A Technical Description of the
ADVISE.1

Meta-expert System

BY

R.S. Michalski, AB. Baskin,

C. Uhrik, T. Channic, S. Borodkin
A.G. Boulanger, L. Rodewald, R.E. Reinke
Department of Computer Science
University of Illinois

March 6, 1986

This research has been supported in part by grants from the Office of Naval Research No.
NO00014-82-K-0186 and No. NO00014-83-G-0030, by grant from the National Science
Foundation under grant DCR 84-06801, and grant from the Defense Advanced Research
Project Agency under grant No. N00014-K-85-0878.

Table of Contents

Chapter

Chapter 1 The ADVISE System: A General Overview ,.cccciiiicisiiinennnessesssnssaneens
1.1. Novel Features of ADVISE ..covvvcciennnnns cerrecssesrnarens .

1.2. Conceptual Organization of ADVISE

1.2.1. Control Block and User Interface ..

1.2.2. Knowledge Base ...cccoeruv. ‘ ceessanirnrnees reeerererecanennens

1.2.3. Query Blocks .uiveeecrvaniniinriacnnens rereserinssaerrausEeettetssiantrstientasetnsase

1.2.4. Knowledge Acquisition Block

1.3. The Architecture of ADVISE .oiiioiiirciicosenniecesrmsssmssnennnenesscssemmmeassansse
Chapter 2 The User Interface ..cccccvrricurcrercearecninesmrenneercennsranenes eecerernrastersnaesannarans

2.1. Introduction .ceciccrrensecncceencrassuenseosnonnss

wssen

srevess

L33 secaseevs

L T T Y

2.2. Philosophy of the Interface .icuicmiiimimmeieniniiiicissimvsnmiesnsiecssenrenses

2.3. Historical Development of Interface To00ls cucvccrveecerssecisonanienssrennsosassosanees

2.3.1. The Display Module .ciiiiiicrcrminiinicnmmiecnicinsnmscsessissioessssnnsscssssesnsnes

2.3.2. AdVISECOTE .iivireciineiiencosnnseranorsaneemsarennenresnsrrenmstsnsssisanemorarsssessusssnsan -

2.3.2.1, The Screen Manager Process ..ceiisirceicissisnsseinierinrssiseicne

2.3.2.2. The Window FFilter Processcvevvvcereeesireessrsessssenssssansnessansiasas

2.3.3. The SunWindow Interface ..ccccennen erereestrassssrresanraasteasatietnasrannerhrrers

2.4, The Current User Interfacececvevvrerreecercersas
Chapter 3 The Network Editor ...ccccvveeeceencrriosscssiennnenes

T L T L T T P Y P2

SesaNkssBlseNtEERIR I RN NS LEIIEEESEOTE

3.1, INtroduction weeeeeeivmeereiciimmsirmesinenieriomeesomssnssasisessessssasiossasaas ceansemsenriaanas

3.2. The ADVISE Network Representation ...ccccrcloieeecrvaenas rieseresreosasoeranaurnne

3.3. Features of the Network Editor ..cccovneiiirercennnn. reereees trerasressrnsenrsseraras

3.3.1. Screen Representation of Networks .ovvcciiiiicciiininciiminnmenmmvcicons

3.3.2. Local Editing Options .ccvceveiccireriotimmsniinisnniiecesermsscrismrasmsasessesassssacss

3.3.3. Global Editing Options ...cccemenireriiniirsicsnnsoerenseenaesss prrereees

3.4, A Sample Interaction ...meciricciiniiinnmecseeririniierrsernissesreeesssssssssanen
Chapter 4 QUIN ..ccoivviiireicciinenicninenens eemsrrenenenns ecevassuureensstrnsrssesernrnsenacsnarrnarsonn
4.1. Introduction BSOS UPOPIOON

4.1.1. The Relational Model .uuveeirciiiiimienciinmieruicieissvsessimnsssssreerssensnssees
4.1.2. Relational Tables covcovicrmmniiiininiencarenmmeeninics s
4.1.3. KOYS ererrcemmssmvionrunsnstierrtnmentiseitesssionicnsssaressssrssassrseresssssaaensansessennssnns
4.1.4. Normalization .iiiiiccinrcniniseisireesnsscresssscassssensrsossccansrravesss
4.1.5, Relational Operations .iciicccieicieiesimrssssessssrnsesssersesssssssaran

4.2, Data Language VL ccmmiiiciencnernieiensmsssecssassecsssssassessssasasasas
4.2.1. Table Creation ..coveerserrirnncrcannnns SeexusnsersiseesaatrstsetariassbrersarsanIIisase

Page

© 00 =3 U W W N

e G0 G0 O3 B N ORD DD OBD DD BD b bk e b ek e e b b e

-

4.2.1.1, DEBNE .ivieevvsinniiniiiscisvarsnnmsenisssssrmsanssssseresssssnsssnsnesssssonsesanssnsnsnss
4.2.1.2. Define EVENL wcamriieecsmersenmmmsmiosssrsccessniconssnsnessasssostsasssrsssrsnrsnnnnes
4.2.2. Table Retrieval ...t sessssnsssacases
4.2.2.1. Relational Table EXPressions ...
4.2.2.2. VL CondItiOns eeccieeresssiionstcermmrnsmirrsvenessssssssssssssssnssssnasrronsenssssss
4.2.2.3. Ordering of ROWS .iiviiiinniiicimniniesssonsnnisssosniniernsnsencnsesensssssssss
4.2.3. Table ModiBCation .iveesissessccossesnmsensssnisenssansassessssssnssrsessasasnsrasscsssnsn
4.2.3.1. CHANEE cicrecirsicrmrsimmrorisnionnsssssssicsnsnssnsssersirsnssssnrassessnsssrsnnssssnsses
4.2.3.2. Delete iriniieriinmmsnrensrieisinncirsisisnssireresasisransterscarinsrnesserinnssssrresens sy

4.2.3.3. Save .veccreerenen retesvessecorcaraterererctasentansaseranennsan

4.2.4. Help cooreecrrnieiinecveciinntiiir s ssssseensnesstesssrass s sanasssnssssnsersassessssns

4.3. Inferential Operatorsciiccriisciiirmmmimn s s

4.3.1. Fetch and Results covciciiiicerimcieninicineesncsncssasacsessctvasansasmsnessssnsrsssass

4,3.2. CIUSEET crriivrerirmeninvnrsecnrsnssentassssomrorsoronsssssennsnssnnsiesannsssncessstensssssnses

T 30 T S -3 O U ST
4,3.5. Varsel .ooeiiiiierciiriiimiiiniinitinisneseraunetosmnmanceassssssssirasscsasasassnsssesssnassessans
4.3.8. Varcon and VArcont .cuommmemiesmirmenniocrconsinissmssscsssnsssissssssosss
4.3.7. Other OPerations ..ueeeeiesscremenisesssmvereemssssssssrneonasssssssrssassrossaesassnsnsss
4.4, Macro Language ..vcvccivoimicosemsicrsiisirmmsicsiissienssssrssnimsssssssssssesssesnsnrssaes
4.5. Program Description ..ueeeeeeeiencesisssssinrvssesssssanssssesssvsvvarnesasenensansannen
Chapter 5 Rule Acquisition and Refinement ...ceceeuimieimeeniniesensnnncinnansssorssserscrsaens
5.1. A Paradigm for Rule Base Development ...ceercisonssinnsmmsieonecreeneessensanaes
5.2. The Standard Rule Acquisition Paradigm ...ccoiivemmmiiniiniinniniiisscinnnanns
5.3. A New Paradigm for Rule Acquisition ..ccccvsveeeersimiiossrcnemnsnssisnircoeninnens
5.4. The ATEST Tool for Rule Refinement ...iccoccivieciememniiccimneremercosicnnenennns
5.4.1. Terminology icercsiirerermmmssmnsniiisseiimmsisnemmesnesserisnmersrsiessssanssssssases
5.4.2. The ATEST Evaluation Routinescceeveelorerenmmresssirnmmrsosossssrenrunnicnes
5.4.3. Consistency and Completenesscvccmeiviiniinrssornnninisseienmmsecssorseses
5.5, Future WOork ciovnviiiircisciieccsssniensninscmninisssnsnnsiesasssmssesessssasssnsons sness
Chapter 6 The Rule Parser ...ccicciicimeeisciimimmssecsmiccmmenersssssssssenrsosssrresrasaresssesspmnnsssss
8.1, INtroduction .meciiiiirmiiccriiissnnicrsinnncieerrers st ss e et s s s s serassrss s s e nssn
8.2. Language for Rule Representation ..eesveesseccseccessmsrsssscnssssriosssesssassnsnconse
B.2.1. RUIES sirrreeriniiinitieniianciecune e ranssrorsensissaessesbnressasessnesnnssrnsrrsasnressonne
8.2.2. Right Hand Sides (RHS) iiiineiiirecnccreernrisenessescvennerssnssesasessastessecese
8.2.3. Left Hand Sides (LHS) .cciiiiriicirnsnrceesrentenssssssenrescssssesessassnsesssesve
8.2.4. Rule GrouPS iiccceomiermemeeimaieerineeieaeerrreccsasssnsresrassensseosssemsessanssnmnnsnnn
8.2.5. Variables ..o riiiriininiceeeceer i s eensseersssscasnassossrasen
B.2.8. FUNCLIONS certsmmmmminiririsniecncntssaracsessessesssnssreossanriorsossncassesnsassnnsoassness
8.2.7. ProOPerties ..ovviviiiiriiniicirioninininrereresennsteeemeesniossssasssrssssnesserssesssssssssvass
8.3. Parser ConstructiOn .iociiciiiiiciimrererirerninrierserssessesssessesmssnenssussessnsasnsesss

8.4, Basic Features cimuiiiecansneisairon sreesessssriesanssssesasossesessssassnsnsnsen

43
44
44
46
47
50
51
51
51
52
52
52
52
54
54
57
60
60
60
60
81
62
83
63
63.
65
66
87
67
68
71
72
72
72
72
72
73
73
73
74
77
78
78

8.4.1. The PARSER Production Cycle cvvmiiiviiiiiiiirciiirinricnccinccrieniennesinnennns

8.4.2. Operation and Use of the Parsercceeeriesrccrcsnmmnnnssonressssserreceeeanes

6.5. Updating the PARSER .ccovievmmiinsiiiiiimimssicctsinimsnssssesnnsnsssimsssininssssesasss
Chapter 7 The Rule EvalUBLOT wcvererrrrernraremnmriosicrerinmmrevssssavsrsasasrrssorasansanseoreersossens
7.1, INtroduction .ccvveviisesecrmseermmersimssriecssmneecsssssasssnsurvesssisosussssanrsesssanserrnsses

7.2, User Procedures ..iciceiiimmsercrsrenssssiiesecsmmcasssecarasissssssvnrsasssennsasscsrassassvaes

7.3. Configuring the Evaluator it reeeecccneeievseassreees
Chapter 8 Knowledge Base Paraphrasing ...cueeeeeeionninmsmmsiminsnimmmmnsmuiessens
8.1. Design of a2 General Paraphraserscccesccivemisnccnncesinenesssirscissssonsosrnneses

8.2. The Existing Rule Paraphrase Module .cuvuirvmeerniinrvieiiccireenenncccceeenanns
Chapter § The Tuple Managercccciimvvnrennminniciiiiiimseummmnnrmeiinsiicnssmsesesersssossssssssns
9.1, INLIOQUCLION veeerrieenrennreniennessiinerenmecnsssnssssessssssssassssrssssessressassosnrensenennes

9.2, The Data TYPes .cciuieccniiincianisremisiinsmssmssissssssusecssnasssesasssssssssosss

9.3. The User—Visible Procedures ...uccciviiiisiriisininiiinissieceninsimmesnmessisammosnensoss

9.4. Important User—invisible Procedurescocvevvecescencersoronceerssssennsesneanssss
Chapter 10 General ULIlI1e8 wuiivveiisiiiermmnieeruinereorrrinmessressesscrssrrsrresnsssssssssssssssseaseens
10.1. The Low Level Netwotk Debugger ..c.ccccvrimnerccnssiscrcimsmnsisnsconercossenes

10.1.1. How to Use the Tester Program ..c.c.vccrieiisiiimnimesicsenceaenmessasssiens

10.1.2. Tester CommMAandsucrvccvreermemssssancecssamasassiosisreemmmcresniressressarens

10.2. The Trap Module
Chapter 11 Rule Based Inference Control (PLANT/ds) cccevrecrecriticsrmnsnnineescnesiannins
11.1. Introduction eiciiicieriiseiiniisiiimnanisirseieneisuusicsnisnminssssssserreessasesssnnnnes

11.2. The Knowledge Baseccciimiivrinsiiminmrmiesiciimirsmsmessssrisnsssmessoones

11.3. Using the PLANT Program ...ccccosimmieecrmenrieesmrcimmmsrnmmsnrnsene

11.3.1. Data StrUctUres sccimiecsiiiiisimnsiesmnemerismmssnsscarsnnserssessosensresarasves

11.3.2. Control Scheme Tools Package ..cccvinieiiriermmmenmressnmmsnccesemseeseemmnnanns

11.3.3. PLANT/ds Tools Package .vuureeemniecenvcrnivisneissssessesniossensossenssass

Chapter 12 Rule Based Inference Control (PLANT/cd)

12,1, INETOAUCEION coveirriesueannvermansserserrreceraraneasennnnsransearsesnscsnsrinsnasersensassansrenas

.......... shevsrvreruuverensy

12.2. User Description .eeeuicicrieersierinneesesisiisesecnserasssssesessimecemarsmmsorsesenssnssesseses
12.3. Control Scheme Details covcevceieceiiestioisciiosstiieitocstssorsecsussessasssassaenens
12.4. Future Research Goals aeiveiscimimiimiioieinieiiimmsicesseosiosissssmssssneorseses
Chapter 13 Context Driven Data Annotation (BABY) .rcccuneinnrenencsoniininins
13.1. INLroduction .icviereeossisererannrerorsranssnroeniracotsssnnsmssrereesssenssersassressnseansnsroras
13.2. Clinical Perspective ...iicccerniuinicciserossesmeoserssesesssssssssssassssserensosssmasnss
13.2.1. Role of BABY in DIagnosisccceriessiemriccssssssssessssssssssrssossesssssnonnnce
13.2.2. Clinical Patterns .ccciiienieriiiercmimonecssmsessirssrvesssssornnsansss
13.3. Clinical Context and Patient State ...ccccccerreisiesssanccercesssssnssssnnecsansaeses
13.4. Knowledge Engincering Environment .ouvicciiciiieicennvnssnneesssessncnsse
13.4.1. CHnical Data .ccnrcnnnicsmcsscesniesensccecnsionnssssessrressessssarsnsesssessoescone
13.4.2. Uncertainty in Medical Data ..cocccerievnneeieerseeerennieecseessesssssessenss
13.4.3. The Knowledge Base .cciciiimvemerrecensssrsscicseeermmnseenieorsesssassssnsnssasss
13.5. Baby Implementation . semessssrennenes

78
80
80
82
82
82
84
86
86
88
90
90
90
91
94
95
95
95
96
98
102
102
102
105
105.
109
110
114
114
114
114
117
119
119
120
120
121
122
123
123
124
124
124

13.5.1. User INterfaceuiviivreerermmemsccrosernrarenecsnereerersraerssesrosssrersenseesssssnnsnss
13.5.2. The Knowledge Representationc.coiicvciniiceimineerivensssneaseerscenesnas

13.5.3. The Inference Engineccovevevemveireriiiiisnsvonscscesmsisoisnismsenssesiesanrens

13.5.4. The Patient State .cocccceirccrimmveriennrecirroensrsercennssracirresessnsrsnsscsrsssscss

13.5.5. Variable Suggestion ...ccceccveeiricriimceeciiieserccneicnsresccsrneasnsnssssssmenreneces

13.5.5. INetWOTk PAISEr .iccveiiroricssscvssecinisassonrorrecsessorssrarosrcescressaseraecrssnnssss

13.5. ConclUSION .iiveerirerrireseranmmnssivncimsiencsesssmersmermncrscussneersansesarassssssaseransses
Chapter 14 The ALFALFA Entomology Pest Identification Systemccecccvavnvannne
14.1. IDLPOdUCEION cevrcrerrneerecernnserinrorsontornssenssnsossersssonararsrssensesasnnsosnnssnsssansssn

14.2. Preconditions and Termination Conditions .cccccecciesmeenrrenresresunsseeeassane

14.3. Multigoals coceeverciiienmrinicinnnnnenicianisiseseissnerecss sssrmssssssasnsensorssesse

14.4. Disjunction on the Right Hand Side of Rulesccicivmriinciinecseciiinisieniiss

14.5. Data AcQuisition ereeisesceressssccnresssssassscensinsssrssasasarsesesssssesssnssnsanssssonss

14.8. Additional Research Goals .amciiiesiiiimsncninnnesioiersisenmisssisemeesiscnsnse

14.6.1. Describing Variable-Value Relations with Semantic Nets .ccevinannes

14.6.2. Dynamically Changing Value Sets for Variable .cccevveersrernssrrnsencessss

14.7. Future Research EXtension sivcvrccecrssrersmmnsusnsrrssnsectnssrsossenssnssnssessasasases
Chapter 15 Summary and Future Work .oviccmsiimmiisiemmmsissinicnmimssnsarsanssis
Literature Cited civesreesrcsvarrersmieensrrersmesmrresssnsasissussssvsersssestrrsressnnnsansssenansssnarssansssssenes
Appendix A Rule Parser Details coviieenmreririreesamrsrecmnscssersrssrsunsasrssnnessrssesasnsssncsss
A.l. Basic Lexical Notions ..ccccciievicrcssmsicceniimronicencrressrnssceesssrensiecsssscssenncasses

A2, Error InfOrmation .iiccicceccirerciiciirtniinsieereecrnsecsssennsresssssnssssnsasnssansennesns

A.3. Mark Type Definition ..cccvvciimnccireressarmerenrieceerannes evieen

A.3.1, Within 2 VARS Block cicivceciioicmcmroniirestresrevensssssissnenmssereeessressesnsenses

A.3.2. Within a RULES Block .icceiirimiicintiermeisrmeesessrsmressrencorersonsssanssrses
Appendix B GVL, Grammar i s

Appendix C Internal Representation of a BABY Network ..o.veenmcaniicssinnannss

125
125
128
129
129
130
131
133
133
135
135
136
137
137
137
139
142
144
145
149
149
149
150
150
151.
153

161

18.

35.
36.
37.
38.
3s.
40.
41,
42.
43.

Figures

A conceptual level diagram of the ADVISE system..cciceiiimiecireninccsecensesrascrearmssanseens
A technical level diagram of the ADVISE Architecture. .cccccvcririineosnemcsircereenevasassenes
Multi~question frame from PLANT /ds.......
Single question frame from PLANT/dS. cieccvsveesrrrsienteciessscscssscssnennensnrmssssserosssesssenas
Screen Management in Advisecore. cvovvcennennees . .
The textual representation of tuples for “arches” .c..civirirerrvccreneriensccnssisenssesseeresiries
Operations available In QUIN. .. imiircircecsiniriensioscssnrsiessssrmssseersossersuarses
The knowledge refinement cycle. cocvvienirsniersnnmmiscirsorisrcesserecntesmmsesescrenmanesessessessrones
Clinical Laboratory ValUes oo iiiciriiirininissssssrnmscrcosmieenseresssssseosmesasesresssssannsarss
Results of Selection Operation ..c.uccicimmnecrsicrisnirrseecrissnrarmmraressessecresannnes
Results of Projection Operation ccmcrereiisiceetnnrmensarnennsssscimmsrsasnsesnsssessassenssrasessns
Format of File “vl87 e uiiiireiniiectieiiniiieiacsinscssiossiissierserssassansosassssssasessansvens
Result of Retrieval. i ocirnciicctnimcircctmnassessccnesssnnsnmnscossesemnsssseesssmsansassoses
Relational Table Bxpression OPerators . uciesrmmsrecsinenspmmosessonsssesseessssaens
The “spec’ Table it sesnossnasen s sesanssanss
Join of “spec’” and ““labvals’ . iriirrininisinnsrinirrensesiisressse s ssasessrsessonansnes
Projection & JOIM covvcvercremiiniicrisscerieenrarmsnsresrersernssasnsssesserrmaresassssvassasssnsntenseraarassssss
Ordinary Projection .o iceecirminiiiiceessinmcscrosssrarinasssssssersermsesssssssssesssassssssssnonnses
Projection & COoUnt .. sceiim e ssinssasiirissiinsiissasismisesssetasionsistsassiossiniansse itrsses
Projection with Redundancy cueucriimiimiicmmmaoiosmsocemimos e

eawsessusnsrns

3 H
TUSE Of SN crvacrreriarereeennsnreseiresrssnrsianerasensarassessrsrusassssssnsusnssessrsnsarassssassnsavnsassrsnons

Original Table to be Changed. .o
Table with Modiied Hgh Column covncieiriiniiciecriancicnniinarionssssssssncsneerssssssssscmacnansanas
CIUStering CrILErIa cvimviierciireriernereesserrnerieereeasseresmitrretrsrsntessenssnssasssssnssessrannrassassssers
Parameters Table it ossosnscsss s
Criterion Table it seicrssiescacsiesssecsneesssresssnsassssssasseas
Events to be Clustered......ccvuevvennne.
Meanings of Values in Events Table. . cceriiriirscesiissisnestsmssrarssnsssnceansesrsoans
Results 0f ClUStering vvviveerceuemeiemmmmmricimuuimiirecasessmsetrossssssssasasssssasssansnsessese
GEM Parameters Table....ccoiiiiirariccrrninsnccnececccnressosesssuecessssnesessesnacenesses
GEM Events Table i crmrieimmanreeressssssrsssssesnssrsssssasssressasssssarsrsssssss
Domain Values or Days of the Week ..
The standard paradigm for rule base development. cv.ccveeiicerreererersnerrrerssseeesnsensannene
Paradigm for rule base development

using automated refinement and testingvuiciieciisineeeriecirerrerenveesvaeseserssessnnsnssass
Sample input and ATEST output for a toy problem. cuuvcericveierersrnnrnessissreesssanenns
An example of consistency testmg......
An example of completeness tESLINE. ciirimrirriiriinrireensererecesrcrvareessscassansnseessesars
Relation of Compiler Components. i miiiimieireossinessieeeeseresesssssssssrserserssssvecssnes
A Sample Paraphrase Program. o ivesiirseiiessrerasesseriseeesssesessessssssassssessssesnss
Flowchart depicting the top-level structure of PLANT /cd. .ceeveerricnerinnnnrecresanecsnes
Flowchart depicting the FINDOUT procedure. e vineeeeecreceeesreesonseersecssesssossesens
Flowchart depicting the INFER pProcedure. .icivuuiinneersresrerressecesessrssnsasessesssrssssssssnns
SYSteIN SEIUCLUTE eeeeeeriirniciirvetii e reratserccsecerreruaerberessenssarsrenssarssssrensrarsssrasnsnses

10
13
14
18
18
39
40
41
42
43
45
46
47
47
48
49
49
49
49
50
53
53
55
56
58
56
58
58
59
59
58
64

66
69
70
71
79
87
115
116
117
120

44, A Pattern to Match SIADHcvveevivvivienenevecnnne RN eeereersirereesesnnrnuansssaranrantaeaase
45. Network Description of Figure 44 resemassesnesasesasrsanetta seenesnbacnrranes reerssasrenranares
48. Goal Structure of the ALFALFA System......, varssnsssareerens rerasensessenensaranans veerrassnsreenes
47. Abstract Outline of Algorithm

48
49

50.

Converting Variable/Value Graph to Rules....ccviiinnnnnnninisnrissinssnssnensesmnssinnise

. The Case of a Common Subtree in Varible/Value Graphs...cccervineseciccnnnne

. Typical Order Independent Rules

Derived from Variable/Value Graph. c.ccocovrmiiniinmnncrcininnin s cosncsssnens

Relevant Value Set of Variable COLOR at Various Points in Consultation

............

............

128
130
133

137
138

139
140

vi

CHAPTER 1

The ADVISE System: A General Overview

We are currently witnessing a rapid increase of interest in building expert systerns for a wide
variety of practical problems. Among the many application domains where expert systems have
been already tried are medicine, geology, chemistry, agriculture, accountancy, computer system
configuration, accountancy, engineering design and VLSI circuit design. Current systems,
however, suffer from a number of limitations that restrict their utility. They typically employ a
single form of knowledge representation (production rules), no learning ability, only one type of
inference mechanism and control strategy and poor user interaction facilities.

The research described here represents our attempts to overcome some of these limitations.
We have developed a general purpose inference system, called ADVISE, which consists of a set of _
modules for the development of and experimentation with expert systems in a variety of
application domains. Among the important and novel ideas in ADVISE are the incorporation of
three different types of knowledge representation, inductive learning capabilities and several
inference control strategies. We feel that ADVISE represents a substantial advance in expert
system design and functionality and can be viewed as a "second generation” general purpose expert
system.

Before going any further let us start by examining the notion of an expert system. Usually,
an expert system is defined as a computer system that exhibits high performance in a specific
problem domain due to a large amount of formally encoded domain knowledge and the ability to
conduct formal reasoning on this knowledge. An expert system is designed to perform a host of
tasks that a human expert would typically perform: diagnose, interpet, consult, classify, 1dent1fy,
search through a space of possible solutions, explain and analyze [Buchanan83).

The domain knowledge is represented in an expert system as a set of production rules.
These rules take the form of:

IF <condition> THEN <action>
where

< condition> is a logic expression which must be satisfied to
a certain preset degree, and

< action>> is a set of actions to be performed if the < condition>>
part of the rule is satisfied. The <condition> may include both
the context within which the rule is applicable, and the specific
conditions to be satisfied by the situation in order to apply to

it the <action>.

The set of production rules that characterize a given application area is termed the knowledge
base. The knowledge base is one of the three major components of an expert gystem,

The second major component is the inference mechanism by which the knowledge base is
used to perform given tasks. The inference mechanism is divided into two parts:

. a rule evaluator/ezecuter that doe: “nference within a rule, and
. a control scheme that does inference among rules.

In many expert systems, some form of probable or plausible reasoning is used in the inference
procedure to handle uncertainties. Data are often represented as object/value /eonfidence triples.

The third major component of an expert system is the memory needed to store intermediate
results of rules when they are actuated or fired. Some architectures term this component the -
blackboard.

A favorite starting point for expert system architecture is to organize these three components
as a production system. This production system organization contains a recognize-act cycle in -
which a control scheme decides which rules to evaluate and, if any fire, executes their right—-hand
sides. For more details on production systems see [Nilsson80] , [Davis76] and [Michie80}. Many
expert systems are not pure production systems, however. Many are more like Markov algorithms
in that the productions are ordered.

There is another way to view the architecture of an expert system that turns out to be
isomorphic in many respects to the view of an expert system as a production system. In this view,
the expert knowledge is in the form of a network. The control scheme becomes a network
traverser/updater. This is the view incorporated in PROSPECTOR [Duda78|. See [Gevarter82],
[Michie80], and [Stefik82| for more detailed overviews of expert systems. The next chapter shows
how the general purpose inference system ADVISE goes beyond the simple expert system -
architecture described above.

1.1. Novel Features of ADVISE .

ADVISE has been designed to provide the knowledge base engineer with an expert system
workbench. It provides a number of facilities not commonly found in existing expert systems.
These features include:

-
-

- representation of knowledge in three different forms: a rule base, a network base, and a
relational data base, _

- use of a very flexible representation for inference rules,

- modular design, '

- freedom to choose and design a host of inference control strategies, -

- inductive learning capabilities,

. implementation of the system in Pascal (a popular language widely available on many
computer systerms),

- common virtual memory representation for data,

" selection of rule evaluation schemes, '

) philosophy of separating control of flow specification {sirategic information) from non-

procedural information (tactical information) in the system, and
. emphasis on simplifying man-machine interaction.

Many of these features will be discussed in the next section. As this list shows, there is an
emphasis on user and developer flexibility and convenience in ADVISE. The user interface is
designed as an independent module and supports the idea of friendly user interaction. This -
interaction can be developed almost independently of the rest of the system and supports

multiple terminal types.

There is the design goal of getting ADVISE out to the public. This is a major reason why
Pascal was chosen as the implementation language. Good versions of Pascal are available on
many microcomputer systems. A micro-based version of ADVISE has not been implemented yet
but there are two methods to support them. One method is hand tailoring ADVISE to the
microcomputer environment. The other more attractive option is automatic tailoring. ADVISE
would eventually have a tool for doing this.

There is a goal of a clean design in ADVISE. In many expert systems the tactical and
strategic knowledge is intertwined. This causes problems in explaining the reasoning of the
inference process to the user. ADVISE is being designed to avoid this problem by maintaining a
separation between control or meta knowledge, and factual knowledge of the domain. While the
exact method of maintaining this separation has not been found, active research is under way.
This goal of a clean design is also supported by a common representation for data at the lowest
level of ADVISE. ADVISE was designed in the form of modules that provide support tools for
expert system development. tools for inference systems. This modular design makes ADVISE
flexible and elegant.

1.2. Conceptusal Organization of ADVISE

Figure 1 shows a conceptual level diagram of the proposed system. The system consists of
four major components:

(1) Control Block and User Interface
{2) Knowledge Base

{3) Query Block

{4) Knowledge Acquisition Block

Each component supports operations on three types of knowledge representations: a network
structure, a rule base, and a data base. The functions of these four components are described in
the corresponding sections below.

-

1.2.1. Control Block and User Interface

The control block and user interface manages the user’s interaction with the other
three portions of the system. It handles three distinct modes of operation of the system:

- Query mode
- Knowledge acquisition mode
. Explanation mode

The user interface portion of the system provides utility routines to manage the
terminal screen and supports the explanation of internal data representations and operations
in a textual and graphical form.

Query mode (Q-mode)

- Query mode is used during consultation. In this mode, the system:

- selects questions to ask the user,
» accepts user answers and
. conducts an inference process involving the knowledge base and information provided

by the user, in order to compute advice with an associated strength of supporting
evidence.

Knowledge Base

fi. Netuory Bass
8. Hstuorx Base
C. Relationat Data Bess

Query Block Knewledge Acquisition Bleck
Q1. Qirect Retrjevet: For A, 5, 8§ £ ¥i. Dirsct Representetion: For R, B, & €
Q2. Using Inferonce: For A, B, &8 C K2, Using Intersncae: for A, B, &8 C
Control Block
and

User Interface

1. Guery fiode
€2. Enouiedge Roquisition NHode
£3. Exptanatian lMode

USER

Figure 1: A conceptual diagram of the ADVISE system.

In one respect, the consulting portion of the system is radical in design. In particular,
there is no single problem solving strategy. Rather, localized problem solving behavior is
defined by the choice of an evaluation scheme {of which several are planned) and global
problem solving behavior is governed by a control scheme within and among groups of rules.
Specific provision has been made in the design for the inclusion of multiple control schemes
and multiple evaluation schemes,

Knowledge acquisition mode (K-mode)

The knowledge acquisition mode coordinates both the encoding of expert derived rules
into the knowledge base and the interactive invocation of the separate induction programs.
This mode includes handling specific components for defining expert rules, manual
refinement of rules, induction of rules from examples, and au' - ~ated correction and
improvement of the rules. The system also provides facilities for te:' g rules in interactive
mode on individual cases, as well as in batch mode on a collection of cases.

Explanation mode (E-mode)

The explanation mode paraphrases decision rules in English, enables a user to
understand the organization and functioning of the system in query and knowledge
acquisition modes, allows simple interrogation of the contents of the knowledge base, and
displays the steps in the process which led to a given advice,

1.2.2. Knowledge Base

The network structure consists of three types of representation:

- a network base (e.g., conceptual network]),
- a rule base, and
- a relational data base.

A unified "access protocol” is used for all three types of representation.

A Network Base

The network base containg network structures representing general domain knowledge
about interrelationships among various conceptual units. For example, it can include
hierarchies of terms from the application domain indicating the level of generality of such
terms {a "generalization tree"), a representation of the structure of the rule base, and
precedence relations defined over questions for the user. Links between nodes in the network
represent “static” relationships between concepts. The network organization is a form of the
"Logic Net" formalism described in [Baskin80|.

Rule Base

The rule base contains rules in the basic form:

CTX CONDITION :> CONCLUSION :¢,3
where

CTX is a lexical expression describing the context within
which the rule is applicable;)

CONDITION is a formal expression {(in VL2 [Michalski78]) which
involves elementary conditional statements (called "selectors"),
linked by various logic operators (including quantifiers);

CONCLUSION defines the decision or action which is executed when
the CONDITION is satisfied by a given situation;

@ is the strength of the evidence which supports the
CONCLUSION when the CONDITION is completely satisfied
{0 <a<1)and

is the strength of evidence which supports the negation
of CONCLUSION when the CONDITION is not satistied
0<8<1)

The rule above is read: CONDITION implies CONCLUSION with forward strength "o
and backward strength "4". Specifically, the rule states that: if the left hand side (LHS) of
the implication {::>>) is satisfied, then the right hand side (RHS) is asserted with a degree of
confidence «, and if the RHS is satisfied, then the LHS is asserted with a degree of
confidence 3. This rule is equivalent to the following group of rules:

CONDITION > CONCLUSION : «
not CONDITION > not CONCLUSION : «
CONCLUSION H CONDITION : B8

not CONCLUSION 2> not CONDITION : 8

By providing both "a" and "" for each rule, it is possible to use rules for inference in both
forward and backward directions.

The use of parameters («,d) above can be illustrated by an example taken from
contract bridge. In bridge, each member of a partnership learns the same set of rules for
bidding (called a bidding convention). Qualifiers such as "must,” "should,” "usnally,”
"seldom"” and "never" are used in the verbal description of the rules for the strength of
implicaticon. A bidder uses the rules in the forward direction to decide what bid to make.
The partner of a bidder uses the rules in the reverse direction to decide about the strength
of bidder’s cards.

One well known rule in the Standard American bidding convention is an opening bia
of one no trump. A textbook description of this rule can be paraphrased:

If you have a strong hand (18 to 18 high card points), (i)
a balanced hand (at worst one doubleton suit), and strength in

all four suits {four stoppers) then you should definitely bid 1
no-trump.

This rule can be expressed in the formalism which we are developing as:

(high card points = 16..18] [shortest suit = 2] - (ii)
[number of doubletons < 1] [number of stoppers = 4]
g

[bid suit = no_trump] [level == 1] : a==1, 3=0.8

where w==1 follows from the use of "definitely" in the rule. The value of "3" is the strength
with which a bid of one no trump implies the hand described on the left hand side of the

rule. The value of "3" is less than 1.0 because one no trump may be bid with other hands,
as shown below.

'4The novice bridge player soon learns that like any other expert skill, bidding in bridge
does not always deal in the absolutes described above. An experienced player will often use
the following more general rule:

If you have a hand which meets the above requirements (ii1)
for a 1 no-trump bid, except that it has less than three stoppers,
then you should usually bid 1 no-trump.

The rule above can be represented using our formal language in the following way:

[high card points = 16..18] [shortest suit = 2] {iv)
[number of doubletons > 1] [number of stoppers > 3]
>

[bid suit = no_trump] [level = 1] : «=.8, g=1

The parameter «==0.8 in the rule above indicates that if the left hand side of the rule is
satisfied then the strength of confidence for a 1 no trump bid is somewhat less than it was in
(ii}. On the other hand, once this bid has been made, the partner can be certain {#==1.0)
that the bidder’s hand conforms to the requirements set forth in the left hand side.

The rules (ii) and (iv) above can be combined into a single rule by using “weights"
associated with individual values of the variables. The following rule is a formal
representation for both (i) and (iii) above:

[high card points = 16..18] [shortest suit = 2] (v)
[number of doubletons = 0,1] [number of stoppers = 3:0.7, 4:1.0]
n>

[bid suit = no_trump] [level = 1} : a=1, =1

The coefficient 0.7 associated with "number of stoppers = 3" reflects the weakened strength
of implication if there are three stoppers. Both the weights on the "number of stoppers” and
the value of "a” are used to determine the strength of supporting evidence for the
CONCLUSION. Since the weights have been associated with individual values, the global

strength of implication, "&", can be assumed to be 1.

Relational data base

The relational data base contains relational tables which represent any factual
information, e.g., examples of experts’ past decisions. A modified relational algebra has
been developed using constructs from Variable-valued Logic to make the user access more
natural and more concise [Shubert77].

1.2.3. Query Blocks

The query block supports two types of queries: those which can be executed by direct
retrieval from the knowledge base, and those requiring inference. Both types of queries are
defined for all three types of representations in the knowledge base. ‘

Query block using dircet retrieval

Direct retrieval is used to display the contents of the knowledge base. The network
base, the rule base, and the relational data base can each be retrieved and displayed using

the query block. Direct retrieval is heavily used in the explanation mode of the system and
also during knowledge acquisition.

Queries using direct retrieval on the relational data base include the traditional
relational table operations such as as "project,” "select” and "join" as well as various
arithmetic or other transformations of the data items in the tables,

Query block using inference

One of the most important functions of the system is to compute the most plausible -
advice for the nser in a specific situation. Queries involving inference {deductive and/or
inductive) are supported for each form of knowledge stored in the knowledge base.

