by coming into context, it is stored at the
private leveL The converse must happen when graph areas go out of context.

Two other aspects of the patient state are facilitated by Advise features. Since the
contents of the three levels are mapped onto three independent areas of secondary storage,
switching from patient to patient can be easily done by swapping disk areas at the private.
level while leaving the global level alone. Also, any values belonging to a particular patient
are stored in the patient state, so that data security can be maintained at the file level.
ADVISE also supports security at a more primitive level during run time.

13.5.5. Variable Suggestion

In BABY there is a variabie suggestion phase that follows propagation of the data and
activation of the knowledge base. The variables selected are listed in one of the user
interface's windows to indicate to the user that knowing these values is desirable. Ideally
these variables would provide the most information to the patient state, or be able to effect
the greatest change in the current context. Two different algorithms for scoring the
variables are implemented; one is done during knowledge base instantiation, and the other
requires a separate partial patient state traversal.

The latter algorithm will be discussed first. At each node, in addition to the current
value, BABY stores the minimum and maximum possible values, given the minimum and
maximum values of its children. If nothing is known about a RULE node's value its
ma.ximum is one, minimum is zero, and current value is its prior value, otherwise all three
values are set equal to the current value. The differential, if any, between the three values
will ripple upward during regular value propagation. The scoring algorithm makes use oC
all three vaIu.es. A variable's score is roughly equal to the sum total of probability that
could be added to or subtracted from the patient state ir that variable's value were known

130

with absolute certainty. To calculate this value the active network is traversed top down,
keeping track of the difference between the maximum value and the current value, and using
the assertion strength values, LS and LN, to determine the multiplier for the difference in
odds. This algorithm is expensive for a large patient state.

The other scoring algorithm is much simpler, but it does not account for assertion
strength. Thi/! one works during knowledge base activation upon reaching a leaf. If any of
the leaf's variables has no known value its suggestion score is incremented. At the end of
data propagation, all variables whose values were desired but unknown have a score. The
variables that were inspected the most have the highest score, and are assumed to be the
most desirable. This method, although fast, looses much of the knowledge base information;
it only retains the physical layout of the graph while discarding the probabilistic elements.

In either case, the highest-scoring variables are mentioned to the user, who has the
option of supplying any known values.

13.5.8. Network Parser

The creation of the knowledge base is entirely expert dependent. The BABY network
parser, in conjunction with the ADVISE VL1 parser, facilitates transformation of a textfile
description of a network into a machine usable form. BABY accepts any rule structure that
is supported by both the VL1 parser and the rule evaluator. It is up to the expert whether
to make a rule more complex in order to simplify a network, or vice versa. The
programmer has the option of choosing among several different semantics for uncertainty
evaluation within the predicates, extending the ne.twork expressiveness.

The network parser is a recursive descent parser that creates and links the nodes with
their appropriate arc types, and calls the ADVISE parser as a subroutine to create the rule
parse trees and a look-up table of rule to variable bindings. A limited syntactic check is
performed also to insure that at least the newly created network structure will work in
BABY. In addition, the network is printed out in an in-order, indented format so that the
expert can see if the traversed prior values are in accordance with expectations.

The language accepted by the network parser is quite limited and rigid, but it is noC
difficult to translate from a picture of a network into the text format. If a node is to be
either an assertion, or it is to be used by more than one pattern, it must be uniquely named.
This name will be the one shown to the user. If a node does not need a name, the parser
will supply its own unique one.

Figure 45 illustrates the mapping of the pattern of Figure 44 into the network
language. Appendix C shows the corresponding mapping to the ADVISE internal :storage
format.

131

NEONATE..PATTERNS

EVIDENCE At......1) NEONATE..PATTERNS

EVIDENCE BAYESIAN SlADH .05 .8
[500 -500l CONTEXT .75 BAYESIAN HYPONATREMIC j

[0 -1000! EVIDENCE BAYESIAN NORMAL..RENALYUNCTION ;
[0 -1000] EVIDENCE BAYESIAN NORMAL....ADRENALYUNCTION ;
[0 -1000] EVIDENCE OR *

CONTEXT .75 NOT *

EVIDENCE BAYESIAN GLYCOSURIA ;

,

EVIDENCE RULE * .1 .8 [URINE_OSM > SERillvLOSM: O.lJ :> MKNULL;
EVIDENCE RULE * .1 .8 [URINE_OSM > 300: 0.9] :> MKNULLj
EVIDENCE RULE * .1 .8 [URlNE...5G > 1.010: 0.8] :> MKNULL;

Figure 46: Network Description of Figure 44

13.6. Conclusion

The BABY project presented a description and partial implementation of an expert
system for assisting clinicians caring for babies in an NICU. The current prototype version or
BABY is part of a learning process attempting to identify the bottlenecks and difficulties that
will be encountered during implementation of various ideas. The main difficulties in BABY
center around the knowledge representation of the patient state.

The expressiveness of a knowledge representation sets an upper bound on the performance
quality; if a type of knowledge cannot be made available, inferences a.nd explanations based on
that knowledge cannot be performed. Temporal, spatial, physiologic, and developmental
relations between variables are not representable by the current knowledge base formalism.
Explanations indicating supporting evidence for an assertion still could be provided for in the
future.

Explicit temporal rea.soning is not possible with the current knowledge representation.
Trends and predictions of variable values are not calculated, even though a value is represented
as a domain element and a time stamp. It was felt that rather than implement an ad hoc
mechanism for handling time relationships, it would be better to develop a more complete
theory of medical, temporal reasoning. Such a theory would have to include prediction of
future values based on not only past trends, but also on the clinical context of th!~ patient.

AlthQugh. H\ere is work to he done in improvlng th.e knowledge r~pr~entatiQn, the
functionality of the representation should probably be preserved since it meets the data flow
requirements of an NICU. The main improvement required of the knowledge base is the
addition of semantics for handling t.emporal relations within the clinical context of individual
patients. Prediction of future val lies and decrease in value confidence need explicit
representation so that conclusions can be stated as accurately as possible, but without
overstatement. Additionally, tabular r;epresenta.tion a.nd a graphics network editor a.re needed
for better notational efficiency.

132

Following these changes, a non-trivial knowledge base needs to be constructed and
debugged so that empirical testing in an NICU can determine the adequacy of BABY to
contribute significantly to patient care.

CHAPTER 14

The ALF ALF A Entomology Pest Identification System

14.1. Introduction

.As a means of exerclsmg various control scheme features in an expert system which
actually requires more than one rule group with more than one control scheme, the alfalfa field
pest identification system was undertaken by entomologists William Lamp and Lane Smith of
the University of Illinois Natural History Survey (??!) in conjunction with Jiarong Hong and
Carl Uhrik of the University of Illinois Department of Computer Science. The meta-expert
system development goals are the primary focus here, but the reader can get a better
understanding of the general concerns of entomology by referring to [Borror, Delong and
Triplehorn '76]. Further details of the ALFALFA System, particularly the rules and attribute
descriptions, are recorded in (Hong and Uhrik '85j.

