THE ADVISE.1 META-EXPERT SYSTEM:
THE GENERAL DESIGN AND A TECHNICAL
DESCRIPTION

R. S Michalski
A. B. Baskin
C. T Uhrik

T D. Channic

Reports of the Intelligent Systems Group, ISG 86-8, UIUCDCS-F-87-962, Department of
Computer Science, University of Illinois, Urbana-Champaign, January 1987.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

UILU-ENG~-87-1704

R ep 0 r ts The ADVISE.l Meta-Expert systgm;

The General Design and a Technical Descriptiom

of the
by

1..S. Michalski, A.B. Baskin
C. Uhrik, T. Channic

January, 1987
Group

File No. UIUCDCS-F-87-962

Intelligent

I1SG 86-5

BT 1]

) o s T B S i e o
: i e e %f%}f?; : §§§§z ik i%%% 5} et el B
: ; ;Ef gz 'XE? £ > ?; E :;,“ :
£ 93:} i3 E 2 5 3 o
: i FEiEd
b Eﬁ : ; %
i i :
o : 4
el @ zF 5
oy a ; :
Iy 5
EE' G 4. ; : :
; ! &8
E &l e i o G -Qli“ % : & & 5{;"‘;&" =S ‘@.
ﬂ“f&; Y %%w ot Y B b fgf; & 2 ,.-: zag, BEES, - @

. ;.mw;.;
L

.
SEa
i
Fekifaiel
‘: i
: S
] :
i
b :
g % . %
i,
it ;
bt
i3 g%
et : :
i ESES
i
: :
H g
i
5
) ¥
‘§|
fEtn ;

File No. UIUCDCS-F-87-962

THE ADVISE.1 META-EXPERT SYSTEM:

The General Design and a Technical Description

R.S. Michalski, A.B. Baskin,
C. Uhrik, T. Channic
Department of Computer Science
University of llinois

ISG Report 86-8

January, 1987

This research has been supported in part by the Office of Naval Research under grants No. N00014-
§3~G~0030 and No. N00014-82-K-01886, the Defense Advanced Research Project Agency under grant
No. N00014-85-K-0878, and the National Science Foundation under grant NSF DCR 84-06801.

THE ADVISE.1 META-EXPERT SYSTEM:

The General Design and a Technical Description

ABSTRACT

This report describes a general purpose inference system called ADVISE.1. The system
provides a set of tools for building and testing advisory or expert systems; hence we call it a
meta-expert system. Due to its novel architecture and many novel features, it represents a second
generation expert system sheil. Among the important features of the system are:

2 representation of knowledge in three different forms: a ruie base, a network base, and a
relational data base,

. availability of several inference control strategies,

¢ inductive learning capabilities,

. several rule evaluation schemes, and

) separation of control and meta—knowledge from domain knowledge.

The system has been tested in four different domains: soybean disease diagnosis, crop
damage estimates, infant monitoring in newborn intensive care units, and entomoiogical pest
identification. These implementations and their experimental results are discussed.

Table of Contents

Chapter Page
Chapter 1 A General Overview amsesnanassssnnaradhananssnnesd S EIT SRR 1
1.1. Goals and Major Features of ADVISE.L .verrmeiiiniiinnininicennsnnennan e . 2
1.2. Conceptual Organization of ADVISE.L i 3
1.2.1. Control Block and User Interface ..ivccrciiiimisniirsiontiisniminniirnarrines. 4
1.2.2. Knowledge Base ...ccccccieeemimeccimmicsentinnimmaiiimieseennaianniasseimansssnnemnenasass 3
1.2.3. Query Blocks .ccoreneeeeninn 7
1.2.4. Knowledge Acquisition Bloek ..eeiriiiriiiiisciciccnsnnirmnnrincmmecinnicnans 8
1.3. The Architecture of ADVISE.1 cavrmesssasscarisnraren SRenmsmneieenasBENEEREREE g
Chapter 2 Research Goals of ADVISE and a Brief Review of Other Systems 12
2.1. Knowledge Representation ..iscsssisessessceinisniiesscssnsnnsnissensssreaasansassanss 13
2.2, Structure Within a Rule Base ccvcceecciiiiicnirininesmesseisimir e snsnensanisstasns 13
2.3. Separation of Control Informationecimrevcesmcirreeemrec s 13
2.4, Database Operationsccceceeviriresnsarinnncenoons SRR T 14
2.5. Summary of Knowledge Representations Used in Related Systems 14
Chapter 3 The User Interface ...cocciciconeen. T N T e 18
3.1. [ntroductionecccceienemmsicosansininns T e — 16
3.2, Philosophy of the [nterface A R A N S AR N 16
3.3. Historical Development of Interface Tools ..ccivericenciiiemenemmmnrnnccnieiiiinennnas. 18
33,1, The-Display Module cussnsessssisessisisusmusamsisasismssavasimusmvimsasmig 19
3312 AT ISeCOIE: s S S S S e e 19
3.3.2.1. The Screen Manager PTocess .. cicccirvermmasisseisrmsisisesmninssinsrnnss 21
3.3.2.2. The Window Filter Process ...cccccciieciinccievrmmmsanscinisessesorsmmasssssnans 22
3.3.3. The SUNWiINAOW INEEITACE cereerrecerrmiesesmsamsemsessnassessnsssssnerssusmssaserses 22
3.4. The Current User Interface T S e Sy 22
Chapter 4 The Network EIOr ...cccceircoriminrinsitneiiinsssssserisssnanssssonisssrsrsssassoransnsssnans 29
), Introduction oo s Lo L D I SR i S TR S R 29
4.2, The ADVISE Network Representation A T S R SRR 29
4.3. Features of the Network EdIitor ..ccccccieiirecnimmnriensninnererccsesssssessssosassnnae 30
4.3.1. Screen Representation of Networks v 30
+.3.2. Local Editing Options ...cciceacraienseess SRR SR S 31
1:3.3::Global. BEditing Optidng cueissmssssssicssssimovassiassisssssssssasaneiss 33
4.4. A Sample Interactionc...c.eeeeee, R R— SRR RRSTNRRRRR SRR 34
Chapter 5 The QUIN Subsystem ...cccvvuvcirimrmicaeccnrirmcsisinnecneensnnnen R AR R— 43
5.1, Introductioncciscsesesssnsess B s heemtsssssesussaertiies eneasannrarsnsasnarirnss 43
5.2, The Relational Model .cccciiiiimmiiiroiinncinssmensestsmsisisisrnirnniarsesessensasssnes 44

5.2.1, Relational Tables ...cvveerenineeneee. O D S N s TR S
5.2.2. Keys ceetestatarnrsresnttstsnneassnny S Sl SRR
3.2.3. Normalization ...cecciciceniessrasnmormescanssserones isvsdines B PP
5.2.4. Relational Operations ..c.ceccenrsmmimnenmrceirssmssissnsisnesrsorersrnnsrnasensas
5.3. Table Creation ..eccceseieeen. RN TR S S R RN SR s R
5.3.1. Define e AT DR sesesease SRR . s
5.3.2. Define Event ..concccaininienes iseavensmsnns T T

3.4, Table Rettieval iiieveeceecierreessiniinsssmsiessesinsimearessssessssnsmssrnsorss sasnastennsanns
5.4.1. Relational Table EXpressions .ccceceerscresrmecciscoiesiicoiinenssiimesseisiosan
5.4.2. VL Conditions ..ciiiiceceniiiiisccmrrineinncscnre e nssissnsntissiesssnnsscnssanes
3.4.3; Ordering ol BOWS wuunaiisvvssivivesinsvssimssssiipiiesassauinaianesidan s

5.5. Table Modification ..c.cuecncsiiesiseson s TRV —
5.0 Changs vvennnsnaisnmnssmsagss D P TT———
5.5.2. Delete T — SRS AR SRR RSN SR AR R R s R
BB B DEVE s R D T

5.8. Inferential Operatorscccciiiicrimireccrecerananens SN RS A R ST
5.8.1. Feétch and Resultsoiionsmivsissmssssssssimssassisssiavsasunisissspesvesins
5.8.2. Cluster .ccccceeversvesnsececses A SRR S A SRR R e s e
5:8.3. DI cicesssiinines D S S R AR R e g4 SR RS R T
5.8.4. AQLL crecrrmrrvessensesssssrssossees eeervmeeesatessasasaseretetesemetaseseanenenstserenhsneren
T —— e s
BaB.8. Variel .o A e e R e
5.8.7. Varcon and Varcont T a— R S R R
5.6.:8: Other OPRLALIONS cocvviiisssveisonismsnbnsm i sssiiisieeisnsspanyeqicayssavsvuvarnnss

5T Macro Language cisimsivimmsssamniirsssiasinissssenissamys RS es

5.8, Program Description ctettemsseeteetembetator st ess e LR ot st eae ans s as s asarararsemsaras

Chapter B The Rl Pargil cccisuissimsssiisivsissssaivs sosssinsamsssaiismosssesssrsi

I D NS IO ot 57 G 6 B B SR A R T e

8.2. Language for Rule Representation ..c.cccemeeiiininiciniiecsannnanann paebasstresasin
6.2.1. Rules K B S eI RS S A A R AR brerrrsreassimsenttarsnsare seronnran
8.2.2. Right Hand Sides (RHS)couirceismminmicccnerisiceniismnennmassisoreecesascseannn
6.2.3, Left Hand Sides/[LHS) ..iccvcrmsesensnensssnsisesssnenorsnes snsunsusreanassnsessosamnnan
824, Rule KEROPSE ensmmasonsemsmnnessnnsrnessnsasennsnnmsosaamunpnossonnsanssesesnanavssasnyny
6.2.5. Variables emaieeeseseseresEeessemETetNTesattrEn,nsenatarareeanentraeoerar anatansinane
8.2.8. FUNCEIONS crececirninrcsiinnicissnsccsnnisnissaniarssnsssransrassmssnsssasmronnsenasinsesssonsa
B.2.7. PropPertits .icciiiiiiiiicssresonniciinininiriasssenirnsssnssassesansnnsassanssernssesr

§.3. Parser Construction ...cciressccccssmcnsavmmssnanees exemravsesreceetarorsananesarerranrtnnraras

8.4.. Basic Featurescccvrrernirrnvnee iinsesisiianssinnesnsennndiiiiiensine NGRS

8.4.1. The PARSER Production Cyclevueun. sEgdaaEsERs SosT Gedsssas R R

8.4.2. Operation and Use of the Parser ..cccccicirmcissancisinicsnsnnenseiennrionans

6.5. Updating the PARSER T T —
Chapter 7 The Rule Evaluator .., oy RS R R S

(L T o | WO | NN % N = | N4 [[| 4 1 |
QNN O e R e = D

~3 =3 =3 =) =) =1 =)
R o1 N W KRR

7.1. Introduction ...ceseues e SO A s ST s s n s TS TS

7.3, USer PTOCRAUTES .ecvrearneeearrnrmssressssssarenrrrsannsstsssnsesssassassnsnstasssanssessassassasss

7.3. Configuring the Evaluatorcccioeeeerees R— O casssarens SRR

Chapter 8 Knowledge Base Paraphrasing ..cceicinimmmmemieinnimensenciicnesinisaae.

8.1. Design of a General Paraphraser o
8.2. The Existing Rule Paraphrase Module ...

YIS e R e YRR S L DL DR LR R L bl bl

TSI LI e R T YT IR LA L L L L LR L (EEREER) L LR

Chapter 9 The Tuple Manager A R—— S I SRR

9.1. Introduction ..ceccviceserenscaaianee PR
§.2. The Data Types .cccciiicirecemmsniinsiminnconscses
9.3. The User—Visible Proceduresocesvosseeans
9.4. An Impcrﬁant User-Invisible Procedure ...

------- FIIILLL L ER R YRR R R L R R L LR LR Ll bl

lll

lll

lll

Chapter 10 General Utilities — TESTER and the Special Functions Meodule

10.1. The Low Level Network Debugger
10.1.1. How to Use the Tester Program
10.1.2. Tester Commandsceececaecrvacsaacrnanes

YTTLEIIE R YT L LR L L LEZLEL AR LR RN LLY L

"PYFIILE ot SR LRSS RS ERE R LR L AL L b

10,2, The Special Functions Module venesssrrensesuaassens s SisrR s
Chapter 11 The PLANT /ds System: Rule Based Inference Controlcceusnconareraanens

11.1. Introduction .ciciecscciiucrresaseasenssronaaaniirons
11.2, The Knowledge Base U -~
11.3. Control Schemeccrsrmermiinsiecencinonseonaas
11.4. Using the PLANT Program ...ccavecannan.

11.4.1. Data Structuresceeees sresnssnsurannsien
11.4.2. Control Scheme Tools Package

11.4.3. PLANT /ds Tools Packagecceeeeeeea

pEsdsandudssnrrn ket it nanpaadnt e N apaddwndd

III

...

lll

...

Y I LI ERFEREA Y EERE RS LA AR NN RS LR

Chapter 12 The PLANT/cd System: Rule Based Inference Controlcovcuiivececccnnnnnn.

12.1. Introduction .eeesecsssessenss Ry

12.2, User Deseription ..ieeceeeceerssssrseessnmaciinasens

12.3. Control Scheme Details ...cveee B B siseesess
12.4. Future Research Goals ..ccccrvrmvencrirrercanses

lll

...

...

Chapter 13 The BABY System: Context Driven Data Annotation ..o

13.1. Introduction .iceccessessceceacennsssicseasasarencnane
13.2. Clinical Perspective ..cccvcaceriniemsricsrnineaasa

13.2.1. Role of BABY in Diagnosiscccueauree

13.2.2. Clinical Patterns ...ccocmvcreenmincresionse.
13.3. Clinical Context and Patient State
13.4. Knowledge Engineering Environment

13.4.1. Clinical Data .vcccceresactnasnsassernssacasancas

13.4.2. Uncertainty in Medical Datacco.e.

13.4.3. The Knowledge Basecvcevrrveceinnan.
13.5. Baby Implementationcccccsescsssreccrcnsa
13.5.1. User Interfacecceermsmcceacenes suseRRe
13.5.2. The Knowledge Representation
13.5.3. The [nference Engineccvueiiiaaacnenns

rHBAGASESE AN I EEYRIJIELIELEER SRR RS L L LL R LR

LTI TITITPIRISER S SRS LY LLE]] (RTINS LI L LT L)Ll
iiiiiiiiiiiiiiiiiiiiiiiiiiii LR L E R AL L LEN L)
lll
ll
..................... XY EERRESE RN RN AN LY RN
ll
lll
ll
e bl SRDRESIRN VPSP ESEE P LR LR Rl RL LE)} FRERERL L L L L}
..... sipasaneneswsds kb dhad R dR AP NS ERRAAN

T TIT TS IEREL R R RL)} [JITEEEENITER I LR R L2 Y L LR

100
101
105
105
105
105
108
110
110
111
111
{12
114
114
114
115
115
115
116
116
119

13.5.4. The Patient State ..cvceeecriiivcsssnsssnsnnssnsnns SR, B

13.5.5. Variable Supgestionc.ccccerneenemsnsene DT R —

13.5.8. Network Parserccoeccneieaasnrancnns i A R IR SRR R SR ISR O

13.8. Conclusion ..cccveeeens e T S R A T R R RN
Chapter 14 The ALFALFA System: Entomological Pest Identification ...c.c.ccvverneeeee
14.1. Introduction .i.ccescessscsccacsnanrnnsas RN R SR SN RN SRR R e

14.2. Preconditions and Termination Conditionsc.sccirismnicnesaes..

143 Multigoals susimecssssamniaesniiuieiissisas et issasssmammssiva

14.4. Disjunction on the Right Hand Side of Rules ...ccccvvievrimmvennniiiiiinineness

14:5. Data ACQUIBIEION usumsssqscssssiissssomsamuens sinssssusnuvsaaiens wesyins soviansosmnessnsinane

14.8. Additional Research Goals ...cceverirerimrmimcreniminissiinsisseiimaerasiorensrnsrneiees

14.6.1. Describing Variable-Value Relations with Semantic Nets

14.6.2. Dynamically Changing Value Sets for Variable ...cccoviivmvvarinccnienanns

14.7. Future Research Extension .c.c.cccciiecarecascrenseses ereereresueisresesenensans
Chapter 15 Summary and Future Work ..cceeneerrennnnneneee eeresesseanrsonsssnstnasanrrras eareracesne
15.1. The Language of the Future ...civiniiiiieciaaiiinnnea. S——— reascssaseassasesssse

15.2. Extension of Present Eforts .ccsisiininiaiesns cearssrsmseansineentriresentsrnnrieans
Acknowledgements e SRR — teasteramsescsressesrrassresitrrnesican
References ...cccvieceecronimininusoscansnne revranas retesesssasinrensasnssansinsan Commrtbmateteurieseaarranarttatnrnyores
Appendix A Rule Parser DEbails corrueessserecererssssssesrssmsssssnsesesssensasseseasassenesniorsersssereas
A.l. Basic Lexical Notions ...ccicviiiecencicsrniscsnresansaes seaetasiissessssisesiraresnesenanante

A.2. Error Information .cccccciimcisccsccresnciees e R e A W R RS RsE

A.3. Mark Type DeBnition ..c.cocccrcommasrmcescseniesasanins corertrnoonernrrnen ceatsennnemnrntone

A.3.1. Within a VARS Block .cecrciirmmecnnsnsensesnnsennes A S SRS S R

A.3.2. Within a RULES Block A i R R S S R AN

Appendix B GVL Grammar .cceevcsisseccoremmmessmare, soresmmesaserosaseasatarenasinantrons

Appendix C Internal Representation of 2 BABY Network .ccicisciincnrsannoinaranmasmis

iv

[U
[-

Y]
N

mmﬂ.myn:p-

10,
11.
12.
13.
14.
15.
16.
17.
18,
19,
20.
21.

AL

bl il

23,

24.

25.
28.
27.
28.

29..

40.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.

43.

Figures

A conceptual diagram of the ADVISE system. vcuvinraninanaien resaseremveresasernssaniness
A technical diagram of the ADVISE Architecture. woiienininniinennnnniincicenees
Multi-question frame from PLANT /ds..cceuseenee. T Ly TR E——
Single question frame from PLANT /ds.ccccviviiinnnnnncnnniicrinnns T Tem—
Screen Management in AdVISECOTE. irurvmriaiminmressiiniiniiatiis s snniiss e s
The textual representation of tuples for “arches e,
Operations available in QUIN . ccvimern s
The knowledge refinement cyele it e
Clinical Laboratory Values ceeececrececeiersinissisissseciiissssinisssnannessansmssnansninniasvasivens
Results of Selection Operation .ccvevccinremenicscisssnnecnacae SnsioRTeRe RS S s
Results of Projection Operation....cceverimseciecaes S By
Format of File “viI8" cc.iicirinimananiirencsness FETPR— cesasernnan cranssensussiedds i T R
Result of Retrieval ...coveenmueee. RS S SR e RS cressssranne semans e dRTITERIS shovEEs
Relational Table Expression Operators..vmmeecrsaneee. P teresaresnesssrrnnane eanes
The “3pec’” Table i aiciinmorerataiossrsssaniorsisnaissesnisassinsisssansusessasanmnisisssssassiasssas:
Join of “‘spec” and ‘‘tests” — SEISERITREER siRR TR AR S
Projection & Joib.ceveimmmnniisiiiinssssssssen T P
Ordinary Projection ceccccisirmmenuirimrririsesaransassisssesscccsassesssasarasisstonssnsisastansayes
Projection & Count........ T ——— NEp—— reststreraeiren vereenrerenes R .
Projection with Redundaney......cooviciiiiicreen, RSP RE——
s Bt 1t T 1 L P e e
Criginal Table to be Changed.. i iiicirrrrrecsninrenremississsnransrse e
Table with Modified Hgb Column........ B o e
Clustering Criteria uiiiiiissessamaisressnemsssrmmmmssnneniostomiettsirsssstassanmsnssssnsissrisieesronsess
Parameters Table.cccmcrirrrceneiinensenns eeteiisesmtataesrananatiesneanstoransEnanatinasishsseirerarrans
Criterion Table vvicirimcsnevicarecniacnsennas T N AR SRS eSS T e s v
Events to be Clustered .coccecniiimeisnmnanersinenn T ———
Meanings of Values in Events Table ...cocccmereceeeiciiininninnaininnnncenicsinnienscsnienamsen:

Results of Clustering eectatorsmstiovtttasnsanessnre ivsssarionsnsarres U nnmee RL SRR
GEM Parameters Table....cecrenasns ensvmavasaeasssnartesomonransess SO
GEM Events Table...c.ccerrrnsranserrcnenres A S S A R A A SR AR AN SR AR A AR R

...

Relation of Compiler CoOmMPONENtS. uciisrsrsisssiisiiiiiissisiissssnnsmasassnasnrivsrsansassssesses
A Sample Paraphrase Program...cccceeeremnresemsinissseciiccosininnenes R e
Flowchart depicting the top-level structure of PLANT /ed: susennnmmnnsaans
Flowchart depicting the FINDOUT procedtre. coiveeiarisncreseiiissssineeccmenmeniainnnon
Flowchart depicting the INFER procedure. v iinniiniimimeiiivicttnnsccaneiiimscsniinne.
System Structure of BABYceceanaeaeee. teseeersessensatennrtnyborastne s et narataaedanrrarhasasasiasans
A BABY Knowledge Base Pattern R R—— SO erovans
Network Description of FIZure 40.c..vresssunsicinsssiirecsenenssosssarmnnasiiosissassasassssssssss
Goal Structure of the ALFALFA System, «occeiciimcreimrnricniirssssmrnarsrmiresmessnssassssssons
Abstract Qutline of Algorithm

Converting Variable/Value Graph to Rules. ...vcecemveeeciarnnneccas R — T —

(] B = ¢ B QAL
S B2 b

oh R Ch O Oh O O o @y QO O QL BN
BB 6D = = 5D O 00 O N e W GO LI

B7

T4

31
106
L7
108
112
118
122
134

128

44. The Case of 2 Common Subtree in Variable/Value Graphs. .oocvciiiiceniiensnsncninane

45. Typical Order Independent Rules
Derived from Variable/Value Graph. o cecinciisiniisinieeecmscsincsssssiairisesaaannanmsess

129

vi

CHAPTER 1

A General Overview

Expert systems are now being built for a great variety of practical problems. The problems
span. many domains, including medicine, geology, chemistry, agriculture, defense, computer
systems design, accountancy, architecture and VLSI circuit design. The systems built today are
often representative of technology developed in the past decade, and suffer from a number of
limitations. They typically use only one form of knowledge representation {e.g. production rules
or semantic network), have no or extremely limited learning abilities, use only one type of
inference mechanism and one type of control strategy, offer poor explanation facilities, and do not
provide adequate mechanisms for interaction with databases and/or simulation modeis.

The research described here represents our attempts to overcome some of these limitations.
We have developed an architecture and design ideas for a general purpose inference system called
ADVISE. The system consists of a set of modules for the development of and experimentation
with expert and advisory systems for various application domains {(hence, a "meta-expert
system”).

‘This report describes the design philosophy behind the ADVISE system, presents resuits on
its first implementation called ADVISE.1, and describes its application to various test problems.
Among the important and novel ideas in ADVISE.1 are the incorporation of three different types
of knowledge representation, inductive learning capabilities and several inference control
strategies. We feel that ADVISE.1 represents a substantial advance in expert system design and
functionality and can be viewed as a "second generation” expert system building tool.

" Let us examine the notion of an expert system. An expert system is typicaily defined as a
computer system that exhibits high performance in a specific problem domain due to a large
amount of formally encoded domain knowledge, is able to conduct formal reasoning on this
knowledge, and provides facilities for explaining its reasoning to a user. An expert system Is
supposed to perform a host of tasks that a human expert would typically perform: diagnose,

interpet, consult, classify, identify, search through a space of possible solutions, explain and
analyze [Buchanan, 1983].

In a typical expert system, the domain knowledge is represented as a set of production rules.
These rules take the form of:

IF <condition> THEN <action> : o
where:
< condition > is a logic expression which must be satisfied to a certain preset degree, and

< action> is a set of actions to be performed if the < condition> part of the rule is satisfied. The
<~ condition > may include both the context within which the rule is applicable, and the specific
conditions to be satisfied by the situation in order to apply to it the <action>.

< a> i8 a certainty or strength that, together with the strength of the <condition>, aiffects the
strength of assertions made in <action>.

The set of production rules that characterize a given application area is termed the
knowledge bese. The knowledge base is one of the three major components of an expert system.

The second major component is the inference mechanism by which the knowledge base is
used to perform given tasks. The inference mechanism is divided into two parts: -

9 a rule evaluator/ezecuter that does inference within a rule, and
. a conirol scheme that does inference among rules.

In many expert systems, some form of probable or plausible reasoning is used to handle
ancertainties. Data are often represented as object/value/confidence tripies.

The third major component of an expert system is the memory needed to store intermediate
results of rules when they are actuated or fired. Some architectures term this component the
blackboard.

A favorite starting point for expert system architecture is to organize these three components
as a production system. Such a production system performs a recognize-act cycle in which a
control scheme decides which rules to evaluate and, if any fire, executes their right—hand sides. For
more details on production systems see [Nilsson, 1980], [Davis, 1878] and [Michie, 1980]. Many
expert systems are not pure production systems, however.

There is another expert system architecture in which the expert knowledge is in the form of
a network. The control scheme becomes a network traverser/updater, This architecture is
implemented in PROSPECTOR [Duda, 1978a). See (Hayes-Roth, Waterman and Lenat, 1983},
(Gevarter, 1982], [Michie, 1980|, and [Stefik, 1982] for more detailed overviews of expert systems.
The following section shows how the ADVISE system extends the expert system featured described
above.

1.1. Goals and Major Features of ADVISE.1

The goals of research on the ADVISE system are to explore basic problems, and to test
the feasibility of building an advanced knowledge engineering workbench that integrates
multiple knowledge representations, multiple control and rule evaiuation schemes, and
inductive learning capabilities. Major features of the current version ADVISE.L include:

» representation of knowledge in three different forms: a rule base, a network base, and a
relational data base,

. use of a very flexible representation for inference ruies,

. modular design,

® availability of several control strategies,

. inductive learning capabilities,

* common virtual memory representation for data.

o several rule evalnation schemes,

® separation of control and meta-knowledge from domain knowledge,

. independent module for user interaction, and

. implementation of the system in Pascal {a popular language widely available on many

computer systems),

As this list shows, there is an emphasis on user and developer flexibility and convenience
in ADVISE. The user interface is designed as an independent module and supporis the idea of
user—oriented interaction. This interaction can be developed almost independently of the rest of
the system and supports multiple terminal types.

ADVISE is designed with the philosophy that a highly modular system can be arranged
into- different configurations, best ftting different applications. Each module can be

independently modified, and new modules readily incorporated into the system. This modular
design makes ADVISE flexible and elegant.

1.2. Conceptual Organization of ADVISE.1

Figure 1 shows a conceptual diagram of the system. The system consists of four major
components:

(1} Control Block and User Interface
(2) Knowledge Base
{3) Query Block

KNOWLEDGE BASE

e Rule Base
s Network Base
¢ Relational Data Base

A

QUERY BLOCK KNOWLEDGE ACQUISITION BLOCK

| ‘o Direct Retrieval: For A, B, & C [e
"o Using Inference: For A, B, & C

s Direct Retrieval: For A, B, &£ C
s Using Inference: For A, B, & C

L4
CONTROGL BLOCK
AND
USER INTERFACE
o Query Mode

« Knowledge Acquisition Mode
e Explanation Mode

L

USER

Figure 1: A conceptual diagram of the ADVISE system.

Each component supports operations on three types of knowledge representations: a rule base,
a network structure, and a relational data base. The functions of these four components are
described in the sections below,

1.2.1. Control Block and User Interface

The control block and user interface manages the user’s interaction with other
components of the system. It handles three distinct modes of operation of the system:

® Query mode
o Knowledge acquisition mode
- Explanation mode

The user interface portion of the system provides utility routines to manage the
terminal screen and supports the explanation of internal data representations and operations
in a textual and graphic form.

Query mode {Q-mode)

Query mode is used during consultation. In this mode, the system:

© selects questions to ask the user,

® accepts user answers and

® conducts an inference process involving the knowledge base and information provided
by the user, in order to compute advice with an associated strength of supporting
evidence.

In one respect, the consulting portion of the system is radical in design. In particular,
there is no single problem solving strategy. Rather, local problem solving behavior is
defined by the choice of an evaluation scheme, and global problem solving behavior is
governed by a control scheme within and among rule groups. Specific provision has been

made in the design for the inclusion of multiple control schemes and multiple evaluation
schemes.

Knowledge acquisition mode (K-mode)

The knowledge acquisition mode coordinates both the encoding of expert derived ruies
into the knowledge base and the interactive invocation of the separate induction programs,.
This. mode includes handling specific components for defining expert rules, manual
refinement of rules, induction of rules from examples, and automated correction and
improvement of the rules. The system also provides facilities for testing rules in interactive
mode on individual cases, as well as in batch mode on a collection of cases.

Expianation mode (E—-maode)

The explanation mode paraphrases decision rules in English, enables a user to
understand the organization and functioning of the system in query and knowledge

acquisition modes, allows simple interrogation of the contents of the knowledge base, and
displays the steps in the process which led to a given piece of advice.

1.2.2. Knowledge Base

The network structure consists of three types of representation:

® a network base (e.g., conceptual network),
® a rule base, and
s arelational data base.

A unified "access protocol” is used for all three types of representation.

Network Base

The network base contains network structures representing general demain knowledge
about interrelationships among various conceptual units. For example, it can include
hierarchies of terms from the application domain indicating the level of generality of such
terms (2 “generalization tree”), a representation of the structure of the rule base, and
precedence relations defined over questions for the user. Links between nodes in the network
represent “static” relationships between concepts. The network organization is a form of the
“Logic Net" described in Baskin, 1980|.

Rule Base

The ruje base contains rules in the basic form:

CTX CONDITION => CONCLUSION :o,j

where:
CTX is an expression describing the context within which the rule is applicable;

CONDITION is a formal expression {in VL2 [Michalski, 19781) which involves elementary
conditional statements {called "selectors”), linked by various logic operators {including
quantifiers);

CONCLUSION defines the decision or action which is executed when the CONDITION is

satisfied by a given situation;

o is the strength of the evidence which supports the CONCLUSION when the CONDITION
is completely satisfied (0 < a < 1) and

8 is the strength of evidence which supports the negation of CONCLUSION when the
CONDITION is not satisfied {0 < 4 < 1).

The rule above is read: CONDITION implies CONCLUSION with forward strength
"o and backward strength “3". Specifically, the rule states that: if the left hand side (LHS])
of the decision assignment operator {::>>) is satisfied, then the right hand side (RHS) is
asserted with a degree of confidence a, and if the RHS is satisfied, then the LHS is asserted
with a degree of confidence 3. The decision assignment operasor is equivalent to logical
implication when « = 1 and 3 = 0, and is equivaient to logical equivalence when a = |
and # = 1. The above rule is equivaient to the following rule group:

CONDITION =, CONCLUSION ;o
not CONDITION i3> not CONCLUSION ;o
CONCLUSION e CONDITION % o
not CONCLUSION > not CONDITION %

By providing both “a” and "F" for each rule, it is possible to use rules for inference in both
forward and backward directions.

The use of parameters {«,3) above can be illustrated by an example taken from
contract bridge. In bridge, each partner learns the same set of rules for bidding (called a
bidding convention). Qualifiers such as "must,” “should,” "usually,” "seldom” and "never”
are used in the verbal description of the rules for the strength of implication. A bidder uses
the rules in the forward direction to decide what bid to make. The partner of a bidder uses
the rules in the reverse direction to decide about the strength of bidder’s cards.

One well known rule in the Standard American bidding convention is an opening bid
of one no trump. A textbook description of this rule can be paraphrased:

If you have a strong hand (16 to 18 high card points), (1)
a balanced hand (at worst one doubleton suit), and strength in

all four suits {four stoppers) then you should definitely bid 1
no-trump. '

This rule can be expressed in the formalism which we are developing as:

[high card points = 16..18] [number of doubletons < 1 (i1)
[number of stoppers == 4]
>

[bid suit = no_trump| [level = 1] : =1, f==0.8

where a==1 follows from the use of "definitely” in the rule. The value of 3" is the sirength
with which a bid of one no trump implies the hand described on the left hand side of the

rule. The value of "3" is less than 1.0 because one no trump may be bid with other hands,
as shown below.

The novice bridge player soon learns that like any other expert skill, bidding in bridge

does not always follow strict rules, as described above. An experienced player will often use
the following more general rule:

If you have a hand which meets the above requirements {1ii)

for a 1 no—trump bid, except that it has less than three stoppers,
then you shouid usuaily bid 1 no-trump.

The rule above can be represented in our formal language as:

[high card points = 16..18] [number of doubletons < 1| (iv)
Inumber of stoppers > 3|
n>

(bid suit = no_trumpj [level = 1| : a=.8, g==1

The parameter a==0.8 in the rule above indicates that if the left hand side of the rule is
satisfied then the strength of confidence for a 1 no trump bid is somewhat less than it was in
(ii). On the other hand, once this bid has been made, the partner can be certain (J==1.0)
that the bidder’s hand conforms at least to the requirements specified in the left hand side.

The rules (ii) and (iv) above can be combined into a single rule by using “weights”
associated with individual values of the variables. The following ruie is a formal
representation for both (i) and (iii) above:

thigh card points == 16..18] [number of doubletons < 1] (v)
inumber of stoppers = 3:0.7, 4:1.0}
>

{bid suit = no_trump] [level = 1] : a=1, g=1

The coefficient 0.7 associated with "number of stoppers = 3" reflects the weakened strength
of implication if there are three stoppers. Both the weights on the "number of stoppers” and
the value of "a" are used to determine the strength of supporting evidence for the
CONCLUSION. Since the weights have been associated with individual values, the global
stirength of umpiicasion, "a”, can be assumed to be 1.

Relational data base

The relational data base contains relational tables which represent any factual
information, e.g., *xamples of experts’ past decisions. A modified relational algebra has
been developed using constructs from Variable-valued Logic to make the user access more
natural and more concise {Michalski, 1974| [Spackman, 1982].

1.2.3. Query Blocks

The query block supports two types of queries: those which can be executed by direct
retrieval from the knowledge base, and those requiring inference. Both types of queries are
defined for aill three types of representations in the knowledge base.

Query block using direct retrieval

Direct retrieval is used to display the contents of the knowledge base. The network
base, the rule base, and the relational data base can each be retrieved and displayed using
the query block. Direct retrieval is heavily used in the explanation mode of the system and
also during knowledge acquisition.

Queries using direct retrieval on the relational data base include the traditional
relational table operations such as as "project,” "select” and "join" as well as various
arithmetic or other transiormations of the data items in the tables.

Query block using inference

One of the most important functions of the system is to compute the most plausible
advice for the user in a specific situation. Queries involving inference {deductive and/or
inductive) are supported for each form of knowledge stored in the knowledge base.

Queries using inference for the network involve "path following” within the network,
e.g., climbing the generalization tree.” Inference over the network also occurs whenever the
hierarchy is used to answer questions by searching the network for specified relationships
between given concepts.

Queries using inference for the rule base are particularly important for providing
expert advice. Rules are evaluated for a given situation using an “evaluation scheme” {a
method of propagating uncertainties) in the order decided by a "control scheme.” In this
system. there is no single problem solving strategy. Rather, local problem solving behavior
is defined by the choice of an evaluation scheme {of which several are planned), and global
problem solving behavior is governed by a controi scheme within and among groups of rules.
We plan to impiement several different evaluation schemes and a few control schemes in the
system. In this way, a single knowledge base can be used for research into the performance

of differing problem solving strategies for consultation.