Queries using inference for the network involve "path following” within the network,
e.g., "climbing the generalization tree.” Inference over the network also occurs whenever the
hierarchy is used to answer questions by searching the network for specified relationships
between given concepts.

Queries using inference for the rule base are particularly important for providing
expert advice, Rules are evaluated for a given situation using an "evaluation scheme” (a
method of propagating uncertainties) in the order decided by a "control scheme." In this
system, there is no single problem solving strategy. Rather, local problem solving behavior
is defined by the choice of an evaluation scheme {of which several are planned), and global
problem solving behavior is governed by a control scheme within and among groups of rules.
We plan to implement several different evaluation schemes and a few control schemes in the -
system. In this way, a single knowledge base can be used for research into the performance
of differing problem solving strategies for consultation.

The QUIN relational data base (Chapter 8) has been enhanced to allow queries using
inference. These additional operations allow the inference of rules from examples.

1.2.4. Knowledge Acquisition Block

The knowledge acquisition block supports knowledge acquisition by the direct
representation of knowledge provided by human experts and also by inductive inference
from facts provided to the system. The design of the proposed system includes knowledge
acquisition for each type of knowledge stored in the knowledge base,

Knowledge acquisition by direct representation

The direct representation of networks, rules, and data bases of facts or examples’
constitutes "learning by being told.” This is the major way that knowledge bases are being
constructed today. The direct representation of expert knowledge is particularly important
in problem areas where "rules of thumb" or other generalizations about the problem domain
are known. Material which is supplied by the expert for direct representation is entered into
the knowledge base as specified, but it may be modified by further knowledge acquisition
using inference as described below. Special user interface ("debriefing") for interactive
specification of rules and networks is provided. Batch submission of sets of examples is
supported as well.

Knowledge acquisition using inference

The inclusion of machine based inference as a part of the knowledge acquisition
process is intended to reduce the burden on human experts. By defining inference
procedures over each component of the knowledge base, the system no longer relies solely on
the human expert to organize and present a cor olete, concise, and error free knowledge
base.

Knowledge acquisition using inference f¢: .he network involves both deductive
extensions to the knowledge base and the inductive derivation of new or improved network
structures. As new information is added to the network base, rules of inference are
“executed’” to enforce the logical consistency and completeness of the network. This -
corresponds to inference of new concepts and relationships from existing ones. Also,

machine derived categorizations and hierarchies can be inferred from the knowledge base
using conceptual clustering techniques implemented in the program CLUSTER [Stepp80],

Knowledge acquisition using inference for rules includes the derivation of new or
modified rules from existing rules or groups of rules using examples in the relational data
base. This process will be implemented by adapting already developed inductive learning
programs AQVAL [Michalski73), INDUCE [Larson77], and ID3 [Quinlan79]. Preliminary
results by both principal investigators in this area suggest that the ‘‘refinement” of existing
rule bases using induction is both possible and fruitful [Michalski80, Baskin78]. The
derivation of patterns of rules or rule groups from the isolated rules is also supported by the
proposed system. Although results in this arca are siill teatative, the inference of patterns
in groups of rules should allow the iterative improvement of the control scheme by which
rules are selected for evaluation,

Knowledge acquisition using inference for the data base corresponds to a form of
clustering. In our previous experiments. clustering algorithms have been used to partition
the set of examples into groups which are ‘“‘similar.”” This operation corresponds to having
a teacher label each example in the training set. The important property of the clustering
algorithms is that they do not rely on a domain expert to categorize the examples. In
addition, when the categories are not known, the clustering process can still be used. (The
clustering operation corresponds to inductively deriving a relational operation which a
human expert might have used to supply examples for the inductive derivation of rules.)

In addition to clustering, inference over a set of examples involves selection of the best
“Representative’’ examples for use in the inference of rules. The program ESEL
[Michalski78] has been developed for choosing examples from a large set of examples which
are ‘‘representative’’ of the set. The proper selection of examples becomes particularly
important when rule inference is computationally expensive. examples from a large set of
examples which are "representative” of the set. The proper selection of examples becomes
particularly important when rule inference is computationally expensive.

1.3. The Architecture of ADVISE .

-

Figure 2 illustrates the architecture of the ADVISE system from a technical standpoint.
Figure 2 shows the basic software modules in the ADVISE system and their interactions. A
short description of each module is presented below:

- USER INTERFACE .
The wuser interface provides a set of software tools for creating sophisticated user
interactions with the ADVISE program. It supports graphics, windows and menu driven
user input. It is designed primarily to drive the Sun-2* Workstation, but is designed with
minimum modification for portability in mind .

- CONTROL BLOCK
This dispatches the major functions of ADVISE: parsing rules or networks using the
parser modules, running a consultation using the rule base or network base modules,
relational table query and inference using the QUIN module, and testing parts of ADVISE
using the TESTER module. Currently the control block functions are implemented in a
top-level window created using the user interface above.

- RULE EDITOR
This module is an interactive menu-driven editor for rules. It uses both the rule parser
and paraphraser. This module has been designed but not implemented.

*Sun-2 is a trademark of Sun Microsystems, Inc.

10

I TERMINAL I

!
l USER INTERFACE

T
CONTROL BLOCK

RULE FASE NETWORK NETWORK BASE]
EDITOR INPERENCE CONTROL EDITOR INFERENCE CONTROL| | 0BT AND IPEREIGE | | TEoTER
= {orward chsining QUIN

- backward chaining
~ utility masimisation
~ spproximate bayesion

RULE NETWORK
PARAPHRASER PARAPHRASER INFERENCE
OPERATIONS
- discriminate
- cluster
~ enel
f NETWORK -
PARSER RULE BYALUATOR PARSER mﬂm!

SPECIAL
FUNCTIONS
MODULE

TUPLE MANAGER

Figure 2: A technical diagram of the ADVISE Architecture.

RULE BASE INFERENCE CONTROL

The ADVISE system supports several types of knowledge base inference control (control
schemes). They access knowledge in the tuple manager, request values for unknown
variables and determine the truth value of pieces of knowledge via the rule evaluator.

RULE PARSER
This module parses an extended form of GVL, [Michalski80]. It outputs a parse tree that

is read by the TUPLE MANAGER and stored in the tuple format.
NETWORK EDITOR

This module is an interactive menu-driven editor for networks. Its implementation is
discussed in a chapter to follow.

NETWORK PARSER

An inference network is an alternate form of representing domain knowledge. This
module parses the network representation into the tuple representation manipulated by
the tuple manager.

NETWORK BASE INFERENCE CONTROL

This module is used to carry on inference on networks.

11

QUIN

This module is used to do queries and inference on relational tables. QUIN [Schubert77]
calls a host of data analysis and learning modules such as AQ11 [Michalski78], ESEL
[Michalski78], CLUSTER [Stepp80|, PROMISE [Baim82], and CONVART [Davis81].

TESTER A
This module is used to manipulate the tuple network directly. It also serves as a testing
and debugging vehicle during the development of other modules in the system.

PARAPHRASERS

These modules are responsible for explaining to the user how rule and network inference is
being used during a consultation. Another function of the PARAPHRASE meodule is used
to “unparse” a rule from its parse tree form to the human readable form. This module is
also used to explain the evaluation of particular rules to the user.

RULE EVALUATOR

This module is responsible for evaluating the premise part of a rule and asserting its
consequent if it fires. It evaluates and asserts rule parts under a variety of semantics for
logical connectives in-a multi-valued logic interpretation.

SPECIAL FUNCTION EVALUATION

This module, also known as the TRAP module, is used to evaluate special functions.
These functions can do such things as permit special displays, start up sensors, run models
or simulations, etc. Presently there is one version of this module for PLANT/cd.

TUPLE MANAGER V

The basic structure for storing information in ADVISE is the tuple. (Information is also
stored in Pascal local variables, but this type of data is particular to the local
environment and is not meant to be preserved.] An ADVISE tuple resembles the
~ mathematical definition of a tuple (an ordered set) in which a set of tuples form a graph
or network. Tuples, much like LISP property lists, are accessed by contezt. The tuple
manager is based on the work in [Baskin80).

The overall system architecture outlined in this section has served as a guide lor the

development of the ADVISE system. In the following chapters, a detailed account of the
current state of ADVISE is presented.

CHAPTER 2

The User Interface

2.1. Introduection

This chapter describes the development and current state of the ADVISE user interface.
The problem of human-computer interaction has received much attention [Bo82]. The study of
. computer user psychology, an outgrowth of earlier work in human~computer interaction, has
emerged as a viable subfield in computer science [Moran81]. A difficulty in working in this area
is that so many factors are involved in designing such interactions that cannot be pinned down
with algorithms. The designer must rely on his own intuition, which can be remarkably
deceptive. The aesthetic aspect of this problem (i.e., what is the most appealing way of
presenting information) is most certainly a matter of personal taste. In view of these problems,
our approach has been to refine our program interfaces by subjecting them to several cycles of
group criticism. Some general guidelines that evolved from this effort are presented in the next
section.

2.2. Philosophy of the Interface

Although computer scientists seem often to lose sight of this fact, the human user is a far
more sophisticated ‘“computing device” than any current computer program. With this in
mind, we offer some general principles that have proved useful in the development of the user
interface.

. Feedback : This can be as simple as verifying the user’s input by prompting, or
highlighting his response (in the case of option selection from a menu). If processing time
between user responses is too long {as little as two seconds) it is important to indicate
that the computer is doing something. This feedback should be placed somewhere near
the current text insertion point. Particularly long response times are acceptable only if
the user thinks that something particularly useful and important is being accomplished.

- Help : Help should always be made available to the user. With regard to expert systems,
some indication of the status of the consultation should be provided. The program should
distinguish between novice and experienced users. The novice should be provided with
introductory material and perhaps more specific prompts. The user’s name is requested
prior to a session, and a history of interaction is maintained with the program, in order to
determine his user class. The novice user learns a great deal about a program in the first
encounter, and the program should respond to this within a single session. For example,
explanatory prompts may be presented the first few times they are used and then become
more brief as the consultation progresses.

. Backup and Error Accommodation : The user should be allowed to *‘undo” anything
he/she has done. A related issue is that the user should be allowed i~ query the program
about answers to previous questions. A useful mechanism with res: .o user errors is to
provide immediate feedback after a user response (a definitive state' . 1 of what has been
requested).

. Consistency ; The display should be logically laid out. Option menus should always be
placed in the same area of the display. Each keyboard character should have a single

12

13

function and user typing should be minimized.

- User Bandwidth : We favor a block based interaction where a block is a single screenfull
of information. Each block should provide multiple options and allow several questions
to be answered before moving on to the next block.

These guidelines alone do not guarantee a successful interactive program. Each interaction
should be be analyzed to minimize false expectations in the user. This analysis should not be
performed by the program designer, but by a variety of outside sources. To illustrate some of
these concepts, some blocks from the PLANT/ds program are presented.

Figure 3 shows a multiple question block that is used to gather information concerning
the leaves of a diseased plant to be diagnosed:

Leaf Mildey Growth: {} Absent ()} On Upper Leaf Surface
() On Louer Leaf Surface

Premature Defoliation: () Absent () Present
Shothol ing: {(} Absent ()} Present
Shredding: (} Absent ()} Present

Withering and WHilting: () Absent () Present

Type "x" to register an entry.

Press SPACE bar to move forward to the next entry.

Press BALCK SPACE to move back to the previous entry. ' .
Press "?" to get help for the current guestion.

Press RETURN to terminmate entries on this screen.

Figure 8 : Multi-question frame from PLANT/ds.

The user moves back and forth between questions, answering those appropriate to the situation.

A single key press guides all of these functions. Help concerning these questions is always
available.

14

Figure 4 shows a block that gets the value for a single variable. The user arst enters the
value {or any option), then he may or may not be asked to enter a confidence in that answer.
After input is complete, the program prints the message that it is preparing the next question.

Houw uwould you describe the pattern of leaf spots grouwth?

1 - From edge of leaf inuard.

2 - Scattered and plain.

3 - Scattered with concentric rings.
4 - Brown veinal necrosis.

5 - Does not apply.

b - go back one fguestion
d - display a rule
e - explain houw to ansuer the question
p - list pursued hypotheses high - >885%
r - list rejected hypotheses fou - »35%
4w - uwhy is the gquestion being asked certain - 188%
Type one number or letter indicating your choice
with confidence in the ansuer: c¢ f{certain}t / h (high} /7 1 {iow}

Preparing next guestion

Figure 4 : Single question frame from PLANT/ds.

Although PLANT/ds manages to meet the guidelines stated above, its interface has
become outdated by the advent of windows, mice, and workstations. The next section traces
the development of the user interface from the beginning of the ADVISE eflort, from the blocks
of the display module to windows and pop-up menus.

2.8. Historical Development of Interface Tools

As long as ADVISE has existed, a user interface has been needed. Along with the
evolution of the ADVISE computing environment, the user interface has developed
considerably. The first attempt was called the display module. Many ideas emerged from the
display module work to shape further development. The display module lacked a sophisticated
degree of terminal independence w"'-h Advisecore [ChannicB4], the second generation interface,
sought to resolve. When devel. -nt settled into the workstation environment, the third
generation interface, the SunWinc " interface was born. Each of these interface generations
is described brielly below.

*SunWindows is a trademark of Sun Microsystems, Inc.

.

http:interfa.ce

15

2.3.1. The Display Module

The primary goai in the design of the Display Module was to provide tools for the
construction of a user interface that is as independent as possible from the rest of the
ADVISE system. By doing this, the interface designer is freed from concerns regarding the
rest of the program and can concentrate on the the user interface alone. It is important to
be able to cycle through an interface design in order to arrive at “friendly” interaction.

With this in mind, the Display Module was developed as a separate, independent
module. Some concepts which guided its development draw from the work of [Thursh80].
In that work, the authors address the problem of developing a teaching tool for general and
systemic medical pathology. The software that evolved, Blockr, views a man-machine
dialog as consisting of a series of blocks of single screenfulls of text and diagrams. These
blocks can point to each other or themselves, forming a very general network structure.
Blocks are treated as data, consisting of text and instructions that, when interpreted, cause
an organized page of information to be presented at the terminal. Since the system is data
{block) driven, the interaction can be prepared independently of the program that interprets
it. We have, in effect, an expert system for user interface design.

As mentioned earlier, the primary data structure manipulated by the Display Module
is the block. Since blocks consist primarily of data, they can be created via a simple editing
process. One consequence of the single screenfull of information organization is that it
encourages the presentation of several questions on a single block. This is consistent with
the goal of high bandwidth discussed in the previous section.

The Block Manager controls the interface between the blocks and the user program (in
this case the Control Scheme). This interface was organized in co~routine fashion; the block
manager would be invoked, cycle through a series of help blocks and return control to the
Control Scheme for user input. All user input was passed to the Block Manager which
would handle range checking and error processing. One component of the Block Manager,
the Block Interpreter, was be responsible for translating blocks into a form that can drive a
specific output device. It had access to a set of low-~level routines of the form consistent
with the proposed CORE graphic standards [Foley82].

.

2.3.2. Advisecore

As computer interfaces developed outside Advise, the display module became outdated
since it had no facilities for overlapping windows or pop~up menus. The display module
also lacked terminal independence. To utilize windows and menus and to facilitate terminal
independence, Advisecore was developed. Advisecore was also based on the CORE graphic
standard, primarily for (but not limited to) use with the SunCore graphics package on a Sun
Workstation.* There were two major goals for Advisecore as described below.

Concurrent Processes with Status Reporting. Multiple active windows should
be able to co-exist on a single screen if desired. Effective screen management must allow
several processes to be active at any given time.

Processes Bound to Windows. In a window system, it is usually desirable to be
able to choose the location and size of a window in which a program runs. Being able to do
this without any modification to an existing program is also desired. To accomplish this,
screen management must provide a means for running a program which runs on a standard
terminal within a window of any reasonable size,

*SunCore and Sun Workstation are trademarks of Sun Microsystems, Inc.

http:utili.ue

16

In the Advisecore interface, screen management consisted o o aspects. The first is a
screen manager process which handles window requests from all other modules. The second
is a window filter process which allows a program to be bound to and run inside a window
as if it were running on a standard terminal. Figure 5 shows how these two processes fit
into the Advise system. The screen manager process handles all calls to display or receive
information to/from the user’s terminal. If an Advise module does not use screen manager

ADVISE

=

SCREEN MANAGER

Advise Top-Level
Window Module

/

Network
Editor QUIN |
GEM CLUSTER
! |
y o o
WINDOW WINDOW
FILTER FILTER

Figure 5 : Screen Management ‘a Advisecore.

17

calls for such information, it must use an instantiation of the window filter process for
communication with the screen manager process. Both the screen manager and window
filter processes are described in detail in the appropriate section below. The processes are
described in terms of their existing or proposed implementation.

2.3.2.1. The Screen Manager Process

The main feature of the Advisecore screen manger is interprocess communication.
As mentioned earlier, screen management loses a lot of functionality if multiple processes
cannot be concurrently active within different windows. For this reason, some sort of
interprocess communication is essential. The Advise screen manager uses sockets in the
UNIX* operating system for interprocess communication. The sockets are represented in
Figure 5 by bidirectional arrows. Sockets are a reliable means of two-way
communication between processes. The Advise screen manager is designed to receive
window requests from a process and also to deliver any input directed to that process
from any window that process may have on the screen. This communication between a
process and the screen manager is accomplished through a socket which is established
during initialization of the Advisecore interface. Once the socket is established, further
window routine calls merely send the request along with its parameters to the screen

manager via the socket. The screen manager then executes the appropriate output
action.**

Delivering input to a window is somewhat more involved. The screen manager
must maintain a list of which windows belong to which processes and whether or not the
process is awaiting input in those windows. At any given time, only one window is
active with regard to input. The active input window is the window in which the mouse
device is currently located. Any input which occurs is delivered to tlie appropriate
process if that process is awaiting input. Otherwise, the input is ignored.

In order to handle input properly, a facility for polling the terminal input must be
available so that the screen manager isn’t stuck waiting for input when it could be
processing other window requests. This facility is referred to as non-blocking
input/output which means that a process does not get blocked if input is not available or
if output is not currently possible. The screen manager must not be blocked when
looking for input either from the terminal or from any socket for window routine
requests, UNIX supplies this mechanism via the select system call. This call is essential
to the Advise screen manager design. i

The main algorithm of the Advise screen manager is brieily described below.
1} Poll (select) socket for new connections to processes calling the coreinit routine.

Poll (select) connections on socket for a request and process if present.

w
S

Poll (select) standard input.

— p— p— qp—
[
S

4} If input is pending find out if the active window is expecting input. If it is, echo
the input (if indicated by request) and send the input over the appropriate
connection. Otherwise ignore the input.

(5) Go to (1).

*UNIX is a registered trademark of Bell Laboratories.

**Executing the appropriate output action, however, is much easier said than done. Problems of overlapping windows and
redrawing damaged regions are non—trivial but are not dealt with here. These problems are solved by the screen packages used
by the Advise screen manager and not by the Advise screen manager directly.

18

2.3.2.2. The Window Filter Process

The window filter process allows processes which run on standard terminals to run
within a window in the Advise interface. The window filter process currently exists only
on the Sun version of the interface as part of the SunWindow screen manager package.

In the VAX version, the filter is designed as follows The filter uses a socket to
communicate with the screen manager and pipes t¢ communicate with the process.

Pipes are represented as dashed arrows in Figure 5. The window filter performs the
following functions.

(1) Requests that a window be opened on behalf of the process.

{2) Receives output from the process via an output pipe and translates the output into
window routine requests which are sent to the screen manager over the socket.

{3) Receives input to the process via socket from the screen manager and passes that
input to the process over the input pipe.

(4) Requests that the window be closed when the process terminates.

2.3.3. The SunWindow Interface

As the ADVISE effort has progressed, the workstation environment proved
increasingly productive until it clearly became the environment of choice. Development of
the user interface focused largely on utilizing the existing window management features of
the workstation to satisfy the interface goals. A Pascal interface to the SunWindow
package was created to facilitate the use of existing window management programs,
obviating the need for sockets and pipes. The SunWindow package was sufficiently flexible
to be adapted to meet the screen management goals.

Two applications of the SunWindow interface have been developed. The first was a
screen—oriented network editor which is described in a later chapter. The second is a top-
level window which provides the necessary **hooks’’ and tools for existing ADVISE programs

to run within a unified window format. The following section describes the top-level

interface to ADVISE.

2.4. The Current User Interface

This section contains six screens that represent a flavor of the initial entry into the
ADVISE interface. The first slide is the top-level screen. It offers a variety of options via static
menus.

Following slides show entry into a consultation system (PLANT/ds) and into an
interactive editor {the Network Editor). A knowledge base (backup file) is passed to knowledge
base editors as an argument if a knowledge base has already been selected at the top level.
Once an editing session begins, the options are sufficiently different as to make impractical a
common editing language for rules, networks and tables.

These screens represent an approximation of the final interface. Continued use of the
interface warrants regular refinements and modifications.

19

The Brst screen is the top-level screen for ADVISE. At the top of the screen are two
windows — status and history. The purpose of the status window is to capture diagnostic
output from other ADVISE modules {that may or may not run in the background) and allows
the user to examine that output at will. The history window was designed so that the user can
see where he’s been in the system. The history window might indicate, for example, what
windows if any are currently overlapped. At the bottom of the screen is a global menu that
may change from time {rom time, depending on the interaction with the user. Options here will
generally be extraneous things to do and not directly related to knowledge engineering tasks.
The main window on the left allows the user to select a way of looking at a knowledge base.
The right window offers control scheme strategies, as well as manifestations of these control
schemes ~ actual consultation systems.

Here the user is selecting the PLANT/ds consultation system.

B e ekl S0

ADVISE 1.8
Knowledge Acquisition and Maintenence Consultation Systems
(Backward Chaining Theorem Proving)
{Rules) {Information Theoratical Utility Measurs)
{Networks)
{Examples)
(PLANI/dg)
(PLANT/cd)
(TURF) .
{dabY)

(Select Knowledgs Base) (Help) {(Utilitles) (QUIT)

20

This screen shows the initial entry into PLANT/ds. Note that the plant window obscures
all the other options on the top-level window {except for the extraneous ones at the bottom).
PLANT is not open to modification by the naive user, hence he is not allowed to play with
control schemes or knowledge bases at the time he runs PLANT.

i tatus History
1 ADVISE 1.8 f
DPLANTZdom, 2~ v v o0e i "

ADVISE

PLANT/ds

Version 4.6

PLANT is a computarized agriclitural consultant
far providing assistance in diagnosing soybean
diseases common in I1linois., You will be asked
to answar spacific questions about the diseased
crop and its envirormant,

Prass RETURN key te continue J§

[(Select Knowledge Base) (Heip) (Utilities) (QUIT) -

21

The PLANT window allows plant to run in a window as if it were on a terminal. This
allows programs to run in the window system without any modification whatsoever. ' Of course,
programs being developed now make explicit use of window management routines, such as the
network editor. (See later screens.}

P R TR, RN R R e T © g S R Sl e e
status Higtory
] ADVISE 1.8]
4 PU\RT/GS.‘» D T T L Ry i P M, e M 2 M R T e gmbaa At g F B

Hfwestion Form 1. Uiseasad Areas,
Ml 17 working hypotheses.

2 rajected hypotheses.

tondition of Fruit Pods: (') Hormal () Abnormal
Condition of Seed: {) Normal () Abnormal
Condition of Leaves: {) Normal () Abnoremal
Condition of Roots: () Mormatl {) Abnarmal

Condition of Stem: {) Normal { J Abnormal

Uy -~ make an entry SPACE -~ move cursor forward
"g" -- @rase an entry BACKSPACE -~ move cursor backwards
" == get help for this guestion ESC -= leave this page of guestions

“o" =~ see other options (editing, info, hypotheses, rules, guiting)

[(Setect Knowledge Base) (Help) (Uti1

Tes) (QUIT)

22

After exiting PLANT, the user returns to the top-level window., Here the option of
looking at a knowledge base as a network is being selected. ‘

e A ARG et cmy e P . j:
Status History o

ADVISE 1.8 | -
Knowledge Acquisition and Maintenence Consultation Systems
{Backward Chaining Theorsm Proving)
{Rules) {Informatton Thearetical Util{ity Measure)
(Networks)
{Examples)
(PLANT/ds)
(PLANT/cd) T
{ TURF)
(BABY)

AL

{ (Select Knowlsdgs Base) {(Help) {(Utilities) (QUIT) ﬂ

23

The screen below shows the initial entry into the network editor. If there were other
facilities relating to networks the user would instead get a menu of available options from
which to select. Since no knowledge base was selected prior to selecting networks, the network
editor prompts the user for one. If a knowledge base had been selected, the network editor
would have tried to open that knowledge base.

Unlike the PLANT window, the editor does not obscure all the options on the top-ievel
window. Conceivably, a user may want to view the same knowledge base as rules, networks,
and tables. In addition he may want to transfer data between the two. For example, a user
could create a ruie in the rule editor and add it as a node in a network by using the mouse to

“pick up” the rule from the rule window and ““carry’’ it to the network editor window.’

ADVISE 1.8

Knowledge Acquisition and Maintenence Consuitation Systems
{Backward Chaintng Thecrem Praving)

(Rules) {Information Thearetical Util{ity Measure)

{Networks)

{Examples)

+ EDLTOR

ADVISE

Natwork Editor :

Enter a network name:

vy

Ro-enter requested_input

{Select Knowledge Base) (Help) (Utilities} (QUIT)

'Currently this transfer of data is not implemented.

24

This screen shows the display of the selected network along with the main menu of
options. At this level, options are peculiar to the individual programs and the menus are the
individual program’s responsibility. The top-level menus provide all the options by which
these lower levels may be entered, and are meant to be as flexible as possible without imposing
any arbitrary language for starting up a variety of knowledge engineering tools.

ADVISE 1.8

Status 18tory

N A e o

Knowledge Acquisition and Maintenence

{Rules)
(Networks)
{Examples)
NE TRORK-EDLTOR .|
archl
cantain~-top
b-3
isa
brick
183
“ing-unit
orientstion
horizonte
containelafi-gide
b-2
iss
brick
iss
butliding-unit
support
b-3
isa
brick
YY)
Bress Middla nr Rinht Mnuse Buttons for Menus

Consultation Systems

{Backward Chaining Thencem Proving)
(Information Theoratical Utility Measure)

PELGE

figg {lain lioue

Vigible Arcs

Change evel

vhange Lepth

Change Arc Bradth

Change Tuple Sreadth

Halp

(Select Knowledge Base) (Help) (Utilities) (QUIT)

CHAPTER 3

The Network Editor

3.1. Introduction

The network editor provides the facility for directly manipulating and editing Advise
knowledge bases. Previously, when a knowledge base needed to be changed, either a text file
{which is frequently not an accurate representation of an ADVISE knowledge base) had to be
edited or the program that created the knowledge base must also include code to alter the
knowledge base. For example, the only way to alter the PLANT knowledge base was either to
text edit backup knowledge base files or run a rule parser on new input rules. QUIN, a
program for editing knowledge bases represented as relational tables {Spackman 1983), is
available but has minimal benefit for the rules and network representations of currently
implemented systems.

This chapter describes the network editor, which provides ADVISE with the capability for
interactive manipulation of knowledge bases. A brief description of the ADVISE knowledge
representation is provided below followed by the features of the editor and a presentation of a
sample interaction.

8.2. The ADVISE Network Representation

The basic structure for representing knowledge in ADVISE is a tuple. A tuple is similar
to a list in LISP. Nodes are like LISP atoms {nodes cennot be tuples), and a tuple is just a list
of nodes. The second node of the the tuple usually has special meaning as a relation or arc

between the head node and subsequent nodes in a tuple. A typical tuple looks like the one.
below,

(headnode arc subnodel subnode2 subnode3 ...)

Of course, the same head node can have many arcs (relations) under it. These can be
represented simply by additional tuples as follows.

(headnode arcl subnodell subnodel?2 ...)
- (headnode arc2 subnode21)
""" (headnode arc3 subnode3l subnode32 subnode33 ...)

For efficiency reasons the above tuples would be represented internally as follows,

{(headnode {
(arcl subnodell subnodel?2 ...)
(arc2 subnode21)
(arc3 subnode31 subnode3d2 subnode33 ...)

)

25

26

In the actual implementation of this representation, nodes are memory addresses. Nodes
have printnames associated with them as well as being associated with the tuples in which they
appear as head node. The ADVISE tuple manager {see Chapter 11} handles all the
manipulations of the knowledge base on the tuple level. The network editor simply makes the
appropriate calls to the tuple manager based on its interaction with a user,

The tuple representation represents an important generalization over the basic concept of
semantic networks (as described, for example, in {Winston84]). Thinking about tuples in light
of these networks, each tuple with the same head node can be considered a slot, each slot has a
name {arc} and a value. Slot/value combinations are also known in ADVISE as attributes. The
generalization over other representations is that slots or attributes can have many values
associated with them. Thus, “milar slots can be combined into a single slot

{house ((has-room living-: -»m dining~room bedroom kitchen)))

or a single slot wmay have several values associated with it, for example, both a qualitative and
quantitative value.

-(block~1 ((orientation vertical 89.5)))

The ADVISE representation of knowledge via tuples is a general mechanism for representing,
not only networks, but rules and relational tables as well. These representations, however, are
beyond the scope of this chapter.

3.3. TFeatures of the Network Editor

The network editor is a menu-driven interactive program with modest use of graphics,
which runs on a Sun-2 Workstation. The interface is written on top of the SunWindow
package developed by Sun Microsystems, Inc. (See Chapter 4). Naturally, being menu-driven,
it is easy to figure out how it works just by pressing the right buttons. Hands-on

experimentation is the best way to learn to use the editor. For a detailed user’s guide see

[Channic85]

The following sections describe the display of networks and the options available for
editing networks.

3.3.1. Screen Representation of Networks

In displaying a network, a non-graphic approach was taken to allow minimum
modification for running the program on machines without graphic capabilities.
Nevertheless, the network structure is readily apparent as the screens in Section 5.4
demonstrate. Nodes are represented in boldface. Ares under nodes are not in boldface, and
are set one line below and indented from the main node. Subnodes under arcs are placed
similarly under the arc. Additional subnodes are placed on the same line immediately
following the preceding subnode.

“The only other thing a user need knew in order to use the network editor is how it
clips the network to fit on a display. Ther- :.re three parameters which affect the display -
namely, depth, arc breadth and tuple breac:h, Depth is the number of arcs down from the
main node to display. Arc breadth is the = mber of arcs to traverse from each node. And
tuple breadth is the number of subnodes 0 display under the head node. How these
parameters affect the display will be seen in the interaction section.

27

If in spite of these parameters the network still cannot fit on the screen, the network
editor leaves markers that indicate information has been clipped from display. At the top
level of the network, these markers are arrows that point in the direction of the missing
information. Menus are available at these markers to scroll the top level of the network in
order to see the missing information. Beyond the top level of the display, missing
information is indicated by a string of dots —~ *“...”". Missing information at this level can
usually be viewed only by descending the network to make this level the new top level and,

if necessary, scrolling or changing the appropriate parameters.

8.3.2. Local Editing Options

At each node or arc in the network, two sets of options are available. One set of
options affects the node or arc itself, the other set affects the environment around the node
or arc. An example of a local option is changing a printname of a node. An example of a
global option is adding an attribute after a node. Various local options are discussed in the
remainder of this section. The following section describes the global options.

Options Available When Not At an Arc or Node

New Main Node Allows you to enter the name of a node
which will become the new top node in the display.

Visible Arcs Allows you to select a subset of arcs to follow
in displaying the network

Change ***** Allows you to enter a new value for ***** . depth,
breadth, or tuple breadth ~ which will affect
the display accordingly

Back Up If present in menu, allows ascension of the network

to the previous top node

Help Prints this message

Change Arc

Change Printname

Delete Attribute

Yank Arc

Yank Attribute

Make Invisible

Enter Dictionary

Help

Change Node

Change Printname

Delete From Tuple

Yank

Make Focus

Enter Dictionary

Help

28

Options Available from Ares

Allows a new arc to be inserted in place
of the arc in the current attribute.

Allows the printname of the current arc to be —
changed EVERYWHERE it occurs in the network.

Removes this arc and all subnodes from underneath
the head node, i.e. the entire tuple is removed.

Places this arc into the arc buffer to be used
in subsequent Put Arc operations -

Places the attribute (this arc and all nodes
underneath it) into the attribute buffer to be
used in subsequent Put Attribute operations.

Inhibits the display of this arc and all other
occurrences of this arc as well as everything

underneath them.

If an arc, does not appear in the dictionary,
this option allows you to put it there.

Displays this message.

Options Available at Nodes

Allows you to change a numeric node to a new
number or to a new node.

Allows you to change the printname of this
node EVERYWHERE it occurs in the network

This node is removed from its current tuple position. -

Allows you to yank this node into the node
buffer for subsequent 'Put Node’ operations

This node becomes the new top node in the
display of the network.

If the node is not in the dictionary, you

may enter it there if this option is present.

If and only if a node is in the dictionary, -
it can be made the main node via the

‘New Main Node’ option on the Main Menu

Prints this message

29

3.3.3. Global Editing Options

Global editing options reflect options that affect the environment of the node or arc
pointed to by the mouse.
Options Available When Not at an Arc or a Node
Edit/Create Start a new session with a new network

Write (Backup) The edited network will be written to the
file given at startup

Write (Text) A text representation of the edited network
will be written to a specified fle.

Quit Graceful exit from a session, updating the
» network

Abort Immediate exit from editor, no update.

Help This message

Options Available from Arcs

Add Node Allows a node to be added immediately under
the current arc in the attribute in which
the current arc occurs. Nodes presently
under the arc are shifted to the right.

Add Attribute Allows an attribute (an arc followed by zero
to 254 nodes) to be added under the main node
below the attribute which contains the current
arc.

Put Node The contents of the node buffer will be put
immediately under the current arc in the
attribute in which the current arc occurs.
Any nodes presently under the arc are shifted
to the right.

Put Arc The contents of the arc bulfer will be put
under the main node below the attribute which
contains the current arc.

Put Attribute The contents of the attribute buffer will be put
under the main node below the attribute which

contains the current arc.

Help This message is displayed.

30

Options Avallable From Nodes

Add Attribute Allows an attribute (an arc followed by zero
to 254 nodes) to be added under the main node

Put Arc The contents of the arc buffer will be put
under the main node as the first attribute.

Put Attribute The contents of the atiribute buffer will be put
under the main node as the first attribute.

Add Node Allows a nod« - be added to the right of
the current n: - : :n the attiibute in which
the current no< : 2ccurs.

Put Node The contents of the node buffer will be put
to the right of the current node in the
attribute in which the current node occurs,

Help This message is displayed.

3.4. A Sample Interaction

In this section, screens are presented that show steps in the construction of a simple
network. The example is chosen to illustrate the features of a network editor, and is not
intended to have any semantics in the context of ADVISE. Therefore any resemblance of the
network to ADVIBE systems, living or dead, is purely coincidental. The network represents a -
arch made of building blocks.

31

In the first screen, the network editor has been invoked and a node, ‘archl’, to be taken as
the root node for the display has just been typed in. The editor must be supplied with a
network name and a root node before it can begin a session. The network name can be passed
as argument or typed in when the editor starts up. If ‘‘archl’ already existed in the network,
the structure under this node would be displayed under the default parameters. The default
parameters are set to not affect the display, i.e. the window size is the only limiting factor to
the display.

A prompt for menus appears at the bottom of the screen. The user moves the mouse to
the “archl” node, which becomes highlighted. Pressing the middle button while at the node
reveals the desired option of adding an attribute {slot).

Put Arc

Put Attribute
Help

om

Press Middle or Right Mouse Buttons for Menus

32

Selecting “Add Attribute’” brings up a prompt for the number of nodes {printnames)
including the arc in the tuple which the network editor will add into the network.

Next the user is prompted for the printname of the are. The user types in this name.
When the users presses return, the arc appears in the network and the names of the expected
number of nodes are solicited. The user is prompted for each node name.

After entering all the nodes in the attribute, the attribute is displayed in the network.
The user can now move to the arc to add the next attribute below the first. Continuing as with
the first attribute the user has added all the arcs under “archl”. He now wishes to add ares
under the “b-17" node. To do so he must first make b-1 the new focus node.

contains-top
b~3
contains~laft-side
b-2

e fp B

Lhange Printname

Delets From Tuple!