An automated key to insects should use descriptors which are easily observed,
remembered and reported. Further, the key should proceed through a layered series of
identifications, becoming more specific as more information is provided. The identification takes
the form of the classical Linnean system at the higher levels (Class, Order, Family), but as
often as not, the exact species is not critical and a common name is acceptably assigned (e.g.,
·'thrips"). Incomplete data should result in, rather than no identification, a more general
identification. Thus, the key targets different levels of identification using different sets of
attributes for each stage of identification (Figure 46). Conceptually, different groups of rules
apply to the various levels, each group possibly claiming its own uniquely important variables,
pertinent to a particular stage of the consultation. Moreover, the rule group in use at !,.

particular moment often requires its own special variation of a control scheme. Thus, one can
see the inherent needs of the ALFALFA System for multiple rule groups, multiple control
schemes, and dynamicly changing goals.

The desired approach to implementing the system called for minimal changes to existing
modules. Modules changed are the parser and control scheme. Certain features of the rule
evaluator were changed to be consistent with previous usage but allowed additional features.
For example, the ?, o$, $ patterns for matching various flavors of unknown values were not
implemented consistently in the previous Rule Evaluator.

The general system development goals may be grouped according to the following:

1) Preconditions and termination conditions on rule groups,

2) MuU.iple non-homogeneous goal values or goal variables,

3) "OR" in the RHS of Rules,

4) Enha.nced Data Acquisition features.

A description of each of these areas follow and is the focus of this chapter.

133

,--- r ~'~O <:::::: 12

.!1\1~' 2~~3 3~~1 .~~ 5dl'\s
&!A\o lJ\2 lJ.~ i1\ 6!.tt~3

,I 14 .. Spid." &I1d Mit... ,26 aOD.ridd = BeeU.. ,40 F .. mil, == Co..id.... ld ... L.alJooted.J>u ..

.2 Ciao. "" wocta ,24 Famil, == COrcopid.... ld = McadowJpitUe.J>II' ,1i0 Famil, = P.llt.. tomid" •• Id = Stink..bu,.

,S O.d.r'" NcW'opLen. ,21 F .. lIlil, '" D.lph .. cid Id ;; Otber ..,pl,,"t..boppen ,iii O.II.rlcjd = Tru•..bu,.

,4 Order ... Coleopter .. ,28 Fa... ilJ '" Apbidldae. Id = P.a...apbid. ,£2 F .. milJ == Tetrigid"•• ld =P"... 'a..hoppcr

,Ii Order = CoU.... bol& ,211 Famil, = Aphidid"•• Id = Spotted...allalf .. -"phid. ,53 Famil, = Acridld or F"... i1, = Oryllld".

,6 Order "'" HOUloptera ,30 FamilJ =Ciel.deDida., Id ;: L...I.J>opp.r ,£4 Famil, = Or,Uid Id '" Fi.ld.J:fickoL

,7 Or.:l..... Dipt.ra • Id ... FIi.. ,31 Famil,. =Aphididae. Id = Blu • ...aJ.("lf,,-"pbid. ,£5 F .. milJ = Acridld••

,8 Order = L.pidopter" ,32 F.mil, ... M....bu.cida•• Id = Trubopp... ,SOld = Alfalf,,_w.evil

,8 Ord., ... Odoll"t... Id ... D .. m •• 1FUe. ,53 G.llltic.Jd = Aphid.Jealbopp.....PdJpittl• ..bu .. ,£11d "" A...wonil

,10 Orll.r -= H.miptera ,U F.... i1J = Pierid••• Id = Alf .. lf • .j:"torpW ... ,liB Id "'" B_wlnil

,II O.der = Th'...lIoph.... Id .. Thrip. ,$5 F"... il,. = N""'pha.Ud,,c. Id = FritW .. rJ ,£0 Id ... Blu • ...IIl.t..tllc_w.nil

,12 Order ... Oru,opte." ,36 F.... il, = N,.lIlphaJidae. Id '" Bucb,. ,00 Ie! "" Or.,..bli.t ••..b.etl.

,13 Order = H,mtllophra. Id = B ••• It W".p. ,37 Famil;r = NJlIlpbaJid"e. Id =V"U........aia.lLllt" ,61 Id ... Strip.d..bli.hr ..beetl.

,14 F"",i11 "" CbI,.0pid"•• Id =GrunJacewin,. ,38 Fa... il, = N,.... pbalid.... ld = Morllill&.J:lot.k ,62 Oelluicjd == O.Doricjd = BIi.ter..b••U..

,16 F iIJ = U.III..obiid.... ld = BrowDJaclwin.. ,311 FamilJ =D&IIaid.... Id = MOIl.. rch ,63 Id ... Pot.. toeJ.aI..bopper

,10 G.Deric.Jd = L"cowin&' ,40 F .. mil, ... NoctuJd••• Id = Cutworlll dJ.I&t.in. ,04 Id ... Actor JeafJ,opp.r

111 ,,,... il, = Cocc.iDellid.... ld ... L .. d,..bu, ,U h ...il, ;: P,.,,,Ud.... Id = W.bworm'J,Ild_,cl .. ti••• ,6li Id = L.aI..bopper

,II F"mil, -= CW'culionid... Id ... Wuvil.

• 1 e '.mil, =SilplUd"•• Id ... Curion..bt.tI..

,42 G.II.ridd =BuU.rlli••..Pd...lllou..

,43 Famil, "" ADUlocorid.... lei = Minut • ..,pirat....bu •

,ClO Id = BVJ.d..bup

,61 Id "" Sood..bu••

,20 F .. mil, ... St..ph,..llnid ... Id ... Ron..b..tl. ,H F.m", =Mirid Id = PIUlt..bu,. ,CIS Id = S..d..bua • ...andJelaLin.

121 'amiIT ... Meloid". ,.u F .. mil, =R.duviid.... Id = Attu.in.J>ue ,ClO Id == dilf.r.DtiaJ........hopp..

,2~ ,,,mil, ... L"...p"id"•• Id ... Ll&htnlnplIJ ,'6 hmil, = N .. bid Id == D..mltl..bu,. ,10 lei == R.dJelled....a..bopp.r

,23 F .. mill "" C&I1U,... id" •• 14 = Soldler..b..Il. ,41 Famil, =LlI:acid•• ,111d "" TwoJtripp.d.......hopp..

,24 'amil, "" ElalArid Id = Cliclc..b..tI. "S F .. mil, = B.ryLid.... Id ... StilLbue. ,121d = Mi.."tor'...."..hopp..