The QUIN relational data base {Chapter 8) has been enhanced to allow queries using
inference. These additional operations allow the inference of rules from examples.

- 1.2.4. Knowledge Acquisition Block

The knowledge acquisition block supports knowledge acquisition by the direct
representation of knowledge provided by human experts and also by inductive inference
from facts provided to the system. The design of the proposed system includes knowledge
acquisition for each type of knowledge stored in the knowledge base.

Knowledge acquisition by direct representation

The direct representation of networks, rules, and data bases of facts or examples
constitutes "learning by being told.” This is the major way that knowledge bases are being
constructed today. The direct representation of expert knowledge is particularly importans
in problem areas where "rules of thumb" or other generalizations about the problem domain
are known. Material which is supplied by the expert for direct representation is entered into
the knowledge base as specified, but it may be modified by further knowiedge acquisition
using inference as described below. Special user interface ("debriefing”) for interactive
specification of rules and networks is provided. Batch submission of sets of examples is
supported as well.

Knowledge acquisition using inference

The inclusion of machine based imference as a part of the knowledge acquisition
process is intended to reduce the burden on human experts. By defining inference
procedures over each component of the knowledge base, the system no longer relies solely on
the human expert to organize and present a complete, concise, and error free knowledge
base.

Knowledge acquisition using inference for the network involves both deductive
extensions to the knowledge base and the inductive derivation of new or improved network
structures. As new information is added to the network base, ruies of inference are
‘““axecuted” to enforce the logical consistency and completeness of the network. This
corresponds to inference of new concepts and relationships from existing ones. Also,
machine derived categorizations and hierarchies can be inferred from the knowledge base
using conceptual clustering techniques implemented in the program CLUSTER Stepp,
19801,

Knowledge acquisition using inference for rules includes the derivation of new or
modified rules from existing rules or groups of ruies using examples in the relational data
base. This process will be implemented by adapting the aiready developed inductive
learning programs AQVAL [Michaiski, 1973], INDUCE [Larson, 1977/ and ID3 '‘Quinlan,
1978). Preliminary results by both principal investigators in this area suggest that the
“refinement’’ of existing rule bases using induction is both possibie and fruitful Michalski
and Chilausky, 1980| [Baskin, 1978|. The derivation of patterns of rules or rule groups from
the isolated rules iz also supported by the proposed system. Ailthough results in this area
are still tentative, the inference of patterns in groups of rules should allow the iterative
improvement of the control scheme by which rules are selected for evaluation.

Knowledge acquisition using inference for the data base corresponds to a form of
ciustering. In our previous experiments, clustering algorithms have been used to partition
the set of examples into groups which are “similar.”” This operation corresponds 1o having

a teacher label each example in the training set. The important property of the clustering
algorithms is that they do not rely on a domain expert to categorize the examples. In
addition, when the categories are not known, the clustering process can still be used. (The
clustering operation corresponds to inductively deriving a relational operation which 2
human expert might have used to supply examples for the inductive derivation of rules.)

In addition to clustering, inference over a set of examples involves selection of the best
“Representative’” examples for use in the inference of rules. The program ESEL [Michalski,
1978 has been developed for choosing examples from a large set of examples which are
‘“‘representative’ of the set. The proper selection of examples becomes particularly
important when rule inference is computationally expensive.

1.3. The Architecture of ADVISE.1

Figure 2 illustrates the architecture of the ADVISE system from a technical standpoint.
Figure 2 shows the basic software modules in the ADVISE system and their interactions. A
shori description of each module is presented below:

o USER INTERFACE
The user interface provides a set of software tools for creating sophisticated user

TERMINAL
]
USER INTERFACE
|
CONTROL BLOCK E
RULE RULE BASE NETWORK NETWORK BASE RELATIONAL TABLE | TESTER !
EDITOR INFERENCE CONTROL EDITOR INFERENCE CONTROL QUERY AND [INFERENGCE | |
l « forwaed chaining (QUIN] 1
| - batkward chuining =]
- utility mssimisation !
- ypprazimaia bayesian i
| 1 |
RULE NETWORK , ' |
PARAPHRAZER PARAPHRASER INFERENGCE |
» QPERATIONS '1
- diseriminats |
- d‘T“l lr
RULE ! NETWORK i t
T ! i
SPECIAL i |
FUNCTIONS | |
[MODULE ! | ! g
] l I I'
] 1 | : : E ‘ 5
TUPLE MANAGER

Figure 2: A technical diagram of the ADVISE Architecture.

10

interactions with the ADVISE program. It supports graphics, windows and menu driven
user input. It is designed primarily to drive the Sun-2* Workstation, but is designed to
be portable with minimum modification. The user interface is discussed in detail in
Chapter 3.

® CONTROL BLOCK
This dispatches the major functions of ADVISE: parsing rules or networks using the
parser modules, running a consultation using the rule base or network base modules,
relational table query and inference using the QUIN module, 2nd testing parts of ADVISE
using the TESTER module. Currently the control block functions are implemented in a
top-level window created using the user interface above. This top-level window is also
discussed in Chapter 3.

® RULE EDITOR

This module is an interactive menu-driven editor for rules. [t uses both the rule parser
and paraphraser. This module has been designed but not implemented.

& RULE BASE INFERENCE CONTROL
The ADVISE system supports severzl types of knowledge base inference control (control
schemes). They access knowledge in the tuple manager, request values for unknown
variables and determine the truth value of pieces of knowledge via the rule evaluator.
Control scheme tools are described in Chapter 11 (Section 11.3).

N RULE PARSER
This module parses an extended form of GVL, [Michalski and Chilausky, 1980i. [t outputs

a parse tree that is read by the TUPLE MANAGER and stored in the tuple format. See
Chapter 8.

NETWORK EDITOR

This module is an interactive menu-driven editor for networks. I[ts implementation is
discussed in Chapter 4.

* NETWORK PARSER
An inference network is an alternate form of representing domain knowiédge. This
module parses the network representation into the tuple representation manipulated by

the tuple manager. The network parser is discussed under the implemencation of the.
BABY system in Chapter 13.

- NETWORK BASE INFERENCE CONTROL
This module, when implemented, will be used to carry on inference on networks.

® QUIN
This module is used to do queries and inference on relational tables. QUIN [Spackman,
1982} calls a host of data analysis and learning modules such as AQ11 Michalski, 1978,

ESEL [Michalski, 1978/, CLUSTER [Stepp, 1980|, PROMISE [Baim. 1982, and.
CONVART [Darvis, 1981|. See Chapter 5.

* TESTER

This module is used to manipulate the tuple network directly. [t also serves as a testing

and debugging vehicle during the development of other modules in the system. 3See
Chapter 10 for further details.

. PARAPHRASERS
These modules are responsible for explaining to the user how ruie and network inference is

“Sun-2 in a trademark of Sun Microsysiems, Inc.

11

being used during a consultation. Another function of the PARAPHRASE module is used
to “unparse’”’ a rule from its parse tree form to the human readable form. This module is
also used to explain the evaluation of particular rules to the uset. Paraphrasing is
discussed more in Chapter 8.

@ RULE EVALUATOR
This module is responsible for evaluating the premise part of a rule and asserting its
consequent if it Bres. It evaluates and asserts rule parts under a variety of semantics for
logical connectives in 2 multi-valued logic interpretation. See Chapter 7.

s SPECIAL FUNCTION EVALUATION
This module, also known as the TRAP module, is used to evaluate special functions.
These functions can do such things as permit special displays, start up sensors, run models
or simulations, ete. See Chapter 10 for a detailed discussion of the TRAP module.

. TUPLE MANAGER
The. basic structure for storing information in ADVISE is the tuple. (Information is also
stared in Pascal local variables, but this type of data is particular to the local
environment and is not meant to be preserved.) An ADVISE tuple resembles the
mathematical definition of a tuple {an ordered set) in which a set of tuples form a graph
or network. Tuples, much like LISP property lists, are accessed by coniezi. The tuple
manager is based on the work in {Baskin, 1980] and is discussed in detail in Chapter 9.

The overall system architecture outlined in this section has served as a guide for the
development of the ADVISE system. Before presenting a detailed chapter-by-chapter account
of the current state of ADVISE, the next chapter reviews other expert systems technologies.

CHAPTER 2

Research Goals of ADVISE and a Brief Review of Other Systems

Recent literature {{Buchanan, 1985, [Harmon, 1986, [Spang, 1986| and [Riedesei, 1986:)
documents in the neighborhood of 150 expert systems as being in use, These systems serve a
very wide range of applications — such as advising nuclear power plant operators, configuring
computer systems, detecting harmful drug interactions, identifying new herbicides and
forecasting finance. One expects that many more lesser-known systems are in existence or are
being developed. This is the context in which the role and plan for ADVISE research will be
discussed.

At the time of its conception, the ADVISE system presented at least three revolutionary
ideas in expert systems technology:

1. multiple knowledge representations (to combine a rule base with a relational database and
a network base)

2. multiple control strategies
inductive learning tools for learning rules and automatically constructing classifications.

The design and implementation of ADVISE has emphasized the construction of a
knowledge engineer's workbench. Interchangeable system components have been developed and
made available to the knowledge engineer. The ADVISE effort is directed at creating and
evaluating different expert system [rameworks rather than providing a robust expert system
shell for a specific approach. The ADVISE formalism provides multiple options for rule
scheduling, uncertainty propagation, and knowledge representation. In this way, ADVISE can
support a wide range of expert system methods.

{n overall design and approach, ADVISE is most similar to AGE (distributed by SUMEX)
and DUCK (Smart Systems Technology)*. ADVISE is in strong contrast to "empty expert
systems such as EXPERT {Rutgers University), OPS5 (Carnegie Mellon University or Franz,
Inc.), and. EMYCIN (SUMEX). These systems have more strictly defined structure within
which the knowledge engineer must operate.

The AGE system consists of a modular set of tools that allow one to create and evaluate
differeni expert system frameworks. Like ADVISE, the AGE system has predefined control
frameworks which can be used to build specific expert systems. AGE is implemented in
[nteriisp.

DUCK provides support for rule-bhased knowledge systems using predicate calculus ruies.
[t is not meant to be used as a stand-alone programming environment: rather, it is 2 package
of utilities written in LISP that are useful for writing expert system application programs.

The remainder of this chapter discusses particular aspects of ADVISE and their relation
to other systems.

‘Information on maay of the sysiems cited in this chapter was obtained by personal inquiry o the distributor and not
through existing literature. For these syatems, the source of information is provided instead of a reference.

12

13

2.1. Knowledge Representation

Although there has been work in ADVISE with network representations for knowledge
(e.g. the system BABY — see Chapter 13), the primary knowledge representations in use consist
of tables and rules. Both have been used in multiple expert system implementations. The
relational operations in QUIN (see Chapter 5) are not directly incorporated into the rile
evaluator and, thus, are not easily integrated into the operation of expert systems. QUIIN has
proven usable for interactive management of small databases for the purpose of rule generation
and refinement.

As noted in Chapter 1, the rule representation used for ADVISE is GVL rules with
positive and negative weights allowed on individual selectors and linear modules. Alpha and
beta weights are similarly attached to the implication arrow in the rule. In general, GVL rules
are larger than the types of rules used in other systems. They tend to contain more terms and
there tend to be fewer of them to cover the same event space. The GVL rules are
correspondingly more sophisticated to evaluate and are more likely to suspend execution
because of missing data than the simpler rules in other systems.

ADVISE is different from many systems in its rich support of disjunction. On the left
hand side of a rule, both internal and external disjunction are supported. In other systems,
‘these disjunctions would lead to separate rules. The problem of disjunction on the right hand

side of a rule can be handled by backtracking {see Chapter 14} or by using a truth maintenance
system {TMS),

Current ADVISE does not support an explicit blackboard model. Global communication
is-accomplished by defining and using variables in a global variable block.

2.2. Structure Within a Rule Base

Two types of structure can be distinguished for a rule base: static vs. dynamic. Static
structure can be defined before a consultation begins and used as part of the planning process
and in rule scheduling. Dynamic structure is imposed at run time usnally by the instantiasion of
such constructs as viewpoints or contexts. ADVISE does not provide general support for
dynamic structure but does provide support for static structure through the use of rule groups
and variable blocks. A data-directed context mechanism was developed for the BABY svstem
{Chapter 14} but was not incorporated as a general tool.

| A rule group is a functional block of rules that achieve 2 common goal. The rule group
operates on either global or local variables which are imported into the rule group through a
variable block declaration.

2.3. Separation of Control Information

The ADVISE system attempts to strongly differentiate high—level rule schednling and
control from low-level rule evaluation. In this way, the evaluation of rules has a minimum
effect on the scheduling of rule activity. As much control information as possible is separated
out of individual rules and contained in a "control scheme.” In ADVISE, these control schemes .
are mutually exclusive for a single knowledge base but may be selected separateiy for separate
knowledge bases. ADVISE has supported bayesian control, forward chaining, backward
chaining, and a utility measure based control scheme. Only the utility measure scheme is
unique to ADVISE, Most expert system tools today incorporate both forward and backward
chaining and a few like ADVISE and KES H {Software Architecture and Engineering, Inc.)
support multiple competing control schemes.

14

2.4. Daiabase Operations

Relational database operations are supported in ADVISE as part of the QUIN system.
The operations supported in QUIN are only available for interactive knowledge acquisition and
are not available to the GVL rules. The induction operators provided for in QUIN are unique
in expert system toolsets. The induction operators in RuleMaster (RADIAN Co.) come the
closest to those supported in ADVISE.

A number of systems provide for using a relational database as part of expert system
building -~ e.g. ART (Inference Corp.), Knowledge Craft (Carnegie Group), and Knowledge
Workbench (Silogic Inc.). ADVISE provides "trap [functions” which can be used to reach
external databases during a consultation. Knowledge Workbench appears to provide a more
convenient interface to external databases, but it is no more powerful than the one supported in

ADVISE.

2.8. Summary of Knowledge Representations Used in Related Systems

This section gives a brief account of knowledge representations used in several well-
known systems.

The AGE system is distinguished by a Hexible knowledge representation which separates
control, procedural, static, and solution knowledge. AGE has the ability to automatically
pursue muitiple goals.

The ART system incorporates a frame-based knowledge representation component with
inheritance and a relational database for use in rule-based inference. A blackboard is used for
communication between rules and object-oriented programming is accomplished via procedural
attachment to slots in the frames. An assumption-based TMS is used to represent different
assumption sets in the different viewpoints {contexts).

DUCK provides tools for expressing knowledge in predicate calculus rules and suppeorts
deductive database retrieval. Non-monotonic reasoning is supported via a justification-based
TMS that supports viewpoints {contexts).

EXPERT is a FORTRAN-based system that provides decision rules to link findings to
hypotheses. [t differentiates hetween rules that link facts to other facts, facts to hypotheses,
and hypotheses to hypotheses.

KEE (IntelliCorp) incorporates object-orienied programming, a frame system with
taxonomic inheritance, rule-based reasoning with an assumption-based TMS. The- system
provides for a "rule ¢lass graph” which is similar to the concept of rule groups in ADVISE.

The KES H system is written in C and supports three different modes of reasoning:
1} production rules,
2) bayesian patterns, and
3) minimal set covers for a hypothesize and test subsystem.

Knowledge representation is structured in a simple semantic network formaiism which is
quite similar to the use of tuples in ADVISE. As in ADVISE, the three knowledge formats are
different but have been partially integrated.

In the Knowledge Craft system, she representation language used is CRL, a descendent of
SRL. The basic representations unit is a schema with a slot/filler structure. Relations between
slots and inheritance of values are user—definable. Contexts are supporved as is an integrated
daiabase management system with caching for storing schema.

OPS5 and its extended and faster cousin OPS83 (Production Systems Technology)
support rule-based programming for expert system development. Data elements are

15

represented either as vectors or as objects with a list of attribute—value pairs. A blackboard is
maintained for communication between rules. The blackboard alsc provides a natural
representation for multiple goals.

CHAPTER 3

The User Interface

3.1l. Introduction

This chapter describes the development and current state of the ADVISE user interface.
The problem of human-computer interaction has received much attention :Human, 1985.. The
study of computer user psychology, an outgrowth of earlier work in human-computer
interaction, has emerged as a viable subfield in computer science {Moran, 1981}, A difficuity in
working in this area is that so many factors are involved in designing interactions which
typically cannot be pinned down with algorithms. The designer must rely on his own intuition,
which can be remarkably deceptive. The aesthetic aspect of this problem (i.e., what is the most
appealing way of presenting information) is most certainly a matter of personal taste. In view
of these problems, cur approach has been to refine our program interfaces by subjecting them
to several cycles of group criticism. Some general guidelines that evolved from this effort are
presented in the next section.

3.2. Philosophy of the Interface

Although computer scientists seem often to lose sight of this fact, the human user is a far
more sophisticated “computing device” than any current computer program. With this in
mind, we offer some general principles that have proved useful in the development of the user
interface.

. Feedback : This can be as simple as verifying the unser’s input by prompting, or
highlighting his response (in the case of option selection from a menu). If processing time
between user responses is too long (as little as two seconds) it is important to indicate
that the computer is doing something. This feedback should be placed somewhere near
the current text insertion point. Particularly long response times are acceptable only if
the user thinks that something particularly useful and important is being accomplished.

@ Help : Help should always be made available to the user. With regard to expert systems,
some indication of the status of the consultation should be provided. The program should
distinguish between novice and experienced users. The novice should be provided with
introductory material and perhaps more specific prompts. The user’s name is requested
prior to a session, and 2 history of interaction is maintained with the program, in order to
determine his user class. The novice user learns a great deal about a program in the firsg
encounter, and the program should respond to this within a single session. For example,
axplanatory prompts may be presented the first few times they are used and then become
more brief as the consultation progresses.

e Backup and Error Accommodation : The user should be allowed to *‘undo’ anything
he/she has done. A related issue is that the user should be allowed to query the program
about answers to previous questions. A useful mechanism with respect to user errors is to
provide immediate feedback after a user response (2 definitive statement of what has been
requested). |

® Consistency : The display should be logically laid out. Option menus should always be
placed in the same area of the display. User typing should be minimized.

18

17

® User Bandwidth : We favor a block based interaction where a block is a single screenfull
of information. Each block should provide multiple options and allow several questions
to be answered before moving on to the next block.

These guidelines alone do not guarantee a successful interactive program. Each interaction
should be be analyzed to minimize false expectations in the user. This analysis should not be
performed by the program designer, but by a variety of outside sources. To illustrate some of
these concepts, some blocks from the PLANT /ds program are presented.

Figure 3 shows a multiple question block that is used to gather information concerning
the leaves of a diseased plant to be diagnosed:

Leaf Mildew Graxwth: () Awpsent () TIn Upper Lsaf Tur*ace
() On Louer Leaf Sur“ace

PFremature Defoliation: () Absant ()} Present
Shotholing: () Absenrnt () Present
Shredding: (}] Absent () Present

UWithering and Wilting: () Absent {} Present

n L]

Type "x* to register an entry.

Fress SPACE bar to move forward to the maxt eniry.
Prass BACK SPACE to move Back tg ThMe prav ous entry.
Press "?" to gat help for the current guest on,
Pragss RETURAN to termimate antries on %this scresenr.

Figure 3 : Multi—question frame from PLANT/ds.

The user moves back and forth between questions, answering those appropriate to the situation.

A single key press guides all of these functions. Help concerning these questions is always
-available.

18

Figure 4 shows a block that gets the value for a single variable. The user first enters the
value (or any option), then he may or may not be asked to enter a confidence in that answer.
After input is complete, the program prints the message that it is preparing the next question,

HoWw uwpuld yYyou describe the pattarn of ieaf spots growth?
l = From edge of leaf irward.

2 = Scatterad and plain.

3 - Scattered with concentric rings.

4 - Browun veinal necrosis.

S - Joes not apply.

b = go back one gQuestion

d - display a rule

8 - expiain houw to answer the guestion

g - l|ist pursued hypothesas Migh - =325%
r - ligt rejected hypetheses | g w - =35%
W - Why is the guestion being asked certain - l3gg%

Type orme number or letter indicating your chaoice
with confidence in the ansuer: c {(¢certain) / n thigny / ¢ {!low!

Preparing next guestion

|————.———ﬂ‘_-ﬂ_—-_¢-ﬂ-. L A A L L D N S L L T T B B B

Figure 4 : Single question frame from PLANT /ds.

Although PLANT/ds manages toc meet the guidelines stated above, its interface has
become outdated by the advent of windows, mice, and workstations. The next section traces

the development of the user interface from the beginning of the ADVISE effort, from the 4loeks
of the displey module to windows and pop-up menus.

3.3. Historical Development of Interface Tools

As long as ADVISE has existed, a user interface has been needed. Along with the
evolution of the ADVISE computing eavironment, the nser interface has developed
considerably. The first attempt was called the dispiay module. Many ideas emercged from the
display module work to shape further development., The display moduie lacked a sophisticated
degree of terminal independence which Advisecore [Channic, 1984|, the second generation
interface, sought to resolve. When development settled into the workstation environment, the
third generation interface, the SunWindows® interface was born. Each of these interface
generations is described briefly below.

*SunWindows is a trademark of Sun Microsystems, [nc.

19

3.3.1. The Display Module

The primary goal in the design of the Display Module was to provide tools for the
construction of a user interface that is as independent as possible from the rest of the
ADVISE system. By doing this, the interface designer is freed from concerns regarding the
rest of the program and can concentrate on the the user interface alone. It is important to
be able to cycle through an interface design in order to arrive at “friendly” interaction.

With this in mind, the Display Module was developed as a separate, independent
module. Some concepts which guided its development draw from the work of [Thursh,
1980|. In that work, the authors address the problem of developing a teaching tool for
general and systemic medical pathology. The software that evolved, Blockr, views a man-
machine dialog as consisting of a series of blocks of single screenfulls of text and diagrams.
These blocks can point to each other or themselves, forming a very general network
structure. Blocks are treated as data, consisting of text and instructions that, when
interpreted, cause an organized page of information to be presented at the terminal. Since
the system is data {block) driven, the interaction c¢an be prepared independently of the
program that interprets it, We have, in effect, an expert system for user interface design.

As mentioned earlier, the primary data structure manipulated by the Display Module
is the block. Since blocks consist primarily of data, they can be created via a simple editing
process. Omne consequence of the single screenfull of information organization is that it
encourages the presentation of several questions on a single block. This is consistent with
the goal of high bandwidth discussed in the previous section.

The Block Manager controls the interface between the blocks and the user program {in
this case the Control Scheme). This interface was organized in co~routine fashion; the block
manager would be invoked, cycle through a series of help dlocks and return control to the
Control Scheme for user input. All user input was passed to the Block Manager which
would handle range checking and error processing. One component of the Block Manager,
the Block [nterpreter, was be responsible for translating blocks into a form that can drive a
specific output device. It had access to a set of low-level routines of the form consistent
with the proposed CORE graphic standards [Foley, 1982|.

3.3.2. Advisecore

As computer interfaces developed outside ADVISE, the display module became
outdated since it had no facilities for overlapping windows or pop-up menus. The display
module aiso lacked terminal independence. To utilize windows and menus and to facilitate
terminal independence, Advisecore was developed. Advisecore was also based on the CORE
graphic scandard, primarily for (but not limited to) use with the SunCore graphics package
on a Sun Workstation.* There were two major goals for Advisecore as described below.

Coneurreni Processes with Status Reporting. Multiple active windows shouid
be able to co-exist on a single screen il desired. Effective screen management must allow
several processes to he active at any given time.

Processes Bound to Windows. In a window system, it is usually desirable to be
able to choose the location and size of a window in which a program runs., Being able to do
this without any modification to an existing program is also desired. To accomplish this,

screen management must provide a means for running a2 program which runs on a standard
terminal within a window of any reasonable size.

*SunCore and Sun Workstation are trademarks of Sun Microaystems, Inc.

20

[n the Advisecore interface, screen management consisted of two aspects. The firstis a
screen manager process which handles window requests from all other modules. The second
is a window filter process which allows a program to be bound to and run inside a window
as if it were running on a standard terminal. Figure 5 shows how these two processes fit
into the ADVISE system. The screen manager process handles all calls to display or receive

ADVISE
SCREEN MANAGER

|

ADVISE Top-Level
Window Module

i bletwork QUIN e,

Editor

GEM CLUSTER
7

Q.
WINDOW WINDOW
FILTER FILTER

- — — — —Pm

Figure & : Screen Management in Advisecore.

21

information to/from the user’s terminal. If an ADVISE module does not use screen
manager calls for such information, it must use an instantiation of the window filter process
for communication with the screen manager process. Both the screen manager and window
filter processes in their existing or proposed implementations are described in detail in the
appropriate section below.

3.3.2.1. The Screen Manager Process

The main feature of the Advisecore screen manger is interprocess communication.
As mentioned earlier, screen management loses a lot of functionality if muitiple processes
cannot be concurrently active within different windows. For this reason, some sort of
interprocess communication is essential. The ADVISE screen manager uses sockets in
the UNIX* operating system for interprocess communication. The sockets are
represented in Figure 5 by bidirectional arrows. Sockets are a reliable means of two-
way communication between processes. The ADVISE screen manager is designed to
receive window requests from a process and also to deliver any input directed to that
process from any window that process may have on the screen. This communication
between a process and the screen manager is accomplished through a socket which is
established during initialization of the Advisecore interface. Once the socket is
established, further window routine calls merely send the request along with its
parameters to the screen manager via the socket. The screen manager then executes the
appropriate output action.**

Delivering input to a window is somewhat more involved. The screen manager
must maintain a list of which windows belong to which processes and whether or not the
process is awaiting input in those windows. At any given time, only one window is
active with regard to input. The active input window is the window in which the mouse
device is currently located. Any input which occurs is delivered to the appropriate
process if that process is awaiting input. Otherwise, the input is ignored.

In order to handle input properly, a facility for polling the terminal input must be
available so that the screen manager isn’t stuck waiting for input when it could be
processing other window requests. This facility is referred to as non-blocking
input/output which means that a process does not get blocked if input is not available or
if output is not currently possible. The screen manager must not be blocked when
looking for input either from the terminal or from any socket for window routine
requests. UNIX supplies this mechanism via the select system call. This call is essential
to the ADVISE screen manager design.

The main algorithm of the ADVISE screen manager is briefly described below.
(1) Poll {select) socket for new connections to processes calling the coreinit routine.
{2} Poll (select) connections on socket for a request and process if present.
(3) Poll (select) standard input.

(4) If input is pending find out if the active window is expecting input. [it is, echo
the input {if indicated by requess) and send the input over the appropriate
‘connection. Otherwise ignore the input.

*UNIX is 3 ragistered trademark of Beil Laboratories.

"*Executing the appropriate output action, howaver, is much easier said than done. Problems of overlapping windows and
redrawing damaged regions are nen-trivial bub are not dealt with here. These problems are solved by the screea packages used
by the ADVISE screen manager and not by the ADVISE screen manager directly.

22

(5) G.c: to {1).

3.3.2.2. The Window Fllter Process

The window filter process allows processes which run on standard terminals to run
within a window in the ADVISE interface. The window filter process currently exists
only on the Sun version of the interface as part of the SunWindow screen manager
package.

In the VAX version, the filter is designed as follows The filter uses a socket to
communicate with the screen manager and pipes to communicate with the process.
Pipes are represented as dashed arrows in Figure 5. The window filter performs the
following functions.

(1) Requests that 2 window be opened on behalf of the process.

{2) Receives output from the process via an output pipe and translates the output
into window routine requests which are sent to the screen manager over the
socket.

(3) Receives input to the process via socket from the screen manager and passes that
input to the process over the input pipe.

(4) Requests that the window be closed when the process terminates.

3.3.3. The SunWindow Interface

As the ADVISE effort progressed, the workstation environment proved increasingly
productive, until it clearly became the environment of choice. Development of the user
interface focused largely on utilizing the existing window management features of the
workstation to satisfy the interface goals. A Pascal interface to the SunWindow package
was created to facilitate the use of existing window management programs, obviating the
need for sockets and pipes. The SunWindow package was sufficiently flexibie to be adapted

to meet the screen management goals.

Two applications of the SunWindow interface have been developed. The first was a
sereen-oriented network editor which is described in the next chapter. The second is a top-
level window which provides the necessary tools and ‘‘hooks™ for existing ADVISE programs
to run within a unified window format. The following section describes the top-level

interface to ADVISE.

3.4. The Current User Interface

This section contains six screens that are representattive of the initial enfry into the
ADVISE interface. The first screen is the top—level screen. It offers a variety of options via
static menus.

Subsequent screens show entry into a consunltation system (PLANT/ds) and into an
interactive editor (the Network Editor). A knowledge base {backup file} is passed to knowledge
base editors as an argument if a knowledge base has already been selecied at the top level
Once an editing session begins, the options are sufficiently different as to make impractical a
common editing language for rules, networks and tables.

These screens represent an approximation of the final interface. Continued use of the
interface will warrant regular refinements and modifications.

23

The first screen is the top-level screen for ADVISE. At the top of the screen are two
windows — status and history. The purpose of the status window is to capture diagnostic
output from other ADVISE modules {that may or may not run in the background) and allows
the user to examine that output at will. The history window was designed so that the user can
see where he has been in the system. The history window might indicate, for example, what
windows if any are currently overiapped. At the bottom of the screen is a global menu that
may change from time from time, depending on the interaction with the user. Options here will
generally be extraneous, i.e. not directly related to knowledge engineering tasks. The main
window on the left allows the user to select a way of looking at a knowledge base. The right
window offers control scheme strategies, as well as manifestations of these control schemes —
actual consultation systems.

Here the user is selecting the PLANT/ds consultation system.

%
i o
b H
e

i

x

=

r

N

. B

i

1

=

Consultation Systams

(Baciward Chaining Theorss Proving)
{Information Theorstical Utility Msasure)

. Knowledge Acquisition and Maintenence

{Rutes)
(Networks)
{Exsmpios)

MR,

{PLANT /cd)

[(Seiect Knowledge Bage) (Help) (Utiiities) (QUKT)

24

The second screen shows the initial entry into PLANT/ds. Note that the plant window
obscures ail the other options on the top—level window (except for the global menu at the
bottom). PLANT is not open to modification by the naive user, hence he is not ailowed to play
with control schemes or knowledge bases at the time he runs PLANT.

-:!:3‘LILM-I--J'di:::..u--.-..'-- R T

B PLANT/ds
¥ Varsion 4.0

FLANT is a computerized agricltural consultant
for providing assistance in diagnosing sovbean
diseases. common in Illinois. You will be asked
1o answer specific questions sbout the dissased
crep and its snvironment.

Press RETURN key to continue |

Ty Al oo AR R RS e T B Y G Seaat

i

(SoTect Knowlodge Base) (Heip} (Utilities) (QUIT)

25

The PLANT window aliows PLANT/ds to run in a window as if it were on a. terminal.
This allows programs to run in the window system without any modification whatsoever, Of

course, programs being developed now make explicit use of window management routines, such

as the network editor. (See later screens.)

LAl /a5

-Mjuestion Form 1. Disensed Areas.
817 working hypotheses.
N B rejected hypotheses.

‘¥ condition of Fruit Pods: () Normal () Abnorma)- 3 ;
¥ Conditian of Seed: {) Norma! (} Abnormal i |
Condition of Lsaves!: {) Norma) {) Abngrmal i
Condition of foots: () Norma) {) Abnarmal i ;
B Comdition of Stem: () Normal () Abnormal i !

! I
! A
i I
| |
x" == make an entry SPACE == move cursor foruard]
: -~ qrase n entry BACKSPACE ~~ wmtve sursor backwards
== get helg for this guestion ESC == Ysave this page of guestions

. == sge other opticns (sditing, inf3, hypotheses, rules, guiting)

| (Select Xnowledpe Base) (Help) (Ut1iitiss) (QIT) Sa— . ———

26

After exiting PLANT/ds, the user returns to the top-level window. Here the option of
looking at a knowledge base as a network is being selected.

Knowiedge Acquisition and Maintanence Consultation Systams
(Backward Chaining Theorss Proving)
(Rulms) (Information Theoretical Utility Measurs)
(Examples) !L
{PLANT /d=) |
{PLANT /cd)
{TURF)
(BABY)

| tSelsct Knowledge Bass) (Heip) (Utilivies) (QUIT) '" - }

27

The screen below shows the initial entry into the network editor. If there were other
facilities relating to networks the user would instead get 2 menu of available options from
which to select. Since no knowledge base was selected prior to selecting networks, the network
editor prompts the user for one. If a knowledge base had been selected, the network editor
would have tried to open that knowiedge base.

Unlike the PLANT window, the editor does not obscure all the options on the top-level
window. Conceivably, a user may want to view the same knowledge base as rules, networks,
and tables. In addition he may want to transfer data between the two. For example, a user
could create a rule in the rule editor and add it as a node in a network by using the mouse to

“pick up” the rule from the rule window and “carry” it to the network editor window.

tetory o | :

e T e A e R

Consultation Systams

{Baciward Chmining Theorsm Proving)
{Information Theorstical Utility Measure)

| Knosledge Acquisition snd Maintenence

{Rules)
{Networks)}
(Examplas)

ADVISE
Network Editor

| Entar a nutwork name:

§ (Satect Knowiodge Base) (Help) (Utilities) (QUIT)

‘Currentiy this tranafer of data is aot implemented.

-« L mliinben b L d UM e . o) . . R r ::

28

This screen shows the display of the selected network along with the main menu of
options. At this level, options are peculiar to the individual programs and the menus are the
individual program’s responsibility. The top-level menus provide all the options by which
these lower levels may be entered, and are meant to be as flexible as possible without imposing
any arbitrary language for starting up a variety of knowledge engineering tools.

Knowledge Acquisition and Maintsnence

{Rulen)
{Networks)
(Exsmplas)

oL Pl g0 e

archil
'K conta in=-top
b~-3
isa
brick
{sa
building=unit
orisntation
horizontal
contain=-left-side
b=-2
{9a
brick
isa
building-unit
SuUppart
b=-3
182
brick

Ak

{ (Salect Knoeisdge uce) (Melp) (Uti11tiss) (QUIT)

tstory

Consultation Systems

aorr Flanue o o

(Backward Chaining Theorsm Proving)
{Informmtion Theorstical Utility Measurs)

P

nange Arc Breadth

) Tupli Breadih|

bl

BTt TR R~ S R o

s i A e

PR CM s Tt s

CHAPTER 4

The Network Editor

4.1. Introduction

The Network Editor provides the facility for directly manipulating and editing ADVISE
knowledge bases. Previously, when 2 knowledge base needed to be changed, either a text file
{(which is frequently not an accurate representation of an ADVISE knowledge base} had to be
edited or the program that created the knowledge base must have code to manipulate the
knowledge base directly. For example, the only way to alter the PLANT knowledge base was
either to text—edit backup knowledge base files or run a rule parser on new input rules. QUIN,
a program for editing knowledge bases represented as relational tables [Spackman, 1982], is
available but has minimal benefit for the rules and network representations of currently

implemented systems.

This chapter describes the Network Editor, which provides ADVISE with the capability
for interactive manipulation of knowledge bases. A brief description of the ADVISE knowledge
representation is provided below followed by the features of the editor and a presentation of a
sample interaction.

4.2. The ADVISE Network Representation

The basic structure for representing knowledge in ADVISE is a tuple. A tuple is similar
to a lst in LISP. Nodes are like LISP atoms (nodes cannot be tuples), and a tuple is just a list
of nodes. The second node of the the tuple usually has special meaning as a relation or arc

between the head node and subsequent nodes in a tuple. A typical tuple looks iike the one
below.

(headnode arc subnodel subnode2 subnoded ...)

~ Of course, the same head node can have many arcs (relations} under it. These can be
represented simply by additional tuples as follows.

(headnode arcl subnodell subnodel? ...)
(headnode arc2 subnode21)
(headnode arc3 subnode31 subnode32 subnode33 ...)