Y ank

33

“b-1" becomes the new focus node. The user has used “Add Attribute’ as before to add
all the appropriate nodes and is now ready to ‘“Back Up” to the previous root node. ‘Back
Up” is an option from one of two menus that aren’t associated with any node. The other is a
global menu with options such as editing a new file, writing this file, quitting, ete.

support
b-3
orientatian
vertical

Visibie Arcs

Change Level

Channe {lepth

Change arc Bresdth

Change Tupie Bresdth

-4

34

Now the network for ““archi’” is complete,

At this point the user may enter a new root node, such as ‘“arch2”, and create a network
from there or he may choose to alter the display by changing depth, for example,

farchi .
E contains-top
b-3

isa . Eh_
brick
isa
building-unit
orfsntat fon
. har izanta l
contains-laft-sida

b-2
isa
brick :
isa .
buitding-unit i
support
b-3 ™ tHey Natn Hode
brick Yizible Arecs .
isa buildi it Change Level
u ng~un
orientation R Change. Dopthne - .,
har $zontal Change arc Bresuth
orientatrqn Changa Tuple Breacith t
. vertical z - §
contains~right~side He lp
b-1
isa
brick
isa
building-unit
support .
b-3 4
isa
brick
isa

butflding-unit
ortentation
horizontal
orientatton
vertical

35

The user has indicated he wishes the depth changed from an “unlimited” default to 2.
The network display is clipped accordingly.

i
, H
farchi ' - K
] conta ins~-top i
b-3 y
isa 3
brick N
orientation
hor izontal
contains-iaft-side
b-2
isa
brick
support
b-3
ortentat ion
vertical
contains-right-side
b-1 N
isa
brick
support
b-3
orientatian
vertical

38

Instead of limiting the depth, the user may have chose to limit the breadth of the network
instead. Another way to alter the display is by making ares invisible. With the breadth and
depth reset to their default values, the user wants the “isa” links to disappear from the display.

B -

s ekt Rt

farchl
; contains-top
b-3
fea
brick
isa
building-unit
orientation
hortzontal
contains-left-side

b-2
iga
hrick
isa
buiiding-unit
support
b-3
isa
brick

hange Are
- orientation Ihange Printname
hor{zont -
or fentat fon Delets Attribute

vertical Yank Arc .
contains-right-side

Yank attribule

isa
brick
isa
buildtng-unit
support
b3
isa
brick
isa

building-unit
orfentation
horizontal
orientation
vertical

37

This action, as did the change depth option, also caused significant clipping to the
display. Still another way to limit the dispiay would have been to specify a subset of the visible
arcs as the only ones to be displayed. For example, the user has could select the “contains’

arcs and the ““isa’ arcs to be the only ones visible. This would allow the user to see inheritance
relationships.

Now the user decides to end the session. He presses the middle mouse menu for the the
global option menu. To get a textual representation of the network written to a file the user
can choose “Write (Text)”. After the user has typed in a file name for the text file, the system
notifies the user of success {or failure). The textual representation for this network is shown in

Figure 6. Now the user “Quits’’. The actual network is written to file given at the start of the
program.

farchil
] containcs-top
b-3
or fentat ion
harizontal
contains~-left-side
b-2
support
b-3
orientation
horizontal
arientation
vertical
containe-right-side
b-1
support
b-3
orientation
horizontal
or fentat ion
vartical

Gioka 1; Vns.nwm
Edit/Create

Write (Backup)

Write (Text)}
o - |

Abart
He ip

Enter name of text file: arches.text
arches.text @ Successfully Written

{archl {

(contain-top b-3)

(contain-left-side b-2)

(contain-right-side b-1) })
(contain-top ())

(b-3 (

(isa brick)

(orientation horizontal }))
(contain-left-side {))

(b-2 (

{isa brick)

(support b-3)

{orientation vertical }))
{contain-right-side {))

(b1 (

{isa brick)

(support b-3)

(orientation vertical) })
(isa ()

{brick {

(isa building-unit) })
(support ()
(orientation ())
(vertical ())
{horizontal {))
(building-unit ())

Figure 8: The textual representation of tuples for “arches” .

38

CHAPTER 4

QUIN

4.1. Introduction

This chapter describes the QUIN (QUery and INference) program. QUIN is a tool for
database management and analysis. It represents a marriage between relational database and
inductive inference technologies. Its purpose is the management of large amounts of data for
input to and output from several programs that use induction to generate knowledge from
examples. It has potential applicability in the logic~based analysis of data and in the creation
of knowledge for expert systems. This description is adopted from the Masters thesis by
[Spackman82] and the user is referred to that document for a detailed description of the system.

QUIN may be used for the management and analysis of data. Management here refers to
the creation, retrieval, and modification of the data, while analysis refers to activities that
attempt to discover more about 1)interrelationships within data and 2} phenomena that
produce those interrelationships. These operations can be either data management (relational)
operations or machine inference (inductive) operations (Figure 7).

RELATIONAL INFERENCE
OPERATIONS QFERATIONS

Figure 7 : Operations available in QUIN,

39

40

raw inference rules & induced
data 2l operations 7] descrip- knowledge
tions
human
eritic

Figure 8 : The knowledge refinement cycle.

The induction programs that QUIN interacts with form a set of inference utilitiss that
can be useful in sequence or in eycles with each other and the human eritic. The databases =
to test and experiment with these algorithms are more easily handled with databa..
management techniques that store, modify, and restructure data for input to the inference-

programs. The cycle of knowledge refinement by iteration of the mechanized inference with a
human critie is illustrated in Figure 8.

4.1.1. The Relational Model

This chapter gives a brief overview of the relational model of database organization
and describes the interpretation of the model by QUIN. The concept of a table of data and
the way it represents the mathematical notion of a relation is fundamental to the relational
model of data used by QUIN. The model also includes the concepts of keys, normalization,
and relational operations, each of which will be discussed in turn.

4.1.2. Relational Tables

A relational table is simply a table that represents a relation. Tables are familiar as
a format for representing data. Consider Figure 11, an example of a table of clinical
laboratory values obtained from blood specimens.

In Figure 9 each column corresponds to an attribute and each row represents an
individual data object. The values within each row of the table represent the description of
an object with respect to each of the attributes. Thus spec# refers to the specimen number,
while Hgb, MCV and RBC_morph refer to the hemoglobin, mean corpuscular volume and
red cell morphology of the specimen. These four names (spec#, Hgb, MCV and

41

labvals
spec# | Heb | MCV | RBC_morph
1024 10.3 78 microcytosis

891 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 9 : Clinical Laboratory Values

RBC_morph) comprise the attribute list of the table. The values obtained from each
specimen occupy a single row in the table.

A relation is a set of ordered rows each of length n, {called n-tuples), where the value
of the i*" column in a tuple (V,) is drawn from a domain D,. The relation has domain sets
D,, D,, ..., D, where n is the degree of the relation. Table 2 is of degree four. Its domain

sets include the set of all possible specimen numbers, the set of all possible Hgb values, the
set of all possible MCV values and the set of all RBC morphologies. These domain sets need
not be explicitly delineated in a database, but are important in the mathematical definition
of the concept of a relation. For further reading see [11].

Relations are intuitively well represented as tables, but relational tables in QUIN differ,

in some ways from the strict interpretation of a mathematical relation. First, the attributes
{columns) are named, and therefore two tables in which the only difference is altered column
order are considered to be equivalent. Second, in relations the rows are not considered to be

ordered, but QUIN allows rows to be ordered according to the values of attributes, e.g. in

increasing order by index number (value-controlled ordering). Third, the “zero'™ row of a

table in QUIN is occupied by the attribute list, and data then follows beginning with the
next row.

4.1.3. Keys

A key is an attribute or combination of attributes that have unique values for each
tuple in the relation. In other words, no two tuples in a relation may have identical values
of the key attributes. This constraint ensures against duplication of data records. Some
examples of keys include an identification number (such as specimen number in Figure 11}, a
unique name, or a unique combination of two more attributes, such as name and date. To
allow purposeful duplication of data for use in the inlerence programs, a table may
optionally have no key defined.

4.1.4. Normalization

A table is said to be normalized (in first normal form) if each entry in the table is
non-decomposable, i.e., a table or set of values cannot constitute an entry in a normalized

.

42

table. Several levels of normalization have been defined (1st, 2nd, 3rd, Boyce/Codd, 4th,
Projection/Join - see [11]) but the attainment and management of normalization beyond
first normal form in QUIN is left entirely to the discretion and effort of the user.

4.1.5. Relational Operations

The relational model includes operations that take relations as input operands and
give a relation as output. These operations can be classified as traditional set operations
(union, intersection, difference and Cartesian product) and special relational operations
(project, select and join). These relational operations are incorporated within the query
language provided in QUIN. They are briefly introduced here and examples of their
implementation are given in the next chapter.

Union

Intersection

Difference

Product

Selection

Projection

Join

The union of two relations is the set »f all tuples contained in both relations
(without duplication). To perform the union of two relational tables in QUIN,
they must be union compaiible, which means they must have identical
attribute lists. The same constraint applies to the operations of intersection
and difference,

Intersection comprises the set of tuples common to both relations.

The difference of two relations is the set of tuples contained in the first
relation but not in the second.

The Cartesian product of two relations is the set made up of the concatenation
of each of the tuples in the first relation with each of the tuples in the second.

Selection provides a subset of tuples from a relation that meet certain
selecting criteria. It produces a row-wise or horizontal subset of the relation.
For example, a selection requiring the specimen number to be less than 500
from Figure 9 would give the result found in Figure 10,

Projection, on the other hand, provides a column-wise or vertical subset of the
relation. Redundant tuples are eliminated from the resultant relation. For
example a projection of the RBC_morph column would yield Figure 13.

Join is slightly more complicated than selection and projection. It produces a
combination of two {or more) tables based on all attributes they have in
common. There are really several different kinds of join, the one referred to

labvals]
spec# | Hegb | MCV | RBC_morph
423 16.5 85 anisocytosis

425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 10 : Results of Selection Operation

43

labvals
RBC_morph

microcytosis
normal
poikilocytosis
anisocytosis

Figure 11 : Resulis of Projection Operation

here being the natural join. The resultant table will have a tuple for each pair

of tuples in the original tables that share identical atiribute-values for every
attribute the tables share. If the original tables have no attributes in common
then the resultant table is the Cartesian product of the two tables. If no pairs
of tuples have identical attribute-values (assuming a common attribute) then
the join results in a null table. For examples, see section 4.2.1. and Figures 17
and 18.

The operations of Figure 18 can be incorporated into a powerful retrieval language
called a relational calculus. The following chapter describes the fundamental constructs of
the language QUIN uses as such a calculus and retrieval language.

4.2. Data Language VL

This chapter describes the capabilities and use of the VL data language used by QUIN.
VL instructions provide the capabilities for relational table creation, retrieval and modification.
The language is easily learned and requires a minimum of procedural specification so that it is
reasonable to expect that users with minimal computer background could quickly learn and use
it.

4.2,1. Table Creation

The instructions for creation of tables are define and add. Define creates an empty
table and sets up the specifications for the attribute list and the key, while add places new
tuples into a table,

4.2.1.1. Define

This instruction specifies a new table, its name, the names of the attributes, and
(optionally) the name(s) of the key(s). The names of tables and attributes must begin
with a letter and can contain any combination of letters, numerals, and the characters
“#” and “_", No two tables may have the same name, nor can a table-name be the
same as any attribute-name or reserved word. A table may not have two identical
attribute-names, but two different tables may (and often do) share a common
attribute-name. Keys are optional but if declared they should be the first (i.e., leftmost)
attribute(s) in the table.

.

http:attribute-na.me

44

Consider as an example the definition of a database that keeps track of results of
blood tests on patients, as in the example in the previous chapter, Figure 11. The table,
called ““labvals”, stores the information on specimens and the values measured. The
unique attribute (key) of each record would be the specimen number. The way to create
this table using the define instruction would be:

define labvals (spec#, Hgb, MCV, RBC_morph) key := spec#

We could also define a table called **spec” to keep track of the dates of individual blood
specimens:

define spec {spec#, ID#, day, month, year) key := spec#

Another table called “ptre’’ would store a patient’s identification number, his name, and
his admitting diagnosis:

define ptre (ID#, name, dx) key := ID#

4.2.1.2. Define Event

An event is a table with only one row. Its purpose is to specify a complete single
data object with attributes that may be found in several different tables, so that adding
the event to each of those tables is easier and more reliable. Events are defined by the
define event instruction followed by the event name and then a parenthesized list of
attribute~value pairs. Continuing the previous example, we could define an event that
contains all the attributes of the three tables (ptrc, spec and labvals):

define event E1

(ID# := 988,

name ;= Jones,

dx := iron_deficiency,
spec# == 1024,

day = 25,

month == §,

year := 1982,

Hgb := 10.3,

MCV = 78,

RBC_morph := microcytosis)

Event “E1” records that a blood test was done on patient number 988 whose name
is Jones and whose diagnosis was iron_deficiency. The blood, specimen number 1024,
was drawn on 25 June 1982 and the results showed a hemoglobin of 10.3, a mean
corpuscular volume of 78, and red cell morphology was microcytosis. The attribute-
value pairs in the event definition can be arranged in any order.

4.2.1.3. Add

The add instruction places tuples (rows) into a table. There are four forms of the
instruction: one for single row addition, another for multiple rows, one for adding an

45

event to a table, and one for adding an external fle of tuples to a table.

(1)

(2)

(4)

A single row may be added as follows:

add (365, Smith, aplastic_anemia) to ptre

Maultiple rows are added in similar fashion:

add to ptrc

(398, Clark, folate deficiency) (404, Blake, iron_deficiency)
(425, Smith, hemolytic_anemia } (241, Jones, iron_deficiency)
end

Adding an event to several tables is simple:

add E1 to ptre
add E1 to spec
add E1 to labvals

Adding an external file named *vls’’ to the ‘“‘labvals” table would be done as
follows:

add vis to labvals

i i34

The external file must be set up in tabular form. For example, the file “vis

might appear as in Figure 12.
Addition of tuples may be done at the beginning of the table, the end, or before or

after any specified row in the table by using a row condition. All four forms of add may
be used with a row condition. If no row condition is specified then the addition is done
after the last row of the table. For example, the following places a new tuple at the first

ToOw;

add (425,404,26,6,1982) to spees : [row<1] °

The colon is to be read “such that’’ and the row condition is of the same form as

891 13.1 90 Normal
555 14.2 88 Poikilocytosis
423 15,5 85 Anisocytosis

Figure 12. Format of File “vis”

46

re. - . conditions (see section 4.2.2). The reserved word last may be used to insert
betore the last row:

add datafile to specs : [row <last]

The condition “[row>last]”” would be redundant because that is the default. If there are
not as many rows in the table as specified in the row condition, the new tuples will be
added at the end of the table.

4.2.2. Table Retrieval

The retrieval commands are get and let. Simple retrieval of an entire table requires
only listing the table name after the keyword get. Selected portions of the table can be
retriever and displayed also (see sections 4.2.1. and 4.2.2.). A new table can be created with
the key=ord let followed by the name of the new table, *“:=="", and the description of the
new tabic. For example, the following command creates a new table called “tests” which is
the same as the “labvals’ table:

let tests :== labvals
The new table would be created but not displayed. The command to display the table is:
get tests

Figure 13 would then be displayed. It would be identical to the ‘“labvals’ table except for
its name.

The combined effect of the get and let could have been accomplished by simply saying:

get tests := labvals

tests |
spec# | Hgb | MCV | RBC_morph
1024 10.3 78 microcytosis
801 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 13 : Result of Retrieval

47

Symbol Meaning
* Join
v Union
& Intersection
- Difference
+ Append

Figure 14 : Relational Table Expression Operators

The let command is used to create temporary tables that can be used as working
copies or can be saved as new permanent tables. It never displays the results of its work.
The get command always displays its results, and can also be used to create temporary
tables. A wide variety of more complicated retrieval instructions can be specified by
appending the appropriate modifying expressions to these two commands. These additional
expressions are specified by a relational table ezpression (see section 4.2.1.) optionally
followed by a VL condition (see section 4.2.2.).

4.2.2.1. Relational Table Expressions

The table expression specifies the table or tables and the attribute or attributes to
be retrieved. All operations described in section 3.4 except selection can be specified with
a table expression. When more than one table is listed in an expression, tables must be
separated by an operator. The operator symbols and their meanings are given by Figure
14.

spec

spec# | ID# | day | month | year
1024 988 25 6 1982

425 404 26 6 1982
850 405 27] 1982
455 406 27 8 1982

Figure 16 : The “spec” Table

48

These operators take precedence over all others in the - = .val instruction. All tables
listed together with the logical operators {(union, intersz:.. ., difference) and the append
operator ‘must be union compatible, which means that »:.. - must have identical lists of

attributes, in the same order, and of the same type (e.g. if attribute N is an integer in
one table, it must also be an integer in the other table(s} in the instruction).

To illustrate the use of operators in table expressions, let us assume we have a
table named “spec” as shown in Figure 17.

The following instruction would create a table called “T1’ which is a join of the *“spec”
and “labvals’’ tables (the common descriptor being the specimen number):

let T1 := spec * labvalsA

The join of tables “spec’® and “labvals - ould appear as in Figure 186.

If no attributes are listed in th- .rieval command {(as in the example in Figure
18} then the full set of attributes for tables is retrieved. If a subset of attributes is
specified then the projection of those attributes on the table is retrieved. For example:

get spec * labvals (ID#, Hgb)

will retrieve a table with two columns. It will be the projection of [D# and Hgb on the
join of spec and labvals. Figure 17 shows the result.

For the purposes of the inference algorithms it is sometimes not desirable to
eliminate redundancy when doing projection, so QUIN provides two other methods of
specifying projection. One method, using &, simply does a ‘““column selection’ and
retrieves all rows even if redundant. The other method, using #, eliminates redundancy
but provides an additional column that shows the number of times that a particular row
occurs. All three forms of projection instruction are illustrated in Figures 20, 21, and
22,

An attribute may be replaced by a function of an attribute in the retrieval
expression. Available functions include min, max, sum, count and domain. Figure
21 gives an example of the use of the min function.

T1
spec# | ID# | day | month | year | Hgb | MCV | RBC_morph
1024 988 25 6 1982 | 103 78 microcytosis
425 404 26] 1982 | 11.1 78 microcytosis
455 406 27 6 1982 | 104 77 microcytosis

Figure 16 : Join of ““+~2c”’ and “labvals”

49

ID# Hgb
988 103
404 11.1
406 104

Figure 17: Projection & Join

get labvals(RBC_morph)

labvals
RBC_morph

microcytosis
normal
poikilocytosis
anisocytosis

Figure 18 : Ordinary Projection

get labvals(RBC_morph,#)

labvals
RBC_morph
microcytosis
normal
poikilocytosis
anisocytosis

- e G0 [

Figure 19 : Projection & Count

get labvals(RBC_morph,&)

labvals
RBC_morph
microcytosis
normal
poikiloeytosis
anisocytosis
microcytosis
microcy tosis

Figure 20 : Projection with Redundancy

50

get labvals(min(Hgb))

labvals
Hgb
10.3

Figure 21 : Use of *“min”

4.2.2,2, VL Conditions

A VL condition is the part of a retrieval command which specifies seleetion. The
following example illustrates the major features of a VL condition. The condition begins
with a colon which should be read “such that.”

get labvals : [Hgb = 14..16| [RBC_morph <> normal] v [Hgb < 14]

The command would retrieve all rows from table “labvals” in which either a) the Hgb is
in the range 14 to 16 and the RBC_morph is not normal, or b) the Hgb is less than 14.

A VL condition thus consists of a disjunction of one or more complezes.
Complexes consist of a conjunction of one or more selectors. In the instruction in Figure
21, “[Hgb = 14 .. 16]” is a selector. Selectors may be separated by the conjunction
operator &, or simply listed one after the other, 2s in the complex “[Hgb = 14..16]
[RBC_morph <> normal|” in above. Selectors or :roups of selectors (complexes) may
be separated by the disjunction operator v. Thus a condition is a ‘“‘sum of products” of,
logical (VL) selectors.

VL selectors are used to specify the body of the condition. They can be of two
types, row-oriented selectors (“‘tuple calculus’”) and set-oriented selectors {“domain
calculus”). The example given in the Figure uses row-oriented selectors.

A row-oriented selector consists of a left square bracket, an attribute name (the
referee), a comparison operator (=, <>, <, >, <=, >==), a comparison value (the
reference), and a right square bracket. The comparison value may be a single value {e.g.
“normal’’), an arithmetic range of values (e.g. 14 .. 16""), an arithmetic expression (e.g.
“Hgb + 2.5"), or a list of values, ranges, or expressions separated by the “or’’ operator
(e.g. “3..5 v 7 v Hgh/10").

A domain-calculus selector consists of a referee set, a set comparison operator and
a reference set. The referee set is called an image set of the atiributes being retrieved.
An image set is the set of values of the image attribute (or of unique combinations of
values of the image attributes) corresponding to each retrieval value {or unique
combination of retrieval values). The comparison operator is the same as those in the
tuple-calculus selector {using =, <>, <, >, <=, >==) but the meanings are set
comparisons instead. Thus ‘="' tests set equality and ‘<’ tests to see if the first set is
a proper subset of the second. The reference set has the same attribute list as the referee
set but may conrain a VL condition within it, as in this example:

51

get spec(ID#) : {day,month,year} = {day,month,year:[[D# = 365|}

Day, month, and year are the image attributes. {day,month,year} specifies the referee
set. [t may also be written {day,month,year : ID#), which reads ‘“‘the set of day-
month-year triples corresponding to each ID#.” It is calculated anew for each unique
value of ID#, the retrieval attribute. [[D#==365] is the VL condition within the
reference set. The meaning is that the user wants to retrieve the ID# of all patients who
had specimens done on precisely the same days as patient number 365. The same thing
could be accomplished using the tuple—oriented calculus onrly by repeatedly doing the
following for every value of n:

get spec(day,month,year):[ID# = n|
The results would then have to be compared with the result of:
get spec{day,month,year):{ID#==365]

and those values of ID# for which the results matched that of 365 would be the final
result.

4.2.2.3. Ordering of Rows

All retrievals may optionally have an ordering condition. The phrases ‘‘order up
on” and “order down on’’ are appended to the retrieval instruction, along with the name
of the attribute to be ordered on. For example, the instruction

get ptrc order up on ID#
will retrieve the table “ptrc’’ in ascending order of ID numbers.

4.2.3. Table Modification

The table modification instructions are change, delete, and save.

4.2.3.1. Change

The ¢hange instruction is used to assign new values to existing rows in a table or
to change the name or type of an attribute. When the user types:

change tablename

he enters a “sub-instruction” mode in which all commands refer to the table being
changed. A working copy of the original table is made for security in case of error, and
the user’s prompt is “>>’". To leave the change mode the user types abort or exit,
with only the latter exit resulting in factual modification of the original table.

) There are several commands available in the change mode. The user may use
ordinary assignment statements to change the values of each attribute. Some examples
are given in Figures. The assignments may be followed by a VL condition that restricts
the assignment of values to specific rows of the table. Attribute names may be changed
by specifying the condition “[row=0]". The display sub-instruction displays the
working table; the get sub-instruction displays the original table before any changes. A
simple change instruction sequence may be entered as shown with Figure 22,

52

The commands in Figure 23 illustrate how the table might be modified within the
change mode,

4.2.3.2. Delete

Delete is used to remove rows or columns from a table, or to remove a table from
the database. Each of these three functions is accomplished by a different form of the
instruction.

(1) Deleting rows is accomplished by specifying a VL condition:
delete ptre : [ID# = 250 .. 500]

This will delete all rows in table *p . - where the ID number is in the range 250 tc
500 inclusive,

{2) Deleting columns is accomplished by specifying a projection:
delete spec(day,month)

This will delete the day and month columns from table *“spec”.

(3) Deleting an entire table or event is done by simply giving the table name:
delete T1
This will remove the table named ‘“T1” from the database.

4.2.3.3. Save

Any tables created with the get or let instructions will be given temporary status;
save is the instruction that changes temporary to permanent status. Tables with
permanent status will stay in the database after a session is completed, whereas tables
with temporary status will be deleted at the end of a session. :

4.2.4. Help

The system has on-line help available to describe the use of each command. Help can
be obtained by typing help or by simply typing a question mark at a prompt. If specific
information is desired about a particular command, the command name should be entered
following the word “‘help,” followed by a carriage return.

4.8. Inferential Operators

This chapter describes the inferential operations on an informal conceptual level.
References are provided for more detailed explanations of the algorithms and the theories
supporting them. In the current implementation, only cluster and diff are operational.
However, the same methods of interaction c¢an, in principle, be used with all the inference
programs mentioned here. There are many inference commands described for QUIN. These all
interface with otlier soltware through relational tables. The general format of the commands
is:

command(parameterl,parameterZ2,...).
Each command has at least two variants. One variant allows the user to wait for results, and
the other allows him to run the inference command as a background process (allowing him to
- proceed on other QUIN commands concurrently with the execution of the inference command).
Other variants exist for some commands for specifying a result table name or giving non-

> change labvals /* enter change sub-mode */

ok /* system response */
> > get /* look at original table */
labvals

spec# | Hgb | MCV | RBC_morph

1024 10.3 78 microcytosis
891 13.1 90 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 111 78 microcytosis
455 10.4 77 microcytosis

Figure 22 : Original Table to be Changed

> > Hgb := high :[Hgb>16]

> > Hgb == low :[Hgb<«14]

> > Hgb := normal :|Hgb=14:16]

> > display /* look at changed table */

changeftable
spec# Hegb MCV | RBC_morph
1024 low 78 microcytosis
891 normal 90 normal
555 normal 88 poikilocytosis
423 high 85 anigsocytosis
425 low 78 microeytosis
455 low 77 microcytosis
> > end /* exit, making the changes permanent */

change completed /* system response */

Figure 23 : Table with Modifed Hgb Column

54

default parameters. The current implementation of QUIN has clearly defined the arguments
required for the following commands:

command program format

dif GEM diff(tablel,table2, ... ;parmtable,results)
aqll AQl1 agll(tablel,table2, ...)

cluster CLUSTER cluster{table,parmtable,results)

esel ESEL2 esel{table,parmtable,results)

varsel PROMISE varsel{tablel,table2,...;parmtable,results)
varcont CONVART convart{tablel,table2,...;parmtable)
sparc SPARC sparc(vars,vars.con,advices,events,results)

Other commands which are not yet implemented are:

command program format

apply AQ11 ??

treecon OPTREE 77 -
varcon NEWVAR 7?

4.3.1. Feteh and Results

In addition to the basic induction commands, there are a couple of commands for
managing processes which have been run in background. These are RESULTS, which
reports the status of each induction job submitted since the beginning of the current QUIN
session, and FETCH, which permits the results of a background job to be read back into a
QUIN table ({the default action of induction programs is to create files which need to be
reread or fetched). RESULTS takes no arguments and reports something like the following. -

Job-Number Program Status

1 Varsel done .
2 Esel done .
3 Gem running

Here, the results of job #1 and job #2 could be feiched. The format of the FETCH .-
command is :
fetch(job—number,result-table) ,
where job-number refers to an entry in the table reported by RESULTS and results—table is
the name of a table to be created for storing the results of that job.

4.3.2. Cluster

The purpose of the eluster operation is to divide a collection of objects into smaller
groups of similar objects based upon some criterion or measure of similarity. Clustering is
the process of developing a taxonomy or classification scheme for the objects of a study.

The program invoked by the cluster command in QUIN is called CLUSTER/paf [14].
The reader is urged to consult the references cited for more complete explanations of the
details of the program’s operation and theoretical background. Unlike most numerical
taxonomic techniques, this program uses a ‘““concept-based” method of clustering that
produces descriptions of the clusters (categories) that it derives. It also permits the user to
specify the criteria which are to be used to evaluate clusters. One or several criteria can be
maximized simultanecusly to produce the optimal clusters. Some of the criteria available to
characterize clusters include:

55

~ the fit between the clustering and the data (sparseness),
- the total inter—cluster differences {degree of intersection},
- the number of attributes which singly distinguish between all the clusters (essential

dimensionality), and
- the simplicity of cluster descriptions (number of selectors).
The names and numbers of criteria currently available appear in Figure 24.

The cluster operation is invoked by the following instruction,
cluster (events,parameters,results)

where “‘events’” and “parameters” represent the names of relational tables within QUIN,
and “results’ is the name of a table which may or may not already exist {if not it will be
created). Any legal table names may be used in the command. The events table must
contain the descriptions of the objects to be clustered with each object occupying one row in
the table. Each column represents an attribute of the objects in the table. The parameters
table is used to indicate K {the number of clusters to be formed), the criteria to be used and
other optional parameters. The optional results table is the table in the database to which
the results of the clustering will be returned. If no results table is specified, the output of
cluster can be found in a file in the user’s working directory.

A simple example of clustering follows, using data similar to the previous examples in
chapter four. In addition to the events table, a parameters table and at least one criterion
table must be prepared before issuing the cluster command. Figure 25 illustrates a
parameters table and table 14 illustrates a criterion table.

The parameters table (Figure 25) has two tuples (rows). The cluster algorithm will
therefore be run twice, once for each row in the parameters table. The first time it will split
the events into three groups (k=3) and the second time it will create only two groups
(k==2). Criterion “cr1” (found in table 13} is defined in the criterion table called
“crl_criterion’” (Figure 26). Criterion “1" is sparseness, (see Figure 24). It is the only-

criterion brief

number description
1 sparseness
2 degree of intersection
3 number of events occurring in more than one complex
4 share of events {evenness of cluster size)
5 number of selectors (simplicity of cluster descriptions)
6 essential dimensionality (dimensionality of differences)
7 relevant-variable sparseness
8 relevant-variable—set sparseness

Figure 24 : Clustering Criteria

parameters

k criterion

3 crl
2 «crl

Figure 25 : Parameters Table

crl _criterion

criterion tolerance
1 0.0

Figure 26 : Criterion Table

events

mev hgh mche

W Ol O 0 = B O
DD b i B e
G R Ty N

Figure 27 : Events to be Clustered

57

criterion which will be used by the program in this example. The tolerance is a measure of
the degree of error allowed in fitting the clusters to the criterion. The events table for this
example is shown in Figure 27.

The values in the events table must all be integers. Attributes, such as those
represented here, which ordinarily have continuous linear values must be made discrete
before cluster can deal with them. The meanings of the values in the events table are given
in Figure 28, with the values from the events table in the “# column followed by the range
of real values which have been assigned to each value.

When the sample given in Figures 28-30 is run, cluster splits the events into three
groups as in Figure 29.

This 1s a particularly simple example, but it gives the flavor of the clustering
operation. In this case, cluster has discovered three groups which can be interpreted as
being cases of microcytic anemia (group one), normal blood counts (group two), and
macrocytic anemia (group three). For further examples of the use of cluster see [22].

4.3.3. Diff

Diff (differentiate) takes a number of classes of events that have already been
categorized, and attempts to find the conceptually simplest rules that will predict the
category of each event, i.e., discriminate between the categories. The algorithm invoked by
the command is called Aq and is incorporated in the program called GEAM [15].

The following is an example of the use of the diff instruction to create rules for
differentiating the groups of objects represented in three tables named grpl, grp2 and grp3.
There are a number of differences from the cluster operation:

{1) No criterion tables are needed.

(2) The parameters table, an example of which is shown in Figure 30, has a different
format from the cluster parameters table which was illustrated in Figure 25.

(3) The values in the events tables need not be integer only. Discrete nominal values are
allowed in addition to integers. An example of the way an events table might appear
is given in Figure 31.

Note that there still must not be real-valued attributes (e.g. 50.2) but nominal attributes
are allowed. In addition, the type and domain of an attribute can be declared or the use of
“diff.” In the table in Figure 31, the ““day’ attribute clearly can take on seven values which
are ordered and cyclic. Only three of these appear in the table and they are not in order.
To define the domain of this attribute one must first prepare a relational table with one
column containing all possible values which the attribute may have. The values should be
listed in order, as in Figure 32.

Given such a table, the following command will set up a permanent domain for the
attribute ““day’ which will automatically be referred to whenever the system needs to
prepare ‘““day’” as an attribute or the **diff”’ operation:

domain {day} :== weekdays

The “diff”” operation recognizes three types of attributes :
. nominal (discrete unordered)
. linear (discrete ordered, such as “rainfall” in Figure 32), and

- cyclic (discrete with cyclical ordering, such as days of the week).

58

mev

<60

60 to 69

70 to 79

80 to 94 {(mev normal == 80 to 94 cu microns)
85 to 104

>104

N N -k

hgb

<8=0

9 to 10

11 to 12

13 to 14

15 to 16 {hgb normal = 14 to 18)
17 to 18

19 to 20
>20

N U R W

mche
<27
27 to 32 o
33 to 38 {mchc normal = 33 to 38 %)
i oto 44
3

éww’—‘o%

Figure 28 : Meanings of Values in Events Table

Group one :events 1,2,3
Group two : events 4,5
Group three : events 6,7,8

Group one is described as:
mev <80 and hgb==9..12 and mchc< 33
Group two is: ;
mev==80..94 and hgb=15..16 and mche=33..38
Group three is:
mev >94 and hgh==9..12 and mche=39..44.

Figure 29 : Results of Clustering

59

params

echo maxstar

pcve 10

Figure 30 : GEM Parameters Table

grpl
day rainfall hours_sunlight
Monday light 6
Saturday none 12
. Wednesday heavy 2

Figure 31 : GEM Events Table

weekdays

names

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Figure 32 : Domain Values or Days of the Week

60

The system assumes that integer values are linear and that alphabetic values are
nominal. When the opposite is true or when the attribute is cyclic, the following instruction
can be used to define the type of the attribute for use by “diffi:”

type (day) 1= cyc

The abbreviations for nominal, linear and cyclic are nom, lin and cyc, respectively.

The instruction format for invoking “diffi”’ is as follows:
dif(grpl, grp2, grp3; params, results)

“= “params” and “results’’ tables are optional. The system - :<vides default parameters
GEM if a parameters table is omitted. If the ‘resui:: table is included, the
discrimination rules produced by GEM wii! be placed in it. A - airiable number of groups
(event tables) may be submitted. A semicaowon indicates the end of the list of event tables, as
after grp3 above.

4.3.4. Esel

The operation esel invokes Esel [17], a program that takes a large number of examples
and selects a small subset of examples that is most representative of the larger group. The
smaller sample will require less execution time in inference programs such as CLUSTER/paf
or GEM. Very large numbers of examples (more than 200) would probably require
inordinate amounts of processing time, making it useful and efficient to choose a
representative subset.

4.3.5. Varsel

The varsel instruction invokes a program called PROMISE [16] which selects the
most ‘“‘promising” attributes for differentiating between classes of events. Its output is
therefore intended for use with GEM. The elimination of irrelevant attributes is a
horizontal reduction of the database somewhat comparable to the vertical reduction
accomplished by esel. The reduction results in reduced execution time in GEM but also
results in the elimination of attributes from consideration by the inference process.

4,3.8. Varcon and Varcont

The varcon instruction (variable construction) invokes a program called NEWVAR
[18] which attempts to use mathematical operations (multiplication, addition) to create new
attributes from combinations of existing attributes. The use of ratios or differences of
existing attributes sometimes provides simpler and more accurate rules for distinguishing
one class from another.

The command varcont is used to access a program named CONVART [19], a system
for inducing time-dependent inlorization from data. Multiple measurements of an attribute
over time can be changed into a single attribute based upon its time-dependent
characteristics. The induced description of the time-dependent attribute can then be used
in data or input to other inference routines.

4.8.7. Other Operations

The apply ' operation tests the performance of induced rules on new events. [t
currently a part of the AQ11 [20] program. The output is a confusion matrix that gives the
percentage of alse positive and false negative decisions for each decision category.

http:semice.on

61

Another inference operation, treecon = uses program OPTREE [21] to produce
optimal decision trees from extended entry decision tables (23]. It performs the conversion
of VL rules to decision trees (branching logic) for the convenience of the user.

" There are three low-level inference operations that are used in CLUSTER/paf that
also could be invoked separately.

(1) Sim ~ (similarity) takes any two events and calculates a syntactic similarity measure.
The similarity of two events is the inverse of the syntactic distance measure used in
CLUSTER/paf.

(2) Reun ' (reference union) takes the values of attributes and “collapses” several events
into one event with multiple-valued attributes. For example, the events
(12, medium)
(13, large)

could undergo reference union to become

(12 v 13, medium v large).

(3) Gen ' (generalize} ~ planned operation not currently implemented goes one step
further to take the events that result from reference union and generalizes the results
into more intuitively succinct values. Thus

(12 v 13 v 14 v 15, medium v large v verylarge)
would become

{12..15, >small).
There are other inference programs that may be useful tools or the generation of
knowledge from examples, and they too have the potential to be integrated into the
system.

4.4. Macro Language

A macro processor is available to the QUIN user. This is simply a modified version.
of the standard preprocessor (/lib/cpp) for the C language compiler (/lib/ccom) which runs
under Berkley standard UNIX. This handles macro expansion and include file copying for the
C compiler. The significant modifications are a change to the #define directive to allow
multiline macros {the original cpp allowed escaped newline characters in definitions, but they
were essentially deleted from the macro as soon as processed) and a change to the I/O to allow
the preprocessor to communicate with QUIN over a pair of sockets { a standard UNIX message
passing system for concurrently running tasks or processes).

A macro definition begins with #define and ends with the symbol "@". Thus,
#define x(y) sqrt(y) @

is a macro which does not contain any embedded lines, and

#define x(y,z)
print("y*z = %d",y*z);

@

contains embedded lines.