,1J O.D..lde! = O...nhopp.u......dJ.I"tivo.

....
<;.)

G~al Structuro or tile ALFAI.FA System. Jo'igurc 48

http:ALFAI.FA

135

14.2. 	Preconditions and Termination Conditions

Prior to the ALFALFA system, the only attributes of rule groups were variables blocks,
functions blocks, and the rules themselves. There was a need for making explicit the various
control information implicit in the PLANT/ds and PLANT/cd control scheme. This was
especially required to enforce some sort of sequencing discipline among the rule groups
representing the different levels of pest identification.

The parser was modified as follows: given a rules block of the form

ruleblkname RULES

VARS = varsblkname ;

PRECOND = lhsnodel;

TERMINATION = Ihsnode2;

PROP = CONTROL
{UTILITY,BACKWARD,FORWARD,INORDER}
%%

lhs-rule :> rhs-rule j

END

then the following tuples are produced

(rulesblkname MKEXEC MKCS MKREFllhsnodel)

(rulesblkname MKEXEC MKCS MKREF2 Ihsnode2)

(rulesblkname J\t1K.PROP textnode)

where the lhsnodel and Ihsnode2 refer to items which are identical to left hand sides of rules
and are directly evaluatable by the RULE EVALUATOR. Under our proposed control scheme,
preconditions are applied for each rule group and if satisfied the rule group is entered
(initiated), and rules will start to be executed using the type.of control scheme specified by the
text in the CONTROL property of the rule block. .

Termination conditions are evaluated after each rule in the rule group to test whether the
rule group should be exited. This continues until there are no more rules in the case of the
sequential scheme or until the termination condition is sa.tisfied.

14.3. Multigoals

PLANT/ds only allows a single variable on the RHS to determine the goal. Certain
complications of goals might be imagined:

a) structured values of goal variable,

b) dynamicly changing sets or structure of values for goal variables,

c) dynamicly changing "goal" variable,

d) sets of goal variables,

e) dynamidy changing sets of goal variables.

As a minimum, an array of goals which will be determined in one of 2 ways is desirable.

136

Option 1 	 If there is a GOALS specification in the rules block, the goals will be taken to be that
or a goals tuple. That is, given a rules block

ruleblkname RULES

V ARS = varsblkname j

GOALS = (goall, goa12, goa13, ...);

Ihs-rule : > rhs-rule ;

END

produce a tuple of the form

(rulesblkname MKEXEC MKCS MKREFO goall goal2 goal3 ...)

with the idea that goals occur in order of their priority.

Option 2 	 If this GOALS designation is not present for a rule group, then all right hand side
variables will be used as candidate goals.

A special tuple modifies each rule group as it is read in to update the information about
which rule groups have been defined. This tuple will appear under the special node GLOBALS
where the global variables are already hung. Hence the GLOBALS tuples form is:

(GLOBALS MKVARS var1 var2 ...)

and

(GLOBALS MKRULES rulegroup1 rulegroup2 ...)

14.4. Disjunction on the Right Hand Side of Rules

Several cases arise in the entomology domain where it is desired to pursue one classification
option but if it does not work out (leads to a contradiction or low confidence of decision), then
it should be abandoned and another option should be selected to pursue. These. poin ts of
backtracking can easily be recorded in rules and weights can indicate which options should be
considered in what order.

For example, the rule:

[Mouth Parts = Chewing] [Hind Legs = Jumping] -
{Order = Orthoptera : 0.91

V
[Order = Coleoptera: 0.2][Insect = Flea Beetle: 0.1]

has the interpretation "pursue orthoptera first, but if that does not work out, then try
Coleoptera given there are no more promising options." This style of parallel reasoning
assumes that the values of goals are mutually exclusive and is most easily effected by a priority
queue. Another flavor of the disjunction on the right hand side of rules is for independent

137

values of a variable each having the possibility of each satisfying LHS selectors simultaneously.
This latter option was not undertaken in our system. We distinguish the 2 types of disjunction
by allowing a special symbol for each type. No changes to the Rule Evaluator were proposed
(allowed) for this distinction at present.

14.5. Data Acquisition

A special data acquisition method was proposed to operate as a expert system apart from
the inference engine. The control scheme was to pass a list of ranked variables that would be of
most use. The data acquisition system makes considerations based upon the following criterion
as to what questions to ask and in what order (possibly on an automatically built form):

(1) 	 hierarchies of variables - certain variable should be asked before other variables, that is,
it does not make sense to ask confirmatory data before primary data (even tliough the
confirmatory data has more apparent usefulness),

(2) 	 How of consciousness - certain questions seem too jumpy if asked out of sequence,
semantic closeness should be taken into account,

(3) 	 certain variables values imply other values - restriction rules which assign defaults and
does-not-apply values should be used, a graph structure will be used for this,

(4) 	 structured variables will be implemented so as to propagate uncertainty in a reasonable
manner, more use of the mutual exclusive and independent values will be made,

(5) 	 some distinction will be made between different type of unknown - that which is
uncertain, that which does not apply, that which may not be asked for again, etc.,

(6) 	 some values of variables need never be asked at some point in a consultation and this can
be inferred from the remaining viable rules,

(7) 	 restriction rules need not achieve threshold to fire but propagate uncertainty.

14.6. Additional Research Goals

In the course of this project, several additional interesting areas of research opened up. In
fact, pursuit of these areas was unfortunately the cause of the some other ideas never being
refined or completed. These are described here.

14.8.1. Describing Variable-Value Relations with Semantic Nets

In PLANTIds, the instrinsic relationships among various variables and their values
were necessarily represented by a series of restriction rules which dictated when values of
some variable prohibited other variables from having semanticly inappropriate values. For
example, there were a number of rules of the form:

ICONDITION_OF..LEAVES = NORMAL] :>
[CONDITION_OF ..LEAVES-BELOW -AFFECTED..LEAVES = DOES...,NOT...APPLYj
[POSITION_OF ..AFFECTED..LEA VES = DOES...NOT...,APPLYj
[LEAF...DISCOLORATION = NONEj[SHOT...HOLING = ABSENT]
[LEAF _WITHERING.AND_WIL TING = ABSENTj
[LEAF ..MALFORMATION = ABSENTJ[LEAF..sPOTS = ABSENT]
[LEAF ...MILDEW _GROWTH = ABSENTHSHREDDING = ABSENTj ;

• • •

138

[ROOTS = NORMAL]:> [ROOT....5CLEROTLA = ABSENT]

[ROOT-ROT = ABSENT]

[ROOT_GALLS_OR_CYSTS = ABSENT];

Such information indicates only one sort of behavior: whether or not the "normal" or
"default" value of one variables value should preclude other variables from being asked
[Chilausky a.nd Michalski '80]. This information is more naturally expressed as a semantic
network specifying connectivity between variables and values. Such a representation does
not preclude the use of rules, and an interface algorithm was designed which converts such
semantic nets into rules. Figure 47 illustrates the algorithm for an abstract graph. This is
a simple matter of a tree traversal from top to bottom if there are no common subtrees •

Derived Rule :

[x=~1 V [X=x31V [X=x41 V ••• [X=x,J V IX = doesJlot...apply} - lY = doesJlot...applyl

Figure 47 : Abstract Outline of Algorithm Converting Variable/Value Graph to Rules.