For efficiency reasons the above tuples would be represented internally as follows.

(headnode (
(arcl subnodell subnodel2 ...} .
{arc2 subnode21)
{arcd subnode3l subnode32 subnode33 ...)

))

29

30

In the actual implementation of this representation, nodes are memory addresses. Nodes
have printnames associated with them as well as being associated with the tuples in which they
appear as head node. The ADVISE tuple manager (see Chapter 9) handles all the
manipulations of the knowledge base on the tuple level. The network editor simply makes the
appropriate calls to the tuple manager based on its interaction with a user.

The tuple representation represents an important generalization over the basic concept of
semantic networks {as described, for example, in [Winston, 1984]). Thinking about tuples in
light of these networks, each tuple with the same head node can be considered a slot; each slot
has 2 name (arc) and a value. Slot/value combinations are also known in ADVISE as
attributes. The generalization over other representations is that slots or attributes can have
many values associated with them. Thus, similar slots can be combined into a single siot

(house {(has—toom living-room dining-room bedroom kitchen}))

or a single slot may have several values associated with it, for example, both a qualitative and
quantitative value,

(block-1 ((orientation vertical 89.5)}))

The ADVISE representation of knowledge via tuples is a general mechanism for representing
not only networks but rules and relational tables as well. These representations, however, are
beyond the scope of this chapter. Please refer to Chapters 5 (QUIN) and § (The Rule Parser)
for information on these representations.

4.3. Features of the Network Editor

The network editor is a menu—driven interactive program with modest use of graphics,
which runs on a Sun-2 Workstation. The interface is written on top of the SunWindow
package developed by Sun Microsystems, Inc. (See Chapter 4}. Naturally, being menu-driven,
it is easy to figure out how it works just by pressing the mouse buttons a few times. Hands-on:
experimentation is the best way to learn to use the editor. For a detailed user’s guide see
{Channic, 1985].

The three subsections below describe the display of networks and the options {local and
global) available for editing networks.

4.3.1. Screen Representation of Networks

In displaying a network, a non-graphic approach was taken to allow minimum
modification for running the program on machines without graphic capabilities.
Nevertheless, the network structure is readily apparent as the screens in Section 4.4
demonstrate. Nodes are represented in boldface. Arcs under nodes are not in boldface, and
are set one line below and indented from the main node. Subnodes under arcs are piaced
similarly under the arc. Additional subnodes are placed on the same line immediately
following the preceding subnode.

The only other thing a user need know in order to use the network editor is how it
crops the network to fit on a display. There are three parameters which affect the dispiay
— namely, depth, arc breadth, and tuple breadth. Depth is the number of arcs down irom
the main node to display. Arc breadth is the number of arcs to traverse from each node.
And tuple breadth is the number of subnodes to display under the head node. How these
parameters affect the display will be seen in the interaction section.

31

if in spite of these parameters the network still cannot fit on the screen, the network
editor leaves markers that indicate information has been cropped from display. At the top
level of the network, these markers are arrows that point in the direction of the missing
information. Menus are available at these markers to scroll the top level of the network in
order to see the missing information. Beyond the top level of the display, missing
information is indicated by a string of dots — “..."". Missing information at this level can
usually be viewed only by descending the network to make this level the new top level and,
if necessary, scrolling or changing the apptopriate parameters.

4.3.2. Local Editing Options

At each node or arc in the network, two sets of options are available. One set of
options affects the node or arc itself, the other set affects the environment around the node
or arc. An example of a [ocal option is changing a printname of a node. An example of a
global option is adding an attribute after a node. Local options are discussed in the
remainder of this section. Section 4.3.3 describes the global options.

Options Availabie When Not At an Arc or Node

New Main Node Allows yvou to enter the name of a node
which will become the new top node in the display.

Visible Arcs Allows you to select a subset of arcs to follow
in displaying the network

Change ***** Allows vou to enter a new value for ***** — depth,
breadth, or tuple breadth — which will affect
the display accordingly

Back Up If present in meru, allows ascension of the network

to the previous top node

Help Prints these options

32

Options Available from Arcs

Change Arc Allows a new arc to be inserted in place
of the arc in the current attribute.

Change Printname Allows the printname of the current arc to be
changed EVERYWHERE it occurs in the network.

Delete Attribute Removes this arc and all subnodes from underneath
the head node; i.e., the entire tuple is removed.

Yank Arc Places this arc into the arc buffer to be used
in subsequent Put Arc operations

Yank Attribute Places the attribute (this arc and all nodes
underneath it) into the attribute buffer to be
used in subsequent Put Attribute operations.

Make Invisible Inhibits the display of this arc and all other
occurrences of this arc as well as everything
underneath them.

Enter Dictionary If an arc does not appear in the dictionary,
this option allows you to put it there.

Help Displays these options

Options Available at Nodes

Change Node Allows you to change a numeric node to a new
number or to a new node.

Change Printname Allows you to change the printname of this
node EVERYWHERE it occurs in the network

Delete From Tuple This node is removed from its current tuple position.

Yank Allows vou to yank this node into the node
buffer for subsequent Put Node’ operations

Make Focus This node becomes the new top node in the
display of the network.

Enter Dictionary I the node is not in the dictionary, you
may enter it there if this option is presenit.
If and only if a node is in the dictionary,
it can be made the main node via the
‘New Main Node’ option on the Main Menu

Help Prints this message

33

4.3.3. Global Editing Options

Global editing options reflect options that affect the snvironment of the node or arc
pointed to by the mouse.

Options Available When Not at an Arcor a Node

Edit/Create

Write {Backup)

Write (Text)

Quit

Abort

Help

Add Node

Add Attribute

Put Node

Put Arc

Put Attribute

Help

Start a new session with a new network

The edited network will be written to the
file given at startup

A text representation of the edited network
will be written to a specified file.

Graceful exit from a session, updating the
network

Immediate exit from editor, no update.

Displays these options

Options Available from Arcs

Allows a node to be added immediately under
the current arc in the attribute in which

the current arc occurs. Nodes presently
under the arc are shifted to the right.

Allows an attribute (an arc followed by zero

to 254 nodes) to be added under the main node

below the attribute which contains the current
are.

The contents of the node buffer will be put
immediately under the current arc in the
attribute in which the current arc occurs.

Any nodes presently under the arc are shifted
to the right.

The contents of the arc buffer will be put
ander the main node below the attribute which
contains the current arc.

The contents of the attribute buffer will be put
under the main node below the attribute which

contains the current arc.

These options are displayed.

Add Attribute

Put Arc

Put Attribute

Add Node

Put Node

Help

4.4. A Sample Interaction

Options Available From Nodes

Allows an attribute (an arc followed by zero
to 254 nodes) to be added under the main node

The contents of the arc buffer will be put
under the main node as the first attribute.

The contents of the attribute buffer will be put
under the main node as the first attribute.

Allows a node to be added to the right of
the current node in the attribute in which
the current node occurs.

The contents of the node buffer will be put
to the right of the current node in the
attribute in which the current node occurs.

This message is displayed.

34

In this section, screens are presented that show steps in the construction of a simple
network. The example is chosen to illustrate the features of a network editor, ard is not
intended to have any semantics in the context of ADVISE, Therefore any resembiance of the
network to ADVISE knowledge bases, living or dead, is purely coincidensal.. The network.
represents a arch made of building blocks.

35

In the first screen, the network editor has been invoked and a node, ‘archl’, to be taken as
the root node for the display has just been typed in. The editor must be supplied with a
network name and a root node before it can begin a session. The network name can be passed
as. argument or typed in when the editor starts up. If *“archl” already existed in the network,
the structure under this node would be displayed under the default parameters. The default
parameters are set to not affect the display, i.e. the window size is the only limiting factor to
the display.

A prompt for menus appears at the bottom of the screen. The user moves the mouse to
the ‘‘archl” node, which becomes highlighted. Pressing the middle button while at the node
reveals the desired option of adding an attribute {slot).

ARTER N N FATTN B S

AT ¢ h ¥ wliehiolic

ey db Attt butior
Pt Are

Ut Attribute

jHelp

Prass Middle or Right Mouse Buttons Tor Manus

Ty R e A -

e e e e T

T T S

38

Selecting ‘“Add Attribute” brings up a prompt for the number of nodes (printnames)
including the arc in the tuple which the network editor will add into the network.

Next the user is prompted for the printname of the arc. The user types in this name.

When the user presses return, the arc appears in the network and the names of the expected -

number of nodes are solicited. The user is prompted for each node name.

After entering all the nodes in the attribute, the attribute is displayed in the network.
The user can now move to the arc to add the next attribute below the first. Continuing as with
the first attribute the user has added ail the arcs under “archl”. He now wishes to add arcs
under the “b-1" node. To do so he must first make b-1 the new focus node.

tr kb dgonl 1.2

larchl
conteine-t
b-3 ®
containa~sft-s1de
b2 :
canta ins myw

ey e S

T

ST

.‘.,.
A

37

Now “b-1" becomes the new focus node. The user has employed “Add Attribute’ as

before to add all the appropriate nodes and is now ready to “Back Up™ to the previous root
node. “Back Up" is an option from one of two menus that aren’t associated with any node.
The other is a global menu with options such as editing a2 new file, writing this file, quiiting,

ete.

T T P U e I e L

brick
support

b-3
orientxtion

vertical

R R T A .

e R e KO o

Main Node 5
aible Arcs 1
nge Lave) F}
mge Deptn §

r¢ Bresdth

g8 Iupls Brandth

ip . 3

38

Now the network for ““archl” is complete.

At this point the user may enter a new root node, such as “arch2”, and create a network
from there, or he may choose to alter the display by changing depth, for example.

4Bk I & t'.'ll:lie Lmﬂ!ﬂ-, Tt T G YA 2T e T e e v P e B R R S Rre T R o s R 7 e e el e L 8 e L B g i e el e s T e, ;ﬂ?ﬂg,&.:}fm
.

archi
contains=-top
b-3
isa
br iek
182
building=-unit
ortantation
hor fzontal
contatng=-left-oide
b-2
(11
brick
isa
building-unit
support
b-3
182

brick
{9a

building-unit
or fentation
horizonta !

or tantation
vartical
contains~-right-~side
b=1

angw Tupie Breadth

isa
brick
1sa
i lding-unit
sSuppors
b=

isn

brick

isa
bu § 1d ing~un it

orijentation,

hor jzanta?

orisntation
vartical

Lo B i i

-l e Pl P S S

—_—_—

38

The user has indicated he wishes the depth changed from an *‘unlimited’ default to 2.
Perhaps he is interested in the first two levels of the network and prefers not to see any other
information at all. The network display is clipped accordingly.

L= o e e B

jarchl
: 2onNta INs-t0p - E

b=3
isa
brick
or fentat ion
horizontal
containg=-left-side
b-2
tea
brick
support

e a0 £ K e T

arisntation 3
vertical i
containg~right-side
b-1
ina

suppart
b-3

g
brick 3
i
ortantation d

vortical

-~ i
. | i
y 1
- 1
- | ol
k
" ;
:
i
- 3
H

A ¥
3 a
:
+

B

. O
.

l. B
M

: ¥
g
A i
3 ; ::
o :
3 u
3 T
: g
2] - I
: 3
- i

40

Instead of limiting the depth, the user may have chose to limit the breadth of the network

instead. Another way to alter the display is by making arcs invisible. With the breadth and
depth reset to their default values, the user wants the “isa’ links to disappear from the display.

Jnﬁ’*l! [P o Ty ¥ L B o e U
larchl
3 conta ins-top
b-3
inn
brick
isa
butid ing~unit
orientation
hor {zontal
contains-left-side
b=2
13}
brick
isa
bu t id ing-un it
suppart
b~3
184

hl" 1=k : f#t- ﬂb o L i om

ol i i R T e e e e £ -

- oriantatfon

hor izon
grientation
vertical
conta ins=right-s ide
b-1
{sa
brick
isa
buitlding-unit
support
; isu
f brick
3 isa
3 builiding-unit
- orisntation
)) horizontal
or fentation |

vertical

P e e L T

RN e e Y,

e

A L R e e -

4]

This action, as did the change depth option, caused significant clipping to the display.
Still another way to limit the display would have been to specify a subset of the visible arcs as
the only ones to be displayed. For example, with the *“""Visible the user could select the

“sontaing’ arcs and the “isa’™ arcs to be the only ones visible. This would allow the user to see
inheritance relationships.

Now the user decides to end the session. He presses the middle mouse menu for the global
option menu. To get a textual representation of the network written to 2 file the user can
choose “Write (Text)”. After the user has typed in a file name for the text file, the system
notifies the user of success (or failure, such as trying to write to a read-only file, in which case
the user can re-select the option with a new file name). The textual representation for this
network is shown in Figure 8. Now the user *Quits’. The actual network is written to fle
given at the start of the program.

archi
conts ins~-top
b-3
gr tentation
horizontal
contains-left-aide
bh-2
support
b-

orfantation
horizontal
orfentat tan
vertical
containg~-right-side
b-1

support
[

orisntati{on
horizontal
grigntation
vartical

Jlohal Menu:

Entsr nawe of- text file: arches.text
archas.text : Successfully ¥ritten

{(archl (
{contain-top b-3)
{contain~left-side b-2)
(contain-right-side b-1) }))
(contain-top {))
(-3 (
(isa brick)
{orientation horizoatal }))
(contain-left-side ())
(b-2 {
(isa brick)
(support b-3)
(orientation vertical } })
{contain-right-side ())
(-1 |
(isa brick)
(support b-3)
(orientation vertical)}))
fisa ()
(brick {
(isa building-unit)))
(support {))
(orientation (})
(vertical (]
(horizontal ())
(building—unit {))

Figure 8: The textual representation of tuples for “arches™ .

42

CHAPTER &

The QUIN Subsystem

5.1. Introduction

" This chapter describes the QUIN (QUery and INference) subsystem of ADVISE.1. QUIN
can be viewed as a tool for database management and conceptual analysis. It represents a
marriage between relational database and inductive learning technologies. Its purpose is the
management of large amounts of data for input to and output [rom several programs that use
induction to generate knowledge from examples or specific facts. It has potential applicability
in the logic-based analysis of data and in the creation of knowledge bases for expert systems.
This chapter is based on the Master's Thesis by [Spackman, 1982].

QUIN may be used for the management and analysis of data. Management here refers to
the creation, retrieval, and modification of the data, while analysis refers to activities that
attempt to discover more about 1) interrelationships within data and 2) phenomena that
produce those interrelationships. These operations, shown in Figure 7, can be either data
management operations or inference operations.

N A =
PERATIONS B

Figure 7 : Operations available in QUIN.

43

44

ruales &
descrip~
tions

Inducesd
 knowledge

inferences
operations

PR
data

Figure 8 : The knowledge refinement cycle.

The induction programs with which QUIN interacts form a set of inference utilities that
can be useful in sequence or in cycles. The databases used to test and experiment with these
algorithms are more easily handled with database management techniques that store, modify,
and restructure data for input to the inference programs. The cycle of knowledge refinement by
iteration of the mechanized inference with a human critic is illustrated in Figure 3.

The major sections of this chapter are as follows: section 5.2 discusses the relational
model of database organization, 5.3, 5.4, and 5.5 discuss creation, retrieval and modification
{respectively) using the QUIN data language, 5.8 describes the inference utilities available in
QUIN, section 5.7 presents 3 QUIN command macro language, and section 5.8 gives a brief
program description and notable implementation details.

5.2. The Relational Model

This section gives a brief overview of the relational model of database organization and
describes the interpretation of the model by QUIN. The concept of a table of data and the way
it represents the mathematical notion of a relation is fundamental to the relational model of
data used by QUIN. The model also includes the concepts of keys, normalization, and relational
operations, each of which will be discussed in turn.

5.2.1. Relational Tables

A relational table is simply a table that represents a relation. Tables are familiar as
a format for representing data. Consider Figure 9, an example of a table of clinical
laboratory values obtained from blood specimens.

45

labvals
spec# i Hgb | MCV | RBC_morph

1024 10.3 78 microcytosis
391 13.1 30 normal
555 14.2 38 poikilocytosis |

1

423 16.5 | 85 ‘ anisocy tosis
425 11.1 78 E microcytosis
455 10.4 | 77 | microcytosis |

Figure 9 : Clinical Laboratory Values

Each column in Figure 9 corresponds to an attribute and each row represents an
individual data object. The values within each row of the table represent the description of
an object with respect to each of the attributes. Thus spec# refers to the specimen number,
while Hgb, MCV and RBC_morph refer to the hemoglobin, mean corpuscular volume and
red cell morphology of the specimen. These four names comprise the attribuie 15t of the
table. The values obtained from each specimen occupy a single row in the tabie.

A relation is a set of ordered rows each of length n, {called n-tuples), where the value
of the i column in a tuple (V) is drawn from a domain D, The relation_has domein seis
D, Dy ey D, where n is the degree of the relation. The table in Figure § is of degree four.

Its domain sets include the set of all possible specimen numbers, the set of all possible Hgb
values, the set of all possible MCV values and the set of all RBC morphologies. These
domain sets need not be explicitly delineated in 2 database, but are important in the
mathematical definition of the concept of a relation. For further reading see (Date, 1977..

Relations are intuitively well represented as tables, but relational tables in QUIN differ
in some ways from the strict interpretation of a mathematical relation. First, the attributes
(columns) are named, and therefore two tables in which the only difference is altered coiumn
order are considered to be equivalent. Second, in relations the rows are not considered to be
ordered, but QUIN allows rows to be ordered according to the values of attributes, e.g. in.

increasing order by index number (value-controlled ordering). Third, the “zero™™’ row . of a

table in QUIN is occupied by the attribute fist. and data then follows beginning with the
next row.

8.2.2. Ke}rs

A key is an attribute or combination of attributes that have unique vaiues for =sach
tuple in the relation. [n other words, no two tuples in a relation may have ideatical values
of the key attributes. This constraint ensures against duplication of data records. Some
examples of keys include an identification number (such as specimen number in Figure 11), a
unique name, or a unique combination of two more attributes, such as name and date. To

allow purposeful duplication of data for use in the inference programs, a table may
optionally have no key defined.

46

5.2.3. Normalization

A table is said to be normalized (in first normal form) if each entry in the table is
non-decomposable, i.e., each entry is neither a set of values nor a table, but a single value.
Several levels of normalization have been defined (1st, 2nd, 3rd, Boyce:/Codd, 4th.
Projection/Join — see [Date, 1977|) but the attainment and management of normalization
beyond first normal form in QUIN is left entirely to the discretion and effort of the user.

5.2.4. Relational Operations

The relationzl model includes operations that take relations as input operands and
give a relation as output. These operations can be classified as traditional set operations
(anion, intersection, difference and Cartesian product) and special relational operations
(project, select and join). These relational operations are incorporated within the query
language provided in QUIN. They are briefly introduced here and examples of their
implementation are given in subsequent sections.

Union The union of two relations is the set of all tuples contained in both relations
(without duplication). To perform the union of two relational tabies in QUIN,
they must have identical atiribute lists. The same constraint applies to the
operations of intersection and difference.

Intersection Intersection comprises the set of tuples common to both relations.

Difference The difference of two relations is the set of tuples contained in the frst
relation but not in the second.

Product The Cartesian product of two relations is the set made up of the concatenation
of each of the tuples in the first relation with each of the tuples in the second.

Selection Selection provides a subset of tuples from a relation that meet certain
selecting criteria. It produces a row-wise or horizontal subset of the relation.
For example, a selection requiring the specimen number to be less than 500
from Figure 9 would give the result found in Figure 10.

Projection Projection, on the other hand, provides a column-wise or vertical subset of the
relation. Redundant tuples are sliminated from the resultant relation. For
example a projection of the RBC_morph coclumn would vield Figure il.

labvals
spec# | Hgb | MCV | RBC_morph

423 | 16.5 | 85 | anisocytosis |
425 1.1 | 78 microcytosis !
| 455 | 10.4 ' 77 | microcytosis |

|
i
|

Figure 10 : Results of Selection Operation

47

labvals
RBC_morph
microcytosis
normal
poikilocytosis
anisocytosis

Figure 11 : Results of Projection Operation

Join Join is slightly more complicated than selection and projection. It produces a
combination of two [or more) tables based on all attributes they have in
common. There are three different kinds of join, the most common being the
natural join. The resultant table of a natural join will have a tuple for each
pair of tuples in the original tables that share identical attribute~values for
every attribute the tables share. If the original tables have no attributes in
common, the resultant table is the Cartesian product of the two tables. [f no
pairs of tuples have identical attribute-vaiues (assuming a common attribute)
then the join results in a null table. For examples, see section 3.4.1. and
Figures 15, 16 and 17.

The operations described above can be incorporated into a powerful retrieval language
salled a relational calculus. The VL data language is the relational calculus used by QUIN.
VL. commands provide the capabilities for relational table creation, retrieval and
modification. The language is easily learned and requires a minimum of procedural
specification so that it is reasonable to expect that users with minimal computer background
could quickly learn and use it. QUIN has on-line help available to describe the use of each
command. Help can be obtained by typing help or by simply typing 2 question mark at a
prompt. If specific information is desired about a particular command, the command name
should be entered following the word ““help,” followed by a carriage return.

The following three sections describe the fundamental coastructs of the language
QUIN - uses as such a calculus and retrieval language — namely, table creation, table
retrieval, and table modification.

5.3. Tabie Creation

The instroctions for creation of tables are define and add. Define creates an empty
:able and sets up the specifications for the attribute list and the key, while add puts new tuples
into a table.

§5.3.1. Define

This instruction specifies a new table, its name, the names of the attributes, and
{optionally) the name(s) of the key(s). The names of tables and attributes must begin with
a letter and can contain any combination of letters, numerals, and the characters “#" and
“ 11 No two tables may have the same name, nor can a table-name be the same as any

43

attribute~name or reserved word. A table may not have two identical attribute—names, but
two different tables may (and often do) share a common attribute—name. Keys are optional,
but, if declared, should be the first (i.e., leftmost) attribute(s) in the table.

Consider as an example the definition of a database that keeps track of results of
blood tests on patients, as shown earlier in the “labvals” table of Figure 9. ‘““labvals’ stores
the information on specimens and the values measured. The unique attribute (key) of each
record is the specimen number. To create this table using the define instruction, the user
would enter the command:

define labvals (spec#, Hgb, MCV, RBC_morph) key := spec¥

We could also define a table called “spec’ to keep track of the dates of individual blood
specimens:

define spec (spec#, ID#, day, month, year) key :== spec#

Another table called “ptre” would store a patient’s identification number, his name, and his
admitting diagnosis:

define ptrc (ID#, name, dx) key :== ID#

5.3.2. Define Event

An event is a table with only one row. Its purpose is to specify a complete single data
object with attributes that may be found in several different tables, so that adding the event
to each of those tables is easier and less subject to error. Events are defined by the define
event instruction followed by the event name and then a parenthesized list of attribute-
value pairs. Continuing the previous example, we could define an event that contains all the
attributes of the three tables (ptrc, spec and labvals):

define event E1
(ID# := 988,
name = Jones,
dx 1= iron_deficiency,

gpec# = 1024,
day := 25,
month := 6,
year :== 1982,
Heb := 10.3,
MCV 1= 78, .

RBC_morph := microcytosis)

Event “E1" records that a blood test was done on patient number 988 whose name is
Jones and whose diagnosis was iron_deficiency. The blood, specimen number 1024, was
drawn on 25 June 1982 and the resuits showed a hemogiobin of 10.3, a mean corpuscular
volume of 78, and red cell morphology was microcytosis. The attribute~vajue pairs in the
event definition can be arranged in any order.

49

5.3.3. Add

The add instruction places tuples (rows) into a tabie. There are four forms of the
instruction: one for single row addition, another for multiple rows, one for adding an event
to a table, and one for adding an external file of tuples to a table.

(1) A single row may be added as follows:

add (385, Smith, aplastic_anemia) to ptre

(2) Multiple rows are added in similar fashion:

add to ptre

(398, Clark, folate_deficiency) (404, Blake, iron_deficiency)
(425, Smith, hemolytic_anemia) (241, Jones, iron_deficiency)
end

(3) Adding an event to several tables is simple:

add E1 to ptrc
add E1 to spec
add E1 to labvals

(4) Adding an external file named “vis” to the “labvals’’ table would be done as follows:
add vis to labvals

The external file must be set up in tabular form as illustrated by the “vis” file in
Figure 12.

Addition of tuples may be done at the beginning of the table, the end. or before or
after any specified row in the table by using a row condition. All four forms of add may be
used with a row condition. If no row condition is specified then the addition is done after
the last row of the table. For example, the following places a new tuple at the first row:

add [425,404,26,6,1982) to specs : [row < 1]

891 13.1 90 Normal
555 14.2 8B Poikilocytosis
423 155 85 Anisocytosis

Figure 12. Format of File “vis”

30

The colon is to be read “such that” and the row condition is of the same form as retrieval
conditions (see section 5.4.2). The reserved word last may be used to insert before the last
row:

add datafile to specs : {row <last]

The condition “{row>>last]” would be redundant because that is the default. If there are
not 2s many rows in the table as specified in the row condition, the new tuples will be added
at the end of the table.

5.4. Table Retrieval

The retrieval commands are get and let. Simple retrieval of an entire table requires only
listing the table name after the keyword get. Selected portions of the table can be retrieved
and displayed also (see sections 4.4.1. and 4.4.2.). A new table can be created with the keyword
let followed by the name of the new table, “+=="", and the description of the new table. For
example, the following command creates a new table called “tests” which is the same as the

“labvals’’ table:
let tests := labvals
The new table would be created but not displayed. The command to display the table is:

get tests

The “tests” table as shown in Figure 13 would then be displayed. It would be identical to the
“labvals’ table except for its name.

The combined efect of the get and let could have been accomplished by simply saying:

get tests :== labvals

tests
specg# | Hegb | MCV | RBC_morph
1024 10.3 78 microcytosis

891 13.1 90 normal
555 14.2 88 | poikiloeytosis

423 | 16.5 85 l anisocytosis
425 | 11.1 78 | microcytosis |
. 455 | 104 | 77 | microcytosis |

Figure 13 : Result of Retrieval

Symbol Meaning
* Join
v Union
& Intersection
L - | Dilference
. - | Append i

Figure 14 : Relational Table Expression Operators

The let command is used to create temporary tables that can be used as working copies
or can be saved as new permanent tables. It never displays the results of its work. The get
command always displays its results, and can alsc be used to create temporary tables. A wide
variety of more complicated retrieval instructions can be specified by appending the appropriate
modifying expressions to these two commands. These additional expressions are specified by a
reiational table ezpression (see section 5.4.1.) optionally followed by a VL condition {see section
5.4.2.).

5.4.1. Relational Table Expressions

The table expression specifies the table or tables and the attribute or attributes to be
retrieved. All operations described in section 5.2.4 except selection can be specified with a
table expression. When more than one table is listed in an expression, tables must be
separated by an operator. The operator symbols and their meanings are given by Figure 14.

1. spec
spec# . ID# | day | month | year
1024 | 988 | 25 | 6 1982
L 425 | 404 | 28 |8 1982 |
850 | 405 + 27 + 6 | 1982
455 | 408 | 27 ' 8 | 1982

Figure L6 : The "“spec’” Table

92

These operators take precedence over all others in the retrieval instruction. All tabies listed
together with the logical operators (union, intersection, difference) and the append operator
must be union compaiible, which means that they must have identical lists of attributes, in
the same order, and of the same type (e.g. if attribute N is an integer in one table, it must
also be an integer in the other table(s) in the instruction}.

To illustrate the use of operators in table expressions, let us assume we have a table
named “‘spec’’ as shown in Figure 15.

The following instruction would create a table cailed “T1" which is a join of the “spec’ and
“tests”’ (Figure 13) tables. The common descriptor for the join is the specimen number,

let T1 :== spec « tests

The join of tables “spec’” and “tests’’ would appear as in Figure 16.

If no attributes are listed in the retrieval command (as in the example in Figure i8)
then the Full set of attributes for all tables is retrieved. If a subset of attributes is specified
then the projection of those attributes on the table is retrieved. For example:

get spec # tests (ID#, Hgb)

will retrieve a table with two columns. It will be the projection of [D# and Hgb on the join
of spec and tests. Figure 17 shows the result.

For the purposes of the inference algorithms it is sometimes not desirable to eliminate
redundancy when doing a projection, so QUIN provides two other methods of specifying
arojection. One method, using &, simply does a “splumn selection’’ and retrieves all rows
even if redundant. The other method, using #, eliminates redundancy but provides an
additional column that shows the number of times that a particular row occurs. These
three forms of projection instruction are illustrated in Figures 18, 19, and 20.

An attribute may be replaced by a function of an attribute in the retrieval expression.
Available functions include min, max, sum, ecount and domain. Figure 21 gives an
example of the use of the min function.

T1 |
| spec# | [D#] day | month ! year { Hgb | MCV | RBC_morph :
1024 | 988 | 25 6 | 1982 ‘ 103 | 78 | microcysosis
. 425 | 404 | 26 6 | 1982 | 11.1 | 78 microcytosis |
i 455 | 408 1 27 6 ! 1982 | 104 | 77 microcytosis

Figure 18 : Join of “spec’” and “‘tests”

ID# Hgb

988 10.3
404 1l1.1
406 10.4

Figure 17: Projection & Join

get tests{RBC _morph)

tests
RBC_morph

microcytosis
normal
poikilocytosis
anisocytosis

Figure 18 : Ordinary Projection

get tests{RBC_morph,#)

tests
RBC_morph #
microcytosis 3 L
normal 1 '
poikilocytosis | 1 :
anisocytosis 1 |

Figure 19 : Projection & Count

get tests(RBC_morph,&)

tests i

. RBC_morph '

| microcytosis

i normal

poikilocytosis -
anisocytosis |
microcytosis ‘
microcytosis |

Figure 20 : Projection with Redundancy

get tests{ min(Hgb))

tests
Hgb
10.3

Figure 21 : Use of “min™

5.4.2. VL Conditions

A VL condition is the part of a retrieval command which specifies selection. The
following example illustrates the major features of a2 VL condition. The condition begins
with a colon which should be read “such that.”

get tests : [Hgb = 14..16) (RBC_morph < > normal| v [Hgh < 14|
The command would retrieve all rows from table *‘tests” in which either a) the Hgb is in the
range 14 to 18 and the RBC_morph is not normal, or b) the Hgb is less than 14.

A VL condition thus consists of a disjunction of one or more complezes. Compiexes
consist of a conjunction of one or more selectors. In the “get’” command above, “ Hgh =
14 .. 16]" is a selector. Selectors may be separated by the conjunction operator &, or
simply listed one after the other, as in the complex “/Hgh = 14..18) RBC _morph <>
normal|” above. Selectors or groups of selectors {complexes) may be separated by the
disjunction operator v. Thus a coandition is a “sum of products” of logical {VL) selectors.

VL selectors are used to specify the body of the condition. A VL selector consists of a
left square bracket, an attribute name (the referee}, a comparison operator (=, <>, <,
>, <=, >==), a comparison value (the reference), and a right square bracket. The
comparison value may be a single value {e.g. “‘normal”}, an arithmetic range of values (e.g.
‘14 .. 18"), an arithmetic expression {e.g. “Hgb -+ 2.5""), or a list of values, ranges, or
expressions separated by the ““or”’ operator (e.g. “3..5 v 7 v Hgb /107,

5.4.3. Ordering of Rows

All retrievals may optionally have an ordering condition. The phrases “‘order up on”
and “order down on’’ are appended to the retrieval instruction, along with the name of the
attribute to be ordered on. For example, the instruction

get, ptrc order up on [D#

will retrieve the table “ptre”’ in ascending order of ID numbers.

5.5. Table Modifieation

The table modification instructions are change, delete, and save,

wn
o

53.5.1. Change

The change instruction is used to assign new values to existing rows in a table or te
change the name or type of an attribute. When the user types:

change tablename

he enters 2 ‘‘sub-instruction” mode in which all commands refer to the table being changed.
A working copy of the original table is made for security in case of error, and the user’s
arompt is “>>". To leave the change mode the nser types abort or exit, with only the
latier exit resulting in factual modification of the original table.

There are several commands available in the change mode. The user may use
ordinarv assignment statements to change the values of each attribute. Some examples are
given in Figures 22 ard 23, The assignments may be followed by a VL condition that
restricts. the assignment of values to specific rows of the tzble. Attribute names may be
changed by specifying the condition “/row==0]". The display sub-instruction displays the
working table; the get sub-instruction displays the original table before any changes. A
simple change instruction sequence may be entered as shown in Figure 22.

The commands in Figure 23 illustrate how the table might be modified within the change
mode.

515421 DEIEtE

Delete i3 used to remove rows or columns from a table, or to remove a table from the

datahase. Each of these three functions is accomplished by a different form of the
instruction. |

(1) Deleting rows is accomplished by specifying a VL condition:
delete ptre : [[D# = 250 .. 500!

This will delete all rows in table “ptrc” where the ID number is in the range 250 to
500 inclusive. |

{2} Deleting columns is accomplished by specifying a projection:
delete spec{day,month)

This will delete the day and month columns from table “‘spec™.

(3) Deleting an entire table or event is done by simply giving the table name:

delete T1

This will remove the table named *“T1" from the database.

5.5.4. Save

Any tables created with the get or let instructions will be given temporary status:
aave is the instruction that changes temporary to permanent status. Tables with
permanent status will stay in the database after a session is completed, whereas tables with
temporary status will be deleted at the end of a session.

> change tests /™ enter change sub-mode */

ok /* system response */
> > get /* look at original table */
tests 1

spec# | Hgb | MCV | RBC_morph |
1024 | 10.3 78 microcytosis |
891 13.1 80 normal
555 14.2 88 poikilocytosis
423 16.5 85 anisocytosis
425 11.1 78 microcytosis
455 10.4 77 microcytosis

Figure 22 : Original Table to be Changed

> > Hgb := high :{FHgb > 186]

> > Hegb := low :[Hgh<« 14

> > Hgb :== normal :iHgh==14:18

> > display /* look at changed table */

changeftabie
specH# Hgb MCV | RBC_morph
1024 low 78 microcytosis
891 normal 30 normal
565 | normal 88 poikilocytosis
i 423 E high 85 anisocytosis
. 425 | Jow '78 microcytosis
455 | low 77 microcytosis
> > end * exit, making the changes permanent */

change completed /* system response */

Figure 28 : Table with Modified Hgb Column

=] |
|

5.8. Inferential Operators

This section describes the inferential operations on an informal conceptual level.
References are provided for more detailed explanations of the algorithms and the theories
supporting them. In the current implementation, only “cluster” and *diff’ are operational.
However, the same methods of interaction can, in principle, be used with all the inference
programs mentioned here. There are many inference commands described for QUIN. These all
interface with other software through relational tables. The general format of the commands
s:

command(parameterl,parameter2,...}.

Each command has at least two variants. One variant allows the user to wait for results, and
the other allows him to run the inference command as a background process {allowing him to
proceed on other QUIN commands concurreatly with the execution of the inference command}.
Qther variants exist for some commands for specifying a result table name or giving non-

default parameters. The current implementation of QUIN has clearly defined the arguments
required for the following commands:

command program format

cluster CLUSTER cluster(table,parmtable,results)

diff : GEM diff{tablel,table2, ... ;parmtable,results)
aqll AQl1 aqll(tablel,table2, ...)

esel ESEL/2 esel(table,parmtable,results)

varsel PROMISE varsel{tablel,table?,...;parmtable.results)
varcont CONVART convart{tablel,table3,...;parmrable)

Other commands not yet implemented are:

command program format
apply AQ1ll 22
treecon OPTREE ”
varcon NEWVAR 27

sim CLUSTER 7
reun CLUSTER ™

gen CLUSTER 2

5.5.1. Fetch and Results

[n addition to the basic induction commands, there are a couple of commands for
managing processes which have been run in background. These are RESULTS. which
reports the status of each induction job submitted since the beginning of the current QUIN
session, and FETCH, which permits the resuits of a background job to be read back into a
QUIN table (the default action of induction programs is to create files which need to be
reread or fetched). RESULTS takes no arguments and reports something like the following.