62

The other constructs (#ifdef,#ifndef,...) are allowed within macros, an: e processor is
noticeably more powerful than the original ¢pp. For full details, refer to documentation on the
C language or to the UNIX documentation for "cpp”. Note that arguments may be omitted
from a macro call with the effect that they become instantiated to null strings and returns

TRUE for "#ifndel".

4.6. Program Description

QUIN is written in Berkeley PASCAL for the UNIX operating system. It consists of three
major segments of about 2000 lines of code each. The files containing these segments are
named qqmain.p qqparsr.p and qqgex.p. Qgqmain.p contains the initialization routines, the
session handling routines, and the utility routines. Qgqparsr.p contains the command parser,
and qqex.p contains the command executor.

Flow of control through the code follows the pattern of:

1) start in the session routine,

2) parse a command into PT (the parse table).
3) go to the executor and execute the command,
4) cycle

There are also three other small pieces of code, in files named qqprocs.h, qqeonst.h and
qqcunc.c. Qqprocs.h contains the external declarations of procedures which are accessed by
more than one segment. Qqconst.h contains the constant, type, and variable declarations as
well as the definition of the qqstatic area. Qgecunc.c is written in the C language and contains

the system dependent operating system calls or process communication that are not available
directly from PASCAL.

When inference commands are invoked, there are two options "+ “he i~vs~<2ian of the
inference program. If the session is interactive and the user specifiesa - L.
inference program is forked and QUIN waits for it to finish before coniici... .. r
circumstance, (not interactive or no results table specified) the inference program is .. . ad

a separate process independent of QUIN. The ’qq’ prefix is attached to every procedure in
QUIN to avoid name conflicts with other ADVISE modules.

The modified macro processor "cpp” is also spawned as a separate process, but input is
only directed into that process when the $sma directive has been given. In fact, the process is
never spawned until the first time $sma is issued.

CHAPTER &

Rule Acquisition and Refinement

5.1. A Paradigm for Rule Base Development

A standard method for forming an expert system’s knowledge base is a generate~and—test
process. There are difficuities, however, in both the generation and testing of knowledge bases.
The source of these difficulties is twofold. First, the expert is trained to make decisions, not to
explicitly state his knowledge. Second, the expert is provided with virtually no aids in either
stage of the process. He must generate his knowledge base from scratch with only the
knowledge engineer’s guidance to help him. He must then produce test examples which show
faults in the knowledge base he himself just constructed.

Some relief is provided by expert system development systems, which establish a
framework for expressing knowledge. Such systems give the expert a pre-defined knowledge
representation method, and therefore make the knowledge acquisition process somewhat easier.
However, they may also force the expert to channel his knowledge into a format which does not
fit it. The knowledge representation problem will not be dealt with here. Instead, we will
carefully delineate an area of applicability, and describe new tools for knowledge acquisition
within that area.

Many different knowledge representation formalisms, each applicable to a range of
domains, have been developed in the last twenty years. Unlortunately, some of these
formalisms have been used in areas for which they are not really acceptable. In order to avoid
this trap, the knowledge representation to be used will be exactly defined. Such a presentation
will naturally suggest certain problem types.

The methodology described in this chapter deals only with rules. In a variety of
application areas, an expert’s knowledge can best be expressed in the form of if-then rules.
With some extensions to the if-then format, a rule formalism can deal with uncertainty in
information, with weighted conditions and with multiple decisions and associated confidences.
A detailed discussion of the syntax and semantics for rules is presented in [Reinke84].

In this chapter, we are restricting discussion to rule based knowledge. Rules will be
written in terms of discrete, finite attribute values. If a rule specifies a decision, that decision
will be one of a known set of decision classes. If the expert is to present examples of his
decisions, the examples will be presented in terms of the same attributes, and each example will
have a defined decision associated with it. We develop a method which will provide, within this
restricted framework, useful tools for building and debugging rule bases,

5.2. The Standard Rule Acquisition Paradigm

Figure 33 shows a flow chart of the standard knowledge engineering process. In the
figure, circles represent processes and blocks represent objects (both humans and computer
programs) which participate in the processes. The rule base specification process shown consists
of two major subparts. First, the knowledge engineer must obtain from the domain expert a
list of the variables that are relevant to the problem area. In medical diagnosis systems, for
example, this would be a list of relevant symptoms, patient data and laboratory data. Once the

63

Specifying
Rule Base

Domain ~ Coding Knowledge
Expert Rule Base Engineer

Refining
Rule Base

Expert
System

Figure 33: The standard paradigm for rule base development.

attributes are defined, the expert may write the rules for the initial knowledge base. At this
stage, in consultation with the domain expert, the knowledge engineer must decide exactly what
needs to be represented and how to represent it in the form of rules. He must consider, for
example, how to deal with uncertainty, with weights on conditions, and with how the rules
should be evaluated.

65

Once this process is completed, the knowledge engineer must proceed on his own to encode
the rules and the inference mechanism which will use them. Due to the complexity of the next
stages of knowledge acquisition, the engineer must be certain that his system is easy to modify
and that he has provided sufficient explanatory facilities so that the expert, when debugging the
knowledge base, can find the causes of problems.

This leads to the third, and most difficult, stage of the expert system development
process. During the rule base refinement stage, the domain expert must test his "pupil” on
pre-classified examples. This process often involves several domain experts using the systems
over a period of months. Once enocugh difficulties have been noted, the domain expert must go
back to the rule base and make additions and changes to it and possibly to the list of relevant
attributes.

5.3. A New Paradigm for Rule Acquisition

The problem with the standard paradigm is that the process relies very heavily on the
time and effort of the very expert whose job should be eased by the system. The entire process
also depends on the domain expert’s ability to elucidate and explain his knowledge. All of this
suggests that the expert needs lielp in building and refining a rule base. Figure 34 shows a new
paradigm for knowledge base construction, aimed at giving the expert help in those areas in
which he is weak. The tools aligned with the expert are intended to work with ezamples of
expert decisions, as well as with explicit declarations of an expert’s knowledge. These tools
should also aid the expert in producing examples that will be of importance.

Under the new methodology, the development of a rule base begins with the expert
specifying the attributes relevant to the problem. Some work has been done in aiding the
expert here through a program that picks important attributes out of an exhaustive list [Baim
82]. At this point, the expert has two options. He may proceed in the standard way, aided
only by a rule editor, or he may choose to present the induction tools with a set of tutorial
examples. The tools will produce a rule base which is guaranteed to work correctly for the
examples given. In either case, the initial knowledge base is constructed, and the expert enters
the knowledge refinement stage.)

Here, the expert needs to produce examples that will demonstrate problems in the rule
base. The testing tools shown in Figure 34 really consist of two parts: a mechanism to suggest
areas where the rule base may not work correctly (i.e. it should suggest testing examples) and a
mechanism that rapidly tests examples provided on the knowledge base and presents the results
in a usable format to the domain expert.

If problems have been revealed in the knowledge base, it must be refined to deal with
those cases which it handled incorrectly. Again, the expert is given the option of doing the
work himself. However, he may present the examples which caused problems to the induction
tool, which will refine the knowledge base so that it deals with these new examples correctly.

Note here that the new paradigm completely subsumes the old one. Within the context of
the new method, the expert may still, if he chooses, do all the work himself, aided by the
testing and editing tools. The most desirable course is probably a hybrid, wherein the expert
may define some knowledge which is used to guide the induction process.

Given this paradigm, we can create a description of the software tools that should be
available to the expert system builder. First, we need an efficient, correct method for
generating and refining a rule base using examples. Next, we need tools that will help the
expert generate testing examples and run those testing examples on the knowledge base.
Additional tools to aid the expert in attribute definition would also be desirable. All these tools
should work in the context of a powerful rule language which will be of use in a wide variety of

66

Acquisition Specifying
Tools Attributes
. Formi
Domain : n,‘ Expert
E ; and Refining System
xper
P Rule Bage
Testing Testing
Tools Rule Base

Figure 34: Paradigm for rule base development using automated refinement and testing

domains.

The next section presents a program which partially fills the and testing tool slot in the
new paradigm.

5.4. The ATEST Tool for Rule R~%nement

For the new rule base acqu .iuion paradigm to be effective, the domain expert must be
able to produce testing examples iur his knowledge base and apply those examples in order to
assess rule base performance. ATEST is a tool developed specifically for that purpose. It
provides the domain expert with two new capabilities. First, ATEST allows the expert to
rapidly test a rule base on numerous examples under a variety of evaluation schemes. These
evaluation facilities provide information about the overall performance of the rule base and
about the performance of specific rules on specific examples. Second, ATEST provides routines
that check a rule base for consistency and completeness. These routines can be used to point

87

out problem areas in the rule base and to help the expert generate new examples.

Section 5.4.1 presents an introduction to the rule testing terminology used throughout the
rest of this thesis. Section 5.4.2 presents the evaluation parameters available in ATEST and
describes the program’s evaluation and trace abilities in detail. Section 5.4.3 presents a
discussion of the consistency and completeness problems and describes the algorithms used by
ATEST to test consistency and completeness in a rule base,

5.4.1. Terminology

ATEST views rules as expressions which, when applied to a vector of attribute values,
will evaluate to a real number. This number is termed the degreec of consonance between
(the left hand side of) the rule and the event. The method for arriving at the degree of
consonance, given a syntactically correct rule and an event, varies with the settings of the
various ATEST parameters (see next section), When ATEST is run on a set of pre-
classified testing examples, it simply applies each rule to each example and reports the
degree of consonance. However, with a large number of testing examples, and a large
number of rules, output of this sort is likely to get unwieldy. Therefore, ATEST has the
ability to summarize the results.

Rule testing is summarized by lumping together the results of testing all the events of
a single class. This is done by establishing equivalence classes among the rules that were
tested on those events. Each equivalence class (called a rank) contains rules whose degrees
of consonance were within a specified tolerance (called teu) of the highest degree of
consonance for that rank. When ATEST summarizes the results, it reports, for each rule,
the number of testing events for which that rule was a first rank decision.

The only remaining term to be defined is safisfication. Satisfaction applies to
disjunctive normal form (DINF) expressions. A DNF expression is said to be satisfied if some
complex in it is satisfied. A complex is satisfied by an event if every selector in the complex
is true for the event. In other words, satisfaction is a boolean logic conditional, and
therefore applies to selectors and DNF expressions, but not to modules or rule groups (which
may have weights associated with their conditions).

5.4.2. The ATEST Evaluation Routines

ATEST takes as input a set of attribute definitions, a set of rules (and an optional
structuring on the rules), a set of testing events, and a set of parameter values. The
parameters control what ATEST does with the rules and how it evaluates the rules on the
testing events. There are nine different parameters involved with rule testing. Six of these
determine how rules are evaluated. The remaining three control which of ATEST's
capabilities will be used during a given run. This section presents a discussion of the six
evaluation parameters,

Three evaluation parameters provide definitions for the logical operators “and” and
or”. The operator “‘and” (“A") may be evaluated as minimum or as average. The operator
or” (“V") may be evaluated as mazimum or as probabilistic sum. The final evaluation
patameter controls the the definition of the elementary conditions, called selectors. A
selector may be treated as a boolean conditional (i.e. it may evaluate to 0 or 1), or as a
function which when applied to an event evaluates to a normalized real number between 0
and 1. Given a selector in some attribute x whose domain is the ordered list (al,az,...,an),
and an event where x = ay, the normalized value for the selector [x = a,| is

- (12 1/) !

If the selector has several values on its right hand side, the value closest to 2y is used.

113

(33

58

The tau parameter mentioned in the previous section controls the assignment of rules
to equivalence classes when testing on a single event. This parameter allows the user to
determine what kind of range in degree of consonance he may expect when actually using
the rule base for consultation. Increasing tau will increase the number of first rank
decisions, and therefore increase the number of (possibly conflicting} actions associated with
a given testing event. By varying the tau parameter, the expert can determine how robust
his rules are in discriminatory terms.

The dropa parameter controls the use of the o, weight on rules. It specifies the truth
threshold a module must exceed before that module can be included in the weight of
cumulative evidence.

The remaining parameter, threshold, controls the degree of consonance threshold for a
rule. ATEST reports, for every class, how many testing events caused the correct rule to
have a degree of consonance greater than threshold. Figure 35 shows a sample problem
input to ATEST and the resulting output if all of ATEST’s evaluation capabilities are being
utilized. The output shown consists of two parts. The table is a confusion matrix showing
the performance of the rules on class B events. The numbers in the matrix are the degrees
of consonance; numbers surrounded by asterisks indicate correct first rank decisions, If
ATEST is told to summarize the results, only the first and last rows of this table will be
output. The second portion of the output is a trace of evaluation for those cases where the
rule base did not perform correctly. The selectors surrounded with question marks are those
which were not satisfied. Selectors in double brackets are those which were satisfied. In a
structured rule base, this trace is considerably more complex, as it details the paths taken to
reach the final degree of consonance.

6.4.3. Consistency and Completeneas

In some domains, it is essential that no two rules in the rule base conflict, i.e. that the
rule base is consistent. Inconsistency occurs if there is a si:uation {event} in which two rules
would indicate different, mutually exclusive actions. In : . erminclogy of Section 5.4.1, an_
inconsistency exists if there is an event which causes two rules o different class to evaluate
to first rank decisions.

There are also cases in which it is necessary for some conclusion to be reached for
every possible input. We say a rule base is incomplete if there is an event for which no rule
has a degree of consonance greater than threshoid. The threshold used in ATEST is defined
by the user, but has a default value of 0.50.

Testing consistency and completeness in a rule base are relatively easy if we are
_dealing with unweighted, non-structured rules and applying a boolean logic scheme for rule
evaluation. However, the rule bases in Advise allows weighted, structured rules which may
be evaluated in multiple ways. Therefore, ATEST does consistency and completeness
checking under more general conditions. The routines in ATEST use a generate and test
method for recognizing consistency and completeness problems. This methodology takes

advantage of the speed and fexibility of the evaluation procedures already present for
testing examples.

‘onsistency and completeness are handled in essentially the same mar “irst,
A" T calls routines that apply logical and set theoretic oper: s to the rules uce
* orplexes”. The test complexes are fed through the e. - 'z:ion routin zhe

: are examined to determine if there is indeed a problem.

The generating routines for consistency operate by forming the intersection ot ihe left
hand sides of the rules that are to be tested. A standard logical intersection will not work

.

69

Rule A bk =103

Rule B P xyg=2lxg = 1,2] V [x) = 0][xy = 1]

Testing Events for class B:

]] X3 X4

B1 1 1 1 0
52 0 g 1 1
Parameters:

Operator 4 Interpretation
AND average
OR maximum

ATEST OUTPUT :
TEST RESULTS FOR CLASS B

EVENT #TIES A B
B-1 0.00 0.50
B-2 0.00 *1.00*

#1st rank events 0 1

Number of events satisflying rule for correct class: 1
The rule for class B was evaluated as follows for testing event B-1:

xy = 27k = 1,2]] V 22(x; = 0}7?([x; = 1]

Figure 35: Sample input and ATEST output for a toy problem.

70

If rules R1 and R2 are being tested for consistency:
Ryclxy = 3fjxg = 4..6}[x3::= 4|[xg = T|[xg == 9| : 0.8

[xg = 0.3 : 0.4
-2 { 1= 0]

Ry :[x; = Ol[xy = 6..8}[):3;: 4f[xg = 4|[xg =9]: 0.8

[xs = 4..6|: 0.05
> ldy =1

Then ATEST will generate the test complexes: ’ -
[x; = FALSE||x, = bl[x, = 4][xg = T|{x; = 4|[xg = 9] R
[xg = 4..8] —
[xs = 0..3
These complexes, if “and” is evaluated as average, will cause ATEST to report:
The complex : [x, = 8|[xy = 4}[xg = 7|[x; = 4|[xy = 9|

produces 3 de of 0.88 with rule Rl and a dc of 0.91 for rule RZ‘

Figure 38: An example of consistency testing.

for two reas~ - . First, there are cases where such an intersection will be empty even
though, unde: certain evaluation schemes, the rules will produce conflicting decisions.
Second, the nu.-uber of intersections to be performed grows exponentially with the number
of complexes in the rules.

The first problem is dealt with by changing the definition of intersection. The
consistency testing routine multiplies rules together in the standard fashion except that the
existence of non-intersecting selectors in a conjunct does not reduce the intersection to the
empty set. Instead, a special selector, which always evaluates to zero, is inserted. In this =
way, events'that may satisfy two rules to a high degree of consonance may be generated.

The second problem is handled in two ways. First, the consistency checking routines
accept a parameter (dweight) which specifies a minimum weight for modules. If 2 module —
has an Yy weight below dweight, the module is simply not used when forming the
intersection of two rules. Second, the fact that the knowledge base is structured should tend
to decrease the number of test complexes produced. Since consistency checking is only done
between children of the same parent in the rule base structure, the number of rules that are
involved in consistency checking is reduced. Figure 36 shows an example of how the
consistency and completeness routines work.

Completeness checking is done by taking the union .. :he left hand sides of all rules
that have the same parent in the rule base. Again, the dweight parameter is used to exclude
modules whose weights may be too low. Once the union is formed, it is subtracted from
that portion of the event space which should be covered. If the rules being tested are at the -
top of the knowledge base structure, then the union is subtracted Irom the entire event

71

Given four boolean variables X{iXgiXa, X, and the rules:
R,: 1x1 = fﬂxz ': tlxg = t] : 0.80

[xs = f] : 0.60
u> |dy, = 0|

The union of all complexes is subtracted from the entire event space yielding the test complexes:
fxy = filxg = fj[xy = t|

{"1 = t”xz = Hx3 =t
Causing ATEST to report that neither complex satisfies any rules.

Figure 37: An example of completeness testing.

space. Otherwise, the union is subtracted from that portion of the event space covered by
the parent node. Figure 37 shows an example of the steps involved in completeness testing.

This process again generates test complexes. These complexes are applied to every
rule used in the union. If none of the rules have a degree of consonance greater than the
defined threshold, then the test complex is reported as an area of the event space that the
rules should cover but do not.

B.5. Future Work

The ADVISE system provides an excellent framework for research in this area to proceed.
The ATEST tool will be attached to the QUIN relational data base system, which, with
associated editors for modifying knowledge, will provide an integrated interface for the domain
expert bunilding a knowledge base. Similarly, the ADVISE architecture provides a strong
foundation for the addition of further learning and testing tools.

CHAPTER 8

The Rule Parser

8.1, Introduction

This chapter describes the GVL, rule parser. The parser takes a knowledge base written
in GVL, and puts out a network representation compatible with the tuple manager. The parser
was originally coded by Robert Stepp. Carl Uhrik has made numerous additions to the
original. This documentation was prepared by Carl Uhrik. Bob Reinke contributed the
sections describing the language for representing rules.

The network output by the parser is simply a stream of parent nodes and descendant
nodes. The basic unit sequence is a parent followed by a list of descendants. This list is
internally a vector, called a TUPLE. Hence, the input to the PARSER is a specification of
variables, constants, rules and functions, and the output is a series of tuples which are
subsequently assigned an interpretation in the context of a control scheme during execution of

an application system. This interpretation is partly fixed by a convention of predefined symbols
called PARMARKS (See appendix A).

6.2. Language for Rule Representation

This section outlines the language provided by ADVISE for describing and entering rule-
_based knowledge.

8.2.1. Rules

Rules have two major components: right hand sides (RHS) and left hand sides (LHS).-

LHS are conditions to be satisfied, and RHS initiate actions or decisions based upon the
values of variables. The LHS and RHS have weights {o and 3 respectively) that correspond
to the strength of the assertion in either a backward or forward direction (See Section
2.2.2.2). '

6.2.2. Right Hand Sides (RHS)

A RHS is a concatenation {conjunction) of one or more of the following constructs:

[variable == value]|
[variable = variable]
[variable = expression)

An expression is an integer, real, symbholic valune, variable, function or any arithmetic
combination of these. The action caused by evaluation is to take the expression value on
the right of the equal sign and assign it to the variable on the left of the equal sign. The
strength associated with the implication is attached as a confidence to the value assigned to
each variable.

72

73

8.2.3. Left Hand Sides (LHS)

The structure of the LHS features a wider variety of constructs than the RHS. These
constructs are listed at increasing levels of detail below:

(1} A LHS: consists of one or more linear modules. Linear modules are separated by
disjunctions {V).

(2) A Linear Module: consists of one or more linear module parts. Linear module parts
are separated by sums {+). An optional weighting coefficient or pair of coefficients
may be placed before each linear module. In the former case, the coefficients must
sum to one. In the latter case, the coefficients represent Bayesian Is/In pairs as
described for the BABY System (see section x.x.x).

(3) A Linear Module Part: consists of one or more selectors. Selectors are separated by
one of the following logical operators: 1) OR (V), 2) AND (no symbol), 3) implication
(~>), 4) equivalence (<~>) or 5) exception ().

{4) A Selector: consists of an expression, a relational operator and a reference surrounded
by square brackets ([]). The relational operator is one of {<, >, =, <>, <=,
>},

(5) An Expression: can be either a value, integer, real, variable, function or an
expression separated by arithmetic operators. This operator is one from the set {+, -,
*, /s %}. The symbol (%) denotes modulus.

{8) A Reference: consists of one or more reference values separated by commas. Each
reference value can have a weight associated with it. The value/weight pair is
separated by a colon. Each weight can be one or two real numbers. In the second
case, the first number is the truth weight and the second number is the falsity weight
(i.e., how much the selector’s failure contributes to the falsity of the condition
containing it). A reference can be an expression, and a weight can be an expression.

8.2.4. Rule Groups

A rule group consists of a named set of rules. Rule groups provide a mechanism for
focusing the evaluation of rules toward a particular problem solving strategy or subproblem
area. Bach rule group references a block of variable declarations and, optionally, a block of -
function declarations.

Examples of the use of multiple rulegroups can be found in the PLANT/ds expert
system (see Chapter 13) and the ALFALFA expert system (see Chapter 16). In the first, one
set of rules (derived inductively by machine) focuses the consultation on a short list of
candidate soybean diseases, while a second rulegroup (written by a human expert in plant
pathology) performs a more detailed evaluation of the plausible diseases. In the second
system, twelve distinct rule groups are employed to descend through various levels of
identification of insect pests found in alfalfa fields, using dynamicly changing goals,
preconditions and postconditions on rule groups expressed in the rule language to direct the
control scheme in execution of appropriate rule groups.

8.2.5. Variables

Variable definitions are parsed independently of the rules and define each variable’s
domain. Variables in ADVISE can be of two types:

{1) Nominal: The values are simply symbolic names and no ordering is implied between
the names. For example, the colors "blue”, "green" are might be values of a2 nominal
variable.

74

(2) Interval: The values of the variable can be a range of integer or real numbers, or
symbolic names. In the case of interval variables, an ordering is implied.

Variables are declared in blocks, and each block is assigned a name. If a variable is declared
from the special GLOBALS block, it is implicitly known to all of the rule blocks following.

6.2.6. Functions

Since the ability to parse functions constituted a major impetus for this project, fuller
details of the syntax and semantics are given here. Functions come in two varieties: 1) trap
functions or 2) memo functions. Both the bodies and calls to memo functions are parsed by
the parser, but only ths calls to trap functions are handled by the parser, not their

definitions. Trap func:' - correspond to procedural knowledge and are handled as jumps
to specific pleces of PA- . :ode. An example of the use of trap functions is described in
Chapter 12. Memo fu a8 correspond to the classical notion of functions, except that
two simultaneous speciz :cns of their definition may be active: 1) a tabular definition

consisting of a table of domain/range values or 2) a formula definition from which function
values can be computed. When a function is called, a check is made to see if a table exists.
If the table does exist, and the values for the arguments are found in the table, the function
value is simply retrieved from the table. If no table is present or no entry for the function
arguments is found, the formula definition is used to calculate the value and a new table {or
table entry) is added.

Different rule groups can share the same function or variable biocks. In general, it is
the responsibility of the user to verify the compatibility of the variables and functions
between their definition and their use in the rule group.

A function in ADVISE is a mapping of values of arguments to a {value,confidence)
pair. The confidence here is a default which may be alternately specified by a control scheme
override in the evaluation of a rule set. To represent the description of the correspondence
F(argl,argz,...) == (value,confidence), we have in tabular form:

Funename [argl,argz,argg,...] -

(vnrvalll, varval, o, ...) (funcvull, convall)

(varvalzl, varvaly,, ...) (funeval,, conval,)

-

(varvalnl, varval ., ...) (funcvaln, convaln)

Where...

Funcname is the name of the function;

var is a variable name;

varval is the value of the variable;

funecval is the function value for some argument values and
conval is the corresponding confidence.

Note that for the use of weights, a convention was adopted to set the function value to the
weight and set the confidence to unity (1.0} if no confidence is explicitly given. This also
serves the purpose of functions used as a reference value.

75

Imposing an outer structure to allow for multiple function definitions in a block,
consistent with the block structure of variable declarations and rule definitions, we have the
function grammar specification indicated in Appendix B. Note that there is no provision for
type specification. This is due to the fact that basically two types of domains exist in

ADVISE :

(1) NUMERIC - real and integer which can take on any of an infinite number of values
which are in common with other variables,

(2) SYMBOLIC - identifiers which are unique to a variable by virtue of its declaration
{even when two ids have the same printname, they have separate internal names) .

In the latter case, a function defined with one set of arguments is bound to those arguments.
In the former case, the generality of the internal representation allows the liberal
interpretation desired. The responsibility is left to the control scheme to verify that a rule
utilizing a function is calling the function with proper arguments. This is facilitated by the
elements of the function tuple, which indicate the number of arguments, argument
characteristics, etc. .

Functions can take one of three possible forms which are distinguished both by their
declaration syntax and their use in rules. The 3 forms are illustrated in skeletal form below
to give the abstract notion:

1) numeric for integer/real values in weights, nurnber variables, etc.
which have the declaration,

function name {argl , arg2, ..)
[n1l n12 .. funcvali]
[n21 n22 ... funcval2]
-

= arithmetic expression of argl , arg2, ...,
where the arguments, the table of values, and the expression are optional;

2) boolean for the representation of selectors or logical components of
a rule’s LHS which have the declaration form,

funetion name (argl:typel , arg2:type?, ...) : BOOLEAN
[valll wall2 ... funcvall]
[val2l wval22 .. funcval2/

-
-
»
A := VL ezpression of argl , arg?, ...,
where the table of values or the expression are optional, (but types are explicit,
or implicitly assumed to be integer/real if omitted;

3) symbotic for the representation of variable values within selectors,
having the form,

function name (argl:typel , arg2:type?, ...) : ftype

76

[valll wali2 ... funcvall]
[val2l val22 ... funcval2]

where the table of values is mandatory and types are explicit,
or implicitly assumed to be integer/real if omitted.

Note that the expression forms are functions that return either the reserved type
BOOLEAN (TRUE/FALSE) or numbers. No expression can return a symbolic value. The
user is encouraged to do as much type specification as possible, as the parser does little in
this area. Any variable which is declared in the variable block assigned to this function
block may appear in the expressional definition of the function (or even a global) not just
the argument "dummy” variables. Note that a variable is first checked for a possible local
context and failing that, the variable is assumed global. Further, any use of a global in a
function declaration temporarily makes it local in scope. A GLOBAL block is intended to
affect all the blocks to follow it by entering symbols permanently into the symbol table. The
syntax is similar to PASCAL. An example follows {note however that the TYPE keyword is
unreliably implemented).

GLOBALS
TYPE
BINARY = { PRESENT, ABSENT) ; .
COLOR = { RED, BLUE, GREEN);
VARS
RULEGROUP : (INDUCTION, EXPERT, TREATMENT) ;
DAMAGECOST: INTERVAL (0..1.0) ;
USER : (INEXPERIENCED, EXPERIENCED, SUPERUSER) ;
END

VARSX VARS

© X1 == (DRY, WET, NORMAL }); .
X2 : BINARY ; -
X3 : BINARY ; :
X4 = (BIG, SMALL) ;
T =(00,1.0) ; —
Z = (0.0..10.0);

END

77

FUNCX FUNCS
VARS = VARSX;
F1 [X1:PRES_ABSENT,Z3965,W235) : COLOR
(ABSENT , 25.3,0.01, RED , 1.0)
(PRESENT, 0.23 , -6.7 , BLUE , 0.9)
(ABSENT, 0.0 , 0.0, GREEN, 0.8) ;
F2 [Z3966,W236]
(PRESENT, 0.1, 0.1, 0.5 , 1.0)
(PRESENT, 0.2, 2.5,0.7,0.1)
= 3.0 * 73966 - 2.3 * W236 * 73966 + B.789 ;
END ' ’

RULESX RULES
VARS = VARSX
FUNCS == FUNCSX

~
L]

[X1=PRESENT|[X2=ABSENT:F2(ABSENT,23.1*12.6,2*8.2)] :> [T=1.0};

END

Note : The VARS declaration tn the function block 13 optional uniess a function requires
an implicit parameter for a functional ezpression computation. The type of a
function or arguments not specified are assumed to be integer/real. The only
predefined type is LHS, and it is reserved for function typing (le., it may not ap-
pear on a variable). Further, a function of type LHS may not have any predefined
tabular values. There is a local override tn effect if a variable is declared to have
a symbolic value already possessed by a GLOBAL type. Possible local contezt of a
symbolic value 1s checked before it 1s deemed GLOBAL. Both variables and the
symbolic types that occur in the GLOBAL block are global. This means that a glo-
bal variable will be entered into the dictionary for the network. Also, a global need
never be used as a variable, i.e., 1t may ezist solely for the purpose of sharing a
type between 2 or more variables that are local [(but wish to pass their symbolic
values tnto functions or back from functions or test for equality of symbolic
values.

8.2.7. Properties

Properties can be attached to rule groups, rules, variables or functions. These
properties are used by the control scheme to perform various tasks. For example, in the
PLANT/ds expert system (Chapter 13) uses properties to:

1) provide text for asking questions,

2} determine whether, for a particular variable, the user should be asked to provide a
confidence in their response,

3) to provide a detailed description of variables and

78

4) to bias a variables importance.

Properties are treated as simple pieces of text and are not involved in rule evaluation.

8.3. Parser Construction

Some of the code that makes up the compiler was generated by the YACC compiler
compiler. YACC provides a general tool for imposing structure on the input to a computer
program. The Yacc user prepares a specification of the input process. This includes grammar
rules describing the input, code to be executed when these grammar rules are recognized as
applicable, and a low level lexical routine to do basic input. Yacc then generates a procedure in
the from of a C-program to control the input process. This is in fact the PARSER. When
compiled and executed, it calls the low level input routine (lexical analyzer) to detect the basic
input symbols (tokens). These tokens are organized according to the input rules; when one has
been recognized an applicable grammar rule, the user code supplied with the grammar rule is
invoked, returning values and using the values returned by previously executed such rules,

This allows the PARSER to be specified by a number of production rules involving
nonterminal symbols and terminal tokens. Precedence of operators may be specified to resolve
any ambiguities in the grammar and certain error actions can also be invoked. The nature of
the PARSER as consequence of YACC, specifically that it is a left—accept left—reduce (LALR)
shift PARSER, restricts the form of many constructs. For instance, recursion is preferably
left—recursive : A — Aa , rather than A — 2A . For a {ull discussion of YACC, the reader is
referred to the YACC user manual available through Bell Labs [* ref *|.

6.4. Basic Features

All parser input is free-format. Blanks between lexical entities are ignored. Line
boundaries are not significant, but the user should be aware of a limited print buffer. Use of
wide line input is conseguently not recommended. In the case of reading an empty file, the
PARSER does nothing. Some information regarding input format and error handling is
presented in Appendix A.

8.4.1. The PARSER Production Cycle

The YACC compiler takes as input a context free grammar with calls to semantic
action routines supplied among the production rules. These routines are designed and coded
by the implementor and ultimately produce any output apart from duplication of the input
symbols. They accomplish the unit operations of the PARSER based on the current input
symbol in the context of the particular current state of the parse tree. One of the most
important of these routines is the lexical analyzer which recognizes the surface forms
(terminals) of the grammar and is called somewhat implicitly (ie., it does not occur within
any production rules of the grammar).

YACC output is a file called y.tab.c, which is intended to feed the C-compiler to
generate a load module containing a simple automaton which executes an LR parsing
algorithm whenever a parse is desired and in effect has two components :

(1) -Parser State Table - an integer representation of the states needed in execution for
maintaining the status of a parse. It is similar to the states in a deterministic finite
automatla.

(2) Parser Semantic Invocation Code — the core of the interpreter which actually calls the
semantic routines given the proper states as they arise based on the input stream and
the given grammar. It is essentially a case statement indicating which semantic actions
to call at any point in execution.

78

Normally, YACC generates C~code for use by the standard compiler supplied with the
UNIX aystem, but the semantic actions are more naturally expressed in PASCAL routines
which draw on the rich library of the existing ADVISE system, especially the TUPLE
MANAGER module which places and manipulates tuples in a network. Since the code
implanted in the grammar is functionally only a specification of calls to procedures, the C-
compiler is easily displaced with a PASCAL PREPROCESSOR which edits the C-code to
conform to Pascal code.

This is accomplished by splitting off the state table to be read by our Pascal program
and editing the executable C-code to look like Pascal. Part of this code is static for all
generations of the PARSER and remains untouched, hence the program that does the
conversion is somewhat simplified. The files "edparsem” and “edpartab” contain edit
commands to extract the constituents (1} & (2) from the file y.tab.c and produce the files
"parsem.i” and "partab” respectively., Then, partab is instated in the ADVISE "kbtext"
library, and parsem.i in "kblib”, reduced to a case statement as to what semantics to invoke,
is automatically transplanted into the file "prsourc.p” upon compilation by a "#include”
statement . The lexical analyzer and semantic action routines are already resident there and
remain relatively static as they are completely oblivious to the YACC compiler [see Figure
38).

PARTAB INPUT

RULES. VARIABLE DEFS
FUNCTION DEFS

LEXICAL
ANALYZER

TOXENS
o

INTERPRETER

SEMANNC CALLS ‘
< ;

SEMANTICS

(L TUPLES
v)

MSG OUTPUT

Figure 38 : Relation of Compiler Components.

80

In general, this system succumbs to two types of errors. One is in the grammar and
the mechanies of grammatical parsing devoid of the semantic routines. The grammar can be
ambiguous or allow undesired language constructs. The other type of error is in the coding
of the semantic action procedures. These can be changed directly without touching the
interpreter code installed from PARSEM. Usually, fair consideration should be given to
interaction between the two types of errors.

6.4.2. Operation and Use of the Parser

The file prsourc.p is compiled to produce a load module which reads in the PARTAB
file as its first priority. Subsequently, it reads input from the file specified as standard input,
generates tokens, parses these tokens, generates tuples, and writes to the assigned OUTPUT
file. Additicnal textual information, mainly diagnostics, is written to the file ’ msg . This
process is illustrated in Figure 38.

On the VAX11-780, the current host computer for ADVISE, the parser is executed by
typing the following:

$ADYVISE/parser/prsourc <input >>output
where the following files are involved...

input is a set of variables, functions, and rule knowledge bases;
output is a trace of the input file with error messages;

msg contains program debugging and performance information and
backup contains a network representation of the knowledge

base in a form that can be read by the TUPLE MANAGER.

The knowledge base can at this point be examined by running the "tmtestr” program as

below.

$ADVISE /kblib/tmtestr

? 0s open standard network
?rb read backup file
backup file : backup

7wt write text file

text file name : net

?q exit

At this point, a text format of backup fle "backup” will have been written to "net”, and this is very

useful for

debugging.

8.5. Updating the PARSER

The process of updating the PARSER is outlined as follows :

(1)

Assess the need for any new tokens, symbols, or PARMARKS. Modify the lexical analyzer
to accept these and return a valid token.

(9)

81

Derive a set of grammatical productions which unambiguously parse the desired
constructs.

Determine the desired convention for the structure of a tuple to represent the construct in
network form. This will depend on the intended use in the rule evaluator or control
scheme.

Write any new semantic action routines that are required to build the network of {3).
These routines should ultimately go into "SADVISE/kblib/prsourc.p”.

Insert the semantic action routine calls in the proper points in the grammar of (2}. The
current grammar is in "SADVISE/parser/gramf”.

In the directory "SADVISE/parser”, type the UNIX command, "YACC <infile>>", where
< infile> denotes the name of the file containing the grammar. The file "y.tab.c" results
which contains the compiler written in the "C” language.

This step and the following two steps edit the "y.tab.c” and extract portions that are
inserted in the PARSER. If the shell script "pyacc” can be executed successfully (w/o
errors), these steps can be eliminated. First a portion of the grammar, represented by a
large "case statement”, is generated by typing: "ed <edparsem y.tab.c”. The file parsem.i
results.

The state table is extracted by typing: "ed <edpartab y.tab.c™.

This step searches for labels in “y.tab.c” in order to construct the "OTHERWISE" portion
of the code that encapsulates the case statement. Type

prlabels > prlabels.i
to collect together all the allowed labels that occur in the case statement of "parsem.i’.
Both “parsem.i" and “prlabels.i” are automatically transplanted into “prsoure.p” at
compilation by "#include” statements. The case statement portion (parsem.i & prlabels.i)
should be installed in the ADVISE library "$ADVISE/kblib".