139

Complications arise in the case or a DAG where there is a cOmon subtree. This is
currently taken to mean that two variables simultaneously must be considered by an AND
condition or the rule as shown in Figure 48. An option exists to speciry an "independance"
annotation ror the common node allows the node to have the interpretation that either
variable may inlluence the d.n.a. assignment to it.

A partial ordering is being produced in both the simple and latter case, and a
consistent total ordering must be derived ror the rules if they are to be fired sequentially.
The rules can be made order independent by use of "OR" operands as in figure 49.
Depending on the needs or the particular system, the graph traversal algorithm could be
modified appropriately.

14.11.2. Dynamically Changing Value Sets for Variable

Much to the chagrin of the consultation user, the prototype system once querried the
user as to which or 30 different values the variable COLOR should be assigned .. This was
extremely annoying, apart from the inability or the display routines to fit so many values on
a single screen, because it was obvious at the point of querry that only a few of the defined

•••

Figure 48: The Case or a Common Subtree in VariblejValue Graphs.

140

Mouthparts

hidden or difficult to see easily seen

I
Easily Seen Mouth Characteristics

piercing-sucking

I
Piercing-sucking Characteristics

fitted into grooves visible not grooves retracted into head

Rules:

[Mouthparts = hidden or difficult to see]

V[Mouthparts = does not apply]

- [Easily Seen Mouthpart Characteristics = does not apply 1

[Easily Seen Mouthpart Characteristics = chewing]

V[EasUy Seen Mouthpart Characteristics = coiled]

V[Easily Seen Mouthpart Characteristics = sponging]

V[Easily Seen Mouthpart Characteristics = does not apply]

V[Mouthparts = hidden or difficult to see]

V[Mouthparts = does not apply]

- [Piercing-sucking Characteristics = does not apply]

Figure 49: Typical Order Independent Rules Derived rrom Variable/Vale Graph.

values were either relevant or possible.

There are various mechanisms for achieving the dynamidy varying value sets for
variables. One of these would dictate that after each querry. a computation might be
effected to find all relevant domain values for any plausible conclusions supporta.ble by the
current state of the system. Another strategy might dictate that this only be done for
particularly annotated variables, and then only when the variable is asked for (no sense in
computing the value set until it is actually needed for a querry). Another strategy involves

141

defining a series of variables which "inherit" values from previous variables as a rule group
is started up, or defining rules that regulate the value of a single 6trudured variable based
upon an auxillary variable encapusulating state information.

Refering to Figure 46, the reader will be convinced that is an appropriate level of
granularity for such computations. It is here that it is most relevant to talk about the
possible current and subsequently-possible values of a variable based on the current state of
the system. The dynamic nature of a consultation, with possible modifications to the state
of variables necessitates undoing the conclusions drawn up to a particular point, and
possibly revising the "possible-values" of such variables. This is currently accomplished by a
complete traversal of all rule groups for which the precondition does not explicitly fail, and
recording all values for the variable sought which explicitly occur in such rule groups. This
is only an approximate solution (and costly even so) since some rules may be judged to be
below threshold based on current state.

A better solution is possible though. A pretraversal of the rule group parse'tree by a
special compiler could generate a structure similar to that in Figure 50 which indicates the
relative correspondence between GOAL state and the COLOR variable. This would
ultimately be available by a simple table lookup or annotation to the rule group parse tree.

7
COLOt:. Go ?--- \

~\ ..

I
/

/

/

CO'-O/t. Eo
c
{/' I \ -- \

~-~- ~-

C 0'-0 rL ~ r--~

Figure 60: Relevant Value Set of Variable COLOR at Various Points in Consultation.

142

14.7. Future Research Extension

Modifications to the existing ADVISE meta expert system to support the ALF ALF A
system. It is emphasized that these modifications built upon existing pieces a rule evaluator,
a database manager, an expert system building-blocks package, which enables more general
expert systems to be built. These systems can have multiple, dynamicly changing goals.
numerous rule groups, dynamiciy changing control schemes, and variables with dynamicly
changing value sets. A philosophy which separates the basic inference mechanism from the data.
collection process appears to justifiable.

In the course of this project, several additional interesting areas of research opened up. In
fact, pursuit of these areas was unCortunately the cause oC the some other ideas never being
refined or completed. Time ,and resources ran out on this development segment. The idea oC
using GOALS, PRECONDITIONS, and TERMINATION CONDITIONS Cor planning and Cor
optimizing the question-asking efficiency were never explored. POSTCONDITIONS were
explicit conditions which would be forced to be true on exit from a rule group. This differs Crom
termination conditions in that the later simply become true in order to exit the rule group. The
graph traversal mechanisms were implemented as batch programs, but it would be interesting
to make them interactive, allowing dynamic changes to the semantic network part of the
knowledge base Cor enhanced debugging.

Enhancements to the current system include the following.

- inverse operation to converting semantic net to rules (rules to s.n.)
Cor verifying human rule knowledge

- visual entry of the restriction inCormation on vars

- more general relations over var-val semantic nets

- value of one var sets another

- probabilistic

- modifying the algorithm for traversing the vars graph to get

restriction values dynamicly

- visual display oC the tree of possibilities - allowing to select the

most probable Cailure point or use a ranking of reliability over vars

- if a hi freq var occurs as RHS in restriction rule

then all the LHS van should be elevated to at least its value

plus the value it has Crom other rules

- what if it is in more than one restriction rule

- what if more than one RHS Var applies

- what about redundant effects

if a rule group fails

- should run again

- there should be a way of forcing a. conclusion

- there should be a way of cycling or back tracking to modify

suspect values eg., freq. mistyped or misperceived vals

- only relevant values should be asked

- restriction rules should be in a sepa.rate rule group with a lower

threshold than other rules - change pars!"r + RE to allow LHS fwt

to be RHS conf - global RE option / syntactic in rule

- a THRESHOLD prop on rule group

- straighten affair!! among UNDEF, UNKN, ALL, NA

The biosphere oC the alralfa field is a complex structure. Once all the vectors present in
the field are identified. it is no simple task to decide on the proper management procedures to

143

be applied. For instance, there may be benifidal insects as well as detrimental ones. Insecticide
may be inappropriate for any of a number of reasons, prompting the introduction or
enhancement of environment for beneficial insects. It may not even be worth the cost of
applying insecticide if the alfalfa can be cut in reasonable time to ensure a good yield. These
considerations make it dear that the management of alfalfa fields could be an expert system in
its own right.