Job—Number Program Status

1 Varsel done
2 Esel done
3 Gem running

Here, the resuits of job #1 and job #2 could be feiched. The format of the FETCH
command is :

fetch{job—number,resuit-table) ,
where job-number refers to an entry in the table reported by RESULTS and results-table is
the name of 2 table to be created for storing the results of that job.

5.8.2. Cluster

The purpose of the “‘cluster” operation is to divide a collection of objects into smaller
groups of similar objects based upon some criterion or measure of similarity. Clustering is
the process of developing a taxonomy or classification scheme for the objects of a study.

The progtam invoked by the ‘‘cluster” command in QUIN is called CLUSTER/paf
[Michalski, 1980]. The reader is urged to consult the references cited for more complete
explanations of the details of the program’s operation and theoretical background. Unlike
most numerical taxonomic technigues, this program uses a “‘concept-based’” method of
clustering that produces descriptions of the clusters {categories) that it derives. It also
permits the user to specify the criteriza which are to be used to avaluate clusters. One or
several criteria can be maximized simultaneously to produce the optimal clusters. Some of
the criteria available to characterize clusters include:

. the fit between the clustering and the data (sparseness),
8 the total inter-cluster differences (degree of intersection),
. the number of attributes which singly distinguish among all the clusters (essential

dimensionality), and
. the simplicity of cluster descriptions (number of selectors).
The names and numbers of criteria currently available appear in Figure 24.

The “cluster” operation is invoked by the following instruction,
cluster {events,parameters,results)

where “events” and ““parameters’’ represent the names of relational tables within QUIN.

criterion brief
number description
1 Sparseness
degree of intersection

number of events occurring in more than one complex !
share of events (evenness of cluster size) |
number of selectors (simplicity of cluster descriptions) l
essential dimensionality {dimensionality of differences)
relevant-variable sparseness ‘
relevani—variable—set sparseness

9 ~1 @a e W

Figure 24 : Clustering Criteria

39

and “results’” is the name of a table which may or may not already exist {if not it will be
created), The names of any existing tables may be used in the command. The events tabie
must contain the descriptions of the objects to be clustered with each object occupying one
row in the table. Each column represents an attribute of the objects in the table. The
parameters table is used to indicate K (the number of clusters to be formed), the criteria to
be used and other optional parameters. The optional results table is the table in the
database to which the results of the clustering will be returned. If no results table is
specified, the output of CLUSTER can be found in a file in the user’s working directory.

A simple example of clustering follows, using data similar to that in previous
examples. In addition to an events table, a parameters table and at least one criterion table
must be prepared before issuing the *‘cluster’” command. Figure 25 illustrates a parameters
tabie and Figure 26 illustrates a criterion table.

The parameters table {Figure 25) has two tuples (rows). The CLUSTER algorithm
will therefore be run twice, once for each row in the parameters table. The first time it will
split the events into three groups (k==3) and the second time it will create only two groups
(k=2). Criterion *“crl” (found in Figure 25) is defined in the criterion table called

~ “crl_criterion” {Figure 26}. Criterion 1" is sparseness, (see Figure 24). It is the only
criterion which will be used by the program in this example. The tolerance is a measure of
the degree of error allowed in fitting the clusters to the criterion. The events table for this
exampie is shown in Figure 27.

The values in the events table must all be integers. Attributes, such as those
represented here, which ordinarily have continuous linear values must be made discrete
before CLUSTER can deal with them. The meanings of the values in the events table are
given in Figure 28, with the values from the events table in the ““#'" column followed by the
range of real values which have been assigned to each value.

When the sample given in Figures 25-27 is run, CLUSTER splits the events into three
groups as.in Figure 29.

This. is a particularly simple example, but it gives the favor of the clustering
operation. In this case, CLUSTER has discovered three groups which can be interpreted as
being cases of microcytic anemia (group one), normal blood counts (group two}, and

macrocytic anemia (group three}. For [urther examples of the use of CLUSTER see
‘Michalski, 1982a/,

5.8.3. Diif

Diff (differentiate) takes a number of classes of events that have already been
categorized, and attempts to find the conceptually simplest rules that will predict the
category of each event, iLe., discriminate among the categories. The algorithm invoked by
the command is called Aq and is incorporated in the program calied GEM Stauffer, 1982/,

The following 15 an example of the use of the diff instruction to create rules for
differentiating the groups of objects represented in three tables named grpl, grp2 and grpd.
There are a number of differences from the “*cluster” operation:

{1} No criterion tables are needed.

(2) The parameters table, an example of which is shown in Figure 30, has a different
format [rom the ‘‘cluster’’ parameters table which was illustrated in Figure 25,

(3)- The values in the events tables need not be integer only. Diascrete nominal values are
allowed in addition to integers. An example of the way an events table might appear
is given in Figure 31.

60

parameters

k criterion

3 erl
2 erl

Figure 256 : Parameters Table

crl criterion

criterion tolerance

1 0.0

Figure

26 : Criterion Table

e O e La Qoo D

evenis

mcvy hgb meche
1 0
2 0
1§ 1
4 3
4 3 |
1 4 |
2 4 |
1 4 |

Figure 27

: Events to be Clustered

61

mev
< 60
60 to 69
70t0 79
30 to 94 (mcv normal = 80 to 94 cu microns)
95 to 104
>104

m.&mm-—-o:;h

0 <8=0
9t 10
11 to 12
13 to 14
15 to 18 (hgb normal == 14 to 18)
17 to 18
19 to 20
> 20

hgb
1

-t

~) B W 4 Lk

mche
<27
27 to 32
33 to 38 (mche normal = 33 to 38 %)
39 to 44
>43

;P-Ht'«:il—‘ﬂq:l:

Figure 28 : Meanings of Values in Events Table

Group one : events 1,2,3
Group two : events 4,5
Group three : events §,7,8

Group one is described as:

mev < 80 and hgb=9..12 and mche <33
Group two is:

mev=80..94 and hgh=15..18 and mche==33..38
Group three is:

mcv > 94 and hgh=29..12 and mchc=239..44.

Figure 29 : Results of Clustering

Params

echo maxstar

pcve 10

Figure 30 : GEM Parameters Table

grpl |
day rainfall hours_sunlight
Monday light 8
Saturday none 12
Wednesday heavy 2

Figure 31 : GEM Events Table

! weekdays |

names

Sunday

Monday
Tuesday
' Wednesday
. Thursday
: Friday

Saturday

Figure 32 : Domain Values or Days of the Week

63

Note that there still must not be real-valued attributes (e.g. 50.2 } but nominal attributes
are allowed. In addition, the type and domain of an attribute can be declared. In the table
in Figure 31, the *“day” attribute clearly can take on seven values which are ordered and
eyelic. Only three of these appear in the table and they are not in order. To define the
domain of this attribute one must first prepare a relational table with one column
containing all possible values which the attribute may have. The values should be listed in
order, as in Figure 32.

Given such a table, the following command will set up a permanent domain for the
attribute “day” which will automatically be referred to whenever the system needs to
prepare “‘day’” as an attribute for the ““diff’’ operation:

domain (day) := weekdays

The “diff”’ operation recognizes three types of attributes :

o nominal (discrete unordered)
s linear (discrete ordered, such as “rainfall” in Figure 32), and
. cyclic (discrete with cyclical ordering, such as days of the week).

The system assumes that integer values are linear and that alphabetic values are
nominal, When the opposite is true or when the attribute is cyclic, the following instruction
can be used to define the type of the attribute for use by “dif"":

type {day) := cyc

The abbreviations for nominal, linear and cyclic are nom, lin and cye, respectively.

The instruction format for invoking “diff”’ is as follows:
diff(grpl, grp2, grpd; params, results)

The “params’ and “‘results’ tables are optional. The system provides default parameters
to GEM if a parameters table is omitted. If the ‘“results” table is inciuded, the
diserimination rules produced by GEM will be placed in it. A variable number of groups

(event tables} may be submitted. A semicolon indicates the end of the list of event tables, as
after grpd above.

5.8.4. AQ1l1

AQ11, like diff, takes a number of event classes and attempts to find the conceptually
simplest rules that will determine the class of each event. AQ11 also uses the Ag algorithm.
AQ11l provides a more extended knowledge representation than GEM. The reader is
referred to [Michalski and Larson, 1978! for details.

5.6.5. Esel

The operation. “esel” invokes ESEL/2 [Cramm, 1982|, a program that takes a large
number of examples and selects a small subset of examples that is most representative of the
larger group. The smaller sample will require less execution time in inference programs such
as CLUSTER/paf or GEM. Very large numbers of examples (more than 200) would

probably require inordinate amounts of processing time by these programs, making it useful
and efficient to choose a representative subset.

64

85.8.8. Varsel

The varsel instruction invokes a program called PROMISE [Baim, 1982] which selects
the most “promising’” atiributes for differentiating between classes of events. [ts output is
therefore intended for use with GEM. The elimination of irrelevant attributes is a
horizontal reduction of the database somewhat comparable to the vertical reduction
accomplished by ““esel”.

5.8.7. Vareon and Varcont

The varcon instruction (variable construction) invokes a program called NEWVAR
MeMillan, 1982] which attempts to use mathematical operations {multiplication, addition)
to create new attributes from combinations of existing attributes. The use of ratios or
differences of existing attributes sometimes provides simpler and more accurate rules for
distinguishing one class from another.

The command varcont is used to access a program named CONVART Davis, 1981,
a system for inducing time~dependent information from data. Multiple measurements of an
attribute over time can be changed into a single atiribute based upon its time-dependent
characteristics, The induced description of the time-dependent attribute can then be used
in data or input to other inference routines.

5.8.8. Other Operations

The apply operation tests the performance of induced rules on new events. It
currently a part of the AQll [Michalski and Larson, 1978 program. The output is a
confusion matrix that gives the percentage of false positive and false negative decisions for
each decision category.

Another inference operation, treecon uses program OPTREE [Layman, 1979] to
produce optimal decision trees from extended entry decision tables [Michalski, 1978a:. [t
performs the conversion of VL rules to decision trees (branching logic) for the convenience of
the user..

‘There are three low-level inference operations that are used in CLUSTER/paf that
also could he invoked separately.

- {1) Sim (similarity) takes any two events and calculates a syntactic similarity measure.
The similarity of two events is the inverse of the syntactic distance measure used in

CLUSTER/ paf.

{2) Reun (reference union) takes the values of attributes and “collapses’ several events
into one event with multiple~valued attributes. For example, the events
(12, medium)
(13, large)

could undergo reference union to become

(12 v 13, medium v large).

(3) Gen (generalize) goes one step further to take the resulting events from the reference
union and generalize them inio more intuitively suceinct vaiues. Thus
(12 v 13 v 14 v 15, medium v large v verylarge)
would hecome
(12..15, >small).

65

§.7. Macro Language

A macro processor is available to the QUIN user. This is simply a modified version of the
standard preprocessor {/lib/cpp) for the C language compiler {/lib/ccom) which runs under
Berkeley standard UNIX. This handles macro expansion and include file copying for the C
compiler. The significant modifications are a change to the #define directive to allow multiline
macros (the original cpp allowed escaped newline characters in definitions, but they were
essentially deleted from the macro as soon as processed) and a change to the [/O to allow the
preprocessor to communicate with QUIN over a pair of sockets { a standard UNIX message
passing system for concurrent processes).

A macro definition begins with #define and ends with the symbol "@". Thus,
#define x{y) sqrt(y) @

is a macro which does not contain any embedded lines, and

#define x(v,2)
print{"y«z = %3d",y*z);
@

coﬁtains embedded lines.

The other constructs (#ifdef,#ifndef,...) are allowed within macros, and the processor is
noticeably more powerful than the original cpp. For full details, refer to documentation on the
C language or to the UNIX documentation for "epp”. 'Note that arguments may be omitsted
from a macro call with the effect that they become instantiated to null strings and returns

TRUE for "#ifndef".

5.8. Program Desecription

QUIN is written in Berkeley PASCAL for the UNIX operating system. It consisis of three
major segments of about 2000 lines of code each. The files containing these segments are
named gqgmain.p qgparsr.p and qgex.p. Qqmain.p contains the initialization routines, the
session handling routines, and the utility routines. Qqparsr.p contains the command parser,
and qgex.p contains the command executor.

Flow of control through the code follows the pattern of:

1) start in the session routine,

2) parse a command into PT (the parse table}.
3) go to the executor and execute the command,
4) cycle

There are also three other small pieces of code, in files named qgproes.h, qqconst.h and
qqefunc.c. Qqprocs.h contains the external declarations of procedures which are accessed by
more than one segment. Qqconst.h contains the constant, type, and variable declarations as
weil as.the definition of the qqstatic area. Qqcunc.c is written in the C language and contains
the system dependent operating system calls or process communication that are not available

directly from PASCAL.

When inference commands are invoked, there are two options for the invocation of the
inference program. If the session is interactive and the user specifies a “results’ table, then the
inference program is invoked and QUIN waits for it to finish before continuing. In any other
circumstance {not interactive or no results table specified), the inference program is spawned as
a separate process independent of QUIN,

CHAPTER 8

The Rule Parser

‘8.1. Introduction

This chapter describes the GVL rule parser. The parser takes a knowledge base written
in GVL, and puts out a network representation compatible with the tuple manager. The parser

was originally coded by Robert Stepp. Carl Uhrik has made numerous enhancements to the
original program. |

The network output by the parser is simply a stream of parent nodes and descendant
nodes. The basic unit sequence is a parent followed by a list of descendants. This list is
internally a vector, called a TUPLE. Hence, the input to the PARSER is a specification of
variables, constants, rules and functions, and the output is a series of tuples which are
subsequently assigned an interpretation in the context of a control scheme during execution of
an application system. This interpretation is partly fixed by a convention of predefined symbols
called parser marks (See appendix A.3).

8.2. Language for Rule Representation

This section outlines the language provided by ADVISE for describing and entering rule-
based knowledge.

8.2.1. Rules

Rules have two major components: right hand sides {(RHS) and left hand sides {LHS).
LHS are conditions to be satisfied, and RHS initiate actions or decisions based upon the
values of variables. The LHS and RHS have weights {¢ and J respectively) that correspond
to the strength of the assertion in either a backward or forward direction {See Section 1.2.2),

8.2.2. Right Hand Sides (RHS)

A RHS is a concatenation (conjunction) of one or more of the following constructs:

\variable = value]
(variable = variable
ivariable = expression|

An expression is an integer, real number, symbolic value, variable, function or anyv
arithmetic combination of these. The action caused by evaluation is to take the expression
value on the right of the equal sign and assign it to the variable on the left of the equal sign.
The strength associated with the implication is attached as a confidence to the value
assigned to each variable,

Fof -3

87

8.2.3. Left Hand Sides (LHS)

The structure of the LHS features a wider variety of constructs than the RHS. These

constructs are listed at increasing levels of detail below:

(1)
(2)

A LHS: consists of one or more linear modules. Linear modules are separated by
disjunctions (V).

A Linear Module: consists of one or more linear module parts. Linear module
parts are separated by sums {+). An optional weighting coefficient or pair of
coefficients may be placed before each linear module part. In the former case, the
coefficients must sum to one. In the latter case, the coefficients represent Bayesian
LS/LN pairs as described for the BABY System (see section 13.5.2).

A Linear Module Part: consists of one or more selectors. Selectors are separated
by one of the [ollowing logical operators: 1) OR (V), 2) AND (no syvmbol), 3}
implication (->), 4) equivalence {<->) or 5} exception (\).

A Selector: consists of an expression, a relational operator and a reference
surrounded by square brackeis {[|). The relational operator is one of { <, >, =,
<>, <=, >=},

An Expression: can be either a value, integer, real number, variable, funcsion or
ahy combination of these separated by arithmetic operators. This operator is one
from the set {+, -, *, /, %}. The symbol (%) denotes modulus.

A Reference: consists of one or more reference values separated by commas. Each
reference value can have a weight associated with it. The value/weight pair is
separated by a colon. Each weight can be one or two real numbers. In the second
case, the first number is the truth weight and the second number is the falsity weight
(i.e., how much the selector’s failure contributes to the faisity of the condition-
containing it). A reference can be an expression, and a weight can be an expression.

An example of a LHS is shown in Figure 33. The example consists of a single linear

module with three linear module parts. Parenthesis are added for clarity. The frst linear
module part has two selectors in a disjunction. In all the selectors the expressions and
references are simple variables.

§.2.4. Rule Groups

A rule group consists of a named set of rules. Rule groups provide a mechanism for

focusing the evaluation of rules toward a particular problem solving strategy or subprobiem
area. Each rule group references a block of variable declarations and, optionally, a block of

0.3({F == MKT|[G = MKT}} +
0.4 0.01 {[H = MKT]) +
0.5 0.02 ([J = MKT}[I = MKT] V {H = MKT])

Figure 33 : A LHS.

68

function declarations.

Examples of the use of multiple rulegroups can be found in the PLANT/ds expert
system (see Chapter 11) and the ALFALFA expert system (see Chapter 14). In the first, one
set of rules (derived inductively by machine) focuses the consultation on a short list of
candidate soybean diseases, while a second rulegroup (written by a human expert in plant
pathology) performs a more detailed evaluation of the plausible diseases. In the second
systern, twelve distinct rule groups are employed to descend through various levels of
identification of insect pests found in alfalfa fields. Dynamically changing geals,
preconditions and postconditions on rule groups expressed in the rule language, direct the
control scheme in execution of appropriate rule groups.

8.2.5. Variables

Variable definitions are parsed independently of the rules and define each variable’s
domain. Variables in ADVISE can be of two types:

{1} Nominal: The values are simply symbolic names and ne ordering is implied between
the names. For example, the cclors "blue”, "green" are might be values of a
nominal variable.

(2} Interval: The values of the variable can be a range of integer or real numbers, or
symbolic names (e.g. June..September). In the case of interval variables, an
ordering is implied.

Variables are declared in blocks, and each block is assigned a name. If a variable is declared
from the special GLOBALS block, it is implicitly known to all of the rule blocks following.

6.2.8. Functions

Since the ability to parse functions constituted a major impetus for this project, fuller
details of the syntax and semantics are given here. Functions come in two varieties: 1) trap
functions or 2) memo functions. Both the bodies and calls to memo functions are parsed by
the parser, but only the calls to trap functions are handled by the parser, not their
definitions.

Trap functions correspond to procedural knowledge and are handled as jumps to
specific pieces of PASCAL code. Use of trap functions is described in Chapter 10.

Memo functions correspond to the classical notion of functions, except that two
simultaneous specifications of their definition may be active: 1} a tabular definition
consisting of a table of domain/range values or 2) a formula definition from which function
values can be computed. When a function is called, a check is made to see if a table exists.
If the table does exist, and the values for the arguments are found in the table, the function
value is simply retrieved from the table. If no table is present or no entry for the function
arguments i3 found, the formula definition is used to calculate the value and a2 new tabie (or
table entry) is added.

Different rule groups can share the same function or variable blocks. In general, it is
the responsibility of the user to verify the compatibility of the variables and functions
befween their definition and their use in the rule group.

A function in ADVISE is a mapping of values of arguments to a (value,confidence)
pair. The confidence here is a default which may be alternatively specified by a control
scheme override in the evaluation of a rule set, To represent the description of the
correspondence F(a.rgl,argz,...) = (value,confidence), we have in tabular form:

69

Funename [argl,argz,u.rga,...}
(varval, ., varval, g } (funcvall, conval,}

(varval,,, varvalyg, -) (funcval,, conval,)

(varval ,,varval o, ...) (funeval , conval)
Where...

Funcname is the name of the function;

var is a variable name;

varval is the value of the variable;

funeval is the function value for some argument values and
conval is the corresponding confidence.

Note that for the use of weights, a convention was adopted to set the function value to the
weight and set the confidence to unmity (1.0) if no confidence is explicitly given. This
convention also applies tc a function used as a reference value,

Imposing an outer structure to allow for muitiple function definitions in 2 block,
consistent with the block structure of variable declarations and rule definitions, we have the
function grammar specification indicated in Appendix B. Note that there is no provision for

type specification. This is due to the fact that basically two types of domains exist in
ADVISE :

(1) NUMERIC - real and integer which can take on any of an infinite number of values
which are in common with other variables,

2 SYMBOLIC - identifiers which are unique to a variable by virtue of its declaration
q
(even when two ids have the same printname, they have separate internai namesj .

In the latter case, a function defined with one set of arguments is bound to those arguments.
In the former case, the generality of the internal representation allows the liberal
interpretation desired. The responsibility is left to the control scheme to verify that a rule
utilizing a function is calling the function with proper arguments. This is faciiitated by the

elements of the function tuple, which indicate the number of arguments, argument
characteristics, ete.

Functions can take one of three possible forms which are distinguished primarily by
their declaration syntax. The three forms are illustrated in skeletal form below:

1) numeric functions — for integer/real values in weights, number variables, etc.,
which have the declaration,

function name { argl , arg?, ... }
[nll ni12 .. funcvallf
[ne1 n22 .. funcvaig/

= arithmetic ezpression of argl , arg?2, ...,
where the arguments, and either the table of values or the expression are optional;

2) boolean functions — for the representation of selectors or logical components of
a rule’s LHS which have the declaration form,

fenction name (argl:typel , erg2:type2, ...] : BOOLEAN
[valll vall2 ... funevellf
[val2l val22 ... funcvalZf
[]
L
L |
= VL ezpression of argl , arg2, ...,
where the table of values or the expression are optional, but types are explicit,
or implicitly assumed to be integer/real if omitted;

3) symbolic functions -~ for the representation of variable values within selectors,
having the form,

funetion name (argl:iypel , argl:type? , ...) : ftype
[valll vall2 ... funcvall/
[val21 val22 ... funcval2/
s
®
&

where the table of values is mandatory and types are explicit,
or implicitly assumed to be integer/real if omitted.

70

Note that the expression forms are functions that return either the reserved type
BOOLEAN (TRUE/FALSE) or numbers. No expression can return a symbolic value. Any
variable which is declared in the variable block assigned to this function block (or in a
GLOBALS block) may appear in the expressional definition of the functior, not just in the
argument "dummy” variables. Note that a variable is first checked for a possibie local
context and [ailing that, the variable is assumed global. Further, any use of a giobal in a
function declaration temporarily makes it local in scope. A GLOBALS block is intended to
affect all the blocks to follow it by eniering symbols permanently into the symbol table.
The syntax is similar to PASCAL. An example follows. {Note however that the TYPE

keyword is unreliably implemented — i.e, no cross—checking.)

GLOBALS
TYPE
BINARY = (PRESENT, ABSENT };
COLOR = { RED, BLUE, GREEN }:
VARS
RULEGROUP : (INDUCTION, EXPERT, TREATMENT) ;
DAMAGECOST: INTERVAL {0..1.0) ;

USER : {INEXPERIENCED, EXPERIENCED, SUPERUSER) ;

END

71

VARSX VARS
X1 = (DRY, WET, NORMAL);
X2 : BINARY ;
X3 : BINARY ;
X4 = (BIG, SMALL };
T ={00,1.0) ;
Z ={0.0..10.0);
END

FUNCX FUNCS

VARS = VARSX;

F1 [X1:PRES_ABSENT,Z3965,W235] : COLOR
(ABSENT , 25.3, 0.01 , RED , 1.0)
(PRESENT, 0.23 , -6.7, BLUE, 0.9)
(ABSENT , 0.0 , 0.0, GREEN, 0.8) ;

F2 {Z3968,W238]

(PRESENT, 0.1, 0.1, 0.5, 1.0)
(PRESENT, 0.2, 2.5, 0.7, 0.1)
;== 3.0 * Z3966 ~ 2.3 * W236 * 23966 + 8.789 ;

END

RULESX RULES
VARS = VARSX
FUNCS = FUNCSX

[X1=PRESENT]({X2=ABSENT:F2(ABSENT,23.1¥12.6,2*8.2)| :> [T=1.0;

END

Note : The VARS declaration in the function block is optional unless a function re-
quires an implicit parameter for a functional ezpression computation. The
type of @ function or arguments not apecified are assumed to be integer/real.
The-only predefined type is LHS, and it {s reserved for function typing (ie., it
may not appear on a variable). Further, a function of type LHS cannot have
any predefined tabuler values. There is a local averride in effect if a variable
is deciared to have a symbolic value already possessed by a- GLOBAL type.
The possible local contezt of a symbolic value is checked before it is deemed
GLOBAL. Both variables and the symbolic types that occur in the GLOBAL
block are global. This means that o global variable will be entered into the
dictionary for the network. Also, a global s not required to be used as a
variable, i.¢., it may eziat solely for the purpose of sharing a iype between
two or more variables that are local (but wish to pass their symbolic values
into functions or back from functions or Lest for equality of symbolic values.

T2

8.2.7. Properties

Properties can be attached to rule groups, rules, variables or functions. These
properties are used by the control scheme to perform various tasks. For example, in the
PLANT/ds expert system (Chapter 13) uses properties to:

1) provide text for asking questions,

2) determine whether, for a particular variable, the user should be asked to provide a
confidence in their response,

3} to provide a detailed description of variables and
4) to bias a variable’s importance.

Properties are treated as simple pieces of text and are not involved in rule evaluation.

8.3. Parser Construction

Some of the code that makes up the compiler was generated by the YACC compiler
compiler. YACC provides 2 general tool for imposing structure on the input to a computer
program. The YACC user prepares a specification of the input process. This includes grammar
rules describing the input, code to be executed when these grammar rules are recognized as
applicable, and a low level lexical routine to do basic input. YACC then generates a procedure
in the from of a C-program to control the input process. This is in fact the PARSER. When
compiled and executed, it calls the low level input routine (lexical analyzer) to detect the basic
input symbois (tokens). These tokens are organized according to the input rules; when one has
been recognized as an applicable grammar rule, the user code supplied with the grammar rule is
invoked, returning values and using the values returned by previously executed rules.

This allows the PARSER to be specified by 2 number of production rules involving
nonterminal symbols and terminal tokens. Precedence of operators may be specified to resolve
any ambiguities in the grammar and certain error actions can also be invoked. The nature of
the PARSER as consequence of YACC, specifically that it is a left-accept left—reduce (LALR)
shift PARSER, restricts the form of many constructs. For instance, recursion is preferably
left-recursive : A -~ Aa , rather than A — aA . For a full discussion of YACC, the reader is
referred to the YACC user manual available through Bell Labs [Johnson, 19781,

8.4. Basic Features

All parser input is free—format. Blanks between lexical entities are ignored. Line
boundaries are not significant, but the user should be aware of a limited print buffer. Use of
wide line input is consequently not recommended. In the case of reading an empty file, the
PARSER does nothing. Some information regarding input format and error handling is
presented in Appendix A.

8.4.1. The PARSER Production Cycle

The YACC compiler takes as input a context free grammar with cails to semantic
action routines supplied among the production rules. These routines are designed and coded
by the implementor and ultimately produce any output apart from duplication of the inpus
symbols. They accomplish the unit operations of the PARSER based on the current input
symbol in the context of the particular current siate of the parse tree. One of the most
important of these routines is the lexical analyser which recognizes the surface forms
{terminals) of the grammar and is called somewhat implicitly (ie., it does not occur within
any production rules of the grammar). ‘

YACC output is a file called y.tab.c, which is intended to feed the C—compiler to

73

generate a load module containing a simple automaton which executes an LR parsing
algorithm whenever a parse is desired and in effect has two components :

(1) Parser State Table - an integer representation of the states needed in execution for
maintaining the status of a parse. It is similar to the states in a deterministic finite
antomaton.

(2) Parser Semantic Invocation Code - the core of the interpreter which actually calls
the semantic routines given the proper states as they arise based on the input siream
and the given grammar. It is essentially a case statement indicating which semantic
actions to call at any point in execution.

Normally, YACC generates C-code for use by the standard compiler supplied with the
UNIX system, but the semantic actions are more naturally expressed in PASCAL routines
which draw on the rich library of the existing ADVISE system, especially the TUPLE
MANAGER module which places and manipulates tuples in a network. Since the code
implanted in the grammar is functionally only a specification of calls to procedures, the C-

compiler is easily displaced with a PASCAL PREPROCESSOR which edits the C—code to

conform to Pascal code.

This is accomplished by splitting off the state table to be read by our Pascal program
and editing the executable C-code to look like Pascal. Part of this code is static for all
generations of the PARSER and remains untouched, hence the program that does the
conversion is somewhat simpliied. The files "edparsem” and "edpartab” contain edit
commands to extract the constituents (1) & (2) from the file y.tab.c and produce the files
"parsem.i” and "partab” respectively. Then, partab is instated in the ADVISE "kbtext”
library, and parsem.i in "kblib", reduced to a case statement as to what semantics to invoke,
is automatically transplanted into the file "prsourc.p” upon compilation by a "#Finclude”
statement . The lexical analyzer and semantic action routines are aiready resident there and

remain relatively static as they are completely oblivious to the YACC compiler (see Figure
34).

In general, this system succumbs to two types of errors. One is in the grammar and
the mechanics of grammatical parsing devoid of the semantic routines. The grammar can be
ambiguous or allow undesired language constructs. The other type of error is in the coding
of the semantic action procedures. These can be changed directly without touching the
interpreter code installed from PARSEM.

B.4.2. Operation and Use of the Parser

The file prsourc.p is compiled to produce a load module which reads in the PARTAB
file as its first priority. Subsequently, it reads input from the file specified as standard input,
generates tokens, parses these tokens, generites tuples, and writes to the assigned OUTPUT
file. Additional textual information, mainly diagnostics, is written to the file 'msg’. This
process is illustrated in Figure 34.

On the VAX11-780, the current host computer for ADVISE, the parser is executed by
typing the following:

74

PARTAB INPUT

RULES. VARIBLE DEFS
FUNCTION DEFS

LEXICAL
ANALYZER

$ TOKENS

INTERPRETER

J] SEMANNG CALLS

[SEMANTICS

JyWPLES
L7/ .

MSG oUTPUT

Lo

Figure 34 : Relation of Compiler Components.

$ADVISE/parser/prsoure <Iinput >output
where the following files are involved...

input is a set of variables, functions, and rule knowiedge bases;
output is a trace of the input file with error messages;

msg contains program debugging and performance information and
backup contains a network representation of the knowledge

base in a form that can be read by the TUPLE MANAGER.

The knowledge base can at this point be examined by running the "tmtestr” program as
below.

75

$ADVISE /kblib /tmtestr

? o8 open standard network
Trb ‘read backup file
backup fle : backup

7wt write text file

text file name : net

*q exit

At this point, 2 text format of backup file "backup” will have been written to "net”, and this is very
useful for debugging.

6.5. Updating the PARSER

The process of updating the PARSER is outlined as follows :

(1)

(10)
(11)

Assess the need for any new tokens, symbols, or PARMARKs. Modily the lexical
analyzer to accept these and return a valid token.

Derive a set of grammatical productions which unambiguously parse the desired
constructs.

Determine the desired convention for the structure of a tuple to represent the construct
in network form. This will depend on the intended use in the rule evaluator or control
scheme.

Write any new semantic action routines that are required to build the network of (3).
These routines should ultimately go into "SADVISE /kblib/prsourc.p”.

Insert the semantic action routine calls in the proper points in the grammar of (2). The
current grammar is in "SADVISE/parser/graml”.

In the directory "SADVISE/parser”, type the UNIX command, "YACC <infile>", where
<infile™> denotes the name of the file containing the grammar. The file “y.tab.c” results
which contains the compiler written in the "C" language.

This step and the following two steps edit the "y.tab.c” and extract portions that are
inserted in the PARSER. [the shell script "pyacc” can be executed successfully {w/o
arrors), these steps can be eliminated. First a portion of the grammar, represented by a
large "case statement’, is generated by typing: "ed <edparsem y.tab.c”. The file
parsem.i results.

The state table is extracted by typing: "ed < edpartab y.tab.c”.

This step searches for labels in “y.tab.c” in order to construct the "OTHERWISE"
portion of the code that encapsulates the case statement. Type
prlabels > prlabels.i

to collect together all the allowed labels that occur in the case statement of "parsem.i’.
Both "parsem." and "prlabels.i" are automatically transplanted into "prsourc.p’ at

compilation by "#include” statements. The case statement portion (parsem.i &
priabels.i) should be instalied in the ADVISE library "SADVISE /kbEb".

Install the partab file back in the library "$ADVISE/kbtext”,

Remake the prsourc file (i.e., compile prsourc.p and load prsourc.o), according to the file
"Makefile" in kbiib.

To assist users in making changes to the parser, the current grammar definition as seen by
YACC is presented in Appendix B. Note that steps 8-2 can be built into a convenient shell

seript.

CHAPTER 7

The Rule Evaluator

7.1. Introduction

This chapter describes the the Rule Evaluator, a module of the ADVISE.]l system that
evaluates rules and propogates hypothesis-supporting evidence through the rules. The Parser
module parses rules into a tree structure in pre-order form. The rule evaluator recursively
descends into this tree in order to determine the ““truth value” of some portion of it. In its
simplest form, the rule evaluator returns the “truth value” of the lefi-hand side of a rule.
Another user procedure, the rule interpreter, executes a rule’s right-hand side if such action is
called for (according to the control scheme).

7.2. User Procedures

- The rule evaluator is accessed via three procedures: reinit, evaluate, and interpret.

reinit (schema,schematuplen)
Where:

schema is a tupie where the user specifies the evaluation
scheme to be used {see section 7.3). Each

address in this tuple corresponds to a user selectable option
that specifies how certain rule structures are evaluated.

schematupien is an integer value corresponding to
the number of options specified in the schema tuple above.
There are 17 possible options the user might specify. If fewer

than 17 are selected, those not selected are set to their default
values,

The reinit procedure must be called before using the rule evaluator. It can be called multiple
times if the user wishes to use different evaluation schemes within a single consultation session.

78

77

evaluate (lhs,val,errnode,error)
Where:

Ihs is a rule’s lefi-hand side or some structure within
a rule’s left-hand side {down to a single selector). It represents
the item to be evaluated;

val returns the result of the evaluation

as a real number (val). It corresponds to the truth velue
of the rule part passed to the evaluator. In the current
implementation, val will range between 0.0 and 1.0;

errnode returns the internal name of the nede in which
an error (if any) occurred and

error is the error type encountered above.

These errors may correspond to unexpected

conditions that arose during evaluation, but might also contain
information useful to the Contro! module. For examplie, the
error that a rule was not completely evaluated may prompt the
Control module to gather more information from the user.

As mentioned eatlier, the schema tuple determines how various rule structures are evaluated.
Another mechanism for controlling the behavior of the evaluate procedure is via accessory
control (ACCTRL). The evaluate procedure consults the ACCTRL variable and performs
certain activities based upon its values. The variable ACCTRL is a Pascal set type which can
take on none or more of the values listed below :

storintres : This instructs the evaluate procedure to store intermediate results obtained
during evaluation.

useintres : This instructs the evaluate procedure to use the results stored above.
Storintres and useintres are most commonly used together. They can significantly
speed up the time it takes to evaluate a rule, but are not appropriate in certain cases.
For example, if the both of these values are added to the ACCTRL set, intermediate
resuits are stored and used at all levels of the parse tree descent. If the Control module
has changed the value of a variable in a rule already evaluated (for example, if the user
has asked to change the answer to a question), then the evaluator will not descend into
the parse tree deep enough to detect this fact. Therefore, intermediate resuits should not
be used if variabie values are expected to changes in rules after evaiuation.

continue : This instructs the rule evaluator to continue evaluating even if it encounters a
variable that has never been assigned a value. The evaluator will still return the error
that the rule is not completely evaluated. Variables who have no value assigned are given
a "truth value** of 0.5.

min : Used in conjunction with continue, this causes the truth value 0.0 to be assigned to
variables that have no value. Useful in determining a worst case evaluation of a rule.

max : Used with continue, causes the "truth value** 1.0 to be assigned to variables that
have no value. Determines the beat case rule evaluation.

interpret (rhs,strength,reset,errnode,error)
Where...

rhs is the rule part you wish to interpret; normally
a rule’s right--hand side;

strength is a real number corresponding to the degree

of truth returned by the evaluate procedure

combined in some fashion with the strength of the assertion
of the decision symbol (o).