Install the partab file back in the library "SADVISE/kbtext",

Remake the prsourc file (i.e., compile prsourc.p and load prsourc.c), according to the file -
"Makefile" in kblib.

To assist users in making changes to the parser, the current grammar definition as seen by
YACC is presented in Appendix B. Note that steps 6-9 can be built into a convenient shell
script. .

CHAPTER 7

The Rule Evaluator

7.1. Introduction

This chapter describes the some aspects of the Rule Evaluator, that portion of the
ADVISE system that combines the evidence represented as a rule. The Parser module parses
rules into a tree structure in pre~order form. The rule evaluator recursively descends into this
tree in order to determine the "truth value* of some portion of it. In its simplest form, the rule
evaluator returns the ”truth value* of the left-hand side of a rule. Another user procedure, the
rule interpreter, executes a rule’s right-hand side il such action is called for ::hese decisions are

made in the Control module}. The rule evaluator was originally coded by .:an Davis. Kent
Spackman has made significant additions to this original work and is the author of this
documentation.

7.2. User Procedures

The rule evaluator is accessed via three procedures. A description of these three
procedures follows :

reinit (schema,schematuplen)

Where...

schema is a tuple where the user specifies the evaluation
scheme to be used {please see the next section). Each
address in this tuple corresponds to a user selectable option
that specifies how certain rule structures are evaluated,

schematuplen is an integer value corresponding to

the number of options specified in the schema tuple above.
There are 15 possible options the user might specify, if fewer
than 15 are selected, those not selected are set to their default
values.

The reinit procedure must be called before using the rule evaluator. It can be called multiple
times if the user wishes to use different evaluation schemes withiu a single consultation session.

82

83

evaluate (lhs,val,errnode,error)

Where...

lhs is a rule’s left-hand side or some structure within
a rule’s left-hand side (down to a single selector). It represents
the item to be evaluated;

val returns the result of the evaluation

as a real number (val}. It corresponds to the iruth value
of the rule part passed to the evaluator. In the current
implementation, val will range between 0.0 and 1.0;

errnode returns the internal name of the node in which
an error fif any) occurred and

error is the error type encountered above.

These errors may correspond to unexpected

conditions that arose during evaluation, but might also contain
information useful to the Control module. For example, the
error that a rule was not completely evaluated may prompt the
Control module to gather more information form the user.

As mentioned earlier, the schema tuple determines how various rule structures are evaluated.
Another mechanism for controlling the behavior of the evaluate procedure is via accessory
control {ACCTRL). The variable ACCTRL is a Pascal set type which can take on none or
more of the values listed below :

- storintres : This instructs the evaluate procedure to store intermediate results obtained .
during evaluation.

- useintres : This instructs the evaluate procedure to use the results stored above.
Storintres and useintres are most commoniy used together. They can significantly
speed up the time it takes to evaluate a rule, but are not appropriate in certain cases.
For example, if the both of these values are added to the ACCTRL set, intermediate
results are stored and used at all levels of the parse tree descent. If the Control module
has changed the value of a variable in a rule already evaluated {for example, if the user
has asked to change the answer to a question), then the evaluator will not descend into
the parse tree deep enough to detect this fact.

- continue : This instructs the rule evaluator to continue evaluating even if it encounters a
variable that has never been assigned a value. The evaluator will still return the error

that the rule is not completely evaluated. Variables who have no value assigned are given
a "truth value®* of 0.5,

- min : Used in conjunction with continue, this causes the truth value 0.0 to be assigned to
variables that have no value. Useful in determining a worst case evaluation of a rule.

. max : Used with continue, causes the "truth value’* 1.0 to be assigned to variables that
have no value. Determines the best case rule evaluation.

interpret (rhs,strength,reset,errnode,error)

Where...

rhs is the rule part you wish to interpret; normally
a rule’s right-hand side;

strength is a real number corresponding to the degree

of truth returned by the evalunte procedure

combined in some fashion with the strength of the assertion
of the decision symbol (o).

This value is control scheme dependent;

reset 1s a variable which no longer has a function;

errnode is the node that caused an error (if any) during
interpretation and

error is the name of the error (if any} that occurred.

84

In the current implementation, the interpret procedure will function correctly only if the rhs

consists of a simple selector or conjunction of simple selectors.

7.3. Configuring the Evaluator

As mentioned before, how the rule evaluator evaluates a rule is specified in the schema
tuple. Each position in the schema tuple corresponds to some rule structure and can be
assigned values from several available. The meaning of each position in the schema tuple and

available options is listed below.

1) Linear module {(evaluation) : default.

L)
Nt

(
{ Conditional statement (evaluation) : default.
(3

(4

(

(

(

S

5
6

[Naw)

Disjunction of selectors {evaluation) : default,max,suppes.

[

Exception (evaluation) : default,exeptl.

equivmaxave,equivsuppesmin,equivsuppesprod,equivsuppesave.
(8) Implication (evaluation) : default,impmax,impsuppes.
8) Conjunction of selectors (evaluation) : default,min,prod,ave.
1

0) Selectors (evaluation) : defauit.
11

) Conjunction of rule parts other than selectors {interpretation) : default.

(
(
(
(12) Disjunction of rule parts other than selectors (interpretation) : default.
(13) Selectors (interpretation) : default.

(

14) Conjunction of selectors (interpretation) : default,min,prod, ave.

Disjunction of rule parts other than selectors (evaluation) : default,max,suppes.

Conjunction of rule parts other than selectors {evaluation) : default,min,prod,ave.

7) Equivalence {evaluation) H default,equivmaxmin,equivmaxprod,

(15)
(16)

(17) Functions (interpretation) : default,.

Functions {evaluation) : default.

Behavior {evaluation) : default.

The definitions of the possible options are listed below :

. min : minimum.
. max : maximum.
. ave : average.

- prod : product.
- suppes:x+y~(x*y)
- excptl : x / y (if ¥ = 0 then the result is the truth value of x}.

- equivmaxmin : value = max{min(x,y),min(1-x,1-y))

. equivmaxprod : value = max(x*y,{1-x}*{1-y))

- equivmaxave : value == max{ave(x,y},ave(l-x,1-y))

- equivsuppesmin : value = min(x,y)}+min{1-x,1-y}~min(x,y}*min{1-x,1~y)

- equivsuppesprod : value == x*y+(1-x}*{1-y)}-x*y*(1-x}*{1-y)
. equivsuppesave : value = ave(x,y}+ave(l-x,1-y)-ave(x,y)*{ave(l-x,1-y)
- impmax : value = max{1-x,y)

- impsuppes : value = (1-x}+y-(1-x}*y

85

CHAPTER 8

Knowledge Base Paraphrasing

This chapter describes the paraphrasing capabilities in Advise. Section 8.1 describes the
design of a general paraphrasing mechanism that has yet to be implemented. Section 8.2
describes a pre-existing implementation of a rule paraphrase module based on the rule
evaluation module.

8.1. Design of a General Paraphraser

A general paraphrase mechanism has been designed to paraphrase any tuple in a network.
Remember that internally, every rule or table can be represented as a tuple in the low-level
Advise network. Given a tuple, the paraphraser first locates a paraphrase program for that
tuple, then executes that program to produce the appropriate paraphrase e.g. a GVL rule, an
English rule, or a fancy table display. The paraphrase program for that tuple may be located
in one of several places. First, it may located directly under the main node of the tuple to be
paraphrased. Second, the program may be found under subnodes {nodes other than the main
node)} of the particular tuple. Finally, it may be at another node in the network, locatable
through an inherit relation or indirection mechanism from nodes in the tuple. For example, the
paraphrase program for a selector in a rule may be found directly under the main node of the
selector, under a subnode of the selector (e.g. 2 marktype that determines the type of selector),
or under the rule or rule group in which the selector appears.

The paraphrase program consists of a series of tuples under a given node. The second
node in each tuple {the first node would be the main node) is a keyword that identifies the tuple
as being part of a paraphrase program. This identifier will be one of MKPARAPHRASE,
MKPROG, and MKPROGEND. These are defined below. Subsequent nodes in each tuple will
determine a specific paraphrase action. Commom actions are finding a new tuple to
paraphrase, printing text associated with a node, and setting up a means to paraphrase the
tuple iteratively.

The following are the definitions of the keywords recognized by the paraphraser.

MKPARAPHRASE Denotes the start of a paraphrase program. Optional arguments denote
the style of paraphrase (i.e. rules, networks or tables) and may also
denote a restriction on the tuples that can be paraphrased by this

program.
MKPROG Identifies statements in a paraphrase program.
MKPROGEND Marks the end of a paraphrase program.
MKLOOP Marks the beginning of a loop in a paraphrase program.
MKPARAENDX This serves as a “program counter” in the sense that it denotes what

node in the current tuple is being paraphrased

MKSHIFT Assigns a specific node to the "program counter” relative to the current
position. Default is the shift one node. Further shifts may be specified
by an additional argument.

86

3

87

MKABSHIFT Assigns a specific node to the "program counter” absolutely.

MKLOOPEND Marks the end of a loop.

MKPRINT The printname of the node argument which follows is output.

MKPARAPRINT Paraphrase the tuple that matches the following left context of this
tuple.

MKPRINTPOS Qutput the printname of the node found at the postion in the current
tuple specified by a position argument

MKPARAPOS Paraphrase the tuple that matches a tuple constructed by adding the

remaining left context of the MKPARAPOS tuple to the node at the
position in the current tuple specified by a position argument.

Figure 39 shows a sample paraphrase program. The first tuple in the program is the
MKPARAPHRASE tuple. It marks the start of this particular program. (There may -be other
programs under the main node RULEGROUP.) The MKPARAPHRASE tuple also says that it
can only paraphrase tuples with left context MKEXEC MKAND, which translates to
conjunctions of selectors in rules. Note that this program is located under a RULEGROUP
node, a likely place to be inherited by all rules in the rule group.

If this paraphrase program has matched the tuple to be paraphrased, then that tuple
becomes the current tuple and must be a conjunction of selectors from a rule., With this in
mind, the paraphrase actions can easily be understood. The first MKSHIFT causes the current
position to become 3 in the current tuple. This is always a node representing the first selector
in the conjunction. The next step (MKPARAPOS) is to paraphrase the node at the current
position followed by the remainder of of the MKPARAPOS tuple (i.e. MKEXEC). In other
words, paraphrase the tuple matching (< selector node> MKEXEC). The paraphraser then
recursively finds this tuple, makes it the current tuple, and paraphrases the selector. Assume
now that the first selector has been paraphrased and the paraphraser has returned to this
program.

(RULEGROUP (
(MKPARAPHRASE MKEXEC MKAND)
(MKPROG MKSHIFT 3)
(MKPROG MKPARAPOS MKPARAINDX MKEXEC)
(MKPROG MKLOOP)
(MKPROG MKSHIFT)
(MKPROG MKPRINT * & ")
(MKPROG MKPARAPOS MKPARAINDX MKEXEC)
(MKPROG MKLOOPEND)
(MKPROGEND))

Figure 39: A Sample Paraphrase Program.

88

The next tuple in the program is an MKLOOP. This begins an iteration of the
instructions from here until a matching MKLOOPEND. The loop terminates when an
MKSHIFT falls off the end of a tuple. The steps in the loop are easy to follow. The first is an
MKSHIFT which makes the next selector (node) in the conjunction {tuple} the current node
(position). If this succeed an “and” sign (&) is printed and the tuple corresponding to the
selector is paraphrased as before. This continues until there are no nodes (selectors) left in the
tuple (conjunction). Here the loop terminates and this paraphrase program completes.)

Implementation of the general paraphraser is pending decision on the adoption of an
object—oriented environment. The paraphraser’s notion of inheritance would be well supported
by an object—oriented approach. The only existing paraphrasing mechanism in Advase is a rule
paraphraser which is described in the next section.

8.2. The Existing Rule Paraphrase Module

The existing paraphrase module is designed to “‘unparse’ rules. It is capable of converting
rules in their network form to the G’.VLl form. The rule evaluator was modified so that could

also paraphrase rules. The rule evaluation function was retained.

There are two user callable procedures, PAINIT and PARAPHRASE, PAINIT is used to

initialize the module and has the same calling sequence as REINIT, namely:

PAINIT (schemetuple,schemetuplelength);

Where...

schemetuple is the tuple specifying the rule
evaluation schemes as in REINIT and

schemetuplelength is the length of the above tuple.

PARAPHRASE was adopted from procedur ~UATE in the rule evaluator module and is
called thus:

3¢

PARAPHRASE (rulepart,width,textfile,value,errornode,error);

¢ Where...

rulepart is the part of the rule to paraphrase
and can be a whole rule down to a selector,

width is the width for the text to be placed in
textfile,

textfile is the text file to place the results of
paraphrasing in,

value is the value of evaluating the rule part and
is not defined for whole rules,

errornode is the same as in procedure EVALUATE, and

error is the same as in procedure EVALUATE.

The internal structure of the paraphrase module is the same as the rule evaluator module.
The modifications done to the rule evaluator procedures are marked with the comment,
(*PA*). This is only a preliminary version of the PARAPHRASE module. Beware of
undocumented features.

CHAPTER 9

The Tuple Manager

9.1. Introdu-rion -

The = sie Manager is an implementation of a generalized network manager similar to
that describei by Baskin [Baskin 1979 in his PhD dissertation. By offering a variety of high
level primitives with which to manipulate the network, it allows the user considerable —
abstraction from the Pascal data types actually used to store the network. The user works
directly with n-tuples {n < 256) which are arrays of symbols to be manipulated. There are
actually three networks simnultaneously active which allows for separation of public and private
knowledge, and which enables one to experiment with a scratch network. The TM also
supports procedures that will write out backup files and text files to re-create the network
state.

9.2. The Data Types

A tuple is represented by a Pascal array of symbols, which in turn are represented by a
variant record. This is analogous to lists in LISP with the exception that the list elements -
cannot themselves be lists, but must be atoms. Another difference is that the tuple manager’s
list elements can be accessed directly rather than having to traverse the list with compositions

of cars’ and - -3’

There a-- four types of symbols supported by the tuple manager; integers, reals,
textnodes, ar. :eneral symbol nodes. The most general type of symbol is allowed to have
attributes at*. 1=d and manipulated. These attributes are similar to LISP properties, however -
the attributes are referenced and stored by keying on as many of the left most symbols as
desired, rather than one. This will be made clearer in the discussion of some of the tuple
retrieval procedures. The textnodes are designed for the efficient storage of text and therefore,
like the integer and teal symbols, are not allowed to have attributes. From the user’s
perspective these n-tuples of symbols are just entities that can be stored, retrieved, and
modified in a variety of ways. The semantics of tuples is defined by the user program, but the
capabilities of the tuple manager allow for representation of any specialization from, and —
including, a generalized graph. So far use of the tuple manager has been limited to rules, tables
in a relational data base, and a directed acyclic graph.

For cfficient storage and retrieval of the tuples, they are indexed by their first symbol. A
symbol consists of a node and its {possibly empty) set of attributes. A node is represented by a
Pascal variant record which contains its printname, internalname {(a unique node identifier), a
pointer to its set of attributes, and various housekeeping variables. The attributes are stored as
a linked list of linked lists of subnodes, each subnode consisting of the internalname of the node
that it is ~»preser-ing. By referencing other nodes in the attribute list using only their
internalnz rathe- :han a pointer, the TM is more easily able to make disk versions of the
networks - . rereau them into main memory. -

The wuple manager supports a dictionary for retrieval of a symbol given its printname,
When a network is read in from a backup file only the symbols in the dictionary, and any
symbols reachable from those, are accessible to the user. The function of the dictionary is -

90

91

similar to the function of the LISP ob-list. During a session, though, not all of the network’s
symbols may be reachable from the dictionary due to local creation and storage of symbols.
The LISP analogy is a ‘gen-sym' atom. The tuple manager implementation of the dictionary is
a hash table that uses an intable collision resolution scheme. The procedures for entering,
removing, and looking up a symbol are discussed in the next section.

9.3. The User-—Visible Procedures

The user—visible tuple manager procedures are listed in alphabetical order below.

Procedure ADDATTRIBUTE. ADDATTRIBUTE takes a tuple as a parameter and adds
it to the existing network. This is done by first finding the parent node of the tuple using
FINDNODE. The proper place for the remainder of the tuple (the attribute of the node) is
determined by a parameter passed to the procedure. This slot is then located and the incore
subnode structure of the attribute is created.

Procedure ASCIINT. This procedure converts the ASCII representation of an integer into
the machine representation of that integer. This is a machine independent algorithm.

Procedure ASCIIREAL. The real number counterpart of ASCIINT. Also machine
independent.

Procedure CLOSENETWORK. CLOSENETWORK saves the state of all three levels of
networks in the user’s files. See OPENNETWORK. The dictionary is saved in the global level.
The housekeeping pointers and variables are saved in each of the files. If one closes a network,
signs off the system, and then opens the network, the state of that network will be unchanged.

Procedure CLOSENODE. This procedure takes as parameters the internalname of a
node, a flagword to store with the node, and a level on which to find the node. It then locates
the node with a call to FINDNODE, stores the flagword with the node, and then decrements the
open counter (opencount) of the node. It does not alter the status of the node. A node with an
opencount of zero is considered to be closed, and unavailable for access until opened.

Procedure CREATENODE. This procedure takes a flagword as a parameter and a level
on which to work, and creates a new regular node, assigning a unique internalname to the new -
node. The node is not opened - it is just created. The opencount, usagecount, and
attributecount are all set to zero. The printname is set to the null word so it will need to be
filled in by calling the procedure SETPRINTNAME.

Procedure CREATETEXTNODE. This is a simple procedure that will create a new text
node and assign it a unique internalname to it. An integer flagword is passed to this procedure
and this is placed in the new text node. The internalname is returned by
CREATETEXTNODE. This procedure does not open the node - it just creates the node. The

new node is initialized with the opencount, currentline, and number of lines of text all set to
zero.

Procedure DELETEDICT. DELETEDICT removes an entry from the dictionary. If it is
not found then it does nothing. The stringpool is unaltered by this procedure, but its
information is made unusable as is its storage area occupied by the printname. Therefore
repeated calls to this procedure will create wasted space in the stringpool that cannot be
recovered in the present implementation.

Procedure DELETESLOT. This procedure is the inverse of ADDATTRIBUTE. Given a
particular attribute to be removed, it just deletes it from the in-core representation. It does
this by first locating the node using FINDNODE, and then traversing the linked list of
attributes until it has traversed as many as passed in the parameter slot. The subnode
structure of the attribute is then removed. The value for slot that is passed as a parameter

must be found by using the procedure GETATTRIBUTE.

92

Procedure DELETETUPLE. This is also the inverse of ADDATTRIBUTE. Unlike
deleteslot, however, it takes a tuple as input. DELETETUPLE locates its parent node using
FINDNODE, locates the slot under the parent node containing the tuple, and then deletes the
tuple using DELETESLOT.

Procedure DESTROY, DESTROY takes as parameters the internalname of the node to
be destroyed and the level on which to destroy it. It will then wipe out the node by first finding
the node with FINDNODE, and then returning the node structure to the free node pool. This
procedure will not remove a node from the dictionary. This is because a node can exist
simultaneously on different levels. An error is returned if a request is made to destroy a real or
integer node. '

Procedure ENTERDICT. This procedure takes as input an internalname and its
printname and stores it in the dictionary if it is not already in the dictionary.

Function EQ. This boolean function takes two internal names as parameters and returns ‘

TRUE if they are equal or FALSE if they are not. It first checks the type of
internalname(node, text, real, or integer) and then checks for equivalent values depending of the
type. In the case of a real node the numbers must match exactly, there is no allowed error.
This can create problems if any arithmetic is done with a real number and comparisons are
made using that number. ‘

Procedure GETATTRIBUTE. This procedure takes a tuple and its length as parameters
along with a location to begin the search, and returns the complete tuple and the slot under
which it was found. The tuple passed to GETATTRIBUTE can be a left context tuple or a
complete tuple. If a left context tuple is given then only the first matching complete tuple will
be returned.

The procedure works by first finding the node using FINDNODE. It then counts down
the attribute list looking for the attribute at which to begin the search for the particular tuple.
From there it searches the attribute list in order looking for a tuple that matches as much of
the tuple that was passed for the search. As soon as a matching tuple is found, the entire tuple
is loaded into the return tuple and the slot under which it was found is loaded into the return
slot.

Procedure GETPRINTNAME. This procedure takes as a parameter the interna’:ame of
a node and returns either its printname or its value, depending of the type of node. iitisa
textnode or a regular node then the printname is returned. If it is a real node or an integer
node then its ASCII representation is returned. For the latter two types of nodes the procedure
converts the node value to the ASCII representation with calls to either ASCIIREAL or
ASCIINT. In the case of a text node or a regular node the procedure first has to find the node
with a call to FINDNODE. It then packs the printname into the return parameter.

Procedure INHERITATTRIBUTE. Like GETATTRIBUTE, this procedure takes a tuple
and its length as parameters along with a location (slot) to begin the search, and returns the
complete tuple and the slot under which it was found. The tuple passed to
INHERITATTRIBUTE can be a left context tuple or a complete tuple. Unlike
GETATTRIBUTE, however, the search is not restricted to tuples under the main node of the
given tuple. INHERITATTRIBUTE also follows inheritance arcs to other nodes to match
tuples (ignoring the main node, of course). INHERITATTRIBUTE also looks under subnodes
of the tuple (by substituting the subnode for the main node) for the desired attribute {tuple).
The search is exhausted vertically (along inheritance arcs) at each subnode before beginning
recursively from the next subnode (horizontally). Additional parameters specify the maximum
numbers of inheritance arcs and subnodes to search. The number of inheritance arcs and the
number of subnodes searched are also returned. INHERITATTRIBUTE calls
GETATTRIBUTE with the appropriate substitutions for the main node.

93

Procedure INTASCII. This procedure is a machine independent algorithm that converts
an integer into its ASCII representation.

Procedure INTERINT. This is a bidirectional conversion procedure that converis
to/from internal name representation from/to the Pascal integer representation. Presently
there is no differenct between the two and the procedure just outputs the proper part of the

internalname record passed as the parameter, or fills the proper part of the record depending on
the direction of conversion.

Procedure INTERREAL. This is the real number counterpart of the INTERINT
procedure.

Procedure LOOKUP, LOOKUP is the dictionary access procedure which takes a
printname as input and returns an internalname and nodetype. If a real node or an integer
node is passed to LOOKUP, then the ASCII representation is returned. LOOKUP works by
searching the dictionary hash table for a match of the printname.

Function NTYPE. This function takes as input an internalname and returns as its value
the nodetype of that node. The function is very fast and should be preferably to opening a
node just to find out its type.

Procedure OPENENTWORK. OPENNETWORK opens three user networks at the three
different levels {global, local, private). It creates the lists of free nodes and subnodes, and

arranges all of the housekeeping pointers and variables. The dictionary is also read into the
mermory.

Procedure QPENNODE. Opennode takes as a parameter the internalname of a node and
the type of access desired and opens the node if the access matches the allowed type of access
for that node. The node is opened at a particular level, depending on what level is requested,
also a parameter. Values returned by the procedure are the number of attributes, the flagword,
and the type of node. If one is opening a node merely to determine its nodetype, then a better
option would be to use function NTYPE,

OPENNODE works as follows. If the node requested is a regular node or a text node then
FINDNODE is called to iccate then node and bring it into the core memory if it is on disk. If
the node was not located, and if the level requested was not global, this procedure will look at
progressively higher levels for the node and copy it to the requested level if the node is found.
Il the node is located then its opencounter is incremented and the return parameters are set, If
the node is not located then an appropriate error message is returned

Procedure READBACKUP. READBACKUP takes a backup file and re-creates the
network exactly as it was when the backup file was written.

Procedure READTEXT. This procedure takes a text file of the network and creates a
new network based on the contents of the text file. Every node in the network is entered into
the dictionary, making this procedure of very limited utility except for small networks. The
procedure will have problems if one attempts to load more nodes than will fit in the dictionary .
Currently the limit is 499. This procedure is in need of some modification in the future.

Procedure REALASCIL. This is the real counterpart of INTASCIL. It is also machine
independent.

Procedure SETPRINTNAME. This procedure is the inverse of GETPRINTNAME. This
procedure does different things for different types of nodes. For real or integer nodes it sets the
value of the node to the Pascal implementation of that value. This is done with a call to either
ASCIIREAL or ASCIINT. For regular nodes the node is first located with FINDNODE. Then
the node’s printname is assigned the printname that was passed as a parameter. For text nodes
the node is located and then the printname, passed as a parameter, is interpreted as a line of
text which is added to the end of the existing text for that text node.

94

Procedure WRITEBACKUP. This procedure writes out a backup file that will allow the
exact state of the network to be preserved. The dictionary is included in the writeout
procedure. Nodes having the same printname are not merged, as in WRITETEXT below.

Procedure WRITETEXT. This procedure will write a text file of the network to a
specified filename. The algorithm used will cause nodes having the same printname to be
merged. The dictionary is not saved.

9.4. Important User-invisible Procedures

Procedure FINDNODE. By far the most frequently used procedure in the Tuple
Manager, FINDNODE is designed to be as fast as possible given the limitations of a linked list
representation of the network. It takes as a parameter the unique node identifying number and
returns a pointer to the internal memory representation of that node. It works as follows. All
of the nodes in the memory are hung onto a hash table using a linear chaining collision
resolution scheme. The proper hash table entry is determined from the node identifier and that
particular linked list is searched sequentially for the node.

In an earlier implementation, the tuple manager was directly responsible it for virtual
memory management ie. ensuring that memory used for nodes did not exceed the core limits,
and swapping nodes from disk to core when core memory was full. In that implementation, il
FINDNODE did not find the node in core then the area on the disk that should be occupied by
the node was examined. If the node was on the disk then it was brought into the core network.
A return pointer was then set to the node. If the node was not in memory and not found on the
disk then nil was returned,

In the current implementation, all virtual memory management is performed by the Unix
operating system. From the user’s point of view all of the nodes are in core at the same time.

CHAPTER 10

General Utilities

This chapter describes two utilities availabe for use in Advise, The first is the Tester
Program which can be used as a low-level network debugger for Advise knowldege bases. The
second utility is a set of trap functions, hard—coded functions available for reference from rules
in the knowledge base.

10.1. The Low Level Network Debugger

The Tester program was originally developed as a tool for testing the tuple manager. It
has evolved into a program that can be used to perform tests on the rule evaluator, the
paraphraser and the tuple manager. In addition, it allows the user to debug or otherwise
manipulate a knowledge base after it has been parsed. This section describes the functioning of
the Tester module. The program was coded originally by Heinrich Juhn. Lance Rodewald and
Albert Boulanger have supplied additional enhancements.

10.1.1. Tlow to Use the Tester Program

The Parser reads in a rule base and outputs a network or backup file. The Tester

program allows the user to examine the backup file and -edit it. Before looking at an
example of a portion of the backup file some definitions are in order:

(1)

(2)

(3)

(4)

node: A node is simuply a symbol. Each node has an internal name that is hidden
from the user and is accessed via a printname. A printname is simply a string of
characters that represents a unique identifier for a node. These printnames are _
collected into a dictionary that is manipulated by the tuple manager.

tuple: A tuple is a vector of nodes, integers or real numbers. A knowledge base is
represented internally as tuples. The node in the first position (slot 1) in a tuple has a
special significance. It represents the place where information about the node is
stored. This same node may appear in other tuples {(but not in the first position) in
which case it can be viewed as a pointer back to that tuple in which the node appears
in the first position.

slot: A tuple’s slot corresponds to its vector address. For example, a tuple is declared
as:

tuple: array {1..tuplelength| of internal _names;

Slot number n (1 <== n <= tuplelength) is the nth element of the vector (tuple[n}).

attribute: An attribute is a tuple representing a property about that node that
appears in position 1. A node may have several properties "hung under* it.

For example, consider an attribute in a knowledge base called TEMPERATURE. It can
take on the values BELOW_NORMAL, NORMAL, or ABOVE_NORMAL. It would appear

in the following form when viewed via the Tester program:

95

The

a8

(TEMPERATURE (
(MKDOMAIN MKNOMINAL BELOW NORMAL NORMAL ABOVE _NORMAL)
)) '

node TEMPERATURE (its printname) has under it a single attribute that specifies the

possible values for the node. The identifiers MKDOMAIN and MKNOMINAL are semantic
markers used internally by the program to identify this attribute as representing the domain
of the variable TEMPERATURE, and that domain is scaled nominally.

10.1.2.

Tester Commands

This section contains a list of commands available in the Tester program. Each

command is one or two letters, and the user may be prompted for additional information
after requesting a particular operation.

Basic Commands

o83

rb:

wbs

wis

rte

[

343

These commands perform the basic network manipulation functions.
The {h)elp command displays a list of commands available to the user.

The (o)pen (s)tandard command prepares the program for (r)eading a (b)ackup file. In
general, this is the first command a user should issue. Motre than one backup file can
be manipulated in a single interactive session with the Tester program. In this case,
the user should issue the {c)lose command before another {o)pen (s}tandard command.

This command {r)eads a (b)ackup file. The user is prompted for the name of that file.
The user should not issue another rb command in the same interactive session without
issuing the (c¢]lose command first.

Used to (w)rite out a (b)ackup file. The user is prompted for the name of the file to
create for storing the network. This is useful when the user wishes to keep changes
that have been made to the network.

This command will output the entire network in a readable form. It is useful for
hand-checking parser output and gaining some insight into how a knowledge base is
stored.

This command reads a file in the readable form that is output by the wt command. It
is particularly useful for adding new rules to a network without going through the
trouble of re-parsing.

The {c)lose command frees internal storage used by the Tester program. It should be
issued before reading another backup file in the same session.

This command functions identically to the os command in the current
implementation.

This command allows the user to set the level of tuple manager debugging
information. This information is always placed in the file named “msg’’ which can be
“examined at the end of a session.

Display a (n)ode and all of its attributes. The user is prompted for the name of the
node to be displayed. The command may fail if the node’s printname is not in the
dictionary (initially, very few nodes are in the dictionary). A nodes printname can be
entered in the dictionary using the (m)ark command.

This command can be used to (g)et an attribute hung under a node. It establishes this
attribute (if the command does not return an error) as the current tuple. A current

gis

ad

.
:

Is

97

tuple is assumed to exist when using other commands (See, for example, the (mjark
command). The attribute tuple is accessed by specifying node printnames beginning
with the node in slot 1. The user is asked to provide a “left context’ for identilying
the attribute he wishes to access. This *“‘left context” is simply one or more
printnames in the order they appear in the tuple, beginning with slot 1. The user is
prompted for the number of printnames he wishes to use as a *left context” and then
is asked to enter those printnames. For example, in the TEMPERATURE tuple
presented earlier, this tuple could be accessed by entering the number “2” when
prompted for length and then the names “TEMPERATURE” and “MKDOMAIN”
when prompted for the printnames. remember that the printnames must be in the
dictionary for this command to succeed (you may have to use the (m)ark command to
enter them). Also note that the case of the letters is significant when matching
printnames. A simpler mechanism for looking at the network is provided by the *‘s”
commands (sw,sp,etc.).

This command also gets an attribute from the network as does the g command. The
fi command, however, uses an inheritance mechanism to find an attribute. The
inheritance mechanism is described in the chapter on the tuple manager.

This command (a)dds a tuple to the network. As in (g)et, the length of the “left
context” is requested and printnames of that context. The tuple is hung under the
node in slot 1 of the ““left context” if that node exists in the dictionary, otherwise the
node is created.

This command is used to {d)elete a tuple. It functions just like (g)et and (a)dd.

Used to (m)ark a node (i.e. enter its printname into the dictionary). The user is
prompted for which slot (element) in the current tuple he wishes to mark. These slots
are referenced one of two ways: either by its slot address as a positive integer
(counting from the left} or by its slot address as a negative integer (counting from the
right). For example, if the current tuple has length 3, its last slot can be referenced by
either 3 or -1.

This command causes a (lJevel change. Three copies of each knowledge base are
maintained: the global, local and private level copies. Initially, the global level copy is
manipulated by the Tester program. For more information on levels, see the tuple
manager chapter.

This command no longer has a function,

Used to (p)urge a printname from the dictionary, The user is prompted for that
name.

The x command deletes 2 node that has no attributes. If the node has some attributes

hung under it this command will fail (the d command should be used first to delete all
attributes}.

Retrieves and displays a line of text from a textnode.

This command will retrieve and display all the lines of text in a text node.

“This command will store a line of text under a textnode. The user is prompted for

that line of text.

Network Traversing Commands

The group of commands that follow have been added in order to simplify the process

of descending into a knowledge base network. In particular, they allow the user to look at
parts of the network without having to enter a series of (in)ark commands followed by (g)et

98

attribute commands to descend into the network.

sg:

SwWi

ans

812
sa2

st

This command gets the first tuple in the network. The user is prompted for its
printname and it becomes the current tuple.

Prints all of the attributes under the current tuple.

This command is followed by a space and then an integer. It prints the n-th attribute
under the current tuple.

This command is followed by a space and then an integer. It descends to that node in
the current tuple as specified by the integer.

This command goes back one descent level.
This command will add an attribute under the current descent level.

This command is used to transfer the current iuple as seen by the *‘s” commands into
the current tuple as seen by the “d” command. It is useful for deleting tuples,

Module Testing Commands

The commands below are used to test the rule evaluator and the rule paraphraser. All

of these operations affect the node in slot 1 of the current tuple. This node in most cases
corresponds to the printname of a rule.

-

Jst

Initializes the rule evaluator. This command must be issued before attempting to
evaluate or interpret a rule.

Used to put a value/confidence pair under a rule. Before attempting to evaluate or
interpret a rule, the variables involved in the left~hand side of that rule should have
values. These values can be inserted by using this command.

This will get the value/confidence pair under a node (if it exists). For example, the
user may want to see if a value/confidence pair was placed under the rules right-hand
side after interpreting that rule.

This command will evaluate the current node (usually a rule).
This command will interpret the current node.

Used to initialize the rule paraphraser. Must be issued before attempting a jt
command.

Used to paraphrase the current node.

10.2. The Trap Module

This section describes the 21 TRAP functions used in PLANT/cd. These [unctions
implement the deep model of black cutworm damage (BCW) as developed by Steve Troester
[Troester82a.b,c,d]. The BCW development model by Kimpel [Kimpel78] and used in Steve
Troester’s programs [Troester82c,d], was not used in PLANT/cd. Instead, a simplified
simulation was developed. The TRAP module and this documentation was written by Albert
Boulanger.

The rule evaluator uses the Special Functions Module (also known as the TRA? module)
to evaluate TRAP functions that are in the rules. A TRAP function has the form:

http:comma.nd

99

TRAP(number,pl,p2,...,pn)

Where...
number is the TRAP number, and

p1l,p2,...;pn are the parameters to the trap function.

The rule evaluator passes the TRAP number and the parameters to procedure TRAPFUNC in
the TRAP module. Procedure TRAPFUNC has a case statement in which the TRAP numbers
serve as case labels. Upon branching, several operations are performed. The TRAP parameters
are converted from their network representation to a Pascal representation. Parameters that
are nominal are usually mapped into a Pascal scalar variable. Next the semantics are executed.
This is usually a call to a procedure or function. Finally the outgoing parameters are converted
from their Pascal representation to their network representation. These procedures are lexically
scoped within procedure TRAPFUNC, although there are several utility procedures outside.
One procedure that is outside is procedure TRINIT that the backward control scheme code calls
to initialize the TRAP module. Each of the current TRAP functions is described briefly below:

-

TRAP 1. This was used for developing the TRAP module and is no longer used.

TRAP 2. This calls TRASKSTATION which asks for the closest weather station from
the user, by a special protocol. This procedure was necessary because STACODE (the
station code) is a nominal type variable with too many domain elements to be handled by
creating a set of touch targets.

TRAP 3. This calls TRASKTRAP to obtain the moth trap counts over a span of 11
weeks beginning March 17. The user can enter unknown for any of the entries and the
system will assume a value of 0. It will also set the certainty of the first parameter to the
TRAP function to 0.5, Also provided is a check for proper number format. If something
entered was not a number, the user is asked to reenter his data. This type checking is
performed for all the user input routines in the TRAP module.

TRAP 4. This calls TRASKATTR to obtain the field attractiveness rating for the same
11 week time span. Unknown values are handled in the same way as in TRASKTRAP.

TRAP 5. This calls TRASKBCWPOP fo get the larval age spectrum in the feld. This
works like TRASKTRAP and TRASKATTR. TRASKTRAP, TRASKATTR, and
TRASKBCWPOP use TRDSPWEEKS and TRDSPLCNTS to produce the appropriate
column headings. They also use TRGSTUFF to get the user input.

TRAP 6. This calls TRCTOEGGS to convert the moth trap counts to an egg population.
Egg population is equal to 5.7 times the moth trap counts [Troester82a).

TRAP 7. This calls TRCTOFLD to cenvert the eggs laid in the region to eggs laid in the
consultation field. This is done by multiplying the egg population by the attractiveness
rating.