CHAPTER 15

Summary and Future Work

We have described the ADVISE meta-expert system at the conceptual and technicalleve!.
The system can be used for constructing and experimenting with expert systems in specific
domains by:

(1) assembling knowledge about the problem,

(2) encoding the knowledge in some formal manner,

(3) possibly using the knowledge for computer inductive inference, and

(4) picking the inference mechanism(s) to be used on the encoded knowledge.

At present, we have experimentally implemented four expert consultation systems Hsing the
ADVISE meta-expert system, PLANT/ ds for diagnosing soybean diseases, PLANT/cd for
predicting extent of Black Cutworm damage to corn. BABY for monitoring inCants in a neo
natal intensive care unit, and ALF ALF A for identification and classification of insects.

144

Literature Cited

Baim, 	P.W. (1982) "An AJgorithm to Perform Feature Selection on Nominal and Ordinal Features
Using Non-Statistical Criteria", Report No. 1078, Department of Computer Science, University
of Illinois, Urbana, Illinois.

Baskin, A.B. and Levy, A.H. (1978) "MEDIKAS An Interactive Knowledge Acquisition System",
Proc. of the 2nd Symposium on Computer Application, in Medical Care, It Washington, D.C.,
IEEE Publications, Nov. 5-7, 1978.

Baskin, A.B. (1980) "LOGIC NETS: Variable-valued Logic plus Semantic Networks," in Policy
Analllsi8 and Information SY8tems, No.3.

Bo, Ketil (1982) "Human-Computer Interaction," Computer, Vol. 16, No. 11.

Buchanan, RO. and R.O. Duda. (1983) Principals of Rule-base Expert SlIstem8, Advances in
Computers, 22, Academic Press.

Codd, E.F. (1970) "A Relational Model of Data for Large Shared Data Banks," CACM 13, No.6.

Codd, E.F. (1971) "Codds ALPHA"

Channic, T. (1984) "ADVISECORE: A Screen Package for Expert Systems", Report No. UIUCDCS
F-84-919, Department of computer Science, University of lllinois, Urbana, Illinois.

Channic, T. (1985) "Editing Network-Structured Knowledge Bases in the Advise System", Report No.
UIUCDCS-F-85-934, Department of computer Science, University of Illinois, Urbana, Illinois.

Davis, R. and King, J. (1976) "An Overview of Production Systems" in Mach.ine Intelligence, 8,
Elcock and Michie (eds.).

Da.vis, J.H. (1981) "CONYART: A Program for Constructive Induction on Time Dependent Data",
Thesis, Department of Computer Science, University of Illinois, Urbana, Illinois.

145

146

Date, C.J. (1977) An Introduction to Database Systems, Addison Wesley.

Duda, Richard 0., Hart, Peter E., and Nilsson, Nils J. (1976) "Subjective Bayesian Methods for Rule
Based Inference Systems", Technical Noie 124, SRI International, Melno Park, California,
January 1976.

Duda, Richard 0., et. at (1978) "Development of the PROSPECTOR Consultation System for
Mineral Exploration." Final Report for SRI Projects 5821 and 6415, SRI International, Melno
Park, California, October 1978.

Duda, R.O., P.E. Hart, N.J. Nilsson and G.L. Sutherland (1978) "Semantic Network Representation in
Rule-Based Inference Systems," in Pattern Directed Inference Systems, D.A. Watermap and F.
Hayes-Roth (eds.), Academic Press.

Eddy, David M. and Charles H. Clanton, (1982) "The Art of Diagnosis." The New England Journal of
Medicine, Vol. 306, No. 21, 1263-1268.

Foley, J.D. and A. van Dam (1982) Fundementals of Interactive Computer Graphics, Addison-Wesley.

Frayer, 'William W., (1980) "Patient Data Management In Neonatal Intensive Care", Clinics m
Perinatology, Vol. 7, No.1.

Freedman, A.M., O.P. Buneman, G. Peckham, and A. Trattner, "Automatic Recognition o(
Significant Events in the Vital Signs of Neonatal Infants", Computers and Biomedical Research,
Vol. 12, 141-148.

Galen, Robert S., (1980) "Predictive Value and Efficiency of Laboratory Testing", Pediatric Clinics of
North America, Vol. 27, No.4, '861-869.

Gevarter, W. (1982) "Expert Systems" Report No. NBSIR 82-2505. Washington D.C. National
Bureau of Standards.

Kimpel, H.K. (1978) "SnvIBLAC - A GASP-IV Model of I.he Black Cutworm Life Cycle." M.S. Thesis.
Lafayette: Department of Industrial Engineering, Purdue University.

Larson, J. (1977) "INDUCE-I: An Interactive Inductive Inference Program in VL21 Logic System,"

Report No. UIUCDCS-R-n-876, Department of Computer Science, University of Illinois,
Urbana" Illinois.

147

La Gamma, Edmund F., (1980) "Concepts in Critical Data Evaluation and Neonatal Monitoring",
Clinics in Perinatology, Vol. 7, No.1, 93-106.

Michalski, R.S. (1973) "AQVAL/1-Computer Implementation of a Variable-valued Logic System and
the Application to Pattern Recognition," in Proe. of the First International Joint Conference on
Pattern Recognition, Washington, D.C., October 30-November 1, 1973.

Michalski, R.S., (1974) "Variable-valued logic: System VL1", Proceedings of the Fourth International
Symposium on Multiple- Valued Logic, Morgantown, West Virginia.

Michalski, R.S. (1978) "Pattern Recognition as Knowledge-guided Computer Induction," Report No.
927, Department of Computer Science, University of Illinois,Urbana, Illinois. .

Michalski, R.S. and J.B. Larson (1978) "Selection of Most Representative Training Examples and
Incremental Generation of VLl Hypothesis: The Underlying Methodology and the Descriptions

of Programs ESEL a.nd AQl1," Report No. 877, Department of Computer Science, University
of Illinois, Urbana, Illinois.

Michalski, R.S. and R.L. Chilausky (1980) "An Expermental Comparison of Several Many-valued
Logic Inference Techniques in the Context of Computer Diagnosis of Soybean Diseases,"
International Journal of Man Machine Studies.

Michalski, R.S., J.H. Davis, V.S. Bisht and J.B. Sinclair (1982) "PLANT/ds: An Expert System for
the Diagnosis of Soybean Diseases," European Conference on Artificial Intelligence, July 12-14 r
1982.

Michie, D. (ed.)(1979) Expert Systems in the Micro Electronic Age, Edinburgh University Press.

Mora.n, T.P. (1981) "An Applied Psychology of the User," in ACM Computing Surveys, Vol. 13, No.
1, March 1981.