"This value is control scheme dependent;

reset is meaningless (an artifact of 2 previous function);

errnode is the node that caused an error (if any) during
interpretation and

error is the name of the error (if any) that occurred.

In the current implementation, the interpret procedure will function correctly only if the rhs
consists of a simple selector or conjunction of simple selectors.

7.3. Configuring the Evaluator

How the rule evaluator evaluates a rule is specified in the schema tuple, parameter of the
reinit procedure, which, as was noted earlier, must be cailled before calling evaluate or
interpret The numbers below represent the position in the schema tuple. Each position is
followed by the meaning of the position to the evaluator, a colon, and, in boidface, the options
available for that position. In the current implementation, many positions have only one
option — default.

(L) Linear module (evaluation) : default.

(2) Conditional statement (evaluation) : default.

(3) Disjunctioh of rule parts other than selectors {evaluation) : default, max, suppes.
(4) Conjunction of rule parts other than selectors {evaluation) : default, min, prod, ave.
(5) Disjunﬁtion of selectors (evaluation) : default, max, suppes.

() Exception {evaluation) : default, execptl.

(7) Equivalence (evaluation) : default, equivinaxmin, equivmaxprod, equivmaxave,
equivsuppesmin, equivsuppesprod, equivsuppesave.

(8) Implication (evaluation) : default, impmax, impauppes.

{9) Conjunction of selectors (evaluation) : default, min, prod, ave.

{10) Selectors (evaluation) : defauit.

(11) Conjunction of rule parts other than selectors (interpretation) : default.
(12) Disjunction of rule parts other than selectors {interpretation) : defauit.
(13) Selectors (interpretation) : default,

(14) Conjunction of selectors (interpretation) : default, min, prod, ave.
{15) Functions (evaluation) : default.

(16) Behavior (evaluation) : default.
(

17) Functions (interpretation) : default.

The definitions of the available options are listed below :

* min : minimum.
. max : maximum.
. ave : average.

. prod : product.
2 suppes 1 x + y - {x * ¥}
s excptl : x / ¥ (if y = O then the result is the truth value of x).

+ equivmaxmin : value = max{min(x,y},min(1-x,1-y))

¢+ equivmaxprod : value = max(x*y,(1-x}*(1-y))
¢« equivmaxave : value = max(ave(x,y),ave(1-x,1-¥})
¢ equivsuppesmin : value = min(x,y}+min{1-x,1-y}-min(x,y)*min(1-x,1-y)

e equivsuppesprod : value = x*y+{1-x}*(1-y)}-x*y*(1-x)*(1-7)
s equivsuppesave : value = ave{x,y)+ave(l-x,1-y}-ave(x,y)*(ave(1-x,1-y)
& impmax : value = max(i-x,y)

¢ impsuppes : value = {1-x)+y-(1-x)*y

79

CHAPTER 8

Knowledge Base Paraphrasing

This chapter describes the paraphrasing capabilities in ADVISE. Section 8.1 describes the
design of a general paraphrasing mechanism that has yet to be implemented. Section 8.2
describes a pre-existing implementation of a rule paraphrase module based on the rule
evaluation module.

8.1. Design of a Generai Paraphraser

A generzl paraphrase mechanism has been designed to paraphrase any tuple in a network.
Remember that internally, every rule or table can be represented as a tuple in the low-level
ADVISE network. Given a tuple, the paraphraser first locates a paraphrase program for that
tuple, then executes that program to produce the appropriate paraphrase e.g. a GVL rule, an
English rule, or a2 fancy table display. The paraphrase program for that tuple may be located
in one of several places depending on its generality. Programs with little generality are located
directly. under the main node of the tuple to be paraphrased. More general programs are found
under subnodes (nodes other than the main node) of the particular tuple, or under another node
in the network, locatable through an inherit relation or indirection mechanism from nodes in
the tuple. For example, the paraphrase program for a selector in 2 rule may be found directly
under the main node of the selector, under a subnode of the selector {e.g. a parser mark that
determines the type of selector), or under the rule or rule group in which the selector appears.

The paraphrase program consists of a series of tuples under a given node. The second
node in each tuple (the first node would be the main node) is a keyword that identifies the tuple
as being part of a paraphrase program. This identifier will be one of MKPARAPHRASE,
MKPROG, and MKPROGEND. These are defined below. Subsequent nodes in each tuple will
determine a specific paraphrase action. Commom actions are finding a new tuple to
paraphrase, printing text associated with a node, and setting up a means to paraphrase the
tuple iterativeiy.

The following are the definitions of the keywords recognized by the paraphraser.
MKPARAPHRASE Denotes the start of a paraphrase program. Optional arguments denote

the style of paraphrase {i.e. rules, networks or tables) and may also
denote a restriction on the tuples that can be paraphrased by this

program.

MKPROG [dentifies statements in a paraphrase program.

MKPROGEND Marks the end of a paraphrase program.

MKLOOP Marks the beginning of a loop in 2 paraphrase program.

MKPARAINDX This serves as a ““program counter’” in the semse that it denotes what

node in the current tuple is being paraphrased

MEKSHIFT Assigns a specific node to the "program counter” relative to the current

position. Default is the shift one node. Further shifts may be specified
by an additional argument.

80

81

MKABSHIFT Assigns a specific node to the "program counter” absolutely.

MKLQOPEND Marks the end of a loop.

MKPRINT The printname of the node argument which follows is output.

MKPARAPRINT Paraphrase the tuple that matches the following left context of this
tuple.

MKPRINTPOS Output the printname of the node found at the position in the current
tupie specified by a position argument |

MKPARAPOS Paraphrase the tuple that matches a tuple constructed by adding the

remaining left context of the MKPARAPOS tuple to the node at the
position in the current tuple specified by a position argument,

Figure 35 shows a sample paraphrase program. The first tuple in the program i1s the
MKPARAPHRASE tuple. It marks the start of this particular program. (There may be other
programs under the main node RULEGROUP.) This particular MKPARAPHRASE rtuple
indicates that it can only paraphrase tuples with left context MKEXEC MKAND, which
translates to conjunctions of selectors in rules. Note that this program is located under a
RULEGROUP node, a likely place from which it can be inherited by all rules in the rule group.

If this paraphrase program has matched the tuple to be paraphrased, then that tuple
becomes the current tuple and must be a conjunction of selectors from a rule. With this in
mind, the paraphrase actions can easily be understood.

The first MKSHIFT causes the current position to become 3 in the current tuple. This is
always a node representing the first selector in the conjunction. The next step (MKPARAPOS)
is to paraphrase the node at the current position followed by the remainder of of the
MKPARAPOS tuple {i.e. MKEXEC). In other words, paraphrase the tuple matching
(<selector node>> MKEXEC). The paraphraser then recursively finds this tuple, makes it the
current tuple, and paraphrases the selectot. Assume now that the first selector has been
paraphrased and the paraphraser has returned to this program.

(RULEGROUP |
(MKPARAPHRASE MKEXEC MKAND)
(MKPROG MKSHIFT 3)
(MKPROG MKPARAPOS MKPARAINDX MKEXEC)
(MKPROG MKLOOP)
(MKPROG MKSHIFT)

(
{
(
[

MKPROG MKPRINT " & ")

MKPROG MKPARAPOS MKPARAINDX MKEXEC)
MKPROG MKLOOPEND)

MKPROGEND))

Figure 35: A Sample Paraphrase Program.

82

The next tuple in the program is an MKLOOP, This begins an iteration of the
instructions from here until a matching MKLOOPEND. The loop terminates when an
MKSHIFT falls off the end of a tuple. The steps in the loop are easy to follow. The first is an
MKSHIFT which makes the next selector (node) in the conjunction {tuple) the current node
(position). If this succeed an “‘and” sign (&) is printed and the tuple corresponding to the
selector is paraphrased as before. This continues until there are no nodes (selectors) left in the
tuple {conjunction). Here the loop terminates and this paraphrase program completes.

Implementation of the general paraphraser is pending decision on the adoption of an
object-oriented environment. The paraphraser’s notion of inheritance would be well supported
by an object~oriented approach. The only existing paraphrasing mechanism in ADVISE is a
rule paraphraser which is described in the next section.

8.2. The Existing Rule Paraphrase Module

The existing paraphrase module is designed to “‘unparse’’ rules. It is capable of converting
rules in their network form to the GVL, form. The rule evaluator was modified so that could

also paraphrase rules. The rule evaluation function was retained.

There are two user callable procedures, PAINIT and PARAPHRASE. PAINIT is used to
initialize the module and has the same calling sequence as REINIT, namely:

PAINIT (schemetuple,schemetuplelength);

Where...

schemetuple is the tuple specifying the rule
evaluation schemes as in REINIT and

schemetuplelength is the length of the above tuple.

PARAPHRASE was adopted from procedure EVALUATE in the ruie evaluator module and is
called thus:

PARAPHRASE (rulepart,width,textfile,value,errornode,error);.
Where...
rulepart is the part of the rule to paraphrase and can be a whole rule down to a selector,
width is the width for the text to be placed in textfile,
textflle is the text file to place the results of paraphrasing in,
value is the value of evaluating the rule part and is not defined for whole rules,
errornode is the same as in procedure EVALUATE, and
error is the same as in procedure EVALUATE.

The internal structure of the paraphrase module is the same as the rule evaiuator module.
The modifications done to the rule evaluator procedures are marked with the comment,

(*PA*). This is only a preliminary version of the PARAPHRASE module. Beware of
undocumented features,

CHAPTER 9

The Tuple Manager

9.1. Introduction

The Tuple Manager (TM) is an implementation of a generalized network manager similar
to that described by Baskin [Baskin, 1979 in his PhD dissertation. By offering a variety of
high level primitives with which to manipulate the network, it allows the user considerable
abstraction from the Pascal data types actually used to store the network. The user works
directly with n-tuples (n < 258) which are arrays of symbols to be manipulated. There are
actually three simultaneously active networks, which may be distinguished as public and
private networks, or allow experiments with a scratch network. The TM also supports
‘procedures that will write out backup files and text files to re—create the network state.

9.2, The Data Types

A tuple is represented by a Pascal array of symbols, which in turn are represented by a
variant record. This is analogous to lists in LISP with the exception that the list elements
cannot themselves be lists, but must be atoms. Another difference is that the tuple manager’s
list elements can be accessed directly rather than having to traverse the list with compositions
of 'cars’ and ’cdrs’.

The four types of symbols supported by the tuple manager are integers, reals, textnodes,
and symbol nodes. The most general type of symbol is allowed to have attributes attached and
manipulated. These attributes are similar to LISP properties, however the attributes are
referenced and stored by keying on as many of the leftmost symbols as desired, rather than one.
This will be made clearer in the discussion of some of the tuple retrieval procedures.

Textnodes are designed for the efficient storage of text and therefore, like the integer and
real symbols, are not allowed to have attributes. From the user’s perspective these n—tupies of
symbols are just entities that can be stored, retrieved, and modified in a variety of ways. The
semantics of tuples is defined by the user program, but the capabilities of the tuple manager
allow for representation of a generalized graph and any specializations. So far use of the tuple
manager has-been in the realm of rules, tables in a reiational data base, and a directed acyclic
graph.

For efficient storage and retrieval of the tuples, they are indexed by their first symbol. A
symbol consists of a node and its (possibly empty) set of attributes. A node is represented by a
Pascal . variant record which contains its printname, internainame {a unique node identifier), a
pointer to.its set of attributes, and various housekeeping variables. Each attribute is stored as
a linked list of subnodes. These lists in turn are elements in the attribute list of the node.
Fach subnode consists of the internalname of the node that it is representing. By referencing
ather nodes in the attribute list using only their internailname rather than a pointer, the TM
can:-more easily make disk versions of the networks and reread them into main memory.

The tuple manager supports a dictionary for retrieval of a symbol given its printname.
When a network is read in from a backup file only the symbols in the dictionary, and any
symbols reachable from those, are accessible to the user. The function of the dictionary is
similar to the function of the LISP oblist. During a session, though, not all of the network’s

83

84

symbols may be reachable from the dictionary due to local creation and storage of symbols.
The LISP analogy is a ‘gensym’ atom, which is not directly reachable from the oblist. The
tuple manager implementation of the dictionary is a hash table that uses an intable collision
resclution scheme.

The procedures for entering, removing, and looking up a symbol are discussed in the next
section.

9.3. The User-Visible Procedures

The user—visible tuple manager procedures are listed in alphabetical order below. For the
exact calling sequence of these procedures, the user should consult the tmprocs.h file in the
source,

Procedure ADDATTRIBUTE. ADDATTRIBUTE takes 2 tuple as a parameter and
adds it to the existing network. This is done by first inding the parent node of the tuple using
FINDNODE (section 8.4). The proper place for the remainder of the tuple {the attribute of the
node} is determined by a parameter passed to the procedure. This slot is then located and the
incore subnode structure of the attribute is created.

Procedure ASCIINT. This procedure converts the ASCII representation of an integer
into the machine representation of that integer. This is a machine independent algorithm.

Procedure ASCIIREAL. The real number counterpart of ASCHNT. Also machine

independent. .

Procedure CLOSENETWORK. CLOSENETWORK saves the state of all three
levels of networks in the user’s files. See OPENNETWORK. The dictionary is saved in the
global level. The housekeeping pointers and variables are saved in each of the files. If one
closes a network, signs off the system, and then opens the network, the state of that network

will be unchanged.

Procedure CLOSENODE. This procedure takes as parameters the internalname of a
node, a flagword to store with the node, and a level on which to find the node. [t then locates
the node with a call to FINDNODE, stores the fagword with the node, and then decrements the
open counter (opencount) of the node. It does not alter the status of the node. A node with an
opencount of zero is considered to be closed, and unavailable for access until opened.

Procedure CREATENODE. This procedure takes a flagword as a parameter and a
level on which to work, and creates a new regular node, assigning a unique internalname to the
new node. The node is not opened — it is just created. The opencount, usagecount, and

attributecount are all set to zero. The printname is set to the null word so it will need to be
filled in by calling the procedure SETPRINTNAME.

Procedure CREATETEXTNODE. This is a simple procedure that will create a2 new
text node and assign it a unique internalname tc it. An integer flagword is passed to this
procedure and this is placed in the new text node. The internalname is returned by
CREATETEXTNODE. This procedure does not open the node - it just creates the node. The
new node is initialized with the opencount, currentline, and number of lines of text all set to
zero.

Procedure DELETEDICT. DELETEDICT removes an entry from the dictionary. [f
it is not found then it does nothing. The stringpool is unaltered by this procedure, but its
information is made unusable as is its storage area occupied by the printname. Therefore
repeated cails to this procedure will create wasted space in the stringpool that cannot be
recovered in the present implementation.

85

Procedure DELETESLOT. This procedure is the inverse of ADDATTRIBUTE.
Given a particular attribute to be removed, it just deletes it from the in-core representation. It
does this by first locating the node using FINDNODE, and then traversing the linked list of
attributes until it has traversed as many as passed in the parameter slot. The subnode
structure of the attribute is then removed. The value for slot that is passed as a parameter

must be found by using the procedure GETATTRIBUTE.

Procedure DELETETUPLE. This is also the inverse of ADDATTRIBUTE. Unlike
deleteslot, however, it takes a tuple as input. DELETETUPLE locates its parent node using

FINDNODE, locates the slot under the parent node containing the tuple, and then deletes the
tuple using DELETESLOT. |

Procedure DESTROY. DESTROY takes as parameters the internalname of the node
to be destroyed and the level on which to destroy it. It will then wipe out the node by first
finding the node with FINDNODE, and then returning the node structure to the free node pool.
This procedure will not remove a node from the dictionary. This is because a node can exist
simultaneously on different levels. An error is returned if a request is made to destroy a real or
integer node.

Procedure ENTERDICT. This procedure takes as input an internalname and its
printname and stores it in the dictionary if it is not already in the dictionary.

Funection EQ. This boolean function takes two internal names as parameters and
returns TRUE if they are equal or FALSE if they are not. It first checks the type of
internalname{node, text, real, or integer) and then checks for equivalent values depending of the
type. In the case of a real node, an acceptable margin of error can be specified using the
procedures TMREALDIFF and TMREALINTDIFF for comparisons with other real numbers

and integers, respectively.

Procedure GETATTRIBUTE. This procedure takes a tuple and its length as
parameters along with a location to begin the search, and returns the complete tuple and the
slot under which it was found. The tuple passed to GETATTRIBUTE can be a left context
tuple or a complete tuple. If a left context tuple is given then only the first matching compiete
tuple will be returned,

The procedure works by first finding the node using FINDNODE. [t then counts down
the attribute list looking for the attribute at which to begin the search for the particuiar tuple.
From there it searches the attribute list in order looking for a tuple that matches as much of
the tuple that was passed for the search. As soorn as a matching tuple is found, the entire tupie
is loaded into the return tuple and the slot under which it was found is loaded into the return
slot.

Procedure GETPRINTNAME. This procedure takes as a parameter the
internalname of a node and returns either its printname or its value, depending of the type of
node. If it is a textnode or a regular node then the printname ig returned. If it is a real node or
an integer node then its ASCII representation is resurned. For the latter two types of nodes the
procedure converts the node value to the ASCII representation with calls to either ASCIIREAL
or ASCIINT. In the case of a text node or a regular ncde the procedure first has to find the
node with a call to FINDNODE. [t then packs the printname into the return paramesar.

Procedure INHERITATTRIBUTE. Like GETATTRIBUTE, this procedure takes a
tuple and its length as parameters along with a location {slot) to begin the search, and returns
the complete tuple and the slot under which it was found. The tuple passed to
INHERITATTRIBUTE can be a left context tuple or a complete tuple. Unlike
GETATTRIBUTE, however, the search is not restricted to tuples under the main node of the
given tuple. INHERITATTRIBUTE also follows inheritance arcs to other nodes to match
tuples (ignoring the main node, of course}. INHERITATTRIBUTE also looks under subnodes

36

of the tuple (by substituting the subnode for the main node) for the desired attribute {tuple}.
The search is exhausted vertically {along inheritance arcs) at each subnode before beginning
recursively from the next subnode (horizontally). Additional parameters specify the maximum

numbers of inheritance arcs and subnodes to search. The number of inheritance arcs and the

number of subnodes searched are also returned. INHERITATTRIBUTE calls
GETATTRIBUTE with the appropriate substitutions for the main node.

Procedure INTASCII. This procedure is a machine independent algorithm that
converts an integer into its ASCII representation.

Procedure INTERINT. This is a bidirectional conversion procedure that converts
to/from internal name representation from/to the Pascal integer representation. Presently
there is no difference between the two and the procedure just outputs the proper part of the
internalname record passed as the parameter, or fills the proper par¢ of the record depending on
the direction of conversion.

Procedure INTERREAL. This is the real number counterpart of the INTERINT
procedure.

Procedure LOOKUP. LOOKUP is the dictionary access procedure which takes a
printname as input and returns an internalname and nodetype. If a real node or an integer
node is passed to LOOKUP, then the ASCII representation is returned. LOOKUP works by
searching the dictionary hash table for a match of the printname.

Funetion NTYPE. This function takes as input an internalname and returns as its
value the nodetype of that node. The function is very fast and should be preferably to opening
a node just to find out its type.

Procedure OPENNETWORK. OPENNETWORK opens three user networks at the
three different levels {global, local, private). It creates the lists of free nodes and subnodes, and
arranges all of the housekeeping pointers and variables. The dictionary is also read into the
memory.

Procedure OPENNODE. Opennode takes as a parameter the internainame of a node
and the type of access desired and opens the node if the access matches the allowed type of
access for that node. The node is opened at a particular level, depending on what levei is
requested, also a parameter. Values returned by the procedure are the number of attributes,
the flagword, and the type of node. If one is opening a node merely to determine its nodetype,
then a better option would be to use function NTYPE.

OPENNODE works as follows. If the node requested is a regular node or a text node then
FINDNODE is called to locate then node and bring it into the core memory if it is on disk. If
the node was not located, and if the level requested was not global, this procedure will look at
progressively higher levels for the node and copy it to the requested level if the node is found.
If the node is located then its opencounter is incremented and the return parameters are set. [f
the node is not located then an appropriate error message is returned.

Procedure READBACKUP. READBACKUP takes a backup file and re—creates the
network exactly as it was when the backup file was written.

Procedure READTEXT. This procedure takes a text file of the network and creates a
new network based on the contents of the text file. Every node in the network is entered into
the dictionary, making this procedure of very limiied utility except for small networks. The
procedure will have problems if one attempts to load more nodes than will it in the dictionary .
Currently the limit is 499. This procedure is in need of some modification in the futurs.

Procedure REALASCIIL. This is the real counterpart of INTASCIL. [t is also machine
independent.

87

Procedure SETPRINTNAME. This procedure is the inverse of GETPRINTNAME.
This procedure does different things for different types of nodes. For real or integer nodes it
sets the value of the node to the Pascal implementation of that value. This is done with a call
to either ASCIIREAL or ASCIINT. For regular nodes the node is first located with
FINDNODE. Then the node's printname is assigned the printname that was passed as a
parameter. For text nodes the node is located and then the printname, passed as a parameter,
is interpreted as a line of text which is added to the end of the existing text for that text node.

Procedure TMREALDIFF. See function EQ.
Procedure TMREALINTDIFF. See function EQ.

Procedure WRITEBACKUP. This procedure writes out a backup file that will allow
the exact state of the-network to be preserved. The dictionary is included in the writeout
procedure. Nodes having the same printname are not merged, as in WRITETEXT below.

Procedure WRITETEXT. This procedure will write a text file of the network to a
specified filename., The algorithm used will cause nodes having the same printname to be
merged. The dictionary s not saved.

9.4. An Important User-Invisible Procedure

Procedure FINDNODE. By far the most frequently used procedure in the Tuple
Manager, FINDNODE is designed to be as fast as possible given the limitations of a linked list
representation of the network. This procedure takes as a parameter the unigque node identifying
aumber and returns a pointer to the internal memory representation of that node. It works as
follows. All of the nodes in the memory are hung onto a hash table using a linear chaining
collision resolution scheme. The proper hash table entry is determined from the node identifier
and that particular linked list is searched sequentially for the node.

In an earlier implementation, the tuple manager was directly responsible it for virtual
memory management — i.e., ensuring that memory used for nodes did not exceed the core
limits, and swapping nodes from disk to core when core memory was full. In that
implementation, if FINDNODE did not find the node in core then the area on the disk that
should be occupied by the node was examined. If the node was on the disk then it was brought
into the core netwoerk. A return pointer was then set to the node. If the node was not in
memory and not found on the disk then nil was returned.

In the current implementation, all virtual memory management is performed by the Unix
operating system. From the user’s point of view all of the nodes are in core at the same time.

CHAFPTER 10

General Utilities — TESTER and the Special Functions Module

This chapter describes two utilities available for use in ADVISE. The first is the Tester
Program which can be used as a low-level network debugger for ADVISE knowledge bases.
The second utility is the special functions module: a set of hard-coded ‘trap’ functions
available for reference from rules in the knowledge base.

10.1. 'The Low Level Network Debugger

The Tester program was originally developed as a tool for testing the tuple manager. It
has evolved into a program that can be used to perform tests on the rule evaluator, the
paraphraser and the tuple manager. In addition, it allows the user to debug or otherwise
manipulate 2 knowledge base after it has been parsed. This section describes the functioning of
the Tester module. The program was coded originally by Heinrich Juhn. Lance Rodewald and
Albert Boulanger have supplied additional enhancements.

10.1.1. How to Use the Tester Program

The Parser reads in a rule base and outputs a network or backup file. The Tester
program allows the user to examine the backup file and edit it. Before looking at an
example of a portion of the backup file, some definitions are in order:

(1) node: A node is simply a symbol. Each node has an internal name that is hidden
from the user and is accessed via a printname. A printname is simply a string of
characters that represents a unique identifier for a node. These printnames are
collected into a dictionary that is manipulated by the tuple manager.

(2) tuple: A tuple is a vector of nodes, integers or real numbers, A knowledge base is
represented internally as tuples. The node in the first position {slet 1} in a tuple has
a special significance. It represents the place where information about the node is
stored. This same node may appear in other tuples in other than the first position.
In this case, the node can be viewed as a pointer back to that tuple in which the node
appears in the first position.

(3) slot: A tuple’s slot corresponds to its vector address. For example, a tuple is
declared as:

tuple: array |[1..tuplelength| of internal_names;

Slot number n {1 <= n < = tuplelength} is the nth element of the vector (tuplen:).

(4) attribute: An attribute is a tuple representing a property about that node that
appears in position 1. A node may have several properties ""hung under** it.

For example, consider a knowledge base that contains an attribute called TEMPERATURE.
It can take on the values BELOW_NORMAL, NORMAL, or ABOVE_NORMAL. It would
appear in the following form when viewed via the Tester program:

88

89

(TEMPERATURE {
(MKDOMAIN MKNOMINAL BELOW_NORMAL NORMAL ABOVE_NORMAL)

)

The node TEMPERATURE (its printname) has under it a single attribute that specifies the
possible values for the node. The identifiers MKDOMAIN and MKNOMINAL are semantic
markers used internally by the program to identify this attribute as representing the domain
of the variable TEMPERATURE, and that domain is scaled nominally.

10.1.2. Tester Commands

This section contains a list of commands available in the Tester program. Each

command is one or two letters, and the user may be prompted for additional information
after requesting a particular operation.

Basic Commands

083

rbi

whe

c2

ns:

These commands perform the basic network manipulation functions.
The (h)elp command displays a list of commands available to the user.

The {o)pen (s)tandard command prepares the program for (r)eading a (blackup file. In
general, this is the first command a user should issue. More than one backup file can
be manipulated in a single interactive session with the Tester program. In this case,
the user should issue the (c)lose command before another {o)pen (s)tandard command.

This command (r)eads a {b)ackup fle. The user is prompted for the name of that file.
The user should not issue another rb command in the same interactive session without
issuing the {¢)lose command first.

Used to (w)rite out a {b)ackup file. The user is prompted for the name of the file to
create for storing the network. This is useful when the user wishes to keep changes
that have been made to the network.

This command will output the entire network in a readable form. It is useful for

hand—checking parser output and gaining some insight into how a knowledge base is
stored. |

This command reads a file in the readable form that is cutput by the wt command. It
is particularly useful for adding new rules to a network without going through the
trouble of re-parsing.

The (c)lose command frees internal storage used by the Tester program. It should be
issued before reading another backup file in the same session. ’

This command functions identically to the o8 command in the curreng
implementation.

This command allows the user to set the level of tuple manager debugging
information. This information is always placed in the fle named “msg’’ which can be
examined at the end of a session.

Display a (n)ode and all of its attributes. The user is prompted for the name of the
node to be displayed. The command may fail if the node’s printname is aot in the
dictionary (initially,.very few nodes are in the dictionary). A node’s printname can be
entered in the dictionary using the (m)ark command.

This command can be used to {g)et an attribute hung under a node. it establishes this
attribute (if the command does not return an error} as the curreni tuple. A current

p:

tr:

tas

ta:

90

tuple is assumed to exist when using other commands (See, for example, the {mjark
command). The attribute tuple is accessed by specifying node printnames beginning
with the node in slot 1. The user is asked to provide a “lefi context’ for identifying
the attribute he wishes to access. This ‘“left context” is simply one or more
printnames in the order they appear in the tuple, beginning with slot 1. The user is
prompted for the number of printnames he wishes to use as a “left context” and then
is asked to enter those printnames. For example, in the TEMPERATURE tuple
presented earlier, this tuple could be accessed by entering the number *“2’" when
prompted for length and then the names “TEMPERATURE” and “MKDOMAIN”
when prompted for the printnames. Remember that the printnames must be in the
dictionary for this command to succeed (you may have to use the (m)ark command to
enter them). Also note that the case of the letters is significant when matching
printnames. A simpler mechanism for looking at the network is provided by the *‘s”
commands (sw,sp,etc.).

This command also gets an attribute from the network as does the g command. The
gl command, however, uses an inheritance mechanism to find an attribute. The
inheritance mecharism is described in the previous chapter under

INHERITATTRIBUTE,

This command {a)dds a tuple to the network. As in {g)et, the length of the “left
context” is requested and printnames of that context. The tuple is hung under the
node in slot 1 of the “left context’ if that node exists in the dictionary, otherwise the
node 1s created.

This command is used to (d)elete a tuple. It functions just like (g)et and {a)dd. {See
also st below.)

Used to {m)ark a2 node {i.e. enter its printname into the dictionary). The user is
prompted for which slot (element) in the current tuple he wishes to mark. A slot is
referenced one of two ways: either by its slot address as a positive integer (counting
from the left) or by its slot address as a negative integer (counting from the right).

" For example, if the current tuple has length 3, its last slot can be referenced by either

3 or -1.

This command causes a (l)evel change. Three copies of each knowledge base are
maintained: the global, local and private level copies. Initially, the global level copy is
manipulated by the Tester program. |

Used to (plurge a printname from the dictionary. The user is prompted for that
name.

The x command deletes a node that has no attributes. If the node has some attributes

hung under it this command will fail (the d command should be used first to delete ail
attributes).

Retrieves and dispiays a line of text from a textnode.
This cornmand will retrieve and display all the lines of text in a text node.

This command will store a line of text under a textnode. The user is prompred for
that line of text.

Network Traversing Commands

The group of commands that follow have been added in order to simplify the process

of descending into a knowledge base network. In particular, they allow the user to look at
parts of the network without having to enter a series of {mjark commands followed by {(gjet

91

attribute commands to descend into the network.

s
sa:

stz

This command gets the first tuple in the network. The user is prompted for its
printname and it becomes the current tuple.

Prints all of the attributes under the eurrent tuple.

This command is followed by a space and then an integer. [t prints the n—-th attribute
under the current tuple.

This command is followed by a space and then an integer. It descends to that node in
the current tuple as specified by the integer.

This command ascends one level.
‘This command will add an attribute under the current descent level.

This command is nsed to transfer the current tuple as seen by the “s’ commands inte
the current tuple as seen by the “d’’ command. It is useful for deleting tuples.

Module Testing Commands

The commands below are used to test the rule evaluator and the rule paraphraser. All

of these operations affect the node in slot 1 of the current tuple. This node in most cases
corresponds to the printname of a rule.

ALY

igs

Initializes the rule evaluator. This command must be issued before attempting to
evaluate or interpret a rule.

Used to put a vaiue/confidence pair under a rule. Before attempting to evaluate or
interpret a rule, the variables involved in the left-hand side of that rule should have
values. These values can be inserted by using this command.

This will get the value/confidence pair under a node {if it exists). For example, the

user may want to see if a value/confidence pair was placed under the rule’s right-hand
side after interpreting that rule.

This command will evailnate the current node (usually a rule}.

This command will interpret the current node.

" Used to initialize the rule paraphraser. Must be issued before attempting a jt

cominand.

Used to paraphrase the current node.

10.2. The Special Functions Module

The Special Functions Module (aka the -TRAP Module) provides facilities for invoking
binary coded procedures and functions from rules in an ADVISE network. The rule evaluator
uses the TRAP module to evaluate TRAP functions that are in the rules. A TRAP function
has the form:

92

TRAP{trap-number,p1,p2,...,pn)

Where...
trap-number is a unique integer identifying the function, and

p1,p2s...,pn are the parameters to the trap function.

TRAP functions are typically used as in the rule below.

IMOTH_COUNT <> *UNKOWN?*| ::> [EGGS = TRAP(6,MOTH_COUNT) TRAP(99)

This rules says that if the moth count is known, first call trap function 8 with MOTH_COUNT
as a parameter, then execute trap function 7 with no parameters. Trap function 6 is an actual
trap function used by PLANT/cd (Chapter 12). The function computes the egg population
from a count obtained from moth traps [Troester82aj. Trap function 99 does not presently
exist in ADVISE. It is used as an example here to show that trap functions need not be
included in selectors or return a value. Trap function 99 could simply be a procedure which
outputs results on a terminal.

Execution of trap functions begins in the rule evaluator, which passes the TRAP number
and the parameters (if any) to procedure TRAPFUNC in the TRAP module. Procedure
TRAPFUNC has a case statement in which the TRAP numbers serve as case labels. Upon
branching, several operations are performed. The TRAP parameters are converted from their
network representation to a Pascal representation. Parameters that are nominal are usually
mapped into 2 Pascal scalar variable. Next the semantics are executed. This is usually a call to
a procedure or function. Finally the outgoing parameters are converted from their Pascal
representation to their network representation. These provedures are lexically scoped within
procedure TRAPFUNC, although there are several utility procedures outside. One such

procedure is TRINIT which the backward control scheme code calls to initialize the TRAP
module.

Currently the trap module contains 21 TRAP functions all used in PLANT/cd. These
functions implement the deep model of black cutworm damage (BCW) as developed by Steve
Troester |Troester, 1982a,b,c,d]. These functions are specific to the cutworm problem and are
not likely to be of general use. For a detailed description of the trap functions, the reader is
referred to {Boulanger, 1983].

CHAPTER 11

The PLANT /ds System: Rule Based Inference Control

11.1. Inhroduction

The PLANT/ds consultation program 1s an experimental expert system used to advise
farmers on diseases common to soybeans in Illincis. The program acts as a diagnostician, by
asking the user questions regarding problems observed in the diseased crop and returning a list
of the most likely disease candidates. A general description of the problem domain and an
earlier program can be found in {Chilausky, 1979]. This chapter describes the realization of
PLANT/ds within the environment of the ADVISE knowledge programming system, with
particular emphasis on the control strategy employed. The program and most of this
documentation were prepared by Mark Seyler.

The responsibility of the control scheme is to make the knowledge embedded in the
program available to the nser by conducting a consultation. The search space represented by
the PLANT/ds problem domain is of sufficient size that the control strategy utilizes search
heuristics that attempt to focus the consultation on only that knowledge relevant to the user’s
problem. An approximate reasoning method found useful in this particular domain is selected
(from the several available in the ADVISE system). The control scheme is also responsible for
explaining some aspects of its reasoning process and providing access to the knowledge it
contains. Each of these aapects of control will be discussed in turn.

11.2. The Knowledge Base

Knowledge in the PLANT/ds system is represented as decision rules in the GVL,
formalism 'Michalski and Chilausky, 1980]. There are two types of rules, those that represent

hierarchical relationships among variables (candidate rules) and those that reflect the

relationship between the variables and the SOYBEAN DISEASE goal variable (goal rules). An
example candidate rule is:

[LEAF _SPOTS = ABSENT]
o

[LEAF SPOTS_MARGIN = DOES_NOT_APPLY]

LEAF SPOT _SIZE = DOES_NOT _APPLY]

[n this case, the variable LEAF _SPOTS represents a grosser level of detail than the other two
variables. This use of two levels of detail is one mechanism by which attention can be focused

as early as possible on that class of diseases relevant to the problem at hand. An example goal
rule is:

33

94

B.S[TIME_OF_OCCURRENCE = AUGUST..SEPTEMBER|
[CONDITION__OF_LEAVES = ABNORMAL)
[CONDITION_OF _STEM = NORMAL|
[LEAF MILDEW_GROWTH = ON_UPPER_LEAF jURFACE]

+

0.2[PRECIPITATION < NORMAL]

[TEN[PERATURE = NORMAM
n>
[SOYBEAN_DISEASE = POWDERY_MILDEW]|

There is one rule of this sort for each of the possible diseases (currently 20). All of the variables
in the rule’s left hand side are those deemed relevant to that disease. They are grouped
together and weights assigned to each group (linear module} according to the importance of
that variable to the disease in question. The weights sum to unity and evaluating a rule of this
type can be viewed as accumulating positive evidence that the disease in the rule’s right hand
side i3 present.