TRAP 8. This calls TRDSPEGGS to display the egg population in the consultation field
and the surrounding area.

TRAP 9. This calls TRDSPTAB to display the results of the cutworm development
model. This is in the form of a transition matrix which shows the dates when different
instars will undergo age transitions.

TRAP 10. This calls TRDSPLTAB to display the results of plant development.

»

100

TEAP 11. This calls TRDSPPOPVSSTAGE to display the results of putting cutworm
development in terms of corn development. This is called matrix K in [Troester82a].

TRAP 12. This calls TRGETDDTABLE to get the degree day data necessary for the
corn and cutworm development models. The two incoming arguments, STACODE and
OBDATE, are used to specify the location and start day of the data respectively.

TRAP 13. This calls TRPLANTDATE to backward develop the corn in order to estimate
the planting date (PLANTDATE) given the observed fractional leaf stage (FRACT), the
corn variety (VARIETY), and the observation date (OBDATE). This relies on work
described in [Troester82a). This procedure calls TRLEAFLOOKUP.

TRAP 14. This calls TRCORNDEVELOQP, the corn development model. Inputs are the
planting date (PLANTDATE) and the corn variety (VARIETY). This also relies on the

work referenced above.

TRAP 15. This calls TRBCWDEVELQP, the cutworm develo: zent model. Inputs are
OBDATE and PLANTDATE. This :.:el has two different One sectionr is used
only if eggs are forward developed frcm an observation date les. -..an planting date. This
section is bypassed if actual larval counts are input. In Steve Troester’s work, eggs are
developed with a model built by Kimpel [Kimpel78] and simulated using GASP 5. For
PLANT /cd, another approach was used. The egg population was forward developed until
planting date. Then the differ- ¢ aged larvae are classified into the closest instar category.
The simulation from there i+ - - same as described in [Troester82a] and is the same one
that simulates cutworm dev: - >ment given actual larval counts. This procedure calls
TRAVERAGE as a utility procedure. The procedures TRSMOOTH and TRSURVIVE
are provided for experimenting with smoothing the egg distribution, and simulating larval
mortality. Currently these are not used.

TRAP 16. This calls TRPOPVSSTAGE to put the results of cutworm development in
terms of corn development. Th.. . based on the work described in [Troester82al.

TRAP 17. This calls TRIDAMAGE to estimate cutworm damage without recovery
and without regrowth. Input to this function are MUCHWEEDS, VARIETY,
MOISTURE. The parasitism rate is set to a constant. Output of this function are the corn
yield without insecticide treatment and without recovery (YIELD1) and the percent
damaged corn (CORNDAMAGE). This and the following three TRAP functions rely on
work described in [Troester82a).

TRAP 18. This calls TRZDAMAGE to estimate cutworm damage without recovery but
with insecticide treatment. This function uses FRACT and MOISTURE (scil moisture) to
compute YIELD2 {yield without recovery and with insecticide treatment).

TRAP 19. This calls TRIRECOVER to estimate corn recovery without insecticide
treatment. This function uses MOISTURE and HOTWINDY (whether it is hot and
windy) to compute YIELDINC1 (yield increase due to recovery without insecticide
treatment) and TOTRECOVER (percent total recovery of the corn).

TRAP 20. This calls TR2ZRECOVER io estimate corn recovery with insecticide
treatment. It uses FRACT and MOISTURE to compute YIELDINC2 (yield increase due
to recovery with insecticide treatment.)

TRAP 21. This is used to prompt fo- and obtain the value for the date variables used in
PLANT /cd. It returns the number of - day entered in mm/dd/yy format. To obtain the
date from the user, it calls TRASKDATE. TRASKDATE checks for proper date format.
The year is stored internally in the TRAP module.

http:TRBCWDEVEl.OP

101

- TRAP 22. This calls TRGETLSTAGE which is used to calculate the fractional leaf stage
(FRACT) given PLANTDATE and OBDATE.

- TRAP testnum. This is used to call the trap module exerciser routine, TRTESTR.

The TRAP module also has a driver program that is used to run it in test mode. In this
mode, the major functions are exercised, and damage estimates can be obtained without the use
of the knowledge base (i.e.,, it runs in stand alone mode.) The main program calls
TREXERCISE to do the exercising functions. This procedure calls TRAPFUNC and has it
branch to testnum in the case statement,

CHAPTER 11

Rule Based Inference Control (PLANT/ds)

11.1. Introduction

The PLANT/ds consultation program is an experimental expert system used to advise
farmers on diseases common to soybeans in Illinois. The program acts as a diagnostician, by
asking the user questions regarding problems observed in the diseased crop and returning a list
of the most likely disease candidates. A general description of the problem domain and an
zariler program can be found in [Chilausky79]. This section describes the realization of
PLANT/ds within the environment of the ADVISE knowledge programming system, with a
particular emphasis on the control strategy employed. The program and this documentation
was prepared by Mark Seyler.

The responsibility of the control scheme is to make the knowledge embedded in the
program available to the user by conducting a consultation, The search space represented by
the PLANT/ds problem domain is of sufficient size that the control strategy utilizes search
heuristics that attempt to focus the consultation on only that knowledge relevant to the user’s
problem. An approximate reasoning method found useful in this particular domain is selected
(from the several available in the ADVISE system). The control scheme is also responsible for
explaining some aspects of its reasoning process and providing access to the knowledge it
contains. Each of these aspects of control will be discussed in turn.

11.2. The Knowledge Base

Knowledge in the PLANT/ds system is represented as decision rules in the GVL,

formalism [Michalski80]. There are two types of rules, those that represent hierarchical
relationships among variables (candidate rules) and those that reflect the relationship between

the variables and the SOYBEAN DISEASE goal variable (goal rules). An example candidate
rule is:

[LEAF_SPOTS = ABSENT]

n>
[LEAF SPOTS_MARGIN = DOES_NOT_APPLY|
[LEAF _SPOT SIZE = DOES_NOT_APPLY]

In this case, the variable LEAF _SPOTS represents a grosser level of detail than the other two
variables. This use of two levels of detail is one mechanism by which attention can be focused

as early as possible on that class of diseases relevant to the problem at hand. An example goal
rule is:

102

103

0.8{TIME_OF OCCURENCE = AUGUST..SEPTEMBER]
[CONDITION_OF LEAVES = ABNORMAL)|
[CONDITION_OF STEM = NORMAL]
[LEAF_MILDEW_GROWTH = ON_UPPER LEAF_SURFACE]
+
0.2[PRECIPITATION < NORMAL]
[TEMPERATURE >= NORMAL]
>
[SOYBEAN_L}ISEASE = POWDERY.,MILDEW]

There is one rule of this sort for each of the possible diseases (currently 20), All of the variables
in the rule’s left hand side are those deemed relevant to that disease. They are grouped
together and weights assigned to each group (linear module) according to the importance of
that variable to the disease in question. The weights sum to unity and evaluating a rule of this
type can be viewed as accumulating positive evidence that the disease in the rule’s right hand
side is present.

There are two sets of goal rules {rule groups): those output by the inductive learning
program AQ-11 [Michalski78] and those compiled by the expert plant pathologist. The AQ-11
program attempts to find the minimum number of of variables that successfully discriminate
the various classes of soybean disease. These rules are used to reduce very quickly the number
of disease candidates considered by the program. Orice the number of candidates is reduced to
5 or fewer, the expert compiled rules are evaluated and used in the remainder of the
consultation.

It was recognized early that knowledge regarding the consistent diagnosis of soybean
diseases was not complete. For this reason, a method of representing and combining
approximate reasoning is employed. Furthermore, confidence in a particular observation may
be prone to error and for this reason the user is asked to select a confidence in his answer.
Details of the evaluation scheme used in PLANT/ds can be found in [Michalski82|.

Aside from the candidate rules, which are used to reduce the search space, the PLANT /ds
knowledge base is two-leveled. This does not lend itself well to classical chaining {(backward or
forward] control strategies that establish intermediate goals. Instead, the problem is one of
selecting among one of many possible terminal goals (soybean disease). The primary
PLANT/ds control loop is outlined in a Pascal-like pseudo code below:

104

repeat

select the most useful variable;

if the value is not known ask the user for it;

find all those rules in which this variable occurs;
(in the left-hand side)

for all of the rules found above do begin
evaluate the rule;
if its value is below the threshold then

eliminate it from consideration;
until all of the variables have been selected;

The control scheme attempts to minimize the number of questions asked of the user. In
this respect, it acts in much the same fashion as the human expert, who eliminates those aspects
of the problem irrelevant to the task at hand and focuses on what is most relevant. PLANT/ds
uses two mechanisms for focusing attention to the most likely disease candidates. The first is
by the use of a hierarchical variable structure ([the candidate rules). The second is rule
elimination by thresholding. Any time a goal rule falls below a certain threshold {determined
by the knowledge engineer and domain expert}) it is eliminated from consideration. The
algorithm for selecting the most useful variable can then be formulated as follows:

select a variable that may satisfy one of the
candidate rules;

if none of these are available then
select a variable with the maximum utility where utility
is defined as the number of rules in which the variable
oceurs;

By defining utility in this fashion, the program will attempt to eliminate as many goal
rules as it can as early as possible. The viability of a rule in the PLANT system is defined as
the degree of truth of its left hand side. This degree of truth cannot be calculated exactly until
all of the variables on the left hand side have a value. However, a best case truth value can be
calculated at any stage by assuming those variables that do not currently have a value are
satisfied. If a rule’s best case truth value falls below the threshold, the rule can also be
eliminated from consideration. By eliminating goal rules, any variables they involve can be
eliminated, thereby reducing the number of potential questions. In experiments done to date, of
a possible 40 questions possible only about 15-20 are asked by the program.

Another aspect of control embodied in PLANT /ds is that of allowing the user access to its
knowledge and some aspects of its reasoning. This aspect of transparency is highly desirable in
expert systems both because it increases user acceptance and can be used 25 a tool for testing
new knowledge bases. During the variable value request portion of the program a number of
options are made available to the user:

105

(e) Provides assistance in clarifying the question being asked.
(v} Lists those diseases still being considered and their best case confidence.

(w) This option displays the change that would occur in the confidence in each disease for
each possible response.

(r} Displays those rules in which the current variable is found.
{b} Allows the user to return to the previous question.

(m) Allows the user to modify his answer to the current question.

After the program has displayed its conclusions, the user can make further inquiries of the
knowledge base:

- Program execution statistics can be examined.
- Any rule in the knowledge base can be displayed.

- For any goal rule, a list of those selectors that failed can be displayed. This can be used
to determine why a particular disease was ruled out or how the confidence in the most
likely disease might be improved.

In addition to the capabilities mentioned above, the control scheme can be reconfigured prior to
entering its consultation phase. The user can elect to use only the machine generated or expert
rule groups. The breadth of the search can be adjusted by choosing to gather packets of
information before evaluating. These packets represent groups of variables whose values are
asked of the user prior to evaluating any rules. The thresholds used for rule elimination can be
set as a means of balancing the performance of a particular rule set. A final option allows the
user to select a novice or experienced mode of consultation. In the novice mode, additicnal help
and guidance is given throughout to consultation as a means of training new users in its
function and operation.

11.3. Using the PLANT Program

The PLANT program resides on the VAX-~11/780 at the University if Illirois, Urbana-
Champaign. It represents one of the earliest experiments in expert systems to be developed
within the ADVISE environment and is still undergoing improvement. In parallel, the PLANT
program was being "'downloaded” onto a small computer (the IBM PC). A sister system TURF
was subsequently developed by Greg Smith, and later Bob Reinke and Jiarong Hong readapted
this for the vax—sun Unix environment for rapid compiled execution.

The PLANT program can be executed on the VAX by typing $ADVISE /kblib/plant.
it generates diagnostic and performance messages which can be examined after the session in a
file called msg. The program can be configured to run on a particular terminal by re-loading
the program with the appropriate device driver or loading the "gkuniversal” and "gktermecap”
routines developed to support UNIX termcap conventions (in which case the shell TERM
variable should be properly initialized).

11.3.1. Data Structures

The architecture of the Pascal modules is such that each should remain active
throughout the life of program execution. This means that a static memory area is set aside
for each module. In the case of the control scheme modules, such as PLANT/ds, this area
contains a number of useful data structurespertinent to the regulation of rules and
variables. This section elucidates the various elements to the PLANT/ds control scheme
static area as defined in "csconst.h".

106

The following constants are available:

esc ascii escape character (note: UNIX cbreak/raw mode required to detect this),
bs ascii baskspace character,

sp the space or blank character, also available as the constan "blnk"

qm the character "?",

e the ascii character "e",

) the ascii character "o",

maxnumvars the maximum number of variables = 500, simply to set array dimensions,
maxnumrules maximum number of rules = 1000, also determines array size,

mnblocklen refers to the ::tal number of blocks
{rule groups -~ var defns + function defns. == 14.

The following types are declared:
byte a single byte quantity,
intype a half byte quantity,

foldtype for possible options (min,prod,aver,full) of folding together truth value
weights, (noprotect is delete old valcons, protect is save them)

updatctype for specifying what to do with old value/confidence pairs of variables,
noprotect is delete old valcons, protect is save them,

pktypes specifies question packet options {pkone == one at a time, pkall = all at one,
pkhalf = more important half of the questions first),

rwiype form generation options = (readin,writeout).

Within the master record type, csstatic, the folowing fields are declared:

error main error indicator, there is an extensive errortype declared to indicate
which of multiple errors have occurred

answers array of variables’ state values,

goodrules list of the currently viable rules,

frmenbl a boolean array indicating whether or not a predefined frame {screen

image) is enabled or not (to be asked); certain frames or forms are
preconstructed, but exactly which ones should be filled in are a function of
the state of the consultation

backllg - whether or not the current state is go backwards, i.e., the option to go back
to a previous state has been requested,
fastexit whether or not to immediately exit consultation,
iplilg whether or not to reinitialize the session, i.e. completely reset system and
) start over
earlyexit boolean flag, whether or not a premature exit is . - g taken, not exactly

the same as immediate exit,
exitmsg what to print out as we exit session,

rg pointer to current rule group,

viablegoals
expert
machine
stop
escexit

changed

unpropogateable

currform

maxform
lastform
scrn8in

scrnoutl
scrnfil
scrnout?
startslot
trerr
dummy
debug
evalenable
. thresh
erthresh
mrthresh
usemachine
useexpert
firsttime
level
backup
paraf
noopen
dspname
memavail
elapsedtime
jobtime

walltime

107

current # of viable goals,

intnamerec of expert rulegroup,

intnamerec of machine rulegroup,

number of viable goals to stop with,

boolean condition which indicates ESC exit of form,

boolean array of variables, indicates if a wvariable wvalue was
changed/updated,

boolean array of variables, indicates if a variable can not propagate
number indicating the current form in the consultation,

number indicating the maximum form number, including dynamically
constructed forms at a particular point in the consulation

number indicating the form asked in the consultation, not the same as
currform-1, and useful to the "back” operation

file pointer to the sern8in file, which is used to dynamically construct new
forms beyond the static forms,

file pointer for a work file, used in dynamic form construction
file pointer for a work file, used in dynamic form construction
file pointer for a work file, used in dynamiec form construction
csget-getattribute startslot, cstools global

trap function error-unused here, cstools global

dummy intnamerec parameter to cstools

boolean flag indicates whether to spit out debug messages,
boolean flag (true = turn on evaluator)

machine/expert rules confidence threshold, optional to erthresh/mrthresh
expert rules confidence threshold

machine rules confidence threshold,

boolean flag, if true use machine rules,

boolean flag, if true use expert rules,

used to convey lst variable in consultation,

indicates one of 3 network levels: global, local, private,

text file pointer to backup file to be read/written,

text file pointer to paraphraser scratch file,

boolean flag tells if any nodes open,

boolean flags, if true dump printname else dump property,
param to szestimate, gives available memory {on stack),

time since last calil to plreport,

total elapsed jobtime,

wallclock time at start of program,

wayn-
waywz; oack
approxeval

packetoption

newuser
olduser
confirmed
nqueries
xintnamerec

vars

rules

erules

goal

imkzzzzz

108

boolean flag (if true back to beginning of a rulegroup),
boolean flag (if true back from expert to machine rules),
boolean flag {if true enable approximate evaluation),

option as to number of questions to ask before sending a question, can be
one, half, all,

if true, then is new users,

if true, then is old users,

boclean flag, tells whether hypothesis is confirmed,
number of questions asked

a spare pointer, for development work,

a record with the following elements:

list — an array of records, one for each variable, giving following’
id - the variable internal "intnamerec” reference
asked - boolean flag, if true variable was asked of user
propogated— 0 = unpropagated, l..n == when propapagated
tells whether all consequences of a variable
value have been spread (number indicates which
frame actually solicited the variable value)
candidate— boolean flag, true = candidate for this rg
freq — integer indicating lhs frequency of variable

nvars — integer indicating length of variables list

npropogated - integer indicating # of variables propagated

a record with the following elements:
list — array of records, one for each relevant rule with following
name — the rule designation as an intnamerec
viable — boolean flag, if true rule still viable *)
nrules — integer giving length of rules list

a record with rules to be evaluated after variable query with the following
elements:

list ~ tuple having intnamerecs of relevant rules

¢p - whether to use printname or blanks in printing

nrules — number of rules in list

status of goal node record, contains following items

id — intnamerec representation of goal varaible

val - array records pertaining specific goal variable values
id — intnamerec representation of value
conf -~ real number specifying confidence of value
viable — boolean flag indicating whether value is viable

nvals - integer number of goal variable values

nviable — total number of viable goals

network is zccessed by determining the internal names of the mark types
of form imkzzzzz; allows convienent access to the tuples used by the
control schema; procedure plinitmk determines the internal names of the
necessary mark types as part of the control schema initialization by
locking them up in the dictionary,

icszrzzs

108

similar to imkzzzzz, but more control scheme use than general use

11.3.2. Control Scheme Tools Package

The code in "cstools.h” was felt to be of general utility to both PLANT/cd and
PLANT/ds in writing control schemes. A brief description of each procedure follows. Note
that each routine takes a pointer to a csstatic area as its initial argument.

csherror

csegpname
csgetpname

csput

csmakename
csgetreal
csputreal
csginteger
csputinteger
csrealp
csintegerp

csopen

This procedure is used to handle error conditions. Given an errortype and
msgstr, it displays the error to the user and puts a dump in the message

file.

Given 2 nodes, this function returns true if the printnames of the two
nodes are equal.

This procedure gets the printname of a node. notice that it uses dynamic
dimensions for the array that is holding the print name.

Given a tuple and tuplelength, this procedure puts it in the network,
however first checks to see if there is a tuple with the same left context up
to a specified tuplelength (possibly of shorter length than the whole tuple),
If there is one it deletes it, then adds tuple. Thus, this procedure can also
replace.

This procedure make a node with a print name in the dictionary if it is not
there already.

This converts the network representation of a real number to the Pascal
representation.

This procedure puts the Pascal representation of a real number into
network form,

This converts the network representation of a integer number to the Pascal
representation.

This procedure puts the Pascal representation of a integer number into
network form.

This function is used to check to see if the node represents a real value,
generating real value if it is.

This function returns true if testnode represents an integer, generating
integer value if it is.

This procedure is used to open nodes under a restricted protocall. This is
meant to be used to mark the fact that a node should not go away through
several closely placed {in time) calls to tuple manager routines that use the
node. This assumes that a use counter is now implemented for nodes. One
further note: most of the routines in cstools are node-open-~or-close—status
preserving if a use counter is implemented. Thus to keep the use count
above 1 to state that a node will be around for a while, then do a csopen
on the node at the beginning of transactions on the node, then do a csclose
at the end of the transactions. This procedure and its companion are here
for efficiency reasons.

csclose

cshasprop

csputvaleon

csgetvalcon

csdumptext
esgetint

csrevaluate

cspresults

csgetlabdata

csget

csstrengthtofire

csrinterpret

|
| 110
|

|
This is the companion routine to csopen. It decrements open count.
This boolean function is used to check on the existence of a property
(intnamerec) under a node.

This procedure is used to store value {intnamerec), confidence (intnamerec)
pairs under the variable, vari {intnamerec). It calls in turn the system wide
procedure to do this. Assumes updatetype = { protect,noprotect), i.e.,
how to handle previous values, is defined on top of this procedure.

This procedure is wused to get the tuple “"duples” containing
value/confidence pairs under a node. The returned tuple has its lst elt the
"node” intnamerec, its 2nd elt the "mkvalcon” intnamerec, and the
following elts will be the value/confidence pairs. The boolean argument
"novals” indicates whether no value/confidence pairs were found.

This is used to dump the text of a property under a node out to a textfile
(to be later displayed on the screen).

Given a marktype, this procedure returns its internal name by looking in
the dictionary. If it isn’t in the dictionary, a new node is created.

Given a rule (intnamerec) to evaluate, this routine sends the necessary
information to the evaluator and returns the rules truthvalue and a
boolean flag indicating whether evaluation completed (e.g., whether all
necessary variable values were present). If the rule ths has been compietely
evaluated, complete is set to true.

Prints to a file the confidence values of a variable which is assumed to be a
goal variable. If no values are viable, a boolean flag is set.

This procedure is used to get a liz: of labdata variables for the ruleset
(intnamerec). The tuple of labdata v :'ables are asked for at the beginning
of trying a rule group.

Gets an attribute tuple under main node ¢l by matching context (cl ¢2 ¢3
c4). note that level is global to this and other procedures in this utility
package. Accnotfound flag specifies whether to error out if not found.

Given a confidence from the evaluator, this routine calculates the strength
to fire the rhs from alpha. Four schemes for folding the confidence with
alpha are available :

1) min (minimum of confidence and alpha) (default)

2) product (confidence * alpha)

3) average ({confidence + alpha) / 2.0)

4) full {(alpha).

Given a rule(intnamerec), its truthvalue and foldscheme, this routine

invokes the interpreter with the necessary information after calculating its
strength to fire.

11.3.3. PLANT/ds Tools Package

The PLANT/ds system was originally encoded simply in terms of the appropriate
“"estools” constructs and a set of procedures and functions. Subsequently, these were modified
to be of more general value in generating "PLANT/ds-like" systems. This package is
referred to as "pltools” and is summarized here.

plgetstr
pldumptext
plemptyvar

plrankresults
pldispname

pireport
plputbanner

plpagel
pusers

plpage2

plresdump
plgrabresults

plresults

plputdomain

plparaf

plregrule
plrelrules
plstatusofgoal
plagoalrule

plisgoalviable

plgetrhsval

plrulesdump

111

Gets a msgstr from file or terminal and determine length as integer value.
Dumps property under node to standard output.
Clears avar (intnamerec) of all its valcons.

Sorts and prints results (i.e., goal variable value/confidence pairs) in
descending order according to confidence.

Puts inames (intnamerec) printname in iofile and returns its integer
length.

Reports msgstr on some current job statistics.

Puts advise banner on screen.
Displays a PLANT/ds specific introductory panel on screen.

Asks the user his name to check if he is a priviledged user, checking
against the names file for number of times he has previously used the
system (>>57). Update in nnames by incrementing his entry there.

If a priviledged user, various options can be set as to the control scheme.
This is meant to follow a check for priviledged users (pusers).

Dump to msg the results data structure along with note msgstr.

Assumes rule (intnamerec) has fired; looks under the goal node for resuits
of firing and stores the results.

Print results of plant consultation. Print indicated diseases (within .2 of
max confidence and > erthresh). Also print contra-indicated diseases
(diseases ruled out).

Outputs the variable name, its domain and provides selection of items for
each domain element. Also returns the domain tuple and its length:
for integer~domain[1] - start of domain, domain[2] - end of domain
domlength — negative of # of values in domain
for real-domain[1] - start of domain, domain|2| - end of domain
domlength - 0 *)

Paraphrases item (intnamerec) which is a rule or rule subexpression and
places text on the screen. It handles paging through text which is too big
to fit on one screen.

Prompts the user for a rule option request, i.e., asks user which rule he
wants to see, then calls plparaf.

Prepares display of all rules relevent to a variable (intnamerec).

Copies all viable rules in the goal record onto a screen frame. If boolean
flag pviable = true then prints viable goals, otherwise prints non-viable
goals,

Returns true if rule (intnamerec) has a rhs which contains a goal.

Check whether goal value of rule {intnamerec) is amongst the viable
candidates.

Given a rule (intnamerec) and the goal variable (intnamerec) gets the
internal name of the reference in the first selector of its rhs. If the selector
found is not a goal selector plgetrhsval returns false.

Dump to msg file the rules data structure, along with note msgstr.

112

plerulesdump Dump to msg file the erules data structure, along with note msgstr.

pigetvars Gets a lhs variable list for a rulegroup designated by rg in the control
scheme static area and copies the information into the wvars data
structure.

plcandidates Marks as cansidates for network propogation every variable in vars that
occurs in the ruiegroup’s lhs.

plgetrules Loads the rules data structure with the rules in the current group (rg) and
initializes that data structure.

plisruleviable Returns plisruleviable = true if the rule (intnamerec) passed is currently
viable.

plruleviable Marks the rule (intnamerec) as no longer viable: if settrue = true then
rule set to viable else rule set to not viable.

plgoalviable Marks the goal value sought by specified rule {intnamerec) as no longer
viable: if settrue == true then goal is set to viable else goal is set to not
viable.

plvarunknown Returns true if their are no values under variable avar (intnamerec) or its
value is unknown.

plvarselect Select a variable avar {intnamerec) that has yet to be propogated thru the
network. Use precedenc:

1) select var whose value is known but not yet

propogated(a ths non-goal variable},

2) select the first biased variable encountered,

3) select the variable with the max ihs frequency. If avar has no value,
askforit is set to true. If all the variables have been propogated, found is
set to false. loc returns a pointer in the var vector to the variable
selected.

plmarkpropogated The propogated flag of avar (intnamerec) is set to mark.
plclearerules Clear the erules data structure.

plmatchrules Finds all the rules in rulegroup rg that have avar in their lhs’s and places
them in the erules data structure. It will only insert those rules that are
not already there.

plselectrule Select next rule from erules data structure. If none is available, found is
set to false.

plbuildfreq For each candidate, un-propogated variable in the vars record sets its
frequency field to an integer value corresponding to the number of viable
rules’ lhs’s in which it occurs.

plsmstats Display some job statistics.

plsmfailed Given a rule node and the location of its corresponding location in the
goals list, displays all failed selectors. '

plfailed Pr- - =ts the user for the goal rule he wishes to examine, then calls
pi »d to display it.

plsumm Dis;. : program summary information.

plinit Init. . (25 system, reading in backup file backupfn.

plgoalinit Init; . . »s the goal structure. This should not be so intimately bound as it

is to vhe other initializations,

plexprep
plhypelim

plgetdomain

plwhy

plvarsdump

plevalall

plcloseout

113

Prepare expert rules for use.

Displays a frame listing all eliminated hypotheses since the last call. Also
provides several user options similar to plgetdomain.

Given a variable varcurrent, retrieves a value and confidence pair for it

from the user. If back is true the user requested going back to a previous
question.

User option that looks at all the possible answers to the current question
and reports to the user how they would effect the status of the goal.

Dump to msg file the vars data valyes.

Evaluate all the rules in the rules list using the threshold thresh regardless
of current viability.

Perform various closing tasks.

CHAPTER 12

Rule Based Inference Control (PLANT /cd)

12.1. Introduction

This chapter describes the backward chaining control scheme used with the PLANT /ced
knowledge base. The program was written by Albert Boulanger.

12.2. User Description

The PLANT/cd control scheme was patterned after the EMYCIN [vanMelle79] view of
control. In addition to this basic control, PLANT /cd features antecedent rules {limited forward
chaining), "labdata" variables (variables that are marked to be asked before any other variable),
and multiple goals for a rule group.

This control scheme makes use of properties. Properties are pieces of text a rule or
variable can possess. These are very much like LISP properties; i.e. they have a type and
contents. {See description of the parser.} The control scheme uses the PROMPT property of a
variable to ask for the value. The TRANS property of a variable is used to display the value(s)
of the variable. This property is a better description of the variable than the variable’s name.

ANTECEDENT rules allow for limited forward chaining in a backward chaining
mechanism. Whenever a variable is asked for, or it is updated by the execution of a RHS {right

hand side}, all ANTECEDENT rules that refer to that variable on their LHS (left hand side)
are tried.

GOAL variables are variables whose value/confidence pairs are displayed to the user at
the end of a session. They usually represent the entities that the user seeks advice on. This
present PLANT /cd control scheme allows for more than one GOAL variable.

LABDATA variables are variables that are used often and usually represent basic
information. LABDATA variables are sought out (either by asking or inferring) before GOAL

variables. Unlike EMYCIN, in which such variables were always asked, PLANT/cd allows
these variables to be inferred.

12.3. Control Scheme Details

The most important parts of the backward chaining control scheme, a program called
BWARD, are illustrated in flow chart form in Figures 40,41 and 42. The called procedures are
in capital letters in these figures. The procedure names are idealized a bit since the actual
names start with the module 2-letter prefix BC to abide with ADVISE module naming
conventions. Also many of the low level procedures are in a set of utility procedures, called

CSTOOLS, that is shared between PLANT/cd and PLANT/ds. These procedures are prefixed
with CS.

The top level (Figure 40) contains a loop that enables multiple consultations to be
performed within one session. The items that need to be initialized once across several
consultations are initialized in procedure START. The initialization that is needed before each

114

115

TCP level

A
POET IR SO K
initielixa interral
rames
imtialize othar
mochy | @3

¢
P ——————

4
PR T T
ABR fOr TUIR GTowD
TV S1ei e antecedunt
rales
FTIOOJT labaats vars

G= d;n> [Fiaay :‘acn Toas 1
L

4 PRINTCONCLUSIONS on
#HLON SaEL

A1 2B e vahiua of var
AR L Lo

_}

S o AL
reaat {or snotrme
corsalitatian

]

Figure 40: Flowchart depicting the top-level structure of PLANT /cd.

consultation is performed in procedure LOOPSTART. In LOOPSTART, the rule group (the
knowledge base) name is requested, the GOAL variables for this rule group placed on a list, a
list of ANTECEDENT rules obtained, a list of "simple” ANTECEDENT rules obtained, and
the list of LABDATA variables retrieved from the network. The simple ANTECEDENT rules
are next tried. Finally, values for each of the LABDATA variables are searched for using the
FINDOUT procedure described below.

After this initialization, each of the GOAL variables is assigned a value using the
FINDOUT procedure. This is the main part of the consultation. After the GOAL variable
values are obtained, they are printed with their confidences wusing procedure
PRINTCONCLUSIONS. The consultation is ended by cleaning up for a new consultation and
calling LOOPSTART again.

The FINDOUT procedure {Figure 41) is responsible for finding the value of a variable;
either by asking for it, or by using rules to infer it, or both. It first uses the ASKFIRST
function to check if the current variable has the ASKFIRST property.

If it does have the ASKFIRST property, then procedure ASKFORIT is called to get the
value from the user. After obtaining the value from the user, procedure CHKANTE is called to
evaluate and possibly fire any ANTECEDENT rules that has the variable in their LHS. The
SHOULDINFER function is then called to see if the variable also needs to be inferred. The
decision to infer a value involves several considerations. In the most general case, there is the
value/confidence pair requested from the user and there is the value/confidence pair inferred
from the rules. The process of resolving any differences in these value/confidence pairs will be

118

FIMNDOUT procedure

es Ao

W

ASKFCRTT IMER
anx {or
variasie

CAFPITE
chreck
Sntecacent)

Put uren
vaiua for
varisole

Figure 41: Flowchart depicting the FINDOUT procedure.

called voting. There is a scaler PASCAL variable, VOTESCHEME, that indicates the resolution
method. The voting method used in this control scheme is to replace the current
value/confidence with the more current one. In the general case, the decision to infer after
asking for the variable is a function of the voting scheme used. In the case of this control

scheme, the variable is inferred after asking for it if the current value/confidences are below
SATISFYTHRESHOLD.

If the current variable should not be asked first, then the variable is first inferred. The
SHOULDASK function is called to see if ASKFORIT needs to be called. To be asked, the
variable has to have a PROMPT property. Also, the maximum certainty has to be less than
SATISFYTHRESHOLD. 1If the variable should be asked, then ASKFORIT as well as
CHKANTE is called. If the variable should not be asked and the maximum certainty is below
the FAILTHRESHOLD, then the value UNKNOWN is assigned.

The INFER procedure {Figure 42) uses the rules to determine the value of a variable.
INFER first gets the list of rules whose RHS update the current variable. This is done by
procedure GETRULES. Next, RANKRULES is called to rank this list. This procedure is
currently empty. At this point, a loop is set up to try the rules in the above list.
SHOULDCONTINUE is called to check if the maximum certainty of the value/confidences for
the current variable is above SATISFYTHRESHOLD. This is one terminating condition for the
loop; the other is when all rules have been tried.

Inside the loop, the list of variables used in the LHS of the current rule is obtained by
calling GETVARLIST. This list is ranked in procedure RANKVARS. A simple rule is one that

117

CETLES
gez ii1st of
rules that coyld

uodate var INFER procedure

I
LN
rans tThe ruies
{emart s}

——

QS awnsid YES

e 5T 1 B s
cantirse?

get vars in rang tha vars
LHS of rule (eratwl
mms

e

3
%S oo S and
LT | FUocyr . checx ante.
wvai ns Tima out rules
of male | var s value |
RCTIR =
| —

Figure 42: Flowchart depicting the INFER procedure.

does not use any variables in its LHS. There is a check after getting the list of variables for the
current rule whether the rule is a simple rule. If it is, then the LHS is evaluated and the rule is
checked to see if it fired. For rules that are not simple, then another loop is set up to use the
FINDOUT procedure on each of the variables in the LHS variable list. For each variable value
determined, the LHS is reevaluated to see if the certainty of the LHS faills below
FAILTHRESHOLD. If it does, the loop is terminated, and the rule will not fire. The other
terminating condition for the loop is running out of variables. Upon exiting the loop, the rule is
checked to see if it fired, using the function FIRED. If the certainty of the LHS is greater than
FIRETHRESHOLD, then DORHS is called to execute the RHS. Since executing the RHS may

update variables, CHECKANTE is also called on all the variables that are updated in the RHS
of the current rule.

12.4. Future Research Goals

There are a number of improvements that might augment the power of the present
version of the control scheme:

. Self referencing rules.
. EMYCIN contexts and between context reference,
. Variable blocks. These are groups of variables that can be requested in a group. This

could be done by setting up an empty table for the user to fill in — as in EMYCIN or by

multiple display module blocks on the same screen.
Consultation typescript file.

The ability to save and reload prior consultations.

118

CHAPTER 13

Context Driven Data Annotation (BABY)

13.1. Introduction

This section describes BABY, an expert system to aid clinicians who manage patients in a
Newborn Intensive Care Unit {NICU). BABY was developed and partially implemented by
Lance E. Rodewald. Throughout this section, ‘user’ refers to a clinician using BABY as a
monitoring ald; ‘expert’ refers to a person designing the medical knowledge base; and
‘programmer’ refers to a writer of expert system software.

Overview of the Clinical Environment. BABY’s task is to find clinically important
patterns in the medical and demographic data about NICU patients. It is targeted specifically
on the NICU for two reasons-—there is a need for a system like BABY, and the chance for
success is good due to peculiarities of neonatology. There are few areas in medicine where the
amount of data, especially numeric data, is as great as in a NICU. The volume of information
to be comprehended can be great enough to overwhelm the clinician, and much data is either
within normal limits or changing slowly, creating the potential for a decreased index of
suspicion of new findings. In contrast with adult medicine, the relative importance of the
monitoring data to physical exam findings is greater because the babies often do not
demonstrate obvious physical signs with serious disease. The vast majority of data can be
made available on-line for a computer system [Frayer 80|[La Gamma 80|. Machines already
monitor many physiologic parameters and have been used for extraction of significant events
from the stream of signals coming from monitoring equipment [Freedman 79]. Additionally,
the past medical history of a newborn is much more concise than that of an adult. Because the

number of diseases is limited, the amount of medical knowledge needed for interpretation of
findings is reduced.

Overview of System Function The design philosophy behind BABY is that the system
should metaphorically act as a neonatologist observing all on-line data in the nursery, keeping
track of the clinical states of the patients, suggesting further evaluation for important findings,
and answering questions about the patients. This places BABY in the relatively benign role of
the observer, who answers questions, rather than that of the attending, who asks the questions.

BABY, although it uses a knowledge base, differs significantly from other medical expert
systems in that mandatory human interaciion is de-emphasized. This departure from the norm
is done for two reasons. Most important, it was felt that the expert system, to have a good
chance for success, should integrate itself into the daily routine instead of forcing a change in
this routine, The second reason is that there are many inferences to be made from the
automatically collected data that are either not attempted, or not done well, by current
laboratory computer systems. In other words, there is an environmental niche for an expert
system in the NICU to intelligently annotate the incoming data.