Nilsson, N.J. (1980) Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, California..

PopIe, 	Ha.rry E., (1982) "Heuristic Methods for Imposing Structure on Ill-Structured Problems: The
Structuring of Medical Diagnostics", Artificial Intelligence in Medicine, Ed. Peter Szolovits.
Westview Press, Boulder, Colorado, pp. 119-190.

Reinke, R.E. (1984) "Knowledge Acquisition and Refinement Tools for the Advise Meta-Expert
System", M.S. Thesis, Department of Computer Science, University of Illinois, Urbana., Illinois.

148

Schubert, Richard (1917) "The VL Relational Data Sublanguage Cor an Inferential Computer
Consultant," Masters Thesis, Report No. 846, Department of Computer Science, University of
Illinois, Urbana, Illinois.

Spackman, Kent (1982) "Integration of InCerential Operators with a Relational Database in an Expert
System," Masters Thesis, Department of Computer Science, University of Illinois, Urbana,
Illinois.

Steak, M., J. Aikins, R. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth and E. Sacerdoti (1982) "The
Organization of Expert Systems, A Tutorial," Artificial Intelligence, 18.

Stepp, R. (1980) "Learning From Observation: Experiments in Conceptual Clustering," in Proc.
Machine Learning Workshop-Symposium, Carnegie-Mellon University, Computer Science
Department, July 16-18, 1980.

Thursh, D. and Mabry, F. (1980) "An Interactive Hyper-text of Pathology,H in Proc. of the 4th
Annual Slimp. on Computer Applications in Medical Care, IEEE, Nov., 1980.

Troester, S. (19823o) "Damage and Yield Reduction in Field Corn Due to Black Cutworm Feeding:
Results of a Computer Simulation Study." Journal of Economic Entomology Vol. 75, pp.1l25
1131.

Troester, S., Clement, S., Showers, and A.J. Keaster (1982b) "Determining Yield Loss by Black
Cutworms on Corn." ASAE paper No. 82-5026. St. Joseph, Mi ..

Troester, S., Ruesink W., and Rings R. (1982c) "A Model of Black Cutworm (Agrotis Ipsilon)
Development: Description, Uses, and Implications." Illinois Agricultural Experiment Station
Bulletin, No. 774. pp. 1-33.

van Melle, W. (1979) "A Domain Independent Production Rule System for Consultation Programs,"
Prot!. Sixth [JCAL

Woods, William A., (1983) "What's Important About Knowledge Representa.tion", Computer, Vol. 16,
No. 10, 22-29.

APPENDIX A

Rule Parser Details

This appendix contains additional inCormation regarding the rule parser. Section A.l
describes some basic lexical notions concerning input to the parser. In section A.2 are details oC
error handling by the parser. Section A.3 defines the "mark" types currently handled by the
parser.

A.I. Basic Lexical Notions

Format: All input is Cree-Cormat. Lines can be as long as desired.

Comments: Comments may appear anywhere in the input, and are denoted
by a leading!. The comment continues for the remainder of
the line (i.e. terminated only by EOLN).

Identifiers: Identifiers must begin with a letter, and then may contain
up to 39 other non-punctuation symbols induding digits,
~ @ _ and'. Note that apostrophes are NOT used to enclose
strings of otherwise-illegal characters.

Variables: A variable is (to the parser) an identifier which has been
previously defined as a VL variable name.

Integer: A sequence oC digits without a decimal point.

Real number: A sequence of digits with a decimal point. NOTE THAT A
REAL MUST BEGIN WITH A DIGIT. ".9" IS NOT A REAL !\i'UMBER.

The parser can process ASCII input files containing lower--case text, however because oC
the escape-code nature oC lowercase material, the identifiers may be only 20 lower--case letters
long. All parser keywords (i.e. RULES, V ARS, etc.) are recognized only as upper-case
characters.

A.2. Error Information

When a syntax error is detected the parser does Cour things:

(1) A"" is written under the offending symbol.

(2) The message SYNTAX ERROR is printed.

(3) The list oC symbols which would be acceptable is output.

(4) The parser skips to the next unit oC inCormation, e.g. skips to the next rule, next variable
definition or next block.

149

150

The error return code given by the parser may be NOERROR when no errors have occured, or
one of the following:

ERRPRNOPARTAB The PARTAB file could not be read.
ERRPROSYNTAX One or more syntax errors were detected.
ERRPROVERFLOW Internal parser stack overflow.
ERRPRINTERNAL The parser made a logic error which was fatal.
ERRPRUNSUPPORTED An unsupported language feature was used.
ERR<other> Any other fatal error code from supporting system

(e.g. the tuplemanager) from which there
is no recovery.

The parser writes additional messages to the MSG file to help diagnose some of these error
types.

The parser writes additional messages to the MSG file to help diagnose some of these error
types.

A simple parser driver program exists which utilizes two files of knowledge. Before
parsing, a preexisting network is loaded from the file BACKUP. The parser is invoked on input
file INPUT and giving output file OUTPUT. Subsequent to parsing, BACKUP is rewritten to
contain the updated network (BACKUP is processed with READBACKUP and
WRITEBACKUP directives). Also the file NETWORK is written via the WRITETEXT
directive and gives a readable representation of the network.

A.3. Mark Type Definition

The parser generates a network of tuples for each block (i.e. for each RULES block and
each VARS block). The name of the block (the group name) is the only handle for the network
of tuples, whose head node is located via the directory, given the group name. From this node
on in the block network, all tuples have a "parser mark" node in them located in the first node
position, tuple(2]. The parser mark (or just "mark") indicates the functionality of the tuple for
interpretation or decoding. The marks which are used this way are as follows:

A.3.I. Within a VARS Block

These mark types are generated from the VARS block definitions:

MKV ARS: a list of variable-defn nodes in this tuple
MKDOMAIN: the nodes in this tuple define the domain

[2]MKDOMAIN
[3] domain type:

MKNOMINAL: additional nodes give either
- one inte~er! nu.mber of levels or
- list of values

MKINTERVAL: additional nodes give either
- two integers: interval range or
- ordered list of values

MKSTRUCTURE: additiona.l nodes give values tor leaves and
internal nodes in the structure tree

MKREFINE: gives the refinement structure of a
structured variable tree

151

[2]MKREFINE
[31 internal node name
[41 ... subordinate nodes to [3]

MKUNITS: gives the units of measurement for the variable
MKVALCON: gives the value of an identifier or rule component. The tuple

contains pairs of numbers (value, degree of confidence), where
value may be either real or integer and where deg. of conf. is
always real. When multiple alternative values are to be
represented, many (value, degree of confidence) pairs may
be used. When space in one tuple is exhausted, another

MKVALCON tuple is incorporated to hold additional data.