There are two sets of goal rules (rule groups): those output by the inductive learning
program AQ-11 [Michalski, 1978] and those compiled by the expert plant pathologist. The
AQ-11 program attempts to find the minimum number of of variables that successfully
discriminate the various classes of soybean disease. These rules are used to reduce very quickly
the number of disease candidates considered by the program. Once the number of candidates is
reduced to 5 or fewer, the expert compiled rules are evaluated and used in the remainder of the
consultation.

11.3. Control Scheme

It was recognized early that knowledge regarding the consistent diagnosis. of soybean
diseases was not complete. For this reason, 3 method of representing and combining
approximate reasoning is employed. Furthermore, confidence in a particular observation may
be prone to error and for this reason the user is asked to select a confidence in his answer.
Details of the evaluation scheme used in PLANT/ds can be found in {Michaiski, 1982b.

Aside from the candidate rules, which are used to reduce the search space, the PLANT /ds
knowledge base is two-leveled. This does not lend itself well to classical chaining {backward or
forward) control strategies that establish intermediate goals. Instead, the problem is one of
selecting among one of many possible terminal goals (soybean disease). The primary
PLANT /ds control loop is outlined in a Pascal-like pseudo code below:

85

repeat

select the most useful variable;

if the value is not known ask the user for it;

find all those rules in which this variable occurs;
{in the left-hand side)

for all of the rules found above do begin
evaluate the rule;
if its value is below the threshold then

eliminate it from consideration;
until all of the variabies have been selected;

The control scheme attempts to minimize the number of questions asked of the user. In
this respect, it acts in much the same fashion as the human expert, who eliminates those aspects
of the problem irrelevant to the task at hand and focuses on what is most relevant. PLANT/ds
uses two mechanisms for focusing attention to the most likely disease candidates. The first is
by the. use of a hierarchical variable structure {the candidate rules). The second is rule
elimination by thresholding. Any time a goal rule falls below a certain threshold {determined
by the knowledge engineer and domain expert) it is eliminated from consideration. The
algorithm for selecting the most useful variable can then be formulated as follows:

select a variable that may satisfy one of the
candidate rules;

if none of these are available then
select a variabie with the maximum utility where utility
is defined as the number of rules in which the variable
OCCUrs;

By defining utility in this fashion, the program will attempt to eliminate as many goal
rules as it can as early as possible. The viability of a rule in the PLANT system is defined as
the degree of truth of its left hand side. This degree of truth cannot be calculated exactly until
all of the variables on the left hand side have a value. However, a best case truth value can be
calculated at any stage by assuming those variables that do not currently have a value are
satisfied. If a rule’s best case truth value falls below the threshold, the rule can also be
eliminated from consideration. By eliminating goal rules, any variables they involve can be
aliminated. thereby reducing the number of potential questions. In experiments done to date, of
a possible 40 questions possible only about 15-20 are asked by the program.

Another aspect of control embodied in PLANT /ds is that of allowing the user access to its
knowledge and some aspects of its reasoning. This aspect of transparency is highly desirable in
expert systems both because it increases user acceptance and can be used as a tool for testing
new knowledge bases. During the variable value request portion of the program a number of
options are made available to the user:

396

{e) Provides assistance in clarifying the question being asked.
(v) Lists those diseases still being considered and their best case confidence.

(w) This option displays the change that would occur in the confidence in each disease for
each possible response. ;

(r) Displays those rules in which the current variable is found.
(b) Allows the nser to return to the previous question.

(m) Allows the user to modify his answer to the current question.

After the program has displayed its conclusions, the user can make further inquiries of the
knowledge base:

a Program execution statistics can be examined.
s Any rule in the knowledge base can be displayed.

® For any goal rule, a list of those selectors that failed can be displayed. This can be used
to determine why a particular disease was ruled out or how the confidence in the most
likely disease might be improved.

[n addition to the capabilities mentioned above, the control scheme can be reconfigured
prior to entering its consultation phase. The user can elect to use only the machine generated
or expert rule groups. The breadth of the search can be adjusted by choosing to gather packets
of information before evaluating. These packets represent groups of variables whose values are
asked of the user prior to evalnating any rules. The thresholds used for rule elimination can be
set as a means of balancing the performance of a particular rule set. A final option allows the
user to select a novice or experienced mode of consultation. In the novice mode, additional help
and guidance is given throughout io consultation as 2 means of training new users in its
function and operation.,

11.4. Using the PLANT Program

The PLANT program resides on the VAX-11/780 at the University if [llinocis, Urbana-
Champaign. [t represents one of the earliest experiments in expert systems to be developed
within the ADVISE environment and is still undergoing improvement. In parallel, the PLANT
program was heing downloaded* onto a small computer (the IBM PC). A sister system TURF

was subsequently developed by Greg Smith, and later Bob Reinke and Jiarong Hong readapted
this for the Unix environment for rapid compiled execution.

| The PLANT program can be executed on the VAX by typing SADVISE/kblib/plant.
It generates diagnostic and performance messages which can be examined after the session in a
file called msg. The program can be configured to run on a particular terminal by re-loading
the program with the appropriate device driver or loading the "gkuniversal” and "gktermcap”
routines developed to support UNIX termcap conventions {in which case the shell TERM
variable should be properly initialized).

11.4.1. Data Structures

The architecture of the Pascal modules is such that each should remain active
throughout the life of program execution. This means that a static memory area is set aside
for each module. In the case of the control scheme modules, such as PLANT/ds, this area
contains a number of useful data structures pertinent to the regulation of rules and

variables. This section elucidates the various elements to the PLANT /ds control scheme
static area as defined in "csconst.h”.

g7

The following constants are defined in the static area:

esc

bs
sp
gqm
&

Q

ascii escape character (note: UNTX cbreak/raw mode required to detect this),
ascii backspace character,

the space or blank character, also available as the constant "blnk"

the character "?",

the ascii character "e",

" _ "

the ascii character "o,

maxnumvars the maximum number of variables = 500, simply to set array dimensions,

maxnumrules maximum number of rules = 1000, also determines array size,

mnblocklen

refers to the total number of blocks
(rule groups + var defns + function defns) = 14.

The following types are declared:

byte
intype
foldtype

updatetype
pktypes

rwtype

a single byte quantity,
a half byte quantity,

for possible options (min,prod,aver,full) of folding together truth value
weights, [noprotect is delete old valcons, protect is save them)

for specifying what to do with old value/confidence pairs of variabies,
noprotect ia delete old valcons, protect is save them,

specifies question packet options (pkone == one at a time, pkall = all at one,
pkhalf = more important half of the guestions first),

form generation options = {readin,writeout).

All the information stored in the static area is kept within a record of type cssitatic.
Within this record the following fields are declared:

error

answers
goodrules

frmenbi

hackflg

fastexit

iplig
earlyexit

exitmsg

main error indicator, there is an extensive errortype declared to indicate
which of multiple errors have occurred

array of variables’ state values,
list of the curreatly viable rules,

a boolean array indicating whether or not a predefined frame (screen
image} is enabled or not [to be asked); certain frames or forms are

preconstructed, but exactly which ones should be filled in are a function of
the state of the consultation

whether or not the current state is go backwards, i.e., the option to go back
to a previous state has been requested,

whether or not to immediately exit consultation,

whether or not to reinitialize the session, i.e. completely reset system and
start over

boolean flag, whether or not a premature exit is being taken, not exactly
the same as immediate exit,

what to print out 23 we exit session,

I'g
viablegoals
expert
machine
stop
escexit

changed

unpropagable

currform

maxform

lastform
sern8in

scrnoutl
scrnfil
scrrout2
startslot
trerr
dummy
debug
evalenable
thresh
erthresh
mrthresh
usemachine
useexpert
firsttime
level
backup
paraf
noopen
dspname
memavail
elapsedtime

jobtime

98

pointer to current rule group,

current # of viable goals,

intnamerec of expert rulegroup,

intnamerec of machine rulegroup,

number of viable goals to stop with,

boolean condition which indicates ESC exit of form,

boolean array of variables, indicates if a variable value was
changed/updated,

boolean array of variables, indicates if a variable can not propagate
number indicating the current form in the consultation,

number indicating the maximum form number, including dynamically
constructed forms at a particular point in the consulation

number indicating the form asked in the consultation, not the same as
currform-1, and useful to the "back” operation

file pointer to the scrn8in file, which is used to dynamically construct new
forms beyond the static forms, '

file pointer for a work fle, used in dynamic form construction
file pointer for a work file, used in dynamic form construction
file pointer for a work file, used in dynamic form construction
csget—getattribute startslot, cstools global

trap function error-unused here, cstools global

dummy intnamerec parameter to cstools

boolean flag indicates whether to spit out debug messages,
boolean flag (true = turn on evaluator)

machine/expert rules confidence threshold, optional to erthresh/mrthresh
expert rules confidence threshold

machine rules confidence threshold,

boolean flag, if true use machine ruies,

boolean flag, if true use expert rules,

used to convey lst variable in consuitation,

indicates one of 3 network levels: global, local, private,

text file pointer to backup file to be read/written.

text file pointer to paraphraser scratch file,

boolean flag tells if any nodes open,

boolean fags, if true dump printname else dump preperty,

no longer used,

time since last call to plreport,

total elapsed jobtime,

99

walltime wallelock time at start of program,

wayback boolean flag (if true back to beginning of a rulegroup),
waywayhack boolean flag (if true back from expert to machine rules),
approxeval boolean flag (if true enable approximate evaluation },

packetoption option as to number of questions to ask before sending a question, can be
one, half, all,

newuser if true, then is new user,
olduser if true, then is old user,
confirmed boolean flag, tells whether hypothesis is confirmed,
nqueries number of questions asked
xintnamerec a spare pointer, for development work,
vars a record with the following elements:
list — an array of records, one for each variable, giving following
id - the variable internal "intnamerec” reference
asked — boolean flag, if true variable was asked of user

propagated— 0 == unpropagated, 1l.n = when propagated

tells whether all consequences of a variable

value have been spread {number indicates which

frame actually solicited the variable value)

candidate— boolean flag, true = candidate for this rg

freq — integer indicating lhs frequency of variable
nvars — integer indicating length of variables list
npropagated ~ integer indicating # of variables propagated

rules a record with the following elements:
list — array of records, one for each relevant rule with following
name — the rule designation as an intnamerec
viable — boolean flag, if true rule still viable *)
nrules — integer giving length of rules list

erules a record with rules to be evaluaied after variable query with the following
elements:
list — tuple having intnamerecs of relevant rules
cp — whether to use printname or bilanks in printing
nrules — number of rules in list

goal status of goal node record, contains following ifems

id — intnamerec representation of goal variable

val — array records pertaining specific goal variable values
id — intnamerec representation of value
conf — real number specifying confidence of value
viable — boolean fag indicating whether value is viable

nvals — integer number of goal variable values

nviable - total number of viable goals

imkzzrzz network is accessed by determining the internal names of the mark types
of form imkzzrzz; allows convenient access to the tuples used by the
control schema; procedure plinit (section 11.4.3) determines the internal

names of the necessary mark types as part of the control schema
initialization by looking them up in the dictionary,

iesTzTIT

100

similar to imkzzzzz, but more control scheme use than general use

11.4.2. Control Scheme Tools Package

The code in "cstools.h” was felt to be of general utility to both PLANT/cd and
PLANT/ds in writing control schemes. A brief description of each procedure follows. Note
that each routine takes a pointer to a csstatic area as its initial argument.

csherror

cseqprname
¢sgetpname

csput

csmakename
csgetreal
csputreal
csginteger
csputinteger
csrealp
csintegerp

csopen

This procedure is used to handie error conditions. Given an errortype and
msgstr, it displays the error to the user and puts a dump in the message

file.

Given 2 nodes, this function returns true if the printnames of the two
nodes are equal.

This procedure gets the printname of 2 node. notice that it uses dynamic
dimensions for the array that is holding the print name.

Given a tuple and tuplelength, this procedure puts it in the network,
however first checks to see if there is a tuple with the same left context up
to a specified tuplelength {possibly of shorter length than the whole tuple).
If there is one it deletes it, then adds tuple. Thus, this procedure can also
replace.

This procedure make a node with a print name in the dictionary if it is not
there already.

This converts the network representation of a real number to the Pascal
representation.

This procedure puts the Pascal representation of a real number into
network form.

This converts the network representation of a integer number to the Pascal
representation.

This procedure puts the Pascal representation of a integer number into
network form.

This function is used to check to see if the node represents a real value,
generating real value if it is.

This function returns true if testnode represents an integer, generating
integer value if it is.

This procedure is used to open nodes under a restricted protocall. This is
meant tc be used to mark the fact that a node should not go away through
several closely placed (in time) calls to tuple manager routines that use the
node. This assumes that 2 use counter is now implemented for nodes. One
further note: most of the routines in cstocls are node—open—or-close~status
preserving if a use counter is implemented. Thus to keep the use count
above 1 to state that a node will be around for a while, then do a csopen
on the node at the beginning of transactions on the node, then do a csclose
at the end of the transactions. This procedure and its companion are here
for efficiency reasons.

csclose

eshasprop

csputvalcon

csgetvalcon

csdumptext
csgetint

esrevaluate

cspresults

csgetlabdata
csget

esstrengthtofire

csrinterpret

101

This is the companion routine to csopen. It decrements open count.

This boolean function is used to check on the existence of a property
(intnamerec) under a node.

This procedure is used to store value {intnamerec), confidence {intnamerec)
pairs under the variable, vari (intnamerec). It calls in turn the system wide
procedure to do this. Assumes updatetype = { protect,noprotect), i.e.,
how to handle previous values, is defined on top of this procedure.

This procedure is used to get the tuple "duples” containing
value/confidence pairs under a node. The returned tuple has its lst elt the
"node” intnamerec, its 2nd elt the "mkvalcon” intnamerec, and the
following elts will be the value/confidence pairs. The boolean argument
"novals” indicates whether no value/confidence pairs were found.

This is used to dump the text of a property under a node out to a textfile
(to be later displayed on the screen).

Given a marktype, this procedure returns its internal name by looking in
the dictionary. If it isn’t in the dictionary, a new node is created,

Given a rule (intnamerec) to evaluate, this routine sends the necessary
information to the evaluator and returns the rules truthvalue and a
boclean flag indicating whether evaluation completed {e.g., whether all
necessary variable values were present). If the rule lhs has been completely
evaluated, complete is set to true.

Prints to a file the confidence values of a variable which is assumed to be a
goal variable. If no values are viable, a boolean flag is set.

This procedure is used to get a list of labdata variables for the ruleset

(intnamerec). The tuple of labdata variables are asked for at the beginning
of trying a rule group. '

Gets an attribute tuple under main node ¢l by matching context {cl ¢2 c3

" ¢d4). note that level is global to this and other procedures in this utility

package. Accnotfound flag specifies whether to error out if not found.

Given a confidence from the evaluator, this routine calculates the strength
to fire the rhs from alpha. Four schemes for folding the confidence with
alpha are available : -

1) min (minimum of confidence and alpha) {default)

2) product {confidence * alpha)

3) average ((confidence + alpha) / 2.0)

4) full (alpha).

Given a rule(intnamerec), its truthvalue and foldscheme. this routine
invokes the interpreter with the necessary information after caiculating its
strength to fire. |

11.4.3. PLANT /ds Tools Package

The PLANT/ds system was originally encoded simply in terms of the appropriate
"cstools” comstructs and a set of procedures and functions. Subsequently, these were modified -
to be of more general value in generating "PLANT/ds-like” systems. This package is
referred to as "pltools” and is summarized here.

plgetstr
pldumptext
plemptyvar

plrankresults
pldispname

plreport

plputbanner

pipagel
pusers

plpage2

plresdump
plgrabresults

plresults

plputdomain

plparaf

plreqrule

plrelrules

plstatusofgoal

plagoalrule

plisgoalviable

plgetrhsval

plrulesdump

102

Gets a msgstr from file or terminal and determine length as integer value.
Dumps property under node to standard output.
Clears avar (intnamerec) of all its valcons.

Sorts and prints results (i.e., goal variable value/confidence pairs) in
descending order according to confidence.

Puts inames (intnamerec) printname in iofile and returns its integer
length. .

Reports msgstr on some current job statistics.

Puts advise banner on screen.
Displays a PLANT /ds specific introductory panel on screen.

Asks the user his name to check if he is a privileged user, checking against
the names file for number of times he has previously used the system
(>517). Update in nnames by incrementing his entry there.

If a privileged user, various options can be set as to the control scheme.
This is meant to follow a check for privileged users (pusers).

Dump to msg the results data structure along with note msgstr.

Assumes rule (intnamerec) has fired; looks under the goal node for results
of firing and stores the results.

Print results of plant consultation. Print indicated diseases {within .2 of

max confidence and > erthresh). Also print contra-indicated diseases
(diseases ruled out),

Qutputs the variable name, its domain and provides selection of items for
each domain element. Also returns the domain tuple and its length:
for integer-domain{l] - start of domain, domain{2| - end of domain
domlength ~ negative of # of values in domain
for real-domain(1] - start of domain, domain{2| - end of dormain
domlength - 0 *)

Paraphrases item (intnamerec) which is a rule or rule subexpression and

places text on the screen. It handles paging through text which is too big
to fit on one screen.

Prompts the user for a rule option request, i.e., asks user which rule he
wants to see, then calls plpara/.

Prepares display of all rules relevant to a variable (intnamerec).

Copies all viable rules in the goal record onto a screen frame. If boolean
fag pviable = true then prints viable goals, otherwise prints non-viable
goals.

Returns true if rule {inthamerec) has a rhs which contains a goal.

Check whether goal value of rule (intnamerec) is amongst the viakle
candidates.

Given a rule (intnamerec} and the goal variable (intnamerec) gets the
internal name of the refereace in the first selector of its rhs. If the selector
found is not a goal selector plgetrhsval returns false.

Dump to msg file the rules data structure, along with note msgstr.

plerulesdump
nlgetvars
plcandidates
plgetrules
plisruleviable
plruieviable

plgoalviable

pivarenknown

plvarselect

103

Dump to msg file the erules data structure, along with note msgstr.

Gets a lhs variable list for a rulegroup designated by rg in the control

scheme static areza and copies the information into the vars data
structure.

Marks as candidates for network propagation every variable in vars that
occurs in the rulegroup’s lhs.

Loads the rules data structure with the rules in the current group (rg) and
initializes that data structure.

Returns plisruleviable = true if the rule {intnamerec) passed is currently
viable.

Marks the rule {intnamerec) as no longer viable: if settrue = true then
rule set to viable else rule set to not viable,

Marks the goal value sought by specified rule (intnamerec} as no longer
viable: if settrue == true then goal is set to viable else goal is set to not
viable.

Returns true if their are no values under variable evar (intnamerec) or its
value is unknown.

Select a variable aver (intnamerec) that has yet to be propagated through
the network. Use precedence:

1) select var whose value is known but not yet

propagated(a rhs non-goal variable),

2) select the first biased variable encountered,

3) select the variable with the max lhs frequency. If avar has no value,
askforit is set to true, If all the variables have been propagated, found is

set to false. /oc returns a pointer in the var vector to the variable
selected.

plmarkpropagated The propagated flag of avar (intnamerec) is set to mark.

plelearerules

pimatchrales

piselectrule

pibuildfreq.

pismstats

pismfailed
pifaijed
plsumm

plinit
pigoalinit

Clear the erules data structure.

Finds all the rules in rulegroup rg that have aver in their lhs’s and places
them in the erules data structure. It will only insert those rules that are
not aiready there.

Select next rule from erules data structure. If none is available, found is
set to false.

For each candidate, un—-propagated variable in the vars record sets its

frequency field tc an integer value corresponding to the number of viable
rules’ ths’s in which it occars.

Dispiay some job statistics.

Given a rule node and the location of its corresponding location in the
goals list, displays all failed selectors.

Prompts the user for the goal rule he wishes to examine, then calls
plsmiailed to display it.

Dispiays program summary information.
Initializes system, reading in backup file backupfn.
Initializes the goal structure.

plexprep
pihypelim

plgetdomain

plwhy

plvarsdump

plevalall

pleloseout

104

Prepare expert rules for use.

Displays a frame listing all eliminated hypotheses since the last call. Also
provides several user options similar to plgetdomain.

Given a variable varcurrent, retrieves a value and confidence pair for it

from the user. If back is true the user requested going back to a previous
question.

User option that looks at all the possible answers to the current question
and reports to the user how they would effect the status of the goal.

Dump to msg file the vars data values.

Evaluate all the rules in the rules list using the threshold thresk regardless
of current viability.

Perform various closing tasks.

CHAPTER 12

The PLANT /cd System: Rule Based Inference Control

12.1. Introduction

This chapter describes the backward chaining control scheme used with the PLANT 'cd
knowledge base. The program was written by Albert Boulanger.

12.2. User Description

The PLANT /cd control scheme was patterned after the EMYCIN [vanMelle, 1979! view
of control. In addition to this basic control, PLANT/cd features antecedent rules {limited
forward chaining), "labdata” variables (variables that are marked to be asked before any other
variable), and multiple goals for a rule group.

This control scheme makes use of properties. Properties are pieces of text a rule or
variable can possess. These are very much like LISP properties; i.e. they have a type and
contents. {See description of the parser.) The control scheme uses the PROMPT property of a
variable to ask for the value. The TRANS property of a variable is used to display the valueis)
of the variable. This property is a better description of the variable than the variabie’'s name,

ANTECEDENT rules allow for limited forward chaining in a backward chaining
mechanism. Whenever a variable is asked for, or it is updated by the execution of a RHS (right
hand side), all ANTECEDENT rules that refer to that variable on their LHS (left hand side)
are tried.

GOAL variables are variables whose value/confidence pairs are displayed to the user at
the end of a session. They usually represent the entities that the user seeks advice on. This
present PLANT /cd control scheme allows for more than one GOAL variable.

LABDATA variables are variables that are used often and usually represent basic
information. LABDATA variables are sought out (either by asking or inferring) before GODAL
variables. Unlike EMYCIN, in which such variables were always asked, PLANT 'cd allows
these variables to be inferred.

12.3. Control Scheme Details

The most important parts of the backward chaining control scheme, a program calied
BWARD, are iillustrated in low chart form in Figures 36, 37 and 38. The cailed procedures are
in capital letters in these figures. The procedure names are idealized a bit since the actual
names start with the module 2-letter prefix BC to distinguish them from other ADVISE
modules. Also many of the low level procedures are in a set of urility procedures. called
CSTOOLS (see Control Scheme Toola Package in previous chapter, that is shared between
PLANT /cd and PLANT /ds. These procedures are prefixed with CS.

The top level [Figure 38) contains a loop that enables multiple consultations to be
performed within one session. The items that need to be initialized once across several
consultations are initialized in procedure START. The initialization that is needed before each

105

106

TOP lavel
T START o ————

BB Pt PR

imitial ine ingerral
Faman

lmtialize athee

aki (e ™Uid e
try piswie snteocoasnt

PRIMICCNCLLSIONE an
saen goal

Figure 38: Flowchart depicting the top-level structure of PLANT /cd.

consultation is performed in procedure LOOPSTART. In LOOPSTART, the rule group (the
knowledge base) name is requested, the GOAL variables for this rule group placed on a list, a-
list of ANTECEDENT rules obtained, a list of "simple” ANTECEDENT rules obtained, and
the list of LABDATA variables retrieved from the network. The simple ANTECEDENT rules
are next tried. Finally, values for each of the LABDATA variables are searched for using the:
FINDOUT procedure described below.

After this initialization, each of the GOAL variables is assighed a value using the
FINDOUT procedure. This is the main part of the consultation. After the GOAL variable
values are obtained, they are printed with their confidences using procedure
PRINTCONCLUSIONS. The consuitation is ended by cleaning up for a new consultation and
calling LOOPSTART again.

The FINDOUT procedure (Figure 37) is responsible for finding the value of a variable:
either by asking for it, or by using rules to infer it, or both. It frst uses the ASKFIRST
function to check if the current variable has the ASKFIRST property.

If it does have the ASKFIRST property, then procedure ASKFORIT is cailed to get the
value from the user. After obtaining the value from the user, procedure CHKANTE is called to
evaluate and possibly fire any ANTECEDENT rules that has the variable in their LHS. The
SHOULDINFER function is then called to see if the variable also needs to be inferred.

The decision to infer a value involves several considerations. In the most general case,
there is the value/confidence pair requested from the user and there is the value/confidence pair
inferred from the rules. The process of resolving any differences in these value/confidence pairs

107

FIMNDOUT procedure

s b, P
arat?

1w On
anh for

La VL |)

Pt RN
valus {feor
Ll 1al 11]

Figure 37: Flowchart depicting the FINDQUT procedure.

will be called voting. There is a scaler PASCAL variable, VOTESCHEME, that indicates the
voting method. The method used in this control scheme is to replace the current
value/confidence with the more current one. In the general case, the decision to infer after
asking for the variable is a function of the voting scheme used. In the case of this control
-scheme, the variable is inferred after asking for it if the current value/confidences are below

SATISFYTHRESHOLD.

- If the current variable should not be asked first, then the variable is first inferred. The
SHOULDASK function is called to see il ASKFORIT needs to be called. To be asked, the
variable -has to have 2 PROMPT property. Also, the maximum certainty has to be less than
SATISFYTHRESHOLD. U the variable should be asked, then ASKFORIT as well as
CHKANTE is cailed. If the variable should not be asked and the maximum certainty is below
the FAILTHRESHOLD, then the value UNKINOWN is assigned.

The INFER procedure (Figure 38) uses the rules to determine the value of a variable.
INFER frst gets the list of rules whose RHS update the current variable. This is done by
procedure GETRULES. Next, RANKRULES is called to rank this list. This procedure is
currently empty. At this point, a loop is set up to try the rules in the above list.
SHOULDCONTINUE is calied to check if the maximum certainty of the value/confidences for
the current variable is above SATISFYTHRESHOLD. This is one terminating condition for the
loop; the other is when all rules have been tried.

Inside the loop, the list of variables used in the LHS of the current rule is obtained by
cailing GETVARLIST. This list is ranked in procedure RANKVARS. A simple rule is one that

108

LECTALES
gue lLint of
rulas that Seuid

WL 1L NS INFER procadure
“M_

rama the riias

- v
YES o
. P EVELLARTE | FIrOoT shask anta.
briad y T s
Ll Tk BRI

Figure 38: Flowchart depicting the INFER procedure.

does not use any variables in its LHS. There is a check after getiing the list of variables for the
current ruie whether the rule is a simple rule. If it is, then the LHS is evaluated and the rule is
checked to.see if it fired. For rules that are not simple, then another loop is set up to use the
'FINDQUT procedure on each of the variables in the LHS variable list. For each variable value
determined, the LHS is reevaluated to see if the certainty of the LHS (fails below
FAILTHRESHOLD. If it does, the loop is terminated, and the rule will not fire. The other
terminating condition for the loop is having run out of variables. Upon exiting the loop, the
rale is checked to see if it Bred, using the function FIRED. If the certainty of the LHS is
greater than FIRETHRESHOLD, then DORHS is called to execute the RHS. Since executing the
HHS may update variables, CHECKANTE is also called on all the variables that are updated in
the RHS of the current rule.

12.4. Future Research Goals

There are a number of improvements that might augment the power of the present
version of the control scheme:

. Self referencing rules.
® EMYCIN-style contexts and between-context reference.

e Variable blocks. These are groups of variables that can be requested in a group. This
could be done by setting up an empty table for the user to fll in, as in EMYCIN, or by

multiple display module blocks on the same screen.
Consultation transcript stored in a file.

The ability to save and reload prior consultations.

109

CHAPTER 13

The BABY System: Context Driven Data Annotation

13.1. Introduction

This chapter describes BABY, an expert system to aid clinicians who manage patients in a
Newborn Intensive Care Unit {NICU). BABY was developed and partiaily implemented by
Lance E. Rodewald. Throughout this chapter, ‘user’ refers to a clinician using BABY as a
monitoring aid; ‘expert’ refers to a person designing the medical knowledge base; and
‘programnmer’ refers to a writer of expert system software.

Overview of the Clinical Environment. BABY’'s task is to find c¢linically important
patterns in the medical and demographic data about NICU patients. It is targeted specifically
on the NICU for two reasons—there is a need for a system like BABY, and the chance for
success is good due to peculiarities of neonatology. There are few areas in medicine where the
amount of data, especially numeric data, is as great as in 2 NICU, The volume of information
to be comprehended can be great enough to overwhelm the clinician, and much data is either
within normal limits or changing slowly, creating the potential for a decreased index of
suspicion of new findings. In contrast with adult medicine, the relative importance of the
monitoring data to physical exam findings is greater because the babies often do not
demonstrate obvious physical signs with serious disease. The vast majority of data can be
made available on-line for a computer system [Frayer, 1980|[La Gamma, 1980|. Machines
already monitor many physiologic parameters and have been used for extraction of significant
events from the stream of signals coming from monitoring equipment Freedman, 19790
Additionally, the past medical history of a newborn is much more concise than that of an aduls.
Because the number of diseases is limited, the amount of medical knowledge needed for
interpretation of findings is reduced.

Overview of System Function The design philosophy behind BABY is that the system
should metaphorically act as a neonatologist observing all on-line data in the nursery, keeping
track of the clinical states of the patients, suggesting further evaluation for important findings.
and answering questions about the patients. This places BABY in the relatively benign roie of
the observer, who answers questions, rather than that of the attending physician, who asks the
questions.

BABY, although it nses a knowledge base, differs significantly from other medical expert
systerns in that mandatory human interaction is de~emphasized. This departure {from the norm
is done for two reasons. Most important, it was feit that the expert svstem. to have a good
chance for success, should integrate itself into the daily routine instead of forcing a change in
this routine. The second reason is that there are many inferences to be made from the
automatically collected data that are either not artempted, or not done well. by current
laboratory computer systems. [n other words, there is an environmental niche for an expert
system in the NICU to intelligently annotate the incoming data.

The role of BABY forces several requirements on the expert system structure. Firss, the
man-machine dialogue must be primarily initiated by the user. This, in turn, requires that the
the workings and current state of the machine be made as transparent as possible by the user
interface. In particular, the system’s current impression of the patient must be explicit and
accessible, as should the means for inferring that assessment—the lab values and knowiedge

110

111

structures.

The automatic nature of the non-user input means that the system must be able to
interpret information not specifically requested. To do this accurately the machine must assess
the data in the context of global knowledge about the patient. A computer representation of
the patient’s state which is capable of conditioning the input interpretation is therefore needed.
BABY represents clinical states as prototypic data patterns that are matched against current
information in the patient’s database. Embedded in these patterns is information indicating
the clinical context required for an appropriate match so that interpretation will not be
attempted with a pattern that is out of context.

Having BABY suggest further work-up to clarify problems identified in the automatic
data implies that the system be able to identify the tests most likely to supply valuable
information. Ideally, this ability should be derived from the machine’s assessment of the
patient’s condition in order to use global knowledge for test selection. Pattern prototypes that
can match partial or incomplete data and signal to the user the missing information provide
BABY’s soluzion to the problem.

Overview of System Structure. There were two guiding forces in the BABY design.
Most important, the system was designed from the user interface inward to maintain the
desired type of man-machine interaction. Second, it was integrated into the ADVISE system in
order to use the knowledge engineering tools developed at the University of Illinois.

The previously mentioned metaphor for the system poses a number of engineering
problems. A knowledge representation must allow data-driven interpretation; the control
scheme has to be semi-autonomous; and the representation of the patient state must be made
available to the user interface operators. The resulting BABY structure is shown in Figure 39.
The patient state and user interface are central to the system since the other modules interact
through them. The ADVISE system provides the software environment for both system
development and operation.

BABY needs to interface with at least the hospital information system to obtain the lab
values and demographic information. In addition, if monitoring input is to be used, the stream
of raw data must be preprocessed to extract significant events. In other words, BABY is not a
machine for data storage or signal enhancement; the existence of that capability is assumed.
Rather, BABY is a knowledgeable interface between clinician and NICU computers that makes
sense of the patient’s data by putting it into a cliniczl context.

13.2. Clinical Perspective

As an aid to the neonatologist, BABY aims to help with the tedious tasks rather than
those in which. the clinician has the most individualistic approach and takes the most pride.
Therefore, it was felt that BABY should intelligently follow the data about the patients and not
concentrate on the differential diagnosis.

13.2.1. Role of BABY in Diagnosis

In their description of clinical problem solving, Eddy and Clanton identify four main
tasks [Eddy, 1982]. They are: selection of a pivot, generation of a cause list, selection of a
diagnosis, and validation of the selection. A pivot is a pathophysiclogic state around which
a differential diagnosis can be developed. BABY concentrates on the first task—it is strictiy

concerned with fnding pivots in the data. Selection, pruning, and validation are left to the
clinician.

Sidestepping the medical diagnostic process has at least two advantages. Most
important, false positives become acceptable because the burden of diagnostic proof remains
on the physician. Having BABY provide only pivots also has the advantage of simplifying
system architecture and knowledge base construction. The complexity and size of

112

HOSPITARL HowmtTog M2sToR How Ty
INFIRM AT 1o/
SYsTéEn Z 3 n
. F Y
INFERENMCF
ENEIvE
a8
- =4
f—
= | kneweEose
= 1 883
h —
—_
HEIS

USER INTERFACE

Figure 39: System Structure of BABY

CADUCEUS’s knowledge base {Pople, 1982] testifies to the difficulty of computer differential
diagnosis [Pople, 1982],

 13.2.2. Clinical Patterns
There are three pattern types that need to be distinguished:

113

s patterns annotating a single variable,
& patterns composed of more than one variable or subpattern, and
. patterns that assign risk value. The risk assessment pattern is a special case of

patterns composed of other patterns, but its clinical usage is quite different.

Variable Annotation Patterns. Given a laboratory value or significant event from
monitor output and the clinical state of the patient, an expert system should be able to
decide if the value is low, normal, or high. Determination of the reference range for a single
variable depends on demographic and pathophysiologic parameters of the patient. These
parameters, embodied in the patient state, drive the variable annotation. For example, the
relation of the serum sodium level to an appropriate normal reference range depends on the
state of renal maturation, which itself depends on the age and length of gestation.

In order for a system to be accurate in its annotation, global interpretation of the
variables is needed. In contrast, most computer systems that indicate a lab value’s location
in a reference range use a single range for all patients, regardless of other values known
about the patient. Often the lab systems do not have demographic and clinical information
with which to make inferences, and without a large amount of patient information any
attempt at accurate annotation is bound te fall short. Neonatologists notice this problem
often because adult normal values differ so markedly from newborn normal values. Aflter
some experience with inaccurate annotation, the clinicians tend to look only at the values
while ignoring the computer’s assessment of those values.

Global interpretation puts a large demand on the accuracy of the machine version of
the patient’s clinical state. If annotation could be done well, there would be much value to
it. However, the problems of representing clinical information in machinable form is quite
dificult. BABY approaches the problem of global interpretation by having appropriate
pathophysiclogic states condition the interpretation of incoming data. The portion of the
knowledge base to use in annotating the data depends on the state of the patient.