The role of BABY forces several requirements on the expert system structure. First, the
man-machine dialogue must be primarily initiated by the user. This, in turn, requires that the
the workings and current state of the machine be made as transparent as possible by the user
interface. In particular, the system’s current impression of the patient must be explicit and

accessible, as should the means for inferring that assessment—the lab values and knowledge
structures.

119

120

The automatic nature of the non-user input means that the system must be able to
interpret information not specifically requested. To do this accurately the machine must assess
the data in the context of global knowledge about the patient. A computer representation of
the patient’s state which is capable of conditioning the input interpretation is therefore needed.
BABY represents clinical states as prototypic data patterns that are matched against current
information in the patient’s database. Embedded in these patterns is information indicating
the clinical context required for an appropriate match so that interpretation will not be
attempted with a pattern that is out of context. ’

Having BABY suggest further work-up to clarify problems identified in the automatic
data implies that the system be able to identify the tests most likely to supply valuable
information. Ideally, this ability should be derived from the machine’s assessment of the
patient’s condition in order to use global knowledge for test selection. Pattern prototypes that
can match partial or incomplete data and signal to the user the missing information provide
BABY’s solution to the problem.

Overview of System Strueture. There were two guiding forces in the BABY design.
Most important, the system was designed from the user interface inward to maintain the
desired type of man-machine interaction. Second, it was integrated into the ADVISE system in
order to use the knowledge engineering tools developed at the University of [llinois.

The previously mentioned metaphor for the system poses a number of engineering problems. A
knowledge representation must allow data-driven interpretation; the control scheme has to be
semi-autonomous; and the representation of the patient state must be made available to the
user interface operators. The resulting BABY structure is shown in Figure 43. The patient
state and user interface are central to the system ‘since the other modules interact through
them. The ADVISE system provides the software environment for both system development
and operation.

BABY needs to interface with at least the hospital information system to obtain the lab values
and demographic information. In addition, if monitoring input is to be used, the stream of raw
data must be preprocessed to extract significant events. In other words, BABY is not a machine
for data storage or signal enhancement; the existence of that capability is assumed. Rather,
BABY is a knowledgeable interface between clinician and NICU computers that makes sense of
the patient’s data by putting it into a clinical context.

13.2. Clinical Perspective

As an aid to the neonatologist, BABY aims to help with the tedious tasks rather than
those in which the clinician has the most individualistic approach and takes the most pride.
Therefore, it was felt that BABY should intelligently follow the data about the patients and not
concentrate on the differential diagnosis.

13.2.1. Role of BABY in Diagnosis

In their description of clinical problem solving, Eddy and Clanton identify four main
tasks [Eddy 82]. They are: selection of a pivot, generation of a cause list, selection of a
diagnosis, and validation of the selection. As mentioned previously, a pivot is a
pathophysiologic state around which a differential diagnosis can be developed. BABY only
addresses the first step—it is strictly concerned with finding pivots in the data. Selection,
pruning, and validation are left to the clinician.

Sidestepping the medical diagnostic process has at least two advantages. Most
important, false positives become acceptable because the burden of diagnostic proof remains
on the physician. Having BABY only provide pivots also has the advantage of simplifying
system architecture and knowledge base construction. The complexity and size of
CADUCEUS’s knowledge base testifies to the difficulty of computer differential diagnosis

121

HOSHTAL Mow TR HowWITOR HOITOR How ol
INFaRH{AT oM VEVILE
SY3Ten ! A 3 n
7
3
1y,
=
X1
:Ww
J
" | INFERENCE
ENS[VE
= N
©<
- B
2 | Knowieoss
- BASE
PATIEA/T
sTATE
d? 4
J— b “ o
' : vatidié
HIS QUERIES A5 éRT10ws
YT sTioar

N

USER IWNTERFACE

Figure 43: System Structure

[Pople 82].

13.2.2. Clinical Patterns

There are three pattern types that need to be distinguished: patterns annotating a
single variable, patterns composed of more than one variable or subpattern, and patterns
that assign risk value. The risk assessment pattern is a special case of patterns composed of

122

other patterns, but its clinical usage is quite different.

Variable Annotation. Given a laboratory value or significant event from monitor
output and the clinical state of the patient, an expert system should be able to decide if the
value is low, normal, or high. Determination of the reference range for a single variable
depends on demographic and pathophysiologic parameters of the patient. These
parameters, embodied in the patient state, drive the variable annotation. For example, the
relation of the serum sodium level to an appropriate normal reference range depends on the
state of renal maturation, which itself depends on the age and length of gestation.

In order for a system to be accurate in its annotation, global interpretation of the
variables is needed. In contrast, most computer systems that indicate a lab value’s location
in a reference range use a single range for all patients, regardless of other values known
about the patient. Often the lab systems do not have demographic and clinical information
with which to make inferences, and without a large amount of patient information any
attempt at accurate annotation is bound to fall short. Neonatologists notice this problem
often because adult normal values differ so markedly from newborn normal values, After
some experience with inaccurate annotation, the clinicians tend to look only at the values
while ignoring the computer’s assessment of those values.

Global interpretation puts a large demand on the accuracy of the machine version of
the patient’s clinical state. If annotation could be done well, there would be much value to
it. However, the problems of representing clinical information in machinable form is quite
difficult. BABY approaches the problem of global interpretation by having appropriate
pathophysioclogic states condition the interpretation of incoming data. The portion of the
knowledge base to use in annotating the data depends on the state of the patient.

Combination Patterns. Different lab values or monitoring events that must occur
together to signify a finding comprise patterns of the second type. These groupings of data
usually indicate pathophysiologic phenomenon in the patient. An example is the finding of
metabolic acidosis, which itself depends on more primitive patterns such as acidosis,
hypocapnia or normocapnia, and hypocarbia. The distinction between data annotation and
combinatjon patterns is that one should always be able to annotate a variable, while the

presence of the latter type of pattern is less predictable. The combination patterns to expect
depends on the clinical situation.

Risk Assessment Patterns. While the above combination patterns represent
pathophysiologic states, another type of combination pattern could be used to assign a
degree of risk for the occurrence of an event or complication of therapy. Although they do
not strictly represent pathology, it is desirable to identify these patterns if they are evident
in the automatically collected data. As an example, consider a data pattern that tries to
predict the risk of an iatrogenic pneumothorax in a ventilator-dependent patient. Such a
pattern would need data about the respirator pressures and rate, the patient’s disease, his
age, a measure of the Jung compliance and its trend of change, the breathing pattern
{fighting the ventilator?), and a history of prior pneumothoracies. A monitoring system that
could accurately assess the risk in different patients might be able to prevent this
catastrophic occurrence by raising the clinician’s index of suspicion. This particular pattern
probably could be built and tested in the clinical setting.

13.3. Clinical Context and Patient State

The clinical context within which the data is gathered presents a problem. Few values
can be interpreted in isolation of other findings or parameter measures. Consider the value of
the variable AGE. The actual age of the patient is really a statistic used to help assess the
parameter of physiologic maturity of the patient. In a baby, knowledge of age is not enough
since the length of gestation is also needed to determine the degree of physiologic maturity.

123

Therefore, a system to analyze lab data containing variables whose reference range varies with
renal maturation, for example, should be prepared to take into account the patient’s
physiologic age.

Although this seems straightforward enough, the problem becomes less clear when one
considers how the normal reference range is defined and used. The interpretation can vary
from a gaussian distribution of lab values to an aesthetic ideal of the most perfect value for an
individual [Galen 80]. In the former interpretation, the range is usually defined as those values
{alling within two standard deviations of the mean, While this is the most common derivation
of "normal” and is easy to determine, it often is incorrect in a given clinical setting because
heterogeneity of the target population is accounted for statistically rather than individually.
More precise norms could be defined for smaller populations. This problem is seen in pediatrics
where normal growth and maturation are constantly changing the normal range. In general,
the creation of context-dependent normal ranges is difficult because of problems in defining the
contexts. In BABY the reference ranges are defined by the knowledge base author, as are the
contexts. Ideally, a system should allow clinicians to define their own contexts in order to tailor
the system to meet their own specific needs.

Searching for these three pattern types within the clinical context of a patient is the
primary purpose of BABY. The immune system provides a biologic analogy to the type of
information processing performed by BABY. The animal’s antigenic stimuli become the data,
while the antibodies become the patterns to be matched against that data. Like the antibody
waiting for its antigen, the pattern does nothing until a match is found in the data which then
causes an action to take place. The clinical context of the patient is used to condition the
activity of individual patterns in the set of possible patterns. As with the immune system, and
unlike the nervous system, there is no centralized control for the patterns; it is distributed
among its individual elements. In practice, of course, BABY has to simulate this
decentralization because of its implementation on a non-parallel processing machine.

13.4. Knowledge Engineering Environment

18.4.1. Clinical Data

There are three sources of input to BABY: significant events extracted from monitor
equipment output, information available on a hospital information system, and user input
during an interactive session. BABY needs no user input at all; it will make whatever
inferences it can from the automatically collected data. If a user wishes to interact with the
machine, more inferences can be made with the additional information he or she supplies.

The data available in the NICU can be classified in two different ways—by function,
or by collection method. Functionally, it is either automatically collected, or it is requested
to answer a specific question. Distinguished by collection method, data is either obtained
continuously by machine, intermittently by machine, or is observed in the process of a
clinician’s physical assessment. Continuously sampled physiologic indicators would need to
have significant events extracted from the analog signals.

The significance of this classification is that it delimits the function and structure of
BABY within the limits of the metaphor describing its purpose. Functionally, the standard
input is automatic data, while the standard output is assertions about the patient along
with new data to clarify clinical indings in the data. Structurally, the standard input only
excludes physical signs. Often BABY will have to make its inferences within the scope of
the allowable data.

124

13.4.2. Uncertainty in Medical Data

Certainty of medical data decreases with time; the more time that elapses since a
measure was taken makes the value less reliable. The rate of certainty decline varies
considerably from test to test, and within the same test, depending on the stability of the
patient. To complicate matters further, the loss of certainty, although monotonic, can be
non-linear. It is desirable for the knowledge representation to express temporal uncertainty,
but to do it accurately is far from easy.

For a monitoring expert system, the NICU has the advantage that data is refreshed at
frequent intervals. Temporal uncertainty is reduced most by this mechanism, but by using
comparisons to previous values, uncertainty due to factors intrinsic to the test or collection
procedure can also be decreased. BABY deals with uncertainty in a probabilistic sense.
That is, certainty (and uncertainty) are explicitly represented as probabilities of truth in an
assertion. Combining different sources of uncertainty into a single probability is done with
a method similar to that used by the PROSPECTOR system [Duda 78],

13.4.3. The Knowledge Base

Two important aspects of a knowledge representation are its notational efficiency and
expressive adequacy [Woods 83|. Expressive adequacy is concerned with what the
representation is capable of stating about the world. Notational efficiency has to do with
the ease with which it can be stated. Of the two attributes, expressive adequacy is probably
the most important because it limits the potential of the representation.

The knowledge base often has a single representation format that limits its
expressiveness, but makes inference engine development easier and facilitates knowledge
base creation and modification. The representation method selected usually allows for some
degree of domain independence. In addition, modularization is strived for in expert system
design so that the component parts can be more easily modified. Therefore, control and
knowledge ought to be developed separately, but in practice it is often difficult to completely
remove elements of control from the knowledge base. For example, in MYCIN the
antecedent ordering in a rule affects evaluation order in the backward chaining,)

As mentioned before, the BABY knowledge representation consists of rules connected
together by a network that guides the control scheme to a limited number of inferences.
BABY has a large element of control in its representation which is expressed with context
nodes that signal to the inference engine a portion of the knowledge base is usable for
inferences. These context nodes act as keys, indicating that a pattern is potentially relevant
and should be searched for. During knowledge base design the context nodes let the expert

confine his or her reasoning to a smaller problem within the defined context, easing the
creation task somewhat.

13.5. Baby Implementation

The current implementation of BABY consists of two Pascal programs situated within the
ADVISE system on a Vax 11/780 computer at the University of Illinois. One program is a tool
for knowledge base creation and is responsible for translating a text deseription of the rule

network into a machinable form. The other program uses this machinable representation to
interpret the NICU data and run the user interface.

At any point during runtime, BABY is either updating information, waiting for
information, or interacting with a user. While updating information, the knowledge base is
unstable and unavailable for user queries or input. As inferences about the patient are made,
they are scrolled onto the appropriate output window where they remain until new information
makes them invalid. Following knowledge updating, the variables most likely to influence the

125

patient state are reported and the user has a chance to interact with BABY until new
information is supplied by the laboratory computer or patient monitors. The resuit is a
mixed-initiative dialogue with the user in control of the questioning phase and the machine
intermittently supplying a summary of its findings.

13.5.1, User Interface

The user interface attempts to maximize the man-machine communication band width,
while at the same time minimizing the need for a specific communication language. Using
windowing techniques and a pointing device, the number of verbs needed in the interface is
kept to a minimum. Central to the user interface is a bit~-mapped graphics terminal which
communicates serially with the ADVISE computer. All non-numerical user input is done
with a mouse pointer acting on pop~up menus.

There are five physical windows in the current implementation that correspond to four
conceptual views of the system and one scratch window for interactive system output. Two
windows deal with output, and two windows deal with variables.

BABY has two types of standard output-—assertions about the patient state and
suggestions for refinement of that state. Assertions are scrolled onto one window and any
user queries concerning the patient state or list of current assertions takes place within this
window. The suggested variables are scrolled onto a second window. If the user wants to
supply any of these variable values, he or she would move the pointer into the window to
select the proper variable. If the variable type is nominal, a pop-up menu with its domain
appears and selection is again made with the mouse. The keyboard would be used onlv to
supply numeric values.

The third window gives a view into the variables of the hospital lab system, and
would be used as a regular interface with the lab. The other window gives a view into the
BABY variables. Here requests can be made to see a variable’s value or domain and values
can be provided for variables that were not suggested by BABY.

The graphics terminal supports many primitive functions needed to manage windows,
including window creation, clipping, saving contents, context switching, and pointer
management. The programmer uses these procedures in routines which bind data base and
knowledge base information to the windows. For example, a menu can be placed in an
ADVISE textnode, which in turn can be executed by a user interface procedure. This
procedure is textnode independent, and the user choice is returned as a small integer to the
calling procedure where binding of the appropriate subroutine to that choice is made.

13.5.2. The Knowledge Representation

A BABY knowledge base provides a representation for a collection of prototypic data
patterns that are to be searched for in the laboratory and monitoring input. Any prototype
that matches an appropriate combination of data elements from the input will be asserted
to the user. Each of these prototypes has a truth value representing how well the data

substantiates the prototype, so an assertion is made only if the truth value is above the
pattern’s threshold.

The pattern prototypes of BABY wait for data to justify them in a bottom-ubp, data—
driven manner. The pattern prototypes that are active and thus trying to match data from
the input depends on the past history of the data. This is accomplished by having only

patterns present that are in clinical context; thus only appropriate patterns will be available
for matching.

128

The prototypes have the form of directed, acyclic graphs with unique roots. The
graph consists of nodes connected by directed arcs. At one end of the graph is a root that
represents a clinical or pathophysiological condition and always has a current truth value,
or degree of belief in that condition. At the graph’s other end are leaves to act as data
entry points. The BABY leaves take the form of VL1 rules [Michalski 74| which, at the
minimum, compare a variable’s value to a reference value, returning a truth value as its
result.

See Figure 44 for an example of a knowledge base pattern.

The BABY rules are used as predicates for matching a condition to a truth value. The
ADVISE subset of the VL1 is the language that defines both variables and rules. For a
description of variables and rules, see Chapter 6. Rules are connected to the graph structure
with arcs that act as conduits for propagation of truth values. The variables contained
within these rules may be used in a large number of unrelated rules, creating the problem of
mapping variables to their respective rules, a necessity arising from the data-driven nature
of BABY. The VL1 parser creates a symbol table for this mapping that is used by the
inference engine to locate the pattern leaves currently in context and available for matching.

Patterns are recursive structures composed of nodes, arcs, and rules in a2 manner
similar to a PROSPECTOR knowledge base network [Duda 78]. The information content
of a pattern is summarized with a single number between zero and one, its truth value,
representing the degree of confidence with which the pattern is believed to be supported by
the input data. The recursive nature of the patterns arises because they can be used as
intermediary nodes in other patterns, as their truth value is propagated upward to any
patterns of which they are a part.

The truth values travel along arcs in the direction of leaf to root, being processed
along the way at the intermediary nodes. These arcs are currently of two types,
EVIDENCE and CONTEXT, having quite different semantics. Both arc types carry
information which, when present, supports the truth of the parent node. However, the
CONTEXT arcs have explicit control information that indicates whether or not the parent
node is clinically relevant. If in context, the parent node is made a part of the active
knowledge base and can be used to match input data. Otherwise it is essentially excluded
from the collection of current patterns until the context changes. Thus, the CONTEXT
arcs act as keys to their parent nodes, either locking them in or out. By this mechanism the
size of the active knowledge base is reduced to a small subset of the global knowledge base,
resulting in both storage and computational savings.

Every node in the network has a truth value ranging from zero to one, which
represents both subjective probability and certainty of truth. Zero indicates certainty that
the assertion is false while one indicates certainty that the asseriion is true. Initially, no
information about an assertion is represented by the node’s prior value. As the truth values

of the nodes change, increasing values represent rising certainty in the truth of the
assertions, and vice versa.

There are five node types supported by the BABY inference engine. They are the
logical types AND, OR, and NOT, the predicate type RULE, and a type responsible for
folding evidence and uncertainty together, the type BAYESIAN. The RULE nodes are the
leaves of the patterns and are evaluated by the ADVISE rule evaluator according to
semantics set by the prozrammer. The three logical nodes have very simple semantics. The
truth value of an AND rode is the minimum of its children’s truth values, while an OR node
takes the maximum vaiue of its children. NOT nodes invert their child’s truth value by
subtracting it from the maximum truth value. A high truth value of any one child will give
an OR node a high value, but all children of an AND node must have high values to cause it

127

[T .4
¢ 1900

No&HAL
ADREWAL
FUweTioN o

L uriveaset 7 5eRur. ourt:L]

[dRinE o5 2 300

[Uugive. 56 > 1010

Al |

S 21

CoOvTELT

—

IVAPPROPRIATELY
CONCENTRATED

6LYCO5UR (A
!

[Y4 LS LN
o j1oed so0|500
NogHaL
REvAL
RYPONATREMIC
FunmcTiov Y 05"
EXPORTABE
= oR
IHrPoRTED
PRI98 PATTERN
= Oﬂ'

Figure 44: A Pattern to match SIADH

to also attain a high value.

" The BAYESIAN node type is used to fold together independent pieces of evidence to
calculate a truth value. These nodes can have an arbitrary number of children attached by
EVIDENCE arcs, each with their own assertion strength that the child’s evidence implies
the parent’s hypothesis. In addition, these child nodes must have a prior truth value that
represents the probability of the evidence being true before anything is known about the
patient. Associated with each connecting arc are two numbers representing the strength of
the inference from child node to parent. The first number, LS, is the strength of the

128

inference if the current child node probability is greater that that node’s prior probability.
Conversely, LN represents the inferential strength when the current child node probability is
less than its prior probability. An entirely equivalent method of specifying LS and LN is to
specify the maximum and minimum posterior probabilities that the parent node can attain,
given maximum and minimum child node current probabilities. These numbers must be
supplied by the expert and he or she can use whichever form is most convenient.

The truth values of all five node types can be calculated with information local to the
node, assuming that the values of its children are stable. Implied, then, is that a single node
can only affect the values of nodes between it and the pattern root, limiting the number of
nodes whose values need propagation when new data arrives. By locking out portions of the
knowledge base from activity, nodes connected by CONTEXT arcs also help reduce the list
of node values to propagate.

13.5.3. The Inference Engine

The network structure of BABY’s knowledge base makes the inference engine quite
simple. It is a data-driven, forward-propagating algorithm that only needs a small
planning phase because of the context links. This is quite different from Prospector in that
the planning is minimized, propagation is a parallel process, and the context links are
central to control rather than to question planning {Duda 78]. It is easiest to understand the
algorithm by way of examples.

Initially assume that there are no context links in the knowledge base. When a burst
of 1ab data comes into BABY, the appropriate system variables are bound to the lab data
values. For example, when the serum sodium value comes in as 135 meq/l, BABY’s variable
for serum sodium is located and set to 135. Next, all rules using serum sodium in the
currently active knowledge base are located via a look—up table and placed on a queue called
the NODES-TO-PROPAGATE (NTP) queue. Each variable may be used by several
predicates, all of which are enqueued. In other words, the serum sodium value may be used

in several different patterns. The table managing the binding of variables to predicates is
created by the ADVISE VL1 parser. , .

After the rules are enqueued, they are dequeued, evaluated, and their truth value is
propagated to any reachable parent nodes. A node is reachable if there is a direct link to it
and if it is in the currently active knowledge base. Propagation implies calculating the
parent node’s new value based on the value of the node just dequeued. After the new value
is calculated, that node is enqueued onto the NTP queue. If the parent node is a pattern
root, and if its new value is greater than its assertion threshold, its value is presented to the
user. This cycle of dequeing and enqueing is repeated until the NTP queue is empty. The
algorithm resembles a breadth-first graph traversal due to the use of a queue rather than a
stack.

Context arcs complicate the algorithm slightly, but also add considerable potential.
If, in the above example, a context link was crossed during an upward value propagation,
then a check would be made to determine if either the context node’s value changed from
above the context threshold to below it, or if it changed from below the threshold to above
tt. In the former case, the parent node would then be in context, and should be added to the
active knowledge base. A recursive algorithm is called that activates this new portion of the
knowledge base. The situation where a piece of the knowledge base can be a part of
different patterns, each with their own respective contexts, is handled by an ADVISE
primitive.

The activating algorithm activates all children of the node that is now in context., It
then calls itself to activate the children’s children. If one of these nodes has a context link,

129

only that link is followed by the algorithm’s recursion, otherwise all links are followed.
When a leaf is reached, a check is made to see if any of the rule’s variables has a value. If
so, the leaf is added to the NTP queue so that the ruie can be evaluated and the value
propagated to the now in context area of the knowledge base. If it were deemed desirable,
this is where a goal-directed, backward-chaining algorithm could be added. Then, if a
variable’s value was not available a check could be made to see if that value could be
inferred. Currently such a capability is not available in BABY.

13.56.4. The Patient State

At any given time, the system’s model of the patient is contained in the patient state:
that portion of the knowledge base that is in context and therefore has been activated.
Included in the definition of the patient state are all the variable value bindings and the
intermediate node values, The size of the active network will be much smaller than the
entire knowledge base, since only a small portion will be in context at any time. This
storage economy also results in the processor time economy because inferences are not made
on any non-active portion of the knowledge base. Indeed, the inference engine cannot even
access non-active knowledge.

The use of reduced portions of the knowledge base for individual patients could allow
the system to keep track of more than one patient at a time by providing each with their
own patient state. The ADVISE system facilitates this capability by having its storage
divided into three levels: global, local, and private. Each lower level retains all the
connectivity of the higher levels, but only those parts of the graph requested from a higher
level will be explicitly stored at the lower level: Thus, an individual patient state could
reside at the private level, while the entire global knowledge base would be stored in the
global level. As the patient state is expanded by coming into context, it is stored at the
private level. The converse must happen when graph areas go out of context.

Two other aspects of the patient state are facilitated by Advise features. Since the
contents of the three levels are mapped onto three independent areas of secondary storage,
switching from patient to patient can be easily done by swapping disk areas at the private.
level while leaving the global level alone, Also, any values belonging to a particular patient
are stored in the patient state, so that data security can be maintained at the file level.
ADVISE also supports security at a more primitive level during run time.

13.5.5. Variable Suggestion

In BABY there is a variable suggestion phase that follows propagation of the data and
activation of the knowledge base. The variables selected are listed in one of the user
interface’s windows to indicate to the user that knowing these values is desirable. Ideally
these variables would provide the most information to the patient state, or be able to efect
the greatest change in the current context. Two different algorithms for scoring the
variables are implemented; one is done during knowledge base instantiation, and the other
requires a separate partial patient state traversal.

The latter algorithm will be discussed first. At each node, in addition to the current
valug, BABY stores the minimum and maximum possible values, given the minimum and
maximum values of its children. If nothing is known about a RULE node’s value its
maximum is one, minimum is zero, and current value is its prior value, otherwise all three
values are set equal to the current value. The differential, if any, between the three values
will ripple upward during regular value propagation. The scoring algorithm makes use of
all three values. A variable’s score is roughly equal to the sum total of probability that
could be added to or subtracted from the patient state if that variable’s value were known

130

with absolute certainty. To calculate this value the active network is traversed top down,
keeping track of the difference between the maximum value and the current value, and using
the assertion strength values, LS and LN, to determine the mulitiplier for the difference in
odds. This algorithm is expensive for a large patient state.

The other scoring algorithm is much simpler, but it does not account for assertion
strength. This one works during knowledge base activation upon reaching a leaf. If any of
the leaf’s variables has no known value its suggestion score is incremented. At the end of
data propagation, all variables whose values were desired but unknown have a score. The
variables that were inspected the most have the highest score, and are assumed to be the
most desirable. This method, although fast, looses much of the knowledge base information;
it only retains the physical layout of the graph while discarding the probabilistic elements.

In either case, the highest—scoring variables are mentioned to the user, who has the
option of supplying any known values.

13.5.8. Network Parser

The creation of the knowledge base is entirely expert dependent. The BABY network
parser, in conjunction with the ADVISE VL1 parser, facilitates transformation of a textfile
description of a network into a machine usable form. BABY accepts any rule structure that
is supported by both the VL1 parser and the rule evaluator. It is up to the expert whether
to make a rule more complex in order to simplify a network, or vice versa. The
programmer has the option of choosing among several different semantics for uncertainty
evaluation within the predicates, extending the network expressiveness.

The network parser is a recursive descent parser that creates and links the nodes with
their appropriate arc types, and calls the ADVISE parser as a subroutine to create the rule
parse trees and a look-up table of rule to variable bindings. A limited syntactic check is
performed also to insure that at least the newly created network structure will work in
BABY. In addition, the network is printed out in an in-order, indented format so that the
expert can see if the traversed prior values are in accordance with expectations.

The language accepted by the network parser is quite limited and rigid, but it is not ’
difficult to translate from a picture of a network into the text format. If a node is to be
either an assertion, or it is to be used by more than one pattern, it must be uniquely named.
This name will be the one shown to the user. If a node does not need a name, the parser
will supply its own unique one. :

Figuce 45 illustrates the mapping of the pattern of Figure 44 into the network

language. Appendix C shows the corresponding mapping to the ADVISE internal storage
format.

NEONATE PATTERNS
EVIDENCE AND NEONATE_PATTERNS
EVIDENCE BAYESIAN SIADH .05 .8
[500 ~500] CONTEXT .75 BAYESIAN HYPONATREMIC ;
[0 -1000] | EVIDENCE BAYESIAN NORMAL_RENAL_F UNCTION
[0 -—1000} EVIDENCE BAYESIAN NORMAL_ADRENAL.FUNCTION
[0 ~1000] EVIDENCE OR *
CONTEXT .75 NOT *
EVIDENCE BAYESIAN GLYCOSURIA ;

E’VIDENG’E RULE * .1 .8 [URINE_OSM > SERUM_OSM : 0.1] :> MKNULL;

EVIDENCE RULE * .1 .8 [URINE_OSM > 300 : 0.9] :> MKNULL;
EVIDENCE RULE * .1 .8 [URINE_SG > 1.010:0.8] :> MKNULL;

?

Figure 46: Network Description of Figure 44

13.8. Conclusion

131

The BABY project presented a description and partial implementation of an expert

system for assisting clinicians caring for babies in an NICU. The current prototype version of

BABY is part of a learning process attempting to identify the bottlenecks and difficulties that

will be encountered during implementation of various ideas.

center around the knowledge representation of the patient state.

The main difficulties in BABY

The expressiveness of a knowledge representation sets an upper bound on the performance
quality; if a type of knowledge cannot be made available, inferences and explanations based on
that knowledge cannot be performed. Temporal, spatial, physiclogic, and developmental
relations between variables are not representable by the current knowledge base formalism.
Explanations indicating supporting evidence for an assertion still could be provided for in the

future.

Explicit temporal reasoning is not possible with the current knowledge representation.
Trends and predictions of variable values are not calculated, even though a value is represented

as a domain element and a time stamp.

It was felt that rather than implement an ad hoc

mechanism for handling time relationships, it would be better to develop a more complete

theory of medical, temporal reasoning. Such a theory would have to include prediction of

future values based on not only past trends, but also on the clinical context of the patient,

Although there is work to be dome in improving the knowledge representation, the
functionality of the representation should probably be preserved since it meets the data flow
requirements of an NICU. The main improvement required of the knowledge base is the

addition of semantics for handling temporal relations within the clinical context of individual
Prediction of future values and decrease in value confidence need explicit
representation so that conclusions can be stated as accurately as possible, but without

patients.

overstatement. Additionally, tabular representation and a graphics network editor are needed
for better notational efficiency.

132

Following these changes, a non-trivial knowledge base needs to be constructed and
debugged so that empirical testing in an NICU can determine the adequacy of BABY to
contribute significantly to patient care.

CHAPTER 14

The ALFALFA Entomology Pest Identification System

14.1. Introduction

As a means of exercising various control scheme features in an expert system which
actually requires more than one rule group with more than one control scheme, the alfalfa field
pest identification system was undertaken by entomologists William Lamp and Lane Smith of
the University of Illinois Natural History Survey (???) in conjunction with Jiarong Hong and
Carl Uhrik of the University of lllinois Department of Computer Science. The meta—expert
system development{ goals are the primary focus here, but the reader can get a better
understanding of the general concerns of entomology by referring to [Borror, Delong and
Triplehorn ’76]. Further details of the ALFALFA System, particularly the rules and attribute
descriptions, are recorded in [Hong and Uhrik ’85|.

An automated key to insects should use descriptors which are easily observed,
remembered and reported. Further, the key should proceed through a layered series of
identifications, becoming more specific as more information is provided. The identification takes
the form of the classical Linnean system at the higher levels (Class, Order, Family), but as
often as not, the exact species is not critical and a common name is acceptably assigned {e.g.,
"thrips"). Incomplete data should result in, rather than no identification, a more general
identification. Thus, the key targets different levels of identification using different sets of
attributes for each stage of identification {Figure 46). Conceptually, different groups of rules
apply to the various levels, each group possibly ¢laiming its own uniquely important variables,
pertinent to a particular stage of the consultation. Moreover, the rule group in use at &
particular moment often requires its own special variation of a control scheme. Thus, one can
see the inherent needs of the ALFALFA System for multiple rule groups, multiple control
schemes, and dynamicly changing goals.

The desired approach to implementing the system called for minimal changes to existing
modules. Modules changed are the parser and control scheme. Certain features of the rule
evaluator were changed to be consistent with previous usage but allowed additional features.
For example, the ?, *, § patterns for matching various flavors of unknown values were not
implemented consistently in the previous Rule Evaluator.

The general system development goals may be grouped according to the following:
1) Preconditions and termination conditions on rule groups,
2) Multiple non-homogeneous goal values or goal variables,
3) "OR" in the RHS of Rules,
4) Enhanced Data Acquisition features .

A description of each of these areas follow and is the focus of this chapter.

133

Hlinl /1 L T\\254n bl
sosAu\e a/usz

81 14 = Spiders and Mites

g2 Class = losects

g3 Order == Neurophera

g4 Order == Coleopiera

&5 Order = Collembola

0 Order =< Homopters

&7 Order = Diplera , Id = Flies

g8 Order = Lepidopters

&9 Order = Odonata, Jd »= Damuel Flies

g10 Order == Hemiplers

£11 Order = Thysanoptars, Id == Thrips

12 Order = Orthoptera

&13 Order == Hymenoptera, Id = Bees & Waaps 4
g4 Family == Chrysopidae, Id == Green Jacewings
£15 Family = Hemerobiidase, Id == Brown Iacewings
g18 Generic_id == Lacewings

€17 Family = Coccinellidae, Id = Lady bug
€18 Family == Curculionidae, Id == Weevils

€19 Panily = Silphidas, Id = Carrion_beetles
£20 Family == Stapbylicides, Id = Rove_beetls
21 Family = Meloidae

§22 Family = Lampyridas, Id = Lightning bug
§23 Family = Cantbaridae, Id = Soldier bestle
g4 Family = Elateridae, Id == Click beetle

—

63 84 65

g28 Gunericid = Beetles

§26 Family == Cercopidas, Id = Meadow_spitile bug
§27 Family 5= Delphacidae, 1d = Other_plant boppers
§28 Family == Aphididae, Id == Pes_aphids

£20 Family = Aphididae, Id = Spotted.alfalfa_aphide
£30 Family = Cicadellidas, Id = Leaf bopper

g31 Family == Aphididae, Id = Blue_alfslfs_aphids
£32 Family = Membracidae, Id = Treehoppers

§33 Generic_id == Aphids_Jeathoppers_and_spittle buge
£34 Family = Picridae, Id == Alfslfa_caterpillar

&35 Family = Nymphalidae, Id = Fritillary !

€36 Family = Nymphalidae, Id = Buckeys

§37 Family = Nymphalidae, Id = Vanessa_atalania
£38 Family = Nympbalidse, Id = Moraning closk

¢3¢ Family = Danaidae, Id == Monarch

§40 Family = Noctuidae, Id = Culworme_snd relatives
g4t Family = Pyralidae, Id = Webworms. and relstives
§42 Generic id = Buiterflies and_moths

g43 Fanily = Aothocoridae, Id == Minute_piraie_bug
gid Fanily = Miridae, Id = Plant_bugs

g45 Family = Reduviidae, Id == Assassin bug

g46 Family = Nabidss, Id = Damasel buge

§47 Family = Lygsecidas

g48 Family = Berytidae, Id = Stilt_hugs

!

AN N ///L\\ AN,

66 67 08

VNN

49 Family = Coreidae, Id = Leaf footed bugs
g50 Family = Pentatomidae, Id = Stink bugs

§51 Gensric_id = True buge

52 Family = Teirigidae, Id = Pygmy_granhopper
£53 Family = Acrididae, or Family = Gryllidae
g54 Family = Gryllidae, Id = Field_cricket

£55 Family == Acrididae

€568 Id == Allalfs_weevil

57 Id = A_weevil

g58 1d = B_weevil

+ g59 Id = Blue_metallic_weeril

¢80 1d s= Grey blister_bectle

g1 Id = Siriped_blister_beeils

g082 Generic id = Generic_jd = Blister_beetlas
g03 Id = Potatoe Jeaf hopper

g04 1d = Aster Jeaf hopper

€05 1d = Leaf bopper

§68 Id = Big syed bugs

§67 Id 5= Sced bugs

§88 Id = Sweed bugs_and relatives

§69 Id = differential_gramhopper

§70 Id == Rod Jegged grasshopper

§71 Id = Twostripped_grasshopper

g72 Id = Migratory_grasshopper

§73 Generlc_id = Grasshoppers_and relatives

291

Figure 4‘0 : Goal Structurc of the ALFALFA System.

http:ALFAI.FA

135

14.2. Preconditions and Termination Conditions

Prior to the ALFALFA system, the only attributes of rule groups were variables blocks,
functions blocks, and the rules themselves. There was a need for making explicit the various
control information implicit in the PLANT/ds and PLANT//cd control scheme. This was
especially required to enforce some sort of sequencing discipline among the rule groups
representing the different levels of pest identification.

The parser was modified as follows: given a rules block of the form -

ruleblkname RULES

VARS == varsblkname ;

PRECOND = lhsnodel;

TERMINATION == lhsnode2;

PROP = CONTROL
{UTILITY,BACKWARD,FORWARD,INORDER}
%%

lhs~rule : > rhs—rule;

END
then the following tuples are produced -

{rulesblkname MKEXEC MKCS MKREF1 lhsnodel)
(rulesblkname MKEXEC MKCS MKREF2 lhsnode?2)
(rulesblkname MKPROP textnode)

-
-

where the lhsnodel and lhsnode2 refer to items which are identical to left hand sides of rules
and are directly evaluatable by the RULE EVALUATOR. Under our proposed control scheme,
preconditions are applied for each rule group and if satisfied the rule group is entered
{initiated), and rules will start to be executed using the type.of control scheme specified by the
text in the CONTROL property of the rule block. '

Termination conditions are evaluated after each rule in the rule group to test whether the
rule group should be exited. This continues until there are no more rules in the case of the
sequential scheme or until the termination condition is satisfied.

14.3. Multigoals

PLANT/ds only allows a single variable on the RHS to determine the goal. Certain
complications of goals might be imagined:

a) structured values of goal variable,

b) dynamicly changing sets or structure of values for goal variables,
¢) dynamicly changing "goal” variable,

d) sets of goal variables,

¢} dynamicly changing sets of goal variables.

As a minimum, an array of goals which will be determined in one of 2 ways is desirable.

138

Option 1 [f there is a GOALS specification in the rules block, the goals will be taken to be that
of a goals tuple. That is, given a rules block —

ruleblkname RULES

VARS = varsblkname ;

GOALS = (goall, goal2, goal3, ...);
lhs-rule :> rhs-rule ;

END
produce a tuple of the form ~
(rulesblkname MKEXEC MKCS MKREF0 goall goal2 goal3 ...)

with the idea that goals occur in order of their priority.