A.3.2. 	Within a RULES Block

These mark types are generated within the RULES block:

MKNULL: a "no-operation" indicator
MKVARDCL: for a group of rules, next node indicates variable definitions

which are to be used
MKBEHAVIOR: the node in position [3] denotes the behavior

MKINCR: increasing U)
MKDECR: decreasing 0
MKRMIN: has a relative minimum U)
MKRMAX: has a relative maximum U)

MKPAREN: indicates parentheses used around this unit
MKTVARS: indicates "target" variables used in the rule. A target

variable is one which occurs to the left of the relation symbol
in a selector.

MKRVARS: indicates "reference" variables used in the rule. A reference
variable is one which occurs to the right of the relation
symbol in a selector. In either theMKTVARS or MKRVARS tuple
the following node (tuple[3]) contains eitherMKRHSV or MKLHSV
to indicate whether the variables listed occur in the rule's
right- or left-hand side, respectively. Tuple positions from
tuple[4] hold variable node data. Each variable cited occurs
one or more times in the right or left hand side (according
to tuple[3]) as a target or reference (according to tuple[2]).

MKLHSV: indicates rules in a rule group which involve a specific
variable in the left hand side part.

MKRHSV: indicates rules in a rule group which involve a specific
variable in the right hand side part. Tuple[3] contains
a variable node and tuple[4] on to the end contain rule
nodes which incorporate the variable within the left- or
right-hand side (as indicated by tuple{2]).

MKEXEC: indicates that the following node (tuple[3]) contains an
"executable" code which can be one of the following:

MKFALSE: denotes the constant value false
MKTRUE: denotes the constant value true
MKRULES: a list or rule nodes in this tuple
MKRULE: rule lhs node and rule rhs node in this tuple
MKLM: the folling node is a linear module

152

MKCS: pairs of (lm-coeff. 1m-node) in this tuple
MKOR1: nodes are lin-modules to be or-ed together
MKAND1: nodes are condition units to be and~d together
MKOR2: nodes are condition units to be or-ed together
MKEXCPT: two nodes follow: node-a node-b
MKEQUN: two nodes follow: node-a <= > node-b
MKIMP: two nodes follow: node..;.a = > node-b
MKAND2: the nodes are selectors to be and~d together
MKV AR: start of selector. there are five nodes plus optional nodes:

!zjMKVAR
[3] node for the variable
[4] node for the relation (MKEQ,MKGT,MKLT,MKNE,MKGE,MKLE)
[5] node for reference type (MKREFO,MKREF1,MKREF2)

if MKREFO: one additional node follows in position [6]
MKALL: entire domain (*)
MKUNKN: unknown (?)
MKUNDEF: undefined ($)
MKNA: not-applicable (NA)

if MKREF1: one or more nodes follow denoting a list of nominaJ'values
if MKREF2: one or more sets of node triples of the form

(low-value. high-value, weight) used for interval values and
weighted values of both interval and nominal type

if MKREF3: one or more sets of node quadruples of the form
(low-value, high-value, weight

l
• weight

2
) used for interval values and

weighted values of both interval and nominal type

MKFUNC1: the nodes in this tuple indicate a function reference
similar toMKVAR above, except that the node for the name of the
function is "6.oating", i.e. it contains no parse tree.
To evaluate such a node, the dictionary must be consulted.
The relation and reference nodes may both be omitted. If
either is required, both are present.

MKFUNCZ: the node in this tuple indicates the general function
MKTRAP: the node in this tuple indicates a trap function
~1KARGS: the nodes are arguments to MKFUNCl above

APPENDIX B

GVL Grammar1

This appendix lists the GVL
1

grammar a.t the time of this writing. Its format is as

input to the YACC compiler-compiler available on Berkeley UNIX.

'Xtoken LP RP LSB RSB LBR RBR MOO IMPASGN IMP RMIN NE TO
1* I) [] { ~ t : : > ,,> I <> .. *1

ttoken OR PLUS MINUS TIMES DIv EOUIV LE GE RMAX EO COLON
1* v + I <z> <= >= I *1*
!token COMMA DOT EXCPT GT LT SEMI TRUE FALSE UNKN UNDEF
1* > < T F ? S *1

!token I D VAR INT REAL RULES VARS FUNCS END IN NA

~token NOMINAL INTERVAL STRUCTURE UNITS PROP TRAP

H

f i Ie block

I file block

block blk

blk idnode RULES vardcl funcdc! optprops rulebody END
I idnode VARS optprops varsbody END
I idnode FUNCS vardcl optprops funcbody END
I er r or

var de! VARS EO 10 SEMI

funcdcl FUNCS EO 10 SEM I

153

154

rulebody .. rule

I rulebody SEMI rule

varsbody vardefn
varsbody SEMI vardefn

funcbody funcdefn
funcbody SEMI funcdefn

rule .. optidnode Imanode IMPASGN strength Imsnode optprops

error

optidnode .. 10

I (

optprops prop
optprops prop

prop PROP EQ ID END

Imsnode Ims

Ims inearmodule
I ms OR Ii nearmodu I e

Ii nearmodu I e quantifier LP Imsnode RP

155

Imparts

quantifier .. LT optint idnode inset GT

I (

optint INT
I

Inset IN ref

I (

Imparts .. Impart
Imparts PLUS Impart

Impart LP Imparts RP

I optreal optreal condstmt

optraal .. realnode
(

condstmt condstmt condition
condstrnt OR condition
condstmt EXePT condition
condition

condition .. term EOUIV term

ter", terlll'"P
t er m

term LP condstmt RP
selectors

TRUE

156

I FALSE

selectors selector

selectors selector

selector ~ LS8 e~prnode rei refgroup behavior ~func RS8

e~prnode

wfune ~ e~prnods

optrelref rei refgroup

rei ED
I 	 GT

LT

NE

GE

LE

refgroup ~ ref

ref valunit
ref COMMA valunit
set I-leight

ref COMMA set weight
T I ME 5

UNKN
UtlOH
NA

valunit e~prnode ddval l..Ieight

157

val intnode
realnode
ID
varnode optargs
TRAP optargs

ar gs .. arg
args

COMMA
ar 9

arg .. exprnode

optargs LP args RP

I

ddval TO exprnode

I

weight .. COLON exprnode optexpr

I

optexpr .. exprnode

set LBR vals RBR

behavior .. DIV
I EXCPT
I RMAX
I RMIN

I

158

vals val
vals COMMA val

exprnode expr

Bxpr aterm
I expr addop aterm

aterm afactor
aterm mulop afactor

afactor MINUS afactor
LP expr RP

I val

addop PLUS
I MINUS

mulop TIMES
I OIV
I MOO

strength LP intrealnode COMMA intrealnode RP
LP intrealnode RP

var defn idnode dfields optprops
(

dfields dfield

I dfields dfield

159

dfield dfieldpart

dfieldpart NOMINAL EO LP idsunique RP

I NOMINAL EO inttuple

I INTERVAL EO intrealtuple

I INTERVAL EO LP idsunique

I STRUCTURE EO LP idsunique

I UNITS EO idtuple

TO
RP
RP

intreal tuple

LP refines RP

funcdefn idnode var LP functab RP

functab funcentry
functab funcentry

funcentry idnode intrealnode intrealnode

var varnode

refines refinement
I refines refinement

refinement idtuple EO LP ids RP

idsunique idsu

idsu idtu

idsu idtu

itltu idintnode

160

idnode 10

varnode

intnode

realnode

intrealnode

idintnode

VAR

1NT

REAL

.. intnode
realnode

idnode
intnode

ids idtuple
ids idtuple

idtuple Idnode

inttuple intnode

intrealtuple intrealnode

APPENDIX C

Internal Representation of a BABY Network

(NODES_TOYROPAGATE (»