Combination Patterns. Different lab values or monitoring events that must occur
together to signify a finding comprise patterns of the second type. These groupings of data
usually indicate pathophysiologic phenomenon in the patient. An example is the finding of
metabolic . acidosis, which itself depends on more primitive patterns such as acidosis,
hypocapnia or normocapnia, and hypocarbia. The distinction between data annotation
paiterns and combination patterns is that one should always be able to arnotate a variable,
while the presence of the latter type of pattern is less predictable. The combination
patterns to expect depends on the clinical situation.

isk Assessment Patterns., While the above combination patterns represent
pathophysiologic states, another type of combination patiern couid be used to assign a
degree of risk for the occurrence of an event or complication of therapy. Although they do
not strictly represent pathology, it is desirable to identify these patterns if they are evident
in the automatically collected data., As an example, consider a data pattern that tries to
oredict the risk of an iatrogenic pneumothorax in a ventilator-dependent patient. Such a
pattern would need data about the respirator pressures and rate, the patient’s disease, his
age, a measure of the lung compliance and its trend of change, the breathing pattern
(fighting the ventilator?), and a history of prior pneumothoraces. A monitoring system that
could accurately assess the risk in different patients might be able to prevent this
catastrophic occurrence by raising the clinician’s index of suspicion. This particular pattern
probably could be built and tested in the clinical setting.

114

18.3. Clinical Context and Patient State

The clinical context within which the data is gathered presents a problem. Few values
can be interpreted in isolation of other findings or parameter measures. Consider the value of
the variable AGE. The actual age of the patient is really a statistic used to help assess the
parameter of physiologic maturity of the patient. In a baby, knowledge of age is not enough
since the length of gestation is also needed tc determine the degree of physiologic maturity.
Therefore, a system to analyze lab data containing variables whose reference range varies with
renal maturation, for example, should be prepared ito take into account the patient’s
physiclogic age.

Although this seems straightforward enough, the problem becomes less clear when one
considers how the normal reference range is defined and used. The interpretation can vary
from a Gaussian distribution of lab values to an aesthetic ideal of the most perfect value for an
individual [Galen, 1980]. In the former interpretation, the range is usually defined as those
values falling within two standard deviations of the mean. While this is the most common
derivation of "normal” and is easy to determine, it often is incorrect in a given clinical setting
because heterogeneity of the target population is accounted for statistically rather than
individually. More precise norms could be defined for smaller populations. This problem is
seen in pediatrics where normal growth and maturation are constantly changing the normal
range. In general, the creation of context—dependent normal ranges is difficult because of
problems in defining the contexts. In BABY the reference ranges are defined by the knowledge
base author, as are the contexts, Ideally, a system should allow clinicians to define their own
contexts in order to tailor the system to meet their own specific needs.

Searching for these three pattern types within the clinical context of a patient is the
primary purpose of BABY. The immune system provides a biclogic anaiogy to the type of
information processing performed by BABY. The animal’s antigenic stimuli become the data,
while the antibodies become the patterns to be matched against that data. Like the antibody
waiting for its antigen, the pattern does nothing until a match is found in the data which then
causes an action to take place. The clinical context of the patient is used to condition the
activity of individual patterns in the set of possible patterns. As with the immune system, and
unlike the nervous system, there is no centralized control for the patterns; it is distributed
among its Individual elements. In practice, of course, BABY has to stmulate this
decentralization because of its implementation on a non-parallel processing machine.

13.4. Knowledge Engineering Environment

13.4.1. Clinical Data

There are three sources of input to BABY: significant events extracted from monitor
equipment output, information avazilable on a hospital information syvstem, and user input
during an interactive session. BABY needs no user input at all: it will make whatever
inferences it can from the antomatically collected data. [f a user wishes to interact with the
machine, more inferences can be made with the additional information he or she supplies.

The data available in the NICU can be classified in two different wavs—aov function,
or by collection method. Functionally, it is either automatically collected. or 1t is requested
to answer a specific question. Distinguished by collection method, data is either obtained
continuously by machine, intermittently by machine, or is observed in the process of a
clinician’s physical assessment. Continuously sampled physiclogic indicators would need to
have significant events extracted from the analog signals.

The significance of this classification is that it delimits the function and strueture of
BABY within the limits of the metaphor describing its purpose. Functionally, the standard

115

input is automatic data, while the standard output is assertions about the patieni along
with new data 1o clarify clinical findings in the data. Structurally, the standard inpus only
excludes physical signs. Often BABY will have to make its inferences within the scope of
the allowable data.

13.4.2. Uncertainty in Medical Data

Certainty of medical data decreases with time; the more time that elapses since a
measure was taken makes the value less reliable. The rate of certainty decline varies
considerably from test to test, and within the same test, depending on the stability of the
natient. To complicate matters further, the loss of certainty, aithough monotonic, can be
non-linear. It is desirable for the knowledge representation to express temporal uncertainty,
but to do it accurately is far from easy.

For a monitoring expert system, the NICU has the advantage that data is refreshed at
frequent intervals. Temporal uncertainty is reduced most by this mechanism, but by using
cornparisons to previous values, uncertainty due to factors intrinsic to the test or coilection
procedure can also be decreased. BABY deals with uncertainty in a probabilistic sense.
That is, certainty (and uncertainty) are explicitly represented as probabilities of truth in an
assertion. Combining different sources of uncertainty into a single probability is done with
a method similar to that used by the PROSPECTOR system [Duda, 1978al.

13.4.3. The Knowledge Base

Two important aspects of a knowledge representation are its notational efficiency and
expressive adequacy {Woods, 1983]. Expressive adequacy is concermed with what the
representation is capable of stating about the world. Notational efficiency has to do with
the ease with which it can be stated. Of the two attributes, expressive adequacy is probably
the most important because it limits the potential of the representation.

The knowledge base often has a single representation format that limits its
expressiveness, but makes inference engine development easier and [acilitates knowledge
base creation and modification. The representation method selected usually allows for some
degree of domain independence. In addition, modularization is strived for in expert system
design so that the component parts can be more easily modified. Therefore, control and
knowledge ought to be developed separately, but in practice it is often difficult to completely
remove eiements of control from the knowledge base. For example, in MYCIN the
antecedent ordering in a rule affects evaluation order in the backward chaining.

As mentioned before, the BABY knowledge representation consists of rules connected
together by a network that guides the control scheme to a limited number of inferences.
BABY has a large element of control in its representation which is expressed with context
nodes-that signal to the inference engine a portion of the knowledge base is usable for
inferences. These context nodes act as keys, indicating that a pattern is potentially relevant
and should be searched for. During knowledge base design the context nodes let the expert
confine his or her reasoning to a smaller problem within the defined context, easing the
creation task somewhat.

i8.5. Baby Impiementation

The current impilementation of BABY consists of two Pascal programs situated within the
ADVISE system on a Vax 11/780 computer at the University of [llinois. One program is a tool
for knowledge base creation and is responsible for translating a text description of the rule
network into a machinable form. The other program uses this machinable representation to
interpret the NICU data and run the user interface.

116

At any point during runtime, BABY is either updating information, waiting for
information, or interacting with a user. While updating information, the knowledge base is
unstable and unavailable for user queries or input. As inferences about the patient are made,
they are scroiled onto the appropriate cutput window where they remain until new information
makes them invalid. Following knowledge updating, the variables most likely to influence the
patient state are reported and the user has a chance to interact with BABY until new
information is supplied by the laboratory computer or patient monitors. The result is a
mixed-initiative dialogue with the user in control of the questioning phase and the machine
intermittently supplying a summary of its findings.

13.5.1. User Interface

The vser interface attempts to maximize the man-machine communication bandwidth,
while at the same time minimizing the need for a specific communication language. Using
windowing techniques and a pointing device, the number of verbs needed in the interface is
kept to a minimum. Central to the user interface is a bit—~mapped graphics terminal which
commaunicates serially with the ADVISE computer. All non-numerical user input is done
with a mouse pointer acting on pop-up menus.

There are five physical windows in the current implementation that correspond to four
conceptual views of the system and one scratch window for interactive system output. Two
windows deal with output, and two windows deal with variables.

BABY has two types of standard output-—assertions about the patient state and
suggestions for refinement of that state. Assertions are scrolled onto one window and any
user queries concerning the patient state or list of current assertions takes place within this
window. The suggested variables are scrolled onto a second window. If the user wants to
supply any of these variable values, he or she would move the pointer into the window to
select the proper variable. If the variable type is nominal, a pop—up menn with its domain
appears and selection is again made with the mouse. The keyboard would be used only to
supply numeric values.

The third window gives a view into the variables of the hospital lab system, and
wouid. be used as a reguiar interface with the lab. The other window gives a view into the
BABY variables. Here requests can be made to see a variable’s value or domain and values
can.be provided for variables that were not suggested by BABY.

The graphics terminal supports many primitive functions needed to manage windows,
including window creation, clipping, saving contents, context switching, and pointer
management. The programmer uses these procedures in routines which bind data base and
knowledge base information to the windows., For example, 2 menu can be placed in an
ADVISE textnode, which in turn can be executed by a user interface procedure. This
procedure i textnode independent, and the user choice is returned as a small integer to the
calling procedure where binding of the appropriate subroutine to that choice is made.

13.6.2. The Knowledge Representation

A BABY knowledge base provides a representation for a collection of prototypic data
patterns that are to be searched for in the laboratory and monitoring input. Any prototype
that matches an appropriate combination of data elements from the input will be asserted
to the user. Each of these prototypes has a truth value representing how weil the data
substantiates the prototype, so an assertion is made only if the truth value is above the
pattern’s threshoeld.

The pattern prototypes of BABY wait for data to justify them in a bottom-up, data-
driven manner. The pattern prototypes that are active and thus trying to maich data from

117

the input depends on the past history of the data. This is accomplished by having only
patterns present that are in clinical context; thus only appropriate patterns will be available
for matching.

The prototypes have the form of directed, acyclic graphs with unique roots. The
graph consists of nodes connected by directed arcs. At one end of the graph is a root that
represents a clinical or pathophysiological condition and always has a current truth value,
or degree of belief in that condition. At the graph’s other end are leaves to act as data
entry points. The BABY leaves take the form of VL1 rules [Michalski, 1974] which, at the
minimum, compare a variable’s value to a reference value, returning a truth value as its
result.

See Figure 40 for an example of a knowledge base pattern.

The BABY rules are used as predicates for matching 2 condition to a truth value. The
ADVISE subset of the VL1 is the language that defines both variables and rules. For a
description of variables and rules, see Chapter 8. Rules are connected to the graph structure
with ares that act as conduits for propagation of truth values. The variables contained
within these rules may be used in a large number of unrelated rules, creating the problem of
mapping varizbles to their respective rules, a necessity arising from the data—-driven nature
of BABY. The VL1 parser creates a symbol table for this mapping that is used by the
inference engine to locate the pattern leaves currently in context and available for matching.

Patterns are recursive structures composed of nodes, arcs, and rules in a manner
similar to a PROSPECTOR knowledge base network [Duda, 1978a]. The information
content of a pattern is summarized with a single number between zero and one, its truch
value, representing the degree of confidence with which the pattern is believed to be
supported by the input data. The recursive nature of the patterns arises because they can
be used as intermediary nodes in other patterns, as their truth value is propagated upward
to any patterns of which they are a part.

The truth values travel along arcs in the direction of leaf to root, being processed
along the way at the intermediary nodes. These arcs are currently of two types,
EVIDENCE and CONTEXT, having quite different semantics. Both arc types carry
information which, when present, supports the truth of the parent node. However, the
CONTEXT arcs have explicit control information that indicates whether or not the parent
node is clinically relevant. If in context, the parent node is made a part of the active
knowledge base and can be used to match input data. Otherwise it is essentiaily excluded.
from the collection of current patterns until the context changes. Thus, the CONTEXT
arcs act as keys to their parent nodes, either locking them in or out. By this mechanism the
size of the active knowledge base is reduced to a small subset of the global knowledge base,
resulting in both storage and computational savings.

Every node in the network has a truth value ranging from zero to one, which
represents both subjective probability and certainty of truth. Zero indicates certainty that
the assertion is false while one indicates certainty that the assertion is true. Initially, no
information about an assertion is represented by the node’s prior value. As the truth vaiues
of the nodes change, increasing values represent rising certainty in the truth of the
assertions, and vice versa.

There are five node types supported by the BABY inference engine. They are the
logical types AND, OR, and NOT, the predicate type RULE, and a type responsible for
folding evidence and uncertainty together, the type BAYESIAN. The RULE nodes are the
leaves of the patterns and are evaluated by the ADVISE rule evaluator (Chapter 7)
according to semantics set by the programmer. The three logical nodes have very simple
semantics. The truth value of an AND node is the minimum of its children’s truth values,

118

STAOH .
o

_(ovTarT

LS NV
@ liec0

NORHAL
ADREX AL

FUWeTIoN o

L3
L1 L

[uRimE_osl ¥ seaurt et :1]

LURINE ostt 3 320 :-“J_.J

| L=

[ufwi. 56 21010 5,13 ___‘

CONCENTRATED

AEnval

6LYL0sURIA

Figure 40: A BABY Knowliedge Base Pattern

FuncTION o5

r
Py, Wh |
N
INAPPROPRIATELY NogHaL

LS (V.

FaoiSo0

HYPONATREMI

4
N- 3

PRIZR

2XPORTABLE
oR

® rnroarzo

PATTERY

= OF

while an OR node takes the maximum value of its children. NOT nodes invert cheir child’s
truth value by subtracting it from the maximum truth value. A high truth value of any one
child will give an OR node a high value, but all children of an ANND node must have high

values to cause it to also attain a high value.

The BAYESIAN node type is used to fold together independent pieces of evidence to
caleulate a truth value. These nodes can have an arbitrary number of children attached. by
EVIDENCE arcs, each with their own assertion strength that the child’s evidence implies
the parent's hypothesis, In addition, these child nodes must have a prior truth value that

119

represents the probability of the evidence being true before anything is known about the
patient. Associated with each connecting arc are two numbers representing the strength of
the inference from child node to parent. The first number, LS, is the strength of the
inference if the current child node probability is greater that that node’s prior probability.
Conversely, LN represents the inferential strength when the current child node probability is
less than its prior probability. An entirely equivalent method of specifying LS and LN is to
specify the maximum and minimum posterior probabilities that the parent node can attain,
given maximum and minimum child node current probabilities. These numbers must be
supplied by the expert and he or she can use whichever form is most convenient.

The truth values of all Ave node types can be calculated with information local to the
node, assuming that the values of its children are stable. Implied, then, is that a single node
can only affect the values of nodes between it and the pattern root, limiting the number of
nodes whose values need propagation when new data arrives. By locking out portions of the
knowledge base from activity, nodes connected by CONTEXT arcs also help reduce the list
of node values to propagate,

13.5.3. The Inference Engine

The network structure of BABY’s knowledge base makes the inference engine quite
simple. It is a data-driven, forward-propagating algorithm that only needs a small
planning phase because of the context links. This is quite different from Prospector in that
the planning is minimized, propagation is a parallel process, and the context links are
central to. control rather than to question planning [Duda, 1978b|. It is easiest to
understand the algorithm by way of examples. '

Initially assume that there are no context links in the knowledge base. When a burst
of lab data comes into BABY, the appropriate system variables are bound to the lab data
valyes. For example, when the serum sedium value comes in as 135 meq/l, BABY’s variable
for serum sodium is located and set to 135, Next, all rules using serum sodium in the
currently active knowledge base are located via a look—up table and placed on a gueue called
the NODES-TO-PROPAGATE (NTP) queue. Each variable may be used by several
oredicates, all of which are enqueued. In other words, the serum sodium value may be used

in several different patterns. The table managing the binding of variables to predicates is
created by the ADVISE VL1 parser.

After the rules are enqueued, they are dequeued, evaluated, and their truth value is
propagated to any reachable parent nodes. A node is reachable if there is a direct link to it
and if it is in the currently active knowledge base. Propagation implies calculating the
parent node’s new value based on the value of the node just dequeued. After the new value
is caleulated, .that node is enqueued onto the NTP queue. If the parent node is a pattern
root, and il its new value is greater than its assertion threshold, its value is presented to the
user. . This cycle of dequeuing and enquening is repeated until the NTP gqueue is empty. The
algorithm resembles a breadth-first graph traversal due to the use of a queue rather than a
stack..

Context arcs complicate the algorithm slightly, but also add considerable potential.
if, in the above example, a context link was crossed during an upward value propagation,
then a check would be made to determine if either the context node’s value changed from
above the context threshold to below it, or if it changed from below the threshold to above

~it. In the former case, the parent node would then be in context, and should be added to the
active knowledge base. A recursive algorithm is called that activates this new portion of the
knowledge base. The situation where a piece of the knowledge base can be a part of
different patterns, each with their own respective contexts, is handled by an ADVISE

120

primitive.

The activating algorithm activates all children of the node that is now in context. It
then calls itself to activate the children’s children. If one of these nodes has a context link,
only that link is followed by the algorithm’s recursion, otherwise all links are followed.
When a leaf is reached, a check is made to see if any of the rule’s variables has a value. If
so, the leaf is added to the NTP queue so that the rule can be evaluated and the value
propagated to the now in context area of the knowledge base. If it were deemed desirable,
this is where a goal-directed, backward-chaining algorithm could be added. Then, if a
varizable’s value was not available a check could be made to see if that value could be
inferred. Currently such a capability is not available in BABY.

13.5.4. The Patient State

At any given time, the system’s model of the patient is contained in the patient state:
that portion of the knowledge base that is in context and therefore has been activated.
Included in the definition of the patient state are all the variable value bindings and the
intermediate node values. The size of the active network will be much smaller than the
entire knowledge base, since only a small portion will be in context at any time. This
storage economy also results in the processor time economy because inferences are not made
on any non-active portion of the knowledge base. Indeed, the inference engine cannot even
access non-active knowledge.

The use of reduced portions of the knowledge base for individual patients could allow
the system to keep track of more than one patient at a time by providing each with their
own patient state. The ADVISE system facilitates this capability by having its storage
divided into three levels: global, local, and private. Each lower level retains all the
connectivity of the higher levels, but only those paris of the graph requested from a higher
level will be explicitly stored at the lower level. Thus, an individual patient state could
reside at the private level, while the entire global knowledge base would be stored in the
global level. As the patient state is expanded by coming into context, it is stored at the
private level. The converse must happen when graph areas go out of context.

Two other aspects of the patient state are facilitated by ADVISE features. Since the
contents of the three levels are mapped onto three independent areas of secondary storage,
switching from patient to patient can be easily done by swapping disk areas at the private
levei while leaving the global level alone. Also, any values belonging to a particular patient
are stored in the patient state, so that data security can be maintained at the fle levei.
ADVISE also supports security at a more primitive level during run time.

13.5.5. Variable Suggestion

In BABY there is a variable suggestion phase that follows propagation of the data and
activation of the knowiedge base. The variables selected are listed in one of the user
interface’s windows to indicate to the user that knowing these values is desirable. [deally
these variables would provide the most information to the patient state, or be able to effect
the greatest change in the current context. Two different algorithms for scoring the
variables are implemented; one is done during knowledge base instantiation, and the other
requires a separate partial patient state traversal.

The latter algorithm will be discussed first. At each node, in addition to the current
valge, BABY stores the minimum and maximum possible values, given the minimum and
maximum values of its children. I nothing is known about a RULE node’s value its
maximum is one, minimum is zero, and current value is its prior value, otherwise all three
vajues are set equal to the current value. The differential, if any, between the three values

121

will ripple upward during regular value propagation. The scoring algorithm makes use of
all three values. A variable's score is roughly equal to the sum total of probability that
could be added to or subtracted from the patient state if that variable’s value were known
with absolute certainty. To calculate this value the active network is traversed top down,
keeping track of the difference between the maximum value and the current value, and using-
the assertion strength values, LS and LN, to determine the multiplier for the difference in
odds. This algorithm is expensive for a large patient state,

The other scoring algorithm is much simpler, but it does not account for assertion
strength. This one works during knowledge base activation upon reaching a leaf. [f any of
the leafl’s variables has no known value its suggestion score is incremented. At the end of
data propagation, all variables whose values were desired but unknown have a score. The
variables that were inspected the most have the highest score, and are assumed to be the
most desirable. This method, although fast, looses much of the knowledge base information;
it only retains the physical layout of the graph while discarding the probabilistic elements.

In either case, the highest-scoring variables are mentioned to the user, who has the
option of supplying any known values.

13.5.8. Network Parser

The creation of the knowledge base is entirely expert dependent. The BABY network
parser, in conjunction with the ADVISE VL1 parser, [acilitates transformation of a texifile
description of a neiwork into a machine usable form. BABY accepts any rule structure that
is supported by both the VL1 parser and the rule evaluator. It is up to the expert whether
to make az rule more complex in order to simplify a network, or vice versa. The
programmer has the option of choosing among several different semantics for uncertainty
evaluation within the predicates, extending the network expressiveness.

The network parser is a recursive descent parser that creates and links the nodes with
their appropriate arc types, and calls the ADVISE parser as a subroutine to create the rule
parse trees and a look-up table of rule to variable bindings. A limited syntactic check is
performed also to insure that at least the newly created network structure will work in
BABY. In addition, the network is printed out in an in-order, indented format so that the
expert can see if the traversed prior values are in accordance with sxpectations.

The language accepted by the network parser is quite limited and rigid. but it is not
difficult to translate from a picture of a network into the text format, If a node is to be
either an assertion, or it is to be used by more than one pattern, it must be uniquely named.
This name will be the one shown to the user. If a node does not need a name, the parser
will supply its own unique one.

Figure 41 illustrates the mapping of the pattern of Figure 40 into the network

language. Appendix C shows the corresponding mapping to the ADVISE internal storage
formad.

13.8. Concilusion

The BABY project presented a description and partial implementation of an exper:
system for assisting clinicians caring for babies in an NICU. The current prototype version of
BABY is part of a learning process attempting to identify the bottlenecks and difficulties that
will be encountered during implementation of various ideas. The main difficulties in BABY
center around the knowledge representation of the patient state.

The expressiveness of a knowledge representation sets an upper bound on the performance
quality; if a type of knowledge cannot be made available, inferences and explanations based on

NEONATE_PATTERNS
EVIDENCE AND NEONATE_PATTERNS
EVIDENCE BAYESIAN SIADH .05 .8
(500 ~500] CONTEXT .75 BAYESIAN HYPONATREMIC ;
[0 -1000] EVIDENCE BAYESIAN NORMAL_RENAL FUNCTION ;
[0 -1000| EVIDENCE BAYESIAN NORMAL_ADRENAL_FUNCTION ;
0 -1000] EVIDENCE OR *
CONTEXT .75 NOT *
EVIDENCE BAYESIAN GLYCOSURIA ;

EVIDENCE RULE * .1 .8 [URINE_OSM > SERUM_OSM : 0.1} : > MKXNULL;
EVIDENCE RULE * .1 .8 [URINE_OSM > 300 : 0.9} :> MKNULL;
EVIDENCE RULE * .1 .8 [URINE_SG > 1.010: 0.8] : > MKNULL;

Figure 41: Network Description of Figure 40

that knowledge cannot be performed. Temporal, spatial, physiclogic, and deveiopmental
relations between variables are not representable by the current knowledge base formalism.
Explanations indicating supporting evidence for an assertion still couid be provided for in the
future.

 Explicit temporal reasoning is not possible with the current knowledge representation.
Trends and predictions ol variable values are not calculated, even though a value is represented
as a domain element and a time stamp. It was felt that rather than implement an ad hoc
mechanism for handling time relationships, it would be better to develop a more complete
theory of medical, temporal reasoning. Such a theory would have to include prediction of
future values based on not only past trends, but also on the clinical context of the patient.

Although there is work to be done in improving the knowledge representation, the
functionality of the representation should probably be preserved since it meets the data How
requirements of an NICU. The main improvement required of the knowledge base is the
addition of semantics for handling temporal relations within the clinical context of individual
patients. Prediction of future values and decrease in value confidence need explicit
representation so that conclusions can be stated as accurately as possible, but without
overstatement. Additionally, tabular representation and a graphics network editor are needed
for better notational efficiency.

CHAPTER 14

The ALFALFA System: Entomological Pest Identification

14.1i. Introduction

The ALFALFA field pest identification system was developed to exercise various control
scheme features in an expert system which actuaily requires more thanr one rule group with
more than one control scheme. The system is the result of a collaborated effort among
entomologists William Lamp and Lane Smith of the University of Illinois, and Jiarong Hong
and Cari Uhrik of the University of Illinois Department of Computer Science.

An automated key to insects should use descriptors which are easily observed,
remembered and reported. Further, the key should proceed through a layered series of
identifications, becoming more specific as more information is provided. The identification takes
the form of the classical Linnean system at the higher levels (Class, Order, Family), but as
often as not, the exact species is not critical and a common name is acceptably assigned (e.g.,
"thrips”). Incomplete data should result in, rather than no identification, a more general
identification: Thus, the key targets different levels of identification using different sets of
attributes for each stage of identification (Figure 42}, Conceptually, different groups of rules
apply to the various levels, each group possibly claiming its own uniquely important variables,
pertinent to-a particular stage of the consultation. Moreover, the rule group in use at a
particular moment often requires its own special variation of a contral scheme. Thus, one can
see the inherent needs of the ALFALFA System [or multiple rule groups, multiple control
schemes, and dynamically changing goals. '

The desired approach to implementing the system called for mirimal changes to existing
modules. Modules changed are the parser and control scheme. Certain features of the rule
evaluator were changed Lo be consistent with previous usage but allowed additional features.

For example, the ?, ®, ¥ patterns for matching various flavors of unknown values were not
impiemented congistently in the previous Rule Evaluator.

The general system development goals may be grouped according to the following:

1) Preconditions and termination conditions on rule groups,
2} Multiple non-homogenecus goal vaiues or goal variables,

3} "OR" in the RHS of Rules,
4} Enhanced Data Acquisition features .

A description of each of these areas follows and is the focus of this chapter..

id4.2. Preconditions and Termination Conditions

Prior to the ALFALFA system, the only attributes of rule groups were variables blocks,
functions blocks, and the rules themselves. There was a need for making explicit the various
control information implicit in the PLANT/ds and PLANT/cd control scheme. This was
especially required to enforce some sort of sequencing discipline among the rule groups
representing the different ievels of pest identification.

123

‘mesAg VITVATY 243 Jo sIngonng feod) : gy aan3ig

—

MM”/,Q\M\

"

AP/ AN
/NN

gl 14 e Bplders snd Mite

g3 Clams = [nsacta

g3 Ovder su Nauroplera

gd Order s Colsoptlers

g8 Ordar w= Collsmbola

g0 Ordar = Homoplara

g7 Order = Dipters , Id = Flies

g8 Order = Lepidoplara

g¥ Order = Odenate, 14 == Dames) Flies

g19 Ordar = Hamiptars

gl Order == Thysmnoptars, Id = Thrips

§132 Ordar = Orthaplara

g13 Order == Hymenoptars, Id » Btz & Wanps
gld Famlly m Chrysopldas, 1d == Green Jacewing
16 Farslly == Humarobiidae, Id = Brown_Jacowings
gi8 Ganetle id w Lacowings

g7 Family = Cocclnelliday, Jd s« Lady bug -
g1 Pamily s Curculionidse, 3 = Wesvily

g18 Famlily = Silphidae, Id = Carvivo_beetlnn
£20 Family = Slaphylinidas, Id = Rove bastls
g2t Family »= Mafoldae

8§22 Fenily s Lampyridas, 14 == Lighinlng hug
£23 Fawily = Gh:t.huidu. Id w= Soldisr_bentis
24 Fanily wx Elslaridas, Id = Click_beatle

”’”’%\h\. . s A

¢35 Geaericd = Buslles

§2¢ Fanily = Carcapldas, Id = Meadow spitths bug
27 Family = Delphacidas, Id == Othur_plant_boppers
53¢ Fanily = Aphididas, [d = Pan_sphids

2% FamiBy = Aphididas, 1d == Bpolled_alfaifa_aphlds
830 Fanily w Qicadullides, 1¢ == Lesf hopper

g1 Family = Aphididas, Id = Blue alfatls_aphids
32 Family = Membracidus, I1d = Trashoppews

gi} Genorie §d w= Aphids Joathoppers and_sphith bags
e3¢ Fanily = Pieridse, Id = AMalfa paterpiiar

g3 Family = Nymphatidas, Id v Peiiifary

830 Fanfly = NymphaBidse, Id == Buckeys

§37 Pamily = Nymphalides, Id » Vaasrss_stalanta

g Pamily = Nymphalidas, [d w Morsing rlosk

g2 Vamily = Dansidas, Id = Monarch

40 Family o Nocluldas, 1d = Cutwerms_and_relatives
gét Fanolly = Pyralides, [§ = Webwermo_and pelatives
42 Generic §d = ButierBiles pnd_moths

g4 Famlly = Anihscorides, §d = Minwte_pirste_bug
géd Famlly we Mirides, 4 == Plant_hap

gd6 Family = Reduriidas, Id = Assamin bhug

g8 Famlly = Nabidas, }d s Damas! buge

g7 Family me Lygasidas

g48 Family w Berylidas, 1d = SUlL_bugs

——

A

gé® Family = Corsides, Id = Leal_fooled _buge
g0 Pamily == Paptatomidse, [= Stink buge
51 GemerieJd = Trus buge

52 Fanily = Tetrigidss, Id = Pygmy_grasthepper
g59 Family v Acrididas, o2 Family = Gryllides
gE4 Pamily s« Gryllidas, Id s Pisld_ericket

g88 Family s= Acrididae

g50 Id »= ANaWa_wenril

57 I » A_weevi

git 1d = B_weavil

gE9 Id == Blus_metallic weeril

g00 Id v Croy_blister_bestle

g1 1d = Siripad blirter_beslls

#03 Genarle jd w= Cenerie id ax Blister beetles
k03 Id == Potatos Jeafl hopper

g4 1d we Aster_Jouf heppor

88 18 »= Loafl_hopper

§88 Id = Big syed bugp

£07 1d = Seed bug

«08 1d = Sead buge sud_pelativer

g09 18 »= differentist_grasshopper

£70 Id = Red Jegged grasshoppwr

&7l 1 = Two stripped_grasshopper
§72 Id = Migratory grasshopper
g713 Qenarle_jd == Grasshoppers_snd _refatives

125

The parser was modified as foliows: given a rules block of the form ~

ruleblkname RULES

VARS = varsblkname ;

PRECOND = lhsnodel;

TERMINATION = thsnode2:

PROP = CONTROL

{UTILITY , BACKWARD ,FORWARD,INORDER}
%%

ihs—rule : > rhs-rule ;

END
then the following tupies are produced -

(rulesblkname MKEXEC MKCS MKREF1 lhsnodel)
(rulesblkname MKEXEC MKCS MKREF2 lhsnode2)
(rulesblkname MKPROP textnode)

where the lhsnodel and lhsnode2 refer to items which are identical to left hand sides of rules
and are directly evaluatable by the RULE EVALUATOR. Under our proposed control scheme,
preconditions are applied for each rule group and if satisfied the rule group is entered

(initiated), and rules will start to be executed using the type of control scheme specified by the
text in the CONTROL property of the rule block.

Termination conditions are evaluated after each rule in the rule group to test whether the

rule group should be exited. This continues until there are no more rules in the case of the
sequential scheme or until the termination condition is satisfied.

14.3. Multigoals

PLANT/ds only allows a single variable on the RHS to determine the gzoal. Certain
complications of goals might be imagined:

a) structured values of goal variable,

b} dynamically changing sets or structure of values for goal variables,
¢} dynamically changing "goal” variable,

d} sets of goal variables,

&} dynamically changing sets of goal variables.

- As 3 minimum, an array of goals which will be determined in one of 2 ways is desiranle.

Option 1 If there is a GOALS specification in the rules block, the goals will be taken to be that
of a goals tuple. That is, given a rules block -

ruleblkname RULES
YARS = varsblkname ;

GOALS = (goall, goal2, goal3, ...};

126

lhs—rule :> rhs-rule ;

END
produce a tuple of the form -
(rulesblkname MKEXEC MKCS MKREF0 goall goal2 goall ...)

with the idea that goals occur in order of their priority.

Option 2 If this GOALS designation is not present for 2 rule group, then all right hand side
variables will be used as candidate goals.

A special tuple modifies each rule group as it is read in to update the information about
which rule groups have been defined. This tuple will appear under the special node GLOBALS
where the global variables are already hung. Hence the GLOBALS tuples form is:

(GLOBALS MKVARS varl var2 ...)

and

(GLOBALS MKRULES rulegroupl rulegroup2 ...)

14.4. Disjunction on the Right Hand Side of Rules

Several cases arise in the entomology domain where it is desired to pursue one classification
option but if it does not work out (leads to a contradiction or low confidence of decision), then
it should be abandoned and another option should be selected to pursue. These points of
backtracking can easily be recorded in rules and weights can indicate which options shouid be
considered in what order,

For example, the rule :

{Mouth Parts = Chewing| [Hind Legs = Jumping
(Order = Orthoptera : 0.9
v
[Order = Coleoptera : 0.2{[[nsect = Flea Beetle : 0.1}

has the interpretation "pursue Orthoptera first, but i that does not work out, then try
Coleoptera given there are no more promising options.” This stvle of parailel reasoning
assumes that the values of goals are mutually exclusive and i1s most easily effected by a prioricy
queue,

Another flavor of the disjunction on the right hand side of rules is for independent values
of a variable each having the possibility of each satisfying LHS selectors simultaneously. This
latter option was not undertaken in our system. We distinguish the 2 types of disjunction by
allowing a special symbol for each type. No changes to the Rule Evaluator are presently
proposed for this distinction.

127

14.5. Data Acquisition

A special data acquisition method was proposed to operate as a expert system apart from
the inference engine. The control scheme was to pass a list of ranked variables that would be of
most use. The data acquisition system makes considerations based upon the following criterion
as to what questions to ask and in what order (possibly on an automatically built form}):

(1) hierarchies of variables ~ certain variable should be asked before other variables, that is,
it does not make sense to ask confirmatory data before primary data {even though the
confirmatory data has more apparent usefulness},

(2) fow of consciousness - certain questions seem too jumpy if asked out of sequence,
semantic closeness should be taken into account,

{3) certain variables values imply other values — restriction rules which assign defaults and
does-not~apply values should be used, a graph structure will be used for this,

{4) structured variables will be implemented so as to propagate uncertainty in a reasonable
manner, more use of the mutual exclusive and independent values will be made,

(5) some distinction will be made between different type of unknown - that which is
uncertain, that which does not apply, that which may not be asked for again, etc,,

{8) some values of variables need never be asked at some point in 2 consultation and this
can be inferred from the remaining viable rules,

[7) restriction rules need not achieve threshold to fire but propagate uncertainty.

14.8. Additional Research Goals

In the course of this project, several additional interesting areas of research were
uncovered and pursued. These are described here.

14.8.1. Deseribing Variable-Value Relations with Semantic Nets

in PLANT /ds, the intrinsic relationships among various variables and their values
were necessarily represented by a series of restriction rules which dictated when values of

some variable prohibited other variables from having semanticly inappropriate values. For
example, there were a number of rules of the form:

{CONDITION_OF LEAVES = NORMAL)] : >
'CONDITION_OF _LEAVES BELOW _AFFECTED _LEAVES = DOES_NOT_APPLY]
POSITION_OF AFFECTED LEAVES = DOES_NOT_APPLY]
LEAF DISCOLORATION = NONE|[SHOT_HOLING = ABSENT]
‘LEAF WITHERING _AND _WILTING = ABSENT!
‘LEAF MALFORMATION = ABSENT|[LEAF SPOTS = ABSENT!
LEAF MILDEW _GROWTH == ABSENT{SHREDDING = ABSENT! ;

 '/ROOTS = NORMAL; :> ROOT _SCLEROTIA = ABSENT!
ROOT_ROT = ABSENT] |
[ROOT_GALLS_OR_CYSTS = ABSENT];

Such information indicates only one sort of behavior: whether or not the "normal” or
"default” value of one variables value should preclude other variables from being asked

128

BOOBHO -

Derived Rule :

X=x,] v X=x,] V X=x] V¢ oo [X=x]V [X=does_not apply] — [Y = does_not_apply]

Figure 43 : Abstract Qutline of Algorithm Converting Variable/Value Graph to Rules.