Option 2 If this GOALS designation is not present for a rule group, then all right hand side
variables will be used as candidate goals.

A special tuple modifies each rule group as it is read in to update the information about
which rule groups have been defined. This tuple will appear under the special node GLOBALS
where the global variables are already hung. Hence the GLOBALS tuples form is:

(GLOBALS MKVARS varl var2 ...)
and

(GLOBALS MKRULES rulegroupl rulegroup2 ...) .

14.4. Disjunction on the Right Hand Side of Rules

Several cases arise in the entomology domain where it is desired to pursue one classification
option but if it does not work out (leads to a contradiction or low confidence of decision), then
it should be abandoned and another option should be selected to pursue. These- points of

backtracking can easily be recorded in rules and weights can indicate which options should be
considered in what order.

For example, the rule :

[Mouth Parts = Chewing] [Hind Legs = Jumping]

—

{Order = Orthoptera : 9.9]
\"

[Order = Coleoptera : 0.2|[Insect = Flea Beetle : 0.1]

has the interpretation "pursue orthoptera first, but if that does not work out, then try
Coleoptera given there are no more promising options.” This style of parallel reasoning
assumes that the values of goals are mutually exclusive and is most easily effected by a priority
queue. Another flavor of the disjunction on the right hand side of rules is for independent

137

values of a variable each having the possibility of each satisfying LHS selectors simultaneously.
This latter option was not undertaken in our system. We distinguish the 2 types of disjunction
by allowing a special symbol for each type. No changes to the Rule Evaluator were proposed
(allowed) for this distinction at present.

14.6. Data Acquisition

A special data acquisition method was proposed to operate as a expert system apart from
the inference engine. The control scheme was to pass a list of ranked variables that would be of
most use. The data acquisition systern makes considerations based upon the following criterion
as to what questions to ask and in what order (possibly on an automatically built form):

{1) hierarchies of variables ~ certain variable should be asked before other variables, that is,
it does not make sense to ask confirmatory data before primary data (even though the
confirmatory data has more apparent usefulness),

(2) flow of consciousness — certain questions seem too jumpy if asked out of sequence,
semantic closeness should be taken into account,

(3) certain variables values imply other values — restriction rules which assign defaults and
does-not—apply values should be used, a graph structure will be used for this,

(4) structured variables will be implemented so as to propagate uncertainty in a reasonable
manner, more use of the mutual exclusive and independent values will be made,

{8) some distinction will be made between different type of unknown - that which is
uncertain, that which does not apply, that which may not be asked for again, etc.,

{6) some values of variables need never be asked at some point in a consultation and this can
be inferred from the remaining viable rules,

(7) restriction rules need not achieve threshold to fire but propagate uncertainty.

14.6. Additional Research Goals

In the course of this project, several additional interesting areas of research opened up. In
fact, pursuit of these areas was unfortunately the cause of the some other ideas never being
refined or completed. These are described here.

14.6.1. Deseribing Variable-Value Relations with Semantie Nets

In PLANT/ds, the instrinsic relationships among various variables and their values
were necessarily represented by a series of restriction rules which dictated when values of

some variable prohibited other variables from having semanticly inappropriate values. For
example, there were a number of rules of the form:

[CONDITION_OF_LEAVES = NORMAL] :>
[CONDITION_OF LEAVES_BELOW_AFFECTED_LEAVES = DOES_NOT_APPLY]
[POSITION_OF_AFFECTED_LEAVES = DOES_NOT _APPLY]
[LEAF_DISCOLORATION = NONE|[SHOT_HOLING = ABSENT]
[LEAF_WITHERING_AND_WILTING = ABSENT)
[LEAF_MALFORMATION = ABSENT|[LEAF_SPOTS = ABSENT]|
[LEAF_MILDEW_GROWTH = ABSENT|(SHREDDING = ABSENT] ;

138

[ROOTS = NORMAL| :> [ROOT_SCLEROTIA = ABSENT)
[ROOT_ROT = ABSENT) |
[ROOT_GALLS_OR_CYSTS = ABSENT];

Such information indicates only one sort of behavior: whether or not the "normal” or
“default” value of one variables value should preclude other variables from being asked
[Chilausky and Michalski ’80]. This information is more naturally expressed as a semantic
network specifying connectivity between variables and values. Such a representation does
not preclude the use of rules, and an interface algorithm was designed which converts such
semantic nets into rules. Figure 47 illustrates the algorithm for an abstract graph. This is
a simmple matter of a tree traversal from top to bottom if there are no common subtrees.

Derived Rule :

X=x,] V [X=x,] V [X=x,] V ¢ ¢ ¢ [X=x] V [X = does_not_apply] — |Y = does_not_apply]

Figure 47 : Abstract Outline of Algorithm Converting Variable/Value Graph to Rules.

139

Complications arise in the case of a DAG where there is a comon subtree. This is
currently taken to mean that two variables simultaneously must be considered by an AND
condition of the rule as shown in Figure 48. An option exists to specify an "independance”

" annotation for the common node allows the node to have the interpretation that either
variable may inBuence the d.n.a. assignment to it.

A partial ordering is being produced in both the simple and latter case, and a
consistent total ordering must be derived for the rules if they are to be fired sequentially.
The rules can be made order independent by use of "OR" operands as in figure 49.
Depending on the needs of the particular system, the graph traversal algorithm could be
modified appropriately.

14.8.2. Dynamically Changing Value Sets for Variable

Much to the chagrin of the consultation user, the prototype system once querried the
user as to which of 30 different values the variable COLOR should be assigned. This was
extremely annoying, apart from the inability of the display routines to fit so many values on
a single screen, because it was obvious at the point of querry that only a few of the defined

Figure 48 : The Case of a Common Subtree in Varible/Value Graphs.

140

Mouthparts

hidden or difficult to see easily seen

Easily Seen Mouth Characteristics

chewingsponging coiled piercing-sucking

Piercing-sucking Characteristics

fitted into grooves visible not groovesretracted into head

Rules :

[Mouthparts = hidden or difficult to see]
V[Mouthparts = does not apply]
—+ [Easily Seen Mouthpart Characteristics = does not apply |

[Easily Seen Mouthpart Characteristics = chewing]
V[Easily Seen Mouthpart Characteristics = coiled]
V[Easily Seen Mouthpart Characteristics = sponging]
V(Easily Seen Mouthpart Characteristics = does not apply]|
V{Mouthparts = hidden or difficult to see|
V[Mouthparts = does not apply|

—+ [Piercing-sucking Characteristics = does not apply]

Figure 49 : Typical Order Independent Rules Derived from Variable/Vale Graph.

values were either relevant or possible.

There are various mechanisms for achieving the dynamicly varying value sets for
variables. One of these would dictate that after each querry, a computation might be
effected to find all relevant domain values for any plausible conclusions supportable by the
current state of the system. Another strategy might dictate that this only be done for
particularly annotated variables, and then only when the variable is asked for (no sense in
computing the value set until it is actually needed for a querry). Another strategy involves

141

defining a series of variables which “inherit" values from previous variables as a rule group
is started up, or defining rules that regulate the value of a single structured variable based
upon an auxillary variable encapusulating state information.

Refering to Figure 48, the reader will be convinced that is an appropriate level of
granularity for such computations. It is here that it is most relevant to talk about the
possible current and subsequently—possible values of a variable based on the current state of
the system. The dynamic nature of a consultation, with possible modifications to the state
of variables necessitates undoing the conclusions drawn up to a particular point, and
possibly revising the "possible~values” of such variables. This is currently accomplished by a
complete traversal of all rule groups for which the precondition does not explicitly fail, and
recording all values for the variable sought which explicitly occur in such rule groups. This
is only an approximate solution {and costly even so) since some rules may be judged to be
below threshold based on current state,

A better solution is possible though. A pretraversal of the rule group parse’tree by a
special compiler could generate a structure similar to that in Figure 50 which indicates the
relative correspondence between GOAL state and the COLOR variable. This would
ultimately be available by a simple table lookup or annotation to the rule group parse tree.

CorLo & ? - —— ?g

Figure 50 : Relevant Value Set of Variable COLOR at Various Points in Consultation.

142

14.7. Future Research Extension

Modifications to the existing ADVISE meta expert system to support the ALFALFA
system. It is emphasized that these modifications built upon existing pieces — a rule evaluator,
a database manager, an expert system building-blocks package, which enables more general
expert systems to be built. These systems can have multiple, dynamicly changing goals,
numerous rule groups, dyramicly changing control schemes, and variables with dynamicly
changing value sets. A philosophy which separates the basic inference mechanism from the data
collection process appears to justifiable,

In the course of this project, several additional interesting areas of research opened up. In
fact, pursuit of these areas was unfortunately the cause of the some other ideas never being
refined or completed. Time ,and resources ran out on this development segment. The idea of
using GOALS, PRECONDITIONS, and TERMINATION CONDITIONS for planning and for
optimizing the question-asking efficiency were never explored. POSTCONDITIONS were
explicit conditions which would be forced to be true on exit from a rule group. This differs from
termination conditions in that the later simply become true in order to exit the rule group. The
graph traversal mechanisms were implemented as batch programs, but it would be interesting
to make them interactive, allowing dynamic changes to the semantic network part of the
knowledge base for enhanced debugging.

Enhancements to the current system include the following.

~ inverse operation to converting semantic net to rules (rules to s.n.)
for verilying human rule knowledge
- visual entry of the restriction information on vars
- more general] relations over var-val semantic nets
- value of one var sets another
~ probabilistie
~ modifying the algorithm for traversing the vars graph to get
restriction values dynamicly
~ visual display of the tree of possibilities ~ allowing to select the
~ most probable failure point or use a ranking of reliability over vars
- if a hi freq var occurs as RHS in restriction rule
then all the LHS vars should be elevated to at least its value
plus the value it has from other rules
— what if it is in more than one restriction rule
- what if more than one RHS var applies
~ what about redundant effects
— if a rule group fails
- should run again
— there should be a way of forcing a conclusion
— there should be a way of cycling or back tracking to modify
suspect values - eg., freq. mistyped or misperceived vals
— only relevant values should be asked
— restriction rules should be in a separate rule group with a lower
threshold than other rules — change parser + RE to allow LHS fwt
to be RHS conf - global RE option / syntactic in rule
- a THRESHOLD prop on rule group
- straighten affairs among UNDEF, UNKN, ALL, NA

The biosphere of the alfalfa field is a complex structure. Once all the vectors present in
the field are identified, it is no simple task to decide on the proper management procedures to

143

be applied. For instance, there may be benificial insects as well as detrimental ones. Insecticide
may be inappropriate for any of a number of reasons, prompting the introduction or
enhancement of environment for beneficial insects. It may not even be worth the cost of
applying insecticide if the alfaifa can be cut in reasonable time to ensure a good yield. These

considerations make it clear that the management of alfalfa fields could be an expert system in
its own right.

CHAPTER 156

Summary and Future Work

»

We have described the ADVISE meta-expert system at the conceptual and technical level.

The system can be used for constructing and experimenting with expert systems in specific
domains by:

(1) assembling knowledge about the problem,

{2) encoding the knowledge in some formal manner,

(3) possibly using the knowledge for computer inductive inference, and

(4) picking the inference mechanism(s) to be used on the encoded knowledge.

At present, we have experimentally implemented four expert consultation systems using the
ADVISE meta-expert system, PLANT/ds for diagnosing soybean diseases, PLANT/cd for
predicting extent of Black Cutworm damage to corn, BABY for monitoring infants in a neo~
natal intensive care unit, and ALFALFA for identification and classification of insects.

144

Literature Cited

Baim, P.W. (1982) “An Algorithm to Perform Feature Selection on Nominal and Ordinal Features
Using Non-Statistical Criteria”, Report No. 1078, Department of Computer Science, University
of lllinois, Urbana, lllinois.

Baskin, A.B. and Levy, AH. (1978) “MEDIKAS ~ An Interactive Knowledge Acquisition System’’,
Proc. of the 2nd Symposium on Computer Applications in Medical Care,”’ Washington, D.C,,
IEEE Publications, Nov. 5-7, 1978,

Baskin, A.B. {1980) “LOGIC NETS: Variable-valued Logic plus Semantic Networks,” in Poliey
Analysis and Information Systems, No. 3.

Bo, Ketil (1982) “Human-Computer Interaction,” Computer, Vol. 15, No. 11,

Buchanan, B.G. and R.O. Duda. (1983) Principals of Rule-base Ezpert Systems, Advances in
Computers, 22, Academic Press.

Codd, E.F. (1970} *“A Relational Model of Data for Large Shared Data Banks,”” CACM 13, No. 6.
Codd, E.F. {1971) “Codds ALPHA™

Channic, T. (1984) “ADVISECORE: A Screen Package for Expert Systems’’, Report No. UTUCDCS-
F-84-919, Department of computer Science, University of Illinois, Urbana, Illinois.

Channic, T. (1985) “Editing Network-Structured Knowledge Bases in the Advise System’’, Report No.
UIUCDCS-F-85-934, Department of computer Science, University of Illinois, Urbana, Illinois.

Davis, R. and King, J. (1976) “An Overview of Production Systems” in Machine Intelligence, 8
Elcock and Michie {eds.).

*

Davis, J.H. (1981) “CONVART: A Program for Constructive Induction on Time Dependent Data”,
Thesis, Department of Computer Science, University of Illinois, Urbana, Illinois.

145

146

Date, C.J. (1977) An Introduction to Database Systems, Addison Wesley.

Duda, Richard O., Hart, Peter E., and Nilsson, Nils J. {1976} “Subjective Bayesian Methods for Rule~
Based Inference Systems”, Technical Note 124, SRI International, Melno Park, California,
January 1978.

Duda, Richard O., et. al. (1978) “Development of the PROSPECTOR Consultation System for
Mineral Exploration.” Final Report for SRI Projects 5821 and 6415, SRI International, Melno
Park, California, October 1978.

Duda, R.O., P.E. Hart, N.J. Nilsson and G.L. Sutherland (1978) “Semantic Network Representation in
Rule-Based Inference Systems,” in Pattern Directed Inference Systems, D.A, Waterman and F,
Hayes-Roth (eds.), Academic Press.

Eddy, David M. and Charles H. Clanton, {1982) “The Art of Diagnosis.” The New England Journal of
Medicine, Vol. 306, No. 21, 1263-1268.

Foley, J.D. and A. van Dam (1982) Fundementals of Interactive Computer Graphics, Addison-Wesley.

Frayer, William W., {1980} “Patient Data Management in Neonatal Intensive Care”, Clinics in
Perinatology, Vol. 7, No. 1.

Freedman, AM., O.P. Buneman, G. Peckham, and A. Trattner, ‘“‘Automatic Recognition of
Significant Events in the Vital Signs of Neonatal Infants’’, Computers and Biomedical Research,
Vol. 12, 141-148.

Galen, Robert S., {1980) “Predictive Value and Efficiency of Laboratory Testing”, Pediatric Clinics of
North America, Vol. 27, No. 4, 861-869,

Gevarter, W. (1982) “Expert Systems’ Report No. NBSIR 82-2505. Washington D.C. : National
Bureau of Standards.

Kimpel, H.K. (1978) “SIMBLAC - A GASP-TV Model of the Black Cutworm Life Cycle.” M.S. Thesis.
Lafayetf;e: Department of Industrial Engineering, Purdue University. '

Larson, J. (1977) “INDUCE-1: An Interactive Inductive Inference Program in VL, Logic System,”

Report No. UIUCDCS-R-77-876, Department of Computer Science, University of Illinois,
Urbana,, Iilinois.

J’g

147

La Gamma, Edmund F., (1980) “Concepts in Critical Data Evaluation and Neonatal Monitoring”’,
Clinics in Perinatology, Vol. 7, No. 1, 93-106.

Michalski, R.S. {1973) “AQVAL/1—Computer Implementation of a Variable~valued Logic System and
the Application to Pattern Recognition,” in Proe. of the First International Jotnt Conference on
Pattern Recognition, Washington, D.C., October 30-November 1, 1973.

Michalski, R.S., (1974) ‘“Variable-valued logic: System VL1, Proceedings of the Fourth International
Symposium on Multiple-Valued Logic , Morgantown, West Virginia.

Michalski, R.S. (1978) “Pattern Recognition as Knowledge—guided Computer Induction,” Report No.
927, Department of Computer Science, University of Illinois, Urbana, lllinois.

Michalski, R.S. and J.B. Larson (1978) “Selection of Most Representative Training Examples and
Incremental Generation of VL, Hypothesis: The Underlying Methodology and the Descriptions

of Programs ESEL and AQ11,” Report No. 877, Department of Computer Science, University
of Illinois, Urbana, Iilinois.

Michalski, R.S. and R.L. Chilausky {1980) ““An Expermental Comparison of Several Many-valued
Logic Inference Techniques in the Context of Computer Diagnosis of Soybean Diseases,”
International Journal of Man Machine Studies.

Michalski, R.S., J.H. Davis, V.S, Bisht and J.B. Sinclair (1982) “PLANT/ds: An Expert System for
the Diagnosis of Soybean Diseases,” European Conference on Artificial Intelligence, July 12-14,
1982.

Michie, D. (ed.)(1979) Ezpert Systems in the Micro Electronic Age, Edinburgh University Press.

Moran, T.P. (1981) “An Applied Psychology of the User,” in ACM Computing Surveys, Vol. 13, No.
1, March 1981,

Nilsson, N.J. (1980) Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, California.

Pople, Harry E., (1982) “Heuristic Methods for Imposing Structure on Ill-Structured Problems: The
s Structuring of Medical Diagnostics”, Artificial Intelligence in Medicine, Ed. Peter Szolovits.
Westview Press, Boulder, Colorado, pp. 119-180.

Reinke, R.E. (1984) “Knowledge Acquisition and Refinement Tools for the Advise Meta-Expert
System”, M.S. Thesis, Department of Computer Science, University of Illinois, Urbana, Illinois.

148

Schubert, Richard (1977) “The VL Relational Data Sublanguage for an Inferential Computer
Consultant,” Masters Thesis, Report No. 846, Department of Computer Science, University of
Illinois, Urbana, Illinois.

Spackman, Kent (1982) “Integration of Inferential Operators with a Relational Database in an Expert
System,”” Masters Thesis, Department of Computer Science, University of Illinois, Urbana,
Illinois.

Stefik, M., J. Aikins, R. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth and E. Sacerdoti {1982) “The
Organization of Expert Systems, A Tutorial,” Artificial Intelligence, 18.

Stepp, R. (1980} “‘Learning From Observation: Experiments in Conceptual Clustering,” in Proc.
Machine Learning Workshop-Symposium, Carnegie~-Mellon University, Computer Science
Department, July 16-18, 1980.

Thursh, D. and Mabry, F. (1980) “An Interactive Hyper-text of Pathology,” in Proc. of the 4th
Annual Symp. on Computer Applications in Medical Care, IEEE, Nov., 1980.

Troester, S. (1982a) “Damage and Yield Reduction in Field Corn Due to Black Cutworm Feeding:
Results of a Computer Simulation Study.” Journal of Economie Entomology Vol. 75, pp.1125-
1131,

Troester, S., Clement, S., Showers, and A.J. Keaster {1982b) “Determining Yield Loss by Black
Cutworms on Corn.” ASAE paper No. 82-5026. St. Joseph, Mi..

Troester, S., Ruesink W., and Rings R. (1982c) “A Model of Black Cutworm (Agrotis Ipsilon)
Development: Description, Uses, and Implications.”” Hlinois Agricultural Ezperiment Station
Bulletin, No. 774. pp. 1-33. ’ '

van Melle, W. (1979) “A Domain Independent Production Rule System for Consultation Programs,”
Proc. Sizth IJCAL

Woods, William A., (1983) “What’s Important About Knowledge Representation”, Computer, Vol. 16,
No. 10, 22-29.

APPENDIX A

Rule Parser Detalls

This appendix contains additional information regarding the rule parser. Section A.l
describes some basic lexical notions concerning input to the parser. In section A.2 are details of
error handling by the parser. Section A.3 defines the "mark” types currently handled by the
parser. :

A.1l. Basic Lexical Notions
Format: All input is free-format. Lines can be as long as desired.

Comments: Comments may appear anywhere in the input, and are denoted
by a leading !. The comment continues for the remainder of
the line {(i.e. terminated only by EOLN).

Identifiers: Identifiers must begin with a letter, and then may contain
up to 39 other non-punctuation symbols in¢luding digits,
* (@ _and’. Note that apostrophes are NOT used to enclose
strings of otherwise-illegal characters.

Variables: A variable is {to the parser) an identifier which has been
previously defined as a VL variable name.

Integer: A sequence of digits without a decimal point.

Real number: A sequence of digits with a decimal point. NOTE THAT A
REAL MUST BEGIN WITH A DIGIT. ".9" IS NOT A REAL NUMBER.

The parser can process ASCII input files containing lower—case text, however because of
the escape-code nature of lowercase material, the identifiers may be only 20 lower—case letters
long. All parser keywords (i.e. RULES, VARS, etc.) are recognized only as upper-case
characters.

A.2. Error Information

When a syntax error is detected the parser does four things:

(1) A" is written under the offending symbol.
(2) The message **** SYNTAX ERROR is printed.
(3) The list of symbols which would be acceptable is output.

(4) The parser skips to the next unit of information, e.g. skips to the next rule, next variable
definition or next block.

149

150

The error return code given by the parser may be NOERROR when no errors have occured, or
one of the following:

ERRPRNOPARTAB : The PARTAB file could not be read.
ERRPROSYNTAX : One or more syntax errors were detected.
ERRPROVERFLOW : Internal parser stack overflow.
ERRPRINTERNAL : The parser made a logic error which was fatal.
ERRPRUNSUPPORTED + An unsupported language feature was used.

ERR <other> : Any other fatal error code from supporting system

(e.g. the tuplemanager) from which there
is no recovery.

The parser writes additional messages to the MSG file to help diagnose some of these error
types.

The parser writes additional messages to the MSG file to help diagnose some of these error
types.

A simple parser driver program exists which utilizes two files of knowledge. Before
parsing, a preexisting network is loaded from the file BACKUP. The parser is invoked on input
file INPUT and giving output file QUTPUT. Subsequent to parsing, BACKUP is rewritten to
contain the updated network (BACKUP is processed with READBACKUP and
WRITEBACKUP directives). Also the file NETWORK is written via the WRITETEXT
directive and gives a readable representation of the network.

A.3. Mark Type Definition

The parser generates a network of tuples for each block (i.e. for each RULES block and
each VARS block). The name of the block {the group name) is the only handle for the network
of tuples, whose head node is located via the directory, given the group name. From this node -~
on in the block network, all tuples have a "parser mark” node in them located in the first node
position, tupie{2]. The parser mark (or just "mark”) indicates the functionality of the tuple for
interpretation or decoding. The marks which are used this way are as follows:

A.3.1. Within a VARS Block
These mark types are generated from the VARS block definitions:

MKVARS: a list of variable-defn nodes in this tuple
MKDOMAIN: the nodes in this tuple define the domain
[2]MKDOMAIN -
[3] domain type:
MKNOMINAL: additional nodes give either
~ one integer: number of levels or
— list of values
MKINTERVAL: additional nodes give either
— two integers: interval range or
— ordered list of values
MKSTRUCTURE: additional nodes give values for leaves and
internal nodes in the structure tree
MKREFINE: gives the refinement structure of a
structured variable tree

151

[2]MKREFINE
[3] internal node name
[4]... subordinate nodes to [3]
MKUNITS: gives the units of measurement for the variable
MKVALCON: gives the value of an identifier or rule component. The tuple
contains pairs of numbers (value, degree of confidence), where
value may be either real or integer and where deg. of conf. is
always real. When multiple alternative values are to be
represented, many (value, degree of confidence) pairs may
be used. When space in one tuple is exhausted, another
MKVALCON tuple is incorporated to hold additional data.

A.3.2. Within a RULES Block
These mark types are generated within the RULES block:

MKNULL: a "no-operation” indicator
MKVARDCL: for a group of rules, next node indicates variable definitions
which are to be used
MKBEHAVIOR: the node in position [3] denotes the behavior
MKINCR: increasing (/)
MKDECR: decreasing ()
MKRMIN: has a relative minimum (/)
MKRMAX: has a relative maximum (/)
MKPAREN: indicates parentheses used around this unit
MKTVARS: indicates "target” variables used in the rule. A target
variable is one which occurs to the left of the relation symbol
in a selector.
MKRVARS: indicates "reference” variables used in the rule. A reference
variable is one which occurs to the right of the relation
symbol in a selector. In either the MKTVARS or MKRVARS tuple
the following node (tuple[3]) contains either MKRHSV or MKLHSV
to indicate whether the variables listed occur in the rule’s
right— or left-hand side, respectively. Tuple positions from
tuple[4] hold variable node data. Each variable cited occurs
one or more times in the right or left hand side {according
to tuple[3]) as a target or reference (according to tuple[2]).
MKLHSV: indicates rules in a rule group which involve a specific
variable in the left hand side part.
MKRHSV: indicates rules in a rule group which involve a specific
variable in the right hand side part. Tuple[3] contains
a variable node and tuple[4] on to the end contain rule
nodes which incorporate the variable within the left— or
right-hand side (as indicated by tuple[2]).
MKEXEC: indicates that the following node (tuple[3]) contains an
"executable” code which can be one of the following:
MKFALSE: denotes the constant value false
MKTRUE: denotes the constant value true
MKRULES: a list of rule nodes in this tuple
MKRULE: rule lhs node and rule rhs node in this tuple
MKLM: the folling node is a linear module

152

MKCS: pairs of (Im-coeff, Im-node) in this tuple
MKORI1: nodes are lin~modules to be or-ed together
MKANDI1: nodes are condition units to be and—ed together
MKOR2: nodes are condition units to be or-ed together
MKEXCPT: two nodes follow: node-a node-b
MKEQUIV: two nodes follow: node~-a <=> node-b
MKIMP: two nodes follow: node~a ==> node-b
MEKAND2: the nodes are selectors to be and-ed together
MKVAR: start of selector. there are five nodes plus optional nodes:
[2IMKVAR
[3] node for the variable
[4] node for the relation (MKEQ,MKGT,MKLT ,MKNE,MKGE,MKLE)
[5] node for reference type (MKREF0,MKREF1,MKREF2)
if MKREFO0: one additional node follows in position (6]
MEKALL: entire domain (*)
MKUNKN: unknown (?)
MKUNDEF: undefined ($)
MKNA: not-applicable {NA)
if MKREF1: one or more nodes follow denoting a list of nominal values
if MKREF2: one or more sets of node triples of the form
(low-value, high-value, weight) used for interval values and
weighted values of both interval and nominal type
if MKREF 3: one or more sets of node quadruples of the form
{low-value, high-value, weight,, weight,) used for interval values and

weighted values of both interval and nominal type

MKFUNCI1: the nodes in this tuple indicate a fanction reference
similar toMKVAR above, except that the node for the name of the
function is "floating”, i.e. it contains no parse tree.
To evaluate such a node, the dictionary must be consulted.
The relation and reference nodes may both be omitted. If
either is required, both are present.
MKFUNC2: the node in this tuple indicates the general function
MKTRAP: the node in this tuple indicates a trap function
MKARGS: the nodes are arguments to MKFUNC1 above

APPENDIX B

GVLI Grammar

This appendix lists the GVL, grammar at the time of this writing. Its format is as
input to the YACC compiler~compiler available on Berkeley UNIX,

Ytoken LP RP LSB RSB LBR RBR MDD IMPASGN IMP RMIN NE TO
/% «C Yy {4 rAREEPEEN > /<> .. %/

%token OR PLUS MINUS TIMES DIV EQUIV LE GE RMAX EQ COLON
/% v o+ - x / <=> <= >= [/ = : x/

Ytoken COMMA DOT EXCPT GT LT SEM! TRUE FALSE UNKN UNDEF
/% . . > < s T F e s ®/

Ytoken 1D YAR INT REAL RULES VARS FUNCS END IN NA
%“token NOMINAL INTERVAL STRUCTURE UNITS PROP TRAP

%%

file - bilock
| file block

block - blk

bik - idnode RULES varde! funcdc! optprops rulebody END
| idnode VYARS optprops varsbody END
{ idnode FUNCS vardc! optprops funcbody END
| error

vardcl - YARS EQ 1D SENMI

funcdec! - FUNCS EQ 10 SEMI

153

ruiebody - rute
| ruiebody SENMI ruie

varsbody - vardefn
| varsbody SEMI vardefn

fumcbody - funcdefn
| funecbody SEMI funcdefn

rule - optidnode Imsnode [MPASGN strength
| error

| «

optidnode - 10

optprops - prop
| optprops prop
l <

prop -~ PROP EQ 10 END

Imsnode - Ims
Ims = linearmodule
| tms CR linearmodule

linearmodule - <quantifier LP imsnode RP

imsnode optprops

154

I Imparts

quantifier - LT optint idnode insat GT

{3

optint - INT

insat -+ IN ref

imparts - fmpart
| imparts PLUS Impart

Impart = LP Imparts RP
| optreal aptreal condstmt

optreal - realnode
|«

condstmt -+ condstmt condition
] condstmt OR condition
| condstmt EXCPT condition
| conditian

condition -+ term EQUIV term
| term INP tarm
| term

term - LP condstmt RP
| selectors
i TRUE

155

| FALSE

salectors - selector

| selectors selesctor

selector <+ LSB exprnode reil refgroup behavior
| exprnode

wfunc - exprnode
| ¢

optrelref - rel rafgroup
I«
rel - EO
| 6T
LT
| NE
| GE
| LE
refgroup = ref

ref - valunit
| ref COMMA valunit

| sat ueight

| ref COMMA set weight
| TINES

| UNKN

§ UNQEF

| NA

valunit -~ exprnode ddval weight

wfune RSB

156

val - intnode
! realnode
| ID
| varnode optargs
| TRAP optargs

args = arg
{ args
CaMMA
arg

arg = exprnods

optargs -+ LP args AP
| ¢

ddval +~ TO0 exprnode
|

waight + COLON exprnode

| «

optexpr =~ exprnode
| €

set - LBR vals RBR

behavior » DIV

EXCPT
RMAX
AMIN

optexpr

157

vals -

sxprnode

expr -

aterm -

afactor

addop -

mulop =

strength

vardetn

dfields

|
!

|

val

v
£

-

als COMMA val

axpr

aterm

-

i

|

-

-

a

P

T

-

=pr addop aterm

factor
aterm muiop afactor

MINUS afactor
] LP expr RP
I vat

Lus
MINUS

IMES
Div
nan

LP intreainode COMMA intrealinode RP
| LP intreainode RP

| ¢

idrnodes dfislds optprops
| «

dfield
| dfields dfield

158

159

dfisld = dfieldpart

dfielidpart - NOMINAL EQ LP idsunique RP
[NOMINAL EQ inttuple
} INTERVAL EQ intrealtuple TO intrealtuple
| INTERVAL EQ LP idsunigus RP
| STRUCTURE EQ LP idsunigque RP LP refines RP
| UNITS EQ idtuple

funcdefn = idnode var LP functab RP

functab -+ funcentry

| functab funcentry
funcentry - idnode intrealinods intrealnode
var - varnode

refines - refinement

| refines refinement
refinemant - idtuple EQ LP ids RP

idsunigue =~ idsu

idsu - idtu

| idsu idtu

idtu = idintnode

idnode - [0

varnode - VYAR

intnode =+ INT

realnode = REAL

intreatnode = intnode

| realnode

idintnode - idnode

} intnode

ids - idtuple
| ids idtuptle

idtuple = idnode

inttuple - intnode

intrealtuple - intrealnode

180

APPENDIX C

Internal Representation of a BABY Network

(NODES_TO_PROPAGATE ())
(DATASET ())
(PATTERNS (
(DOWNWARD NEONATE PATTERNS)))
(ASSERTIONLIST ())
(NEONATE PATTERNS (
(MKVALTUPLE BAAND 0.1el 0.0 0.163184079 0.099950124el)
(DOWNWARD SIADH EVIDENCE 0.7968e-8 0.1631 0.09995¢1)
(DOWNWARD HYPONATREMIC EVIDENCE 0.0 0.8 0.1el)
(DOWNWARD GLYCOSURIA EVIDENCE 0.0 0.8 0.1el)
(DOWNWARD NORMAL_ADRENAL FUNCTION EVIDENCE 0.0 0.8 0.1el)
(DOWNWARD NORMAL_RENAL FUNCTION EVIDENCE 0.0 0.8 0.1el)
(ASSERT 0.85)))
(NORMAL_RENAL_FUNCTION (
(MKEXEC MKRULE 1002 MKNULL 0.1el O.lel)
(MKTVARS MKLHSV NRF)
(UPWARD SIADH EVIDENCE)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1el)
(ASSERT 0.95)))
(NORMAL_ADRENAL_FUNCTION (
(MKEXEC MKRULE u004 MKNULL 0.1el 0.lel)
(MKTVARS MKLHSV NAF)
(UPWARD SIADH EVIDENCE)
(UPWARD NEONATE PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1el)
(ASSERT 0.99)))
(GLYCOSURIA (
(MKEXEC MKRULE 1006 MKNULL 0.1el 0.1el)
(MKTVARS MKLHSV GLY)
(UPWARD bal EVIDENCE)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1el)
(ASSERT 0.1)))
(HYPONATREMIC (
(MKEXEC MKRULE 1008 MKNULL 0.1el 0.1el }
(MKTVARS MKLHSV HYP)
(UPWARD SIADH CONTEXT 0.75)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1e1)

181

162

(ASSERT 0.5e-1)))
(SIADH (
(UPWARD NEONATE PATTERNS EVIDENCE)
(MKVALTUPLE BAYESIAN 0.8 0.79680e-8 0.16318 0.09995e1)
{(DOWNWARD ba0 EVIDENCE 0.1el 0.0999e~2 0.1el 0.4875e-1 0.1el)
(DOWNWARD NORMAL_ADRENAL _FUNCTION EVIDENCE 0.1e1 0.0999¢-2
0.0999e-2 0.1el 0.1el)
(DOWNWARD NORMAL _RENAL_FUNCTION EVIDENCE 0.1el 0.0999e-2
0.0999e-2 0.1lel 0.lel)
(DOWNWARD HYPONATREMIC CONTEXT 0.501e3 0.19960e-2 0.19960e-2
0.1lel 0.500999999e3)
(ASSERT 0.5¢-1)))
{ba0 {
{(UPWARD SIADH EVIDENCE)
(MKVALTUPLE BAOR 0.1el 0.1el 0.199999999 0.1el)
(DOWNWARD bad4 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD ba3 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD ba2 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD bal CONTEXT 0.1el 0.199999999 0.0 }))
(bal (
(UPWARD ba0 CONTEXT 0.75)
(MKVALTUPLE BANOT 0.1el 0.1el 0.199999999 0.0)
(DOWNWARD GLYCOSURIA EVIDENCE 0.lel 0.1el O.1el) })
(ba2 {
(MKEXEC MKRULE u010 MKNULL 0.1el 0.1el)
(MKTVARS MKLHSV URINE_OSM)
(UPWARD ba0 EVIDENCE)
(MKVALTUPLE BARULE 0.1 ¢ 2 0.1 0.1e1 0.8)))
{ba3 {
(MKEXEC MKRULE 012 MK ""7.L 0.lel 0.lel)
(MKTVARS MKLHSV URINE_U3M)
(UPWARD ba0 EVIDENCE)
(MKVALTUPLE BARULE 0.1 0.0 0.1 0.1e1 0.8 } })
{bad {
(MKEXEC MKRULE u014 MKNULL 0.1el 0.lel)
(MKTVARS MKLHSV URINE_SG)
(UPWARD ba0 EVIDENCE)
(MKVALTUPLE BARULE 0.1 0.0 0.1 0.1e1 0.8)))
(GLOBALS (
(MKVARS NRF NAF HYP GLY SERUM_OSM URINE_OSM URINE_SG)))
(SERUM_OSM (
(MKDOMAIN MKINTERVAL 1 1000)))
(URINE_OSM (
(MKDOMAIN MKINTERVAL 1 1000)))
(URINE_SG (
(MKDOMAIN MKINTERVAL 0.1el 0.2¢1)}))
(RULESET ({
(MKLHSV URINE_SG ba4)
(MKLHSV URINE_OSM ba2 ba3)

(MKEXEC MKRULES NORMAL_RENAL_FUNCTION NORMAL_ADRENAL_FUNCTION

GLYCOSURIA HYPONATREMIC ba2 ba3 bad)

163

(MKVARDCL GLOBALS)))
{(u010 (
(MKEXEC MKVAR URINE_OSM MKGT MKREF2
SERUM_OSM SERUM_OSM 0.1)))
(w012 {
(MKEXEC MKVAR URINE_OSM MKGT MKREF2 300 300 0.9)))
u014 (
((MKEXEC MKVAR URINE_SG MKGT MKREF2 0.101el 0.101e1 0.8)))

http:URlNE-.SG