(DATA..SET (»

(PATTERNS (

(DOWNWARD NEONATEYATTERNS»)
(ASSERTIONLIST (»
(NEONATEYATTERNS (

(MKVALTUPLE BAAND O.lel 0.0 0.163184079 0.099950l24el)

(DOWNWARD SIADH EVIDENCE 0.7968e-8 0.1631 0.09995el)

(DOWNWARD HYPONATREMIC EVIDENCE 0.0 0.8 O.lel)

(DOWNW ARD GLYCOSURIA EVIDENCE 0.0 0.8 O.lel)

(DOWNW ARD NORMAL...ADRENALYUNCTION EVIDENCE 0.0 0.8 O.lel)

(DOWNW ARD NORMAL..RENALYUNCTION EVIDENCE 0.0 0.8 O.lel)

(ASSERT 0.85) »

(NORMAL..RENALYUNCTION (
(MKEXEC MKRULE u002 MKNULL O.lel O.lel)
(MKTVARS MKLHSV NRF)
(UPWARD SIADH EVIDENCE)
(UPWARD NEONATEYATTERNS EVIDENCE)
(MKV AL TlJPLE BARULE 0.8 0.0 0.8 O.lel)
(ASSERT 0.95) »

(NORMAL...ADRENALYUNCTION (
(MKEXEC MKRULE u004 MKNULL O.lel O.lel)
(MKTV ARS MKLHSV NAF)
(UPWARD SIADH EVIDENCE)
(UPWARD NEONATEYATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 O.lel)
(ASSERT 0.99)))

(GLYCOSURIA (
(MKEXEC MKRULE u006 MKNULL O.lel O.lel)
(MKTV ARS MKLHSV GLY)
(UPWARD bal EVIDENCE)
(UPWARD NEONATEYATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 O.S O.lel)
(ASSERT 0.1) »

(HYPONATREMIC (

(MKEXEC MKRULE uOOS MKNULL O.lel O.lel)

(MKTV ARS MKLHSV HYP)

(UPWARD SIADH CONTEXT 0.75)

(UPWARD NEONATEYATTERNS EVIDENCE)

(MKVALTUPLE BARULE 0.8 0.0 O.S O.lel)

161

162

(ASSERT 0.5e-l)))
(SIADH (

(UPWARD NEONATEYATTERNS EVIDENCE)
(MKVALTUPLE BAYESIAN O.S 0.796S0e-S 0.163lS 0.09995el)
(DOWNWARD ba.O EVIDENCE O.lel 0.099ge-2 O.lel 0.4875e-l O.lel)
(DOWNWARD NORMAL--A,DRENALYUNCTION EVIDENCE O.lel 0.099ge-2
0.099ge-2 O.lel O.lel)

(DOWNWARD NORMAL..RENALYUNCTION EVIDENCE O.lel 0.099ge-2

0.099ge-2 O.lel O.lel)

(DOWNW ARD HYPONATREMIC CONTEXT 0.501e3 0.19960e-2 0.19960e-2

O.lel 0.50099999ge3)

(ASSERT 0.5e-l)))

(baO (

(UPWARD SIADH EVIDENCE)
(MKVALTUPLE BAOR O.lel O.lel 0.199999999 O.lel)
(DOWNWARD ba4 EVIDENCE 0.0 0.1 O.lel)
(DOWNWARD ba3 EVIDENCE 0.0 0.1 O.lel)
(DOWNWARD ba2 EVIDENCE 0.0 0.1 O.lel)
(DOWNWARD bal CONTEXT O.lel 0.199999999 0.0) »

(bal (
(UPWARD baO CONTEXT 0.75)
(MKVALTUPLE BANOT O.lel O.lel 0.1999999990.0)
(DOWNWARD GLYCOSURIA EVIDENCE O.lel O.lel O.lel)))

(ba2 (
(MKEXEC ~1KRULE uOlO MKNULL O.lel O.lel)
(MKTV ARS MKLHSV URINE_OSM)
(UPWARD baO EVIDENCE)
(MKVALTUPLE BARULE 0.1 V!} 0.1 O.lel O.S »)

(ba3 (
(MKEXEC MKRULE uOl2 MK ""L O.lel O.lel)
(MKTV ARS MKLHSV URlNE_v.:i:v1)
(UPWARD baO EVIDENCE)
(MKV AL TUPLE BARULE 0.1 0.0 0.1 O.lel O.S)))

(ba4 (
(MKEXEC MKRULE uOl4 MKNULL O.lel O.lel)
(MKTV ARS MKLHSV URINE...8G)
(UPWARD baO EVIDENCE)
(MKVALTUPLE BARULE 0.1 0.0 0.1 O.lel O.S) »

(GLOBALS (
(MKV ARS NRF NAF HYP GLY SERUM_OSM URINE_OSM URINE...8G) »

(SERDM_OSM (
(MKDOMAIN MKINTERVAL 11000»))

(URINE_OSM (
(MKDOMAIN MKINTERVAL 11000»))

(URINE...sC (
(MKDOMAIN MKINTERV AL O.lel 0.2e!)))

(RULESET (
(MKLHSV URINEJ3G bail)
(MKLHSV URINE_OSM ba2 ba3)
(MKEXEC MKRULES NORMAL..RENALYUNCTION NORMAL..ADRENALYUNCTION
GLYCOSURIA HYPONATREMIC ba2 ba3 ba4)

163

(MKV ARDCL GLOBALS) »
(uOl0 {

(MKEXEC MKVAR URlNE_OSM MKGT MKREF2
SERUM...OSM SERUM...OSM 0.1)))

(u012 (
(MKEXEC MKV AR URINE_OSM MKGT lv1KREF2 300 300 0.9)))

(u014 (
(MKEXEC MKVAR URlNE-.SG MKGT MKREF2 O.lOlel 0.101el 0.8)))

http:URlNE-.SG