[Michalski and Chilausky80]. This information is more naturally expressed as a semantic
network specifying connectivity between variables and values. Such a representation does
not preclude the use of rules, and an interface algorithm was designed which converts such
semantic nets into rules. Figure 43 illustrates the algerithm for an abstract graph. This is
a simpie matter of a tree traversal from top to bottom if there are no common subtrees.

Complications arise in the case of a DAG where there is a common subtree. This is
currently taken to mean that two variables simultaneousiy must he considered by an AND
condition of the rule as shown in Figure 44. An option exists to specify an "independence”
annotation for the common node allows the node to have the interpretation that either
variable may influence the d.n.a. assignment to it.

A partial ordering is being produced in both the simple and latter case, and a
consistent total ordering must be derived for the rules if they are to be fired sequentially.

129

The rules can be made order independent by use of "OR" operands as in figure 43.

Depending on the needs of the particular system, the graph traversal algorithm could be
modified appropriately.

14.8.2. Dynamically Changing Value Sets for Yariable

Much to the chagrin of the consultation user, the prototype system once queried the
user as to which of 30 diferent values the variable COLOR should be assigned. This was
extremely annoying, apart from the inability of the display routines to fit so many values on
a single screen, because it was obvious at the point of query that only a few of the defined
values were either relevant or possible.

There are various mechanisms for achieving the dynamically varying value sets for
variables. One of these would dictate that after each query, a computation might be effected
to find ail relevant domain values for any plausible conclusions supportable by the current
state of the system. Another strategy might dictate that this only be done for particularly

® &G O

D @ @ 6 O ces

Figure 44 : The Case of a Common Subtree in Variable/Value Graphs.

130

Mouthparts

hidden or difficult to see easily seen

Easily Seen Mouth Characteristics

chewingsponging coiled piercing-sucking

Piercing-sucking Characteristics

T~

fitted into grooves visible not grooves retracted into head

Rules :

[Mouthparts == hidden or difficult to see]
V[Mouthparts = does not apply]
— {Easily Seen Mouthpart Characteristics = does not apply |

[Easily Seen Mouthpart Characteristics = chewing|
V(Easily Seen Mopthpart Characteristics = coiled|
v{Easily Seen Mouthpart Characteristics = sponging|
v[Easily Seen Mouthpart Characteristics = does not apply]
v({Mouthparts-= hidden or difficult to see]

v{Mouthparis = does not apply]

— [Piercing-sucking Characteristics = does not applyl

Figure 45 : Typical Order Independent Rules Derived from a Variable/Value Graph.

.annotated variables, and then only when the variable is asked for {no sense in computing
the value set until it is actually needed for a query). Ancther strategy involves defining a
series of variables which "inherit” values from previous variables as a rule group is started
up, or defining rules that regulate the value of a single structured variable based upon an

131

auxiliary variable encapsulating state information.

Referring to Figure 42, the reader will be convinced that is an appropriate level of
granularity for such computations. It is here that it is most relevant to talk about the
possible current and subsequently—possible values of a variable based on the current state of
the system. The dynamic nature of a consultation, with possible modifications to the state
of variables necessitates undoing the conclusions drawn up to a particular point, and
possibly revising the "possible-values” of such variables. This is currently accomplished by a
complete traversal of all rule groups for which the precondition does not explicitly fail, and
recording all values for the variable sought which explicitly occur in such rule groups. This
is only an approximate solution {and costly even so} since some rules may be judged to be
below threshold based on current state.

A better solution is possible though. A pretraversal of the rule group parse tree by 2
special compiler could generate a graph structure that indicates the relative correspondence
between GOAL state and a given variable. This would uitimately be available by a simple
table:lookup or annotation to the rule group parse tree.

14.7.. Future Research Extension

Enhancements to the current system might include the following.

- inverse operation to converting semantic net to rules (rules to s.n.)
for verifying human ruie knowledge
~ visual entry of the restriction information on vars
~ more general relations over var~val semantic nets
~ value of one var sets another
~ probabilistic
— modifying the algorithm for traversing the vars graph to get
restriction values dynamically
- visual display of the tree of possibilities — allowing to select the
most probable failure point or use a ranking of reliability over vars
— if'a hi freq var occurs as RHS in restriction rule
then all the LHS vars should be elevated to at least its value
plus-the valye it has from other rules -
- what if it i3 in more than one restriction rule
~ what if more than one RHS var applies
- what about redundant effects
- if -a rule group faiis
- shouid run again
~ there should be a way of forcing a conclusion
- there should be a way of ¢vcling or back tracking to modify
suspect values -~ eg., freq. mistyped or misperceived vals
- only relevant values should be asked
- regtriction rules shouid be in a separate rule group with a lower
threshold than other ruies - change parser -~ RE to allow LHS fwt

t0 be RHS conf - global RE option / syntactic in rale
~ a THRESHOLD prop on ruie group

- straighten affairs among UNDEF, UNKN, ALL, NA

The biosphere of the alfalfa field is a complex structure. Once all the vectors present in
the field are identified, it is no simple task to decide on the proper management procedures to

132

be applied. For instance, there may be beneficial insects as well as detrimental ones. Insecticide
may be inappropriate for any of a number of reasons, prompting the introduction or
enhancement of environment for beneficial insects. It may not even be worth the cost of
applying insecticide if the alfalfa can be cut in reasonable time to ensure a good yield. These

considerations make it clear that the management of alfalfa fields could be an expert system in
its own right.

CHAPTER 15

Summary and Future Work

We have described the ADVISE meta-expert system at the conceptual and technical level.
The system can be used for constructing and experimenting with expert systems in specific
domains by:

(1} assembling knowledge about the problem,

(2) encoding the knowledge in some formal manner,

{3) possibly using the knowledge for computer inductive inference, and

(4) picking the inference mechanism(s) to be used on the encoded knowledge.

At present, we have experimentally implemented four expert consultation systems using the
ADVISE meta-expert system, PLANT/ds for diagnosing soybean diseases, PLANT /cd for
predicting extent of Black Cutworm damage to corn, BABY for monitoring infants in a neo-
natal intensive care unit, and ALFALFA for identification and classification of insect pests.

16.1. The Language of the Future

In our system development efforts thus far, we have been evaluating a general purpose
language such as PASCAIL on a UNIX system for use in developing advanced expert system
techniques. We did this because of the wider audience available for expert system tools that use
a standard programming language and a common operating system environment. We have
demonstrated that such a system is definitely possible. Indeed, there is an ongoing effort by an
ITT research lab continuing the PASCAL work. This development effort indicates that the
continued evolution of the PASCAL effort has ceased to be basic research and has become
applied engineering which is best carried out in such an industry setting.

Although we do not intend to abandon PASCAL, the increasing use of LISP for learning
programs developed in our immediate research environment and the extensive developments in
LISP machine-based program development tools has prompted us to move all future ADVISE
developments to common areas of interest. The major new areas of research activity are
summarized below:

l. Handle temporal data and processes — knowledge representations, learning, and expert
system performance;

[£
.

Explore the development of very large knowledge bases which evolve over time rather
than being rebuiit;

3. Use our meta-expert system to develop an expert system that can help a knowledge
sngineer tallor ADVISE options and build a2 knowledge base using learning programs:

4. Develop methods for trading time and computational cost against precision of the resuit;

3. Redefine our architecture to view an expert system as a collection of cooperating experts:
dialogue manager, planner, rule evaluator, constraint propagator, etc;

8. Explore 2 multiprocessing/multiprocessor approach to distributing problem solving
among multiple cooperating experts.

133

134

The use of LISP as the basis for the new developments in ADVISE wiil allow more run—

time binding of system components together in different combinations. Although we will
develop cur new tools in LISP, we will remain mindful of the possibility of transferring at least
a subsystem to smaller machines either using subsets of LISP or more traditional programming
environments. -

15.2. Extension of Present Efforts

In addition to the new areas of work outlined above, we intend to continue the work in a

number of presently active areas. We plan to build on our present experience to exiend the
ADVISE paradigm in the following areas:

1.

We presently support multiple knowledge representations, but the representation {which
may be a hybrid) must now be chosen before knowledge base building begins; we intend
to allow a choice for subsets of the knowledge base;

We presently support multiple control schemes but only one may be used for each
different knowledge base; we plan to allow the control scheme to be specified as part of
the knowedge base and varied as required within a single knowledge base;

We have multiple uncertainty propagation mechanisms available and we are conducting
studies of the various methods in order to better guide a knowledge engineer in matching
uncertainty mechanisms to real world problems;

We plan to support tighter coupling to learning programs and to develop techniques for
learning during a consultation;

We are developing methods for representing knowledge about conducting a dialog with an
expert system user as an identified part of the knowledge base over which inference can be
conducted;

We have developed methods for handling reasoning with both positive and negative
evidence, and plan to incorporate these methods into a working prototype.

Acknowledgements

A system of the size and complexity of ADVISE could not have been developed without
collaboration and contributions from many individuals. The authors wish to acknowledge in
particular Stephen Borodkin, Albert Boulanger, Bob Reinke, Lance Rodewaild, Kent Spackman,
and Dr. Robert E. Stepp, who made significant contributions to ADVISE at various stages of
development and testing., Much of their work is described in various chapters of this document.

This research was supported in part by: the Office of Naval Research {grants
No. N00014-83-G-0030 and No. N00014-82-K-0186), the Defense Advanced Research Project

Agency {grant No. N00014-85-K-0878), and the National Science Foundation (grant
No. NSF DCR 84-08801).

135

REFERENCES

Baim, P.W., .“A_n Algorithm to Perform Feature Selection on Nominal and Ordinal Features Using
Non-Statistical Criteria”, Report No. 1078, Department of Computer Science, University of
Illinois, Urbana, Illincis, 1982,

Baskin, A.B. and Levy, A.H., “MEDIKAS - An Interactive Knowledge Acquisition System™, Proc. of
the 2nd Symposium on Computer Applications in Medical Care,”” Washington, D.C., IEEE
Publications, Nov. 5-7, 1978.

Baskin, A.B., ““A Methodology for Machine Representation of Medical Knowledge,” PhD Dissertation,
Department of Computer Science, University of Illinois, Urbana, [llinois, 1979.

Baskin, A.B., “LOGIC NETS: Variable-valued Logic plus Semantic Networks,” in Policy Analysis and
Information Sysiems, No. 3, 1980. '

Bo, Ketil, “Human-Computer Interaction,” Computer, Vol. 15, No. 11, 1982,

Boulanger, Albert, “The Expert System PLANT /ed: A Case Study In Applving The General Purpose
[nference System ADVISE To Predicting Black Cutworm Damage In Corn,”” Masters Thesis,
Department of Computer Science, University of Illinois, Urbana, Illinois, 1983.

Buchanan, B., “Expert Systems: Working Systems and the Research Literature,” Knowledge Systems
Laboratory, Report No. KSL-85-37, December, 1985.

Buchanan, B.G. and R.Q. Duda., “Principles of Rule-base Expert Systems’’, Advances in Computers,
22, Academic Press, 1983.

Channie, T., “ADVISECORE: A Screen Package for Expert Svstems'’, Report No. UTUCDCS-F -84~
919, Department of computer Science, University of [llinois. Urbana, [llinois, 1984.

Channic, T., “Editing Network-Structured Knowledge Bases in the ADVISE System’’, Report No.
UTUCDCS-F-85-934, Department of computer Science, University of Illinois, Urbana, Illinois,
1985.

198

137

Date, C.J., An Introduction to Detabase Systems, Addison Wesley, 1977.

Davis, R. and King, J., “An Overview of Production Systems™ in Machine Intelligence, 8, Elcock and
Michie {eds.), 1978.

Davis, J.H., “CONVART: A Program for Constructive Induction on Time Dependent Data;”, Thesis,
Department of Computer Science, University of lllinois, Urbana, [llinois, 1981,

Duda, Richard O., Hart, Peter E., and Nilsson, Nils J., ““Subjective Bayesian Methods for Rule-Based
Inference Systems’, Technical Note 124, SRI International, Melno Park, California, January
1978.

Duda, Richard Q., et. al., “Development of the PROSPECTOR Consultation System for Mineral
Exploration.”” Final Report for SRI Projects 5821 and 6415, SRI International, Melno Park,
California, October 1978a.

Duda, R.O., P.E. Hart, N.J. Nilsson and G.L. Sutherland, “Semantic Network Representation in
Rule~-Based Inference Systems,’” in Patiern Directed Inference Systems, D.A., Waterman and F.
Hayes-Roth (eds.), Academic Press, 1978b.

Eddy, David M. and Charles H. Clanton, *“The Art of Diagnosis.” The New England Journal of
Medieine, Vol. 308, No. 21, 1263-1268, 1982, |

Foley, J.D. and A. van Dam, Fundamentals of Interactive Computer Graphics, Addison-Wesley, 1982,

Frayer, William W., “Patient Data Management in Neonaial Intensive Care’, Clinies in Perinatology,
Vol. 7, No. 1, 1980. '

Freedman, A.M., O.P. Buneman, G. Peckham, and A. Trattner, “Automatic Recognition of
Significant Events in the Vital Signs of Neonatal Infants”’, Computers and Biomedical Research,
Vol. 12, 141-148, 1979.

Galen, Robert 8., “Predictive Value and Efficiency of Laboratory Testing”’, Pediatric Clinics of North
America, Vol. 27, No. 4, 861-869, 1980.

Gevarter, W., “Expert Systems” Report No. NBSIR 82-2505. Washington D.C. : National Bureau of
Standards, 1982,

Harmon, P. (ed.), “Inventory and Analysis of Existing Expert Systems,” Ezpert Systems Strategies,

138
August, 1988,

Hayes~Roth, F., D.A. Waterman, and D.B. Lenat, eds., Building Fzpert Systems, Addison-Wesley,
Reading, Mass., 1983.

Johnson, S.,I “Yacc: Yet Another Compiler-Compiler,” Bell Lahoratories, Murray Hill, New Jersey,
L978.

Human-Computer Interaction —— INTERACT '84. Proceedings of the [FIP Conference, organized by
the Task Group of the Human-Computer Interaction (Human85), London, Sept. 4-7, 1984.
North-Holland /Elsevier, 1985.

Larson, J., “INDUCE-1: An Interactive Inductive Inference Program in VL,, Logic System,” Report

No. UTUCDCS-R~77-878, Department of Computer Science, University of Illinois, Urbana,,
Illinois, 1977.

La Gamma, Edmund F., “Concepts in Critical Data Evaluation and Neonatal Monitoring”’, Clinics in
Perinatology, Vol. 7, No. 1, 93-108, 1980.

MeMillan, R.S., “NEWVAR: Constructing New Variables,”” Internal Report, Department of
Computer Science, University of Illinois, Urbana, Illinois, 1982.

Michalski, R.S., “AQVAL/1-~Computer Implementation of a Variable-valued Logic System and the
Application to Pattern Recognition,” in Proc. of the First [nternationa!l Joint Conference on
Pattern Recognition, Washington, D.C., October 30-November 1, 1973.

Michalski, R.S., ““Variable-valued logic: System VL1, Proceedings of the Fourth [nternational
Symposium on Multiple- Valued Logic , Morgantown, West Virginia, 1974. '

Michalski, R.S., “Designing Extended-Entry Decision Tables and Optimal Decision Trees Using

Decision Diagrams,” Report No. 898, Department of Computer Science, Universitv of [linois,
Urbana, [ilinois, 197%a.

Michalski, R.S., “Pattern Recognition 2s Knowledge-Guided Computer Induction.” Repor:z No. §27.
Department of Computer Science, University of [llinois, Urbana. lilinois, 1978k,

Michalski, R.S. and J.B. Larson, | “Selection of Most Representative Training Examples and
Incremental Generation of VL, Hypothesis: The Underlying Methodology and the Descriptions

of Programs ESEL and AQ11,” Report No. 877, Department of Computer Science, Untversity
of lllinois, Urbana, Illincis, 1978.

139

Michalski, R.S. and R.L. Chilausky, *“An Expermental Comparison of Several Many-valued Logic
Inference Techniques in the Context of Computer Diagnosis of Soybean Diseases,”” International
Journal of Man Machine Studies, 1980.

Michalski, R.S., “Knowledge Acquisition Through Conceptual Clustering; A Theoretical Framework
and an algorithm for Partitioning Data into Conjunctive Concepts,”” International Journal of
Policy Analysis and Information Systems, Vol. 4, No. 3, pp. 219-244, 1980.

Michalski, R.S., A.B. Baskin, and K.A. Spackman, “A Logic-based Approach to Conceptual Database
Analysis,” Stzih Annual Symposium on computer Applications in Medicel Care, Washington,
D.C., 1982a,

Michalski, R.S., Davis, V.S, Bisht and J.B. Sinclair, “PLANT/ds: An Expert System for the Diagnosis
of Soybean Diseases,”’ European Conference on Artificial [ntelligence, July 12-14, 1882b.

Michie, D, (ed.), Ezpert Systems in the Micro Electronic Age, Edinburgh University Press, 1979.

Moran, T.P., “An Applied Psychology of the User,” in ACM Computing Surveys, Vol. 13, No. 1,
March 1981.

Nilsson, N.J., Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, California, 1980.

Pople, Harry E., “Heuristic Methods for Imposing Structure on [l-Structured Problems: The
Structuring of Medical Diagnostics', Artificial Intelligence in Medicine, Peter Szolovits {ed.),
Westview Press, Boulder, Colorado, pp. 119-190, 1982.

Riedesel, J., M. Jha, B. Rao and R. Reinke, “A Brief Review of Meta.-Expert Systems,” [SG I[nternal
Report, Department of Computer Science, University of Illinois, Urbana, lllinois, 19886.

Schubert, Richard, “The VL Relational Data Sublanguage for an Inferential Computer Consultant,”

Masters Thesis, Report No. 848, Department of Computer Science, University of [ilinois,
Urbana, [llinois, 1977,

Spackman, Kent, ‘“Integration of Inferential Operators with a Relational Database in an Expert

System,” Masters Thesis, Department of Computer Science, University of Illinois, Urbana,
{llinois, 1982.

The Spang Robinson Report, “Evaluating Expert Systems Tools,” vol. 2, No. 10, Qctober 19886.

140

Stauffer, M., “GEM User’s Manual,” Internal Report, Department of Computer Science, University of
[Hinois, Urbana, Illinois, 1982.

Stefik, M., J. Aikins, R. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth and E. Sacerdoti, ‘““The
Organization of Expert Systems, A Tutorial,” Artificial Intelligence, 18, 1982.

Stepp, R., “Learning From Observation: Experiments in Conceptual Clustering,” in Proc. Machine
Learning Workshop-Symposium, Carnegie-Mellon University, Computer Science Department,
July 16-18, 1980.

Thursh, D. and Mabry, F., “An Interactive ,Hyper—text of Pathology,” in Proc. of the 4th Annual
- Symp. on Computer Applications in Medical Care, [EEE, Nov., 1980.

Troester, 3., “Damage and Yield Reduction in Field Corn Due to Black Cutworm Feeding: Results of

a. Computer Simulation Study.” Jeurnal of Economic Entomology Veol. 75, pp.1125-1131,
1982a.

Troester, 8., Clement, S., Showers, and A.J. Keaster, “Determining Yield Loss by Black Cutworms on
Corn.”” ASAE paper No. 82-5026. St. Joseph, Mi., 1982b.

Troester, S., Ruesink W., and Rings R., A Model of Black Cutworm (Agrotis Ipsilon)} Development:
Description, Uses, and Implications.” [llinois Agricultural Ezperiment Station Bulletin, No.
774. pp. 1-33, 1982¢. :

Troester; S., C.D. Bremer, K.L. Steffey, D.E. Kuhiman, and R.H. Meyer, “Avoiding Black Cutworm
Losses: An Educational Manual for a Computer Model that Demonstrates Effects of Corn

Production Practices on Black Cutworms,” Illinois Natural History Survey, Champaign,
[llinois, 19824d.

van Melle, W., “A Domain Independent Production Rule System for Consultation Programs,’’ Proec.
Sizth IJCAL 1979. '

Winston, P. H., Artifictal Intelligence, pp. 254-257, Addison—-Wesley, 1984,

Woods, William A.. ““What’s [mportant About Knowledge Representation’, Compufer, Vol. 18, No.
10, 22-29, 1983.

APPENDIX A

Rule Parser Details

This appendix contains additional information regarding the rule parser. Section A.l
describes some basic lexical notions concerning input to the parser. In section A.2 are details of
error handling by the parser. Section A.3 defines the "mark"” types currently handled by the
parser.

A.l. Basic Lexical Notions
Format: All input is free-format. Lines can be as long as desired.

Comments: Comments may appear anywhere in the input, and are denoted
by a leading !. The comment continues for the remainder of
the line (i.e. terminated only by EOLN]}.

Identifiers: [dentifiers must begin with a letter, and then may contain
up to 39 other non-punctuation symbols including digits,
@ _and ’. Note that apostrophes are NOT used to enclose
strings of otherwise-illegal characters.

Variables: A variable is (to the parser) an identifier which has been
previously defined as a VL variable name.

Integer: A sequence of digits without a decimal point.

Real number: A sequence of digits with a decimal point. NOTE THAT A
REAL MUST BEGIN WITH A DIGIT. ".9" [S NOT A REAL NUMBER.

The parser can process ASCII input files containing lower—case text, however because of
the escape-code nature of lowercase material, the identifiers may be only 20 lower—case letters
long. All parser keywords (i.e. RULES, VARS, etc.] are recognized only as upper-case
characters.

A.2. Error Information

When a syntax error is detected the parser does four things:

(1) A " is written under the offending symbol.
(2) The message **** SYNTAX ERROR is printed.
(3) The list of symbols which would be acceptable is output.

{4) The parser skips to the next unit of information, e.g. skips to the next rule, next
variable definition or next block.

141

142

The error return code given by the parser may be NOERROR when no errors have occurred, or
one of the following:

ERRPRNOPARTAB : The PARTAB file could not be read.
ERRPROSYNTAX : Omne or more syntax errors were detected.
ERRPROVERFLOW : Internal parser stack overflow,
ERRPRINTERNAL : The parser made a logic error which was fatal.
ERRPRUNSUPPORTED : An unsupported language feature was used.
ERR < other> : Any other {atal error code from supporting system

{e.g. the tuplemanager) from which there
is no recovery,

The parser writes additional messages to the MSG file to help diaghose some of these error
types.

The parser writes additional messages to the MSG file to help diagnose some of these error
types.

A simple parser driver program exists which utilizes two files of knowledge. DBefore
parsing, a preexisting network is loaded from the file BACKUP. The parser is invoked on inpat
file INPUT and giving output file OUTPUT. Subsequent to parsing, BACKUP is rewritten to
contain the updated network (BACKUP is processed with READBACKUP and
WRITEBACKUP directives). Also the file NETWORK is written via the WRITETEXT

directive and gives a readable representation of the network.

A.3. Mark Type Definition

The parser generates a network of tuples for each block (i.e. for each RULES block and
each VARS block). The name of the block (the group name) is the only handle for the network
of tuples, whose head node is located via the directory, given the group name. From this node
on in the block network, all tuples have a "parser mark™ node in them located in the first node
position, tuple[2], The parser mark (or just "mark”)} indicates the functionality of the tuple for
interpretation or decoding. The marks which are used this way are as follows:

A.3.1. Within a VARS Block
These mark types are generated from the VARS block definitions:

MKVARS: a list of variable-defn nodes in this tuple
MKDOMAIN: the nodes in this tuple define the domain
2|MKDOMAIN
‘3| domain type:
MENOMINAL: additional nodes give either
- one integer: number of levels or
~ list of values
MEKINTERVAL: additional nodes give either
- two integers: interval range or
— ordered list of values .
MKSTRUCTURE: additional nodes give values for leaves and
internal nodes in the structure tree
MKREFINE: gives the refinement structure of a
structured variable tree

143

[2IMKREFINE
(3] internal node name
[4l... subordinate nodes to [3]
MKUNITS: gives the units of measurement for the variable
MKVALCON: gives the value of an identifier or rule component. The tuple
contains pairs of numbers (value, degree of confidence), where
value may be either real or integer and where deg. of conf. is
always real. When multiple alternative values are to be
represented, many (value, degree of confidence) pairs may

be used. When space in one tuple is exhausted, another
MKVALCON tuple is incorporated te hold additional data.

A.3.2. Within a RULES Block
These mark types are generated within the RULES block:

MKNULL: a "no-operation” indicator

MEKVARDCL: for a group of rules, next node indicates variable definitions
which are to be used

MKBEHAVIOR: the node in position [3] denotes the behavior
MKINCR: increasing (/)
MKDECR: decreasing ()
MKRMIN: has a relative minimum (/)
MEKRMAX: has a relative maximum (/)

MKPAREN: indicates parentheses used around this unit

MKTVARS: indicates "target” variables used in the rule. A target
variable is one which occurs to the left of the relation symbol
in a selector.

MKRVARS: indicates "reference” variables used in the rule. A reference
variable is one which occurs to the right of the relation
symbol in a selector. In either theMKTVARS or MKRVARS tuple
the following node {tuple[3]) contains either MKRHSV or MKLHSV
to indicate whether the variables listed occur in the rule’s
right— or left-hand side, respectively. Tuple positions {rom
tuple[4] hold variable node data. Each variable cited occurs
one or more times in the right or left hand side {according

to tuple[3]|) as a target or reference (according to tupiei2|).
MKILHSV: indicates rules in a rule group which involve a specific
variable in the left hand side part.
MKRHSV: indicates rules in a rule group which involve a specific
variable in the right hand side part. Tupie[3| contains
a variable node and tuplei4] on to the end contain rule
nodes which incorporate the variable within the left- or
right—hand side {as indicated by tuplei2]).
MKEXEC: indicates that the following node (tuple{3]) contains an
“executable” code which can be one of the following:
MKFALSE: denotes the constant value false
MKTRUE: denotes the constant value true
MKRULES: a list of rule nodes in this tuple
MKRULE: rule lhs node and rule rhs node in this tuple
MKLM: the following node 1s a linear module

144

MKCS: pairs of (lm-coeff, Im-ncde) in this tuple
MEKOR1: nodes are lin~-modules to be or—ed together
MKANDIL: nodes are condition units to be and-ed together
MKOR2: nodes are condition units to be or-ed together
MKEXCPT: two nodes follow: node-a node-b
MKEQUIV: two nodes follow: node~a <<=>> node-b
MKIMP: two nodes follow: node~-a =>> node-b
MEKAND2: the nodes are selectors to be and—ed together
MKVAR: start of selector. there are five nodes plus optional nodes:
2IMKVAR
3] node for the variable
4| node for the relation (MKEQ ,MKGT MKLT MKNE ,MKGE ,MKLE}
5| node for reference type (MKREFO,MKREF1,MKREF2)
if MKREFOQ: one additional node follows in position 6!
MEKALL: entire domain (*)
MKUNKN: unknown (?)
MKUNDEF: undefined (%)
MKNA: not-applicable (NA)
if MKREF1: one or more nodes follow denoting a list of nominal values
if MKREF2: one or more sets of node triples of the form
(low-value, high—value, weight) used for interval values and
weighted values of both interval and nominal type
if MKREF 3: one or more sets of node quadruples of the form
(low—value, high~value, weight , weight,) used for interval values and

weighted values of both interval and nominal type

) p—y

MKFUNC1: the nodes in this tuple indicate a function reference
similar toMIKKVAR. above, except that the node for the name of the
function is "Hoating”, l.e. it contains no parse tree.
To evaluate such a node, the dictionary must be consulted.
The relation and reference nodes may both be omitted. If
either is required, both are present.
MKFUNC2: the node in this tuple indicates the general function
MKTRAP: the node in this tuple indicates a trap function
MKARGS: the nodes are arguments to MKFUNC1 above

APPENDIX B

(}\fLu_(;nannnlar

This appendix lists the GVL, grammar at the time of this writing. Its format is as
input to the YACC compiler-compiler available on Berkeley UNIX.

Y+token LP RP LSB RSB L8R ARBAR ™MO0D IMPASGN IMP BMIN NE TQ
/% () £ i { } % 1> = > / N

%¥token OR PLUS MINUS TIMES DIiv EQULIVY LE GE RMAX EOQ COLON

/w v 4 - L] Fa < > <= »=x [= - *®/

Ytokern COMMA OQT EXCPT GT LT SEMI TRUE FALSE UNKN UNDEF
/% : . > < 3 T F ? $ e 4

%“token [D VAR [NT REAL RULES VARS FUNCS END IN NA

“token NOMINAL INTERVAL STRUCTURE UNITS PROP TRAP

%

file - bhlock
i filea bBlock

biack - bBin

blk - idnaode RULES wvardec! funcdec! optprops ruiebady N0
! dmode VARS optprops varsbody TN
i tdnode FUNCS vardc! agppropns furncoboay S04
| esrrar

vardc! =~ VYARS EO [0 SEMI

funcde! - FUNCS EQ [D SEM!

148

rule
| rulebody SEMI

ruiebody -
rule

vardefn
| varsbody S&EMI

varshody -
vardefn

funcdefn
! funchody SEMI

funchedy =
funcde fn

imsnode IMPASGN strength

ruje =~ optidnode
| errar

I 4

optidnode =~ [0
| €

propg
| optprops prap
| €

cptprops -

prapg - PROP EQ I0 END
' msnode = b ms
Ims = l inearmoduise

| Imes OR tinearmaodule

| inearmodule = quantifier LP imsnode RAF

Imenode optprops

146

1

quantifier - LT optint

‘ngeT - IN ref

inparts - Impart

] imparts PLUS

Imparz - LP imparts RP

| optreal optreal

pptreal - raealnode

I

cands imt -+ condstmt cond:tian

; lmparts

idrnode

impar t

insat GT

condstmt

| cands:mt HR condition
| condstmt EXCPT condition

| condition

canmdgi tian - term ALY
' tarm [MP

Term

tarnm -+ [P caoandstmt RP

[selactars
' TRUE

term

*ara

147

selactars - salector

| selectors selector

selectar =~ LSB exprnode rel
| exprnode

wlune - gaxprnode

| €

optralref - ral refgroup
1 €
rel - EQ
| GT
| LT
| NE
| GE
I LE
refgrounp - ref

ref - valunit
| ref COMMA valunit
 set weight
raf ZOMMA set weight
TIMES
JNKN
UNJOER
NA

vaiurnit -~ axprnade gdval

refgraup behavior wfunc AIHB

wetght

148

149

val - intnode
| realnode
| 1D
{ varnaode optargs
| TRAP optarags

args - arg
[args
COMMA
arg

arg - exprnode

optargs - LP args RP
| €

ddval = TO exprnode

waight < COLON exprnade aptexpr
|«

upfaupr - axprnode
3

5@t - LBR vais REBR

bahavior < OI[V
EXCPT
RMAX
AMIN

| — i —

vals - val
| wvais CCNMRA val
| ¢

gxprrnode - expr

exar - aterm
| expr addap aterm

atarm - afactor
| aterm mulop afactor

afactor - MINUS afactor
| LP expr RP
| val

addop =+ PLUS
| MINUS

mulap = TIMES
| DIV
| MCO

strength = LP intraalnode CGMMA intrealinode RP
| LP intrealnode AP
I«

vardatn - idrode dfields optpraps

]
I £

dfields - dfield
| dftelds dfield

gfileid -+ dfietdpart

dfieidpart =~ NOMINAL EQ LP idsunigue RP
| NOMINAL EQ inttuple
| INTERVAL EQ imtrealtuple

T intrealttuple

| INTERVAL EG LP idsunigue RP
. STRUCTURE EZ LP idsuniqgue RP LP
| UNITS EO idtuple
St o - ‘drnopde var LP functab RP
functab - funcenitry
| functab funcentry
funcentry = ‘dnode intrealnode intrealnode

var - varmrmaoda

reflinmes - refinaement

| refines refinemant

refinmament -

idtupie EQ LP ids AP

idsunigue - .dsu
c@dsud o~ rdtu
I idsu 1dtu

idtu - idinmtnade

res:

e

~:F

151

152

idnpde - 8

varnogde - VAR

intrhode - INT

real noge - REAL

imtraesinade - intnadae

| reatnode

idintrmrodea - idnode
| imtrmode

ids - idtupie
| ids idtuple

idtupie - ‘drnode

inttuple - intnode

intrealtuple - intrealnaode

APPENDIX C

Internal Representation of a BABY Network

(NODES_TO_PROPAGATE ()

(DATASET ()

(PATTERNS (
(DOWNWARD NEONATE_PATTERNS)))

(ASSERTIONLIST ())

(NEONATE_PATTERNS |
(MKVALTUPLE BAAND 0.l1el 0.0 0.163184079 0.099950124el)
(DOWNWARD SIADH EVIDENCE 0.7968e-8 0.1631 0.09995el)
(DOWNWARD HYPONATREMIC EVIDENCE 0.0 0.8 0.1el)
(DOWNWARD GLYCOSURIA EVIDENCE 0.0 0.8 0.1el)
(DOWNWARD NORMAL_ADRENAL FUNCTION EVIDENCE 0.0 0.8 0.1e1)
(DOWNWARD NORMAL RENAL FUNCTION EVIDENCE 0.0 0.8 O.lel)
{ASSERT 0.85) }) |

(NORMAL_RENAL FUNCTION (
(MKEXEC MKRULE u002 MKNULL 0.1el 0.lel)
(MKTVARS MKLHSV NRF)
(UPWARD SIADH EVIDENCE) |
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1el)
{ASSERT 0.95 }))

(NORMAL_ADRENAL _FUNCTION (
(MKEXEC MKRULE 1004 MKNULL 0.1el 0.lel)
(MKTVARS MKLHSV NAF)
(UPWARD SIADH EVIDENCE)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1ei)
{ASSERT 0.99 }))

(GLYCOSURIA |
(MKEXEC MKRULE u008 MKNULL 0.1et 0.1el)
(MKTVARS MKLHSV GLY)
(UPWARD bal EVIDENCE)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 0.8 0.0 0.8 0.1el)
(ASSERT 0.1) })

(HYPONATREMIC (|
(MKEXEC MKRULE u008 MKNULL 0.1el 0.1el)
(MKTVARS MKLHSV HYP) '
(UPWARD SIADH CONTEXT 0.75)
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BARULE 9.8 0.0 0.8 0.1el)

153

154

(ASSERT 0.5e-1}))
{SIADH (
(UPWARD NEONATE_PATTERNS EVIDENCE)
(MKVALTUPLE BAYESIAN 0.8 0.79680e-8 0.16318 0.09995¢1)
(DOWNWARD ba0 EVIDENCE 0.1el 0.099%e-2 0.1el 0.4875e-1 0.1el)
(DOWNWARD NORMAL_ADRENAL FUNCTION EVIDENCE 0.1el 0.0999e-2
0.0999e-2 0.1el 0.lel)
(DOWNWARD NORMAL RENAL_FUNCTION EVIDENCE 0.1el 0.0999e-2
0.0999¢-2 0.1el 0.1el)
(DOWNWARD HYPONATREMIC CONTEXT 0.501e3 0.19960e-2 0.19960e-2
0.1el 0.500999999¢3)
(ASSERT 0.5e-1)})}
(bad {
(UPWARD SIADH EVIDENCE)
(MKVALTUPLE BAOR 0.1lel 0.1lel 0.199999999 0.lel)
(DOWNWARD ba4 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD ba3 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD ba2 EVIDENCE 0.0 0.1 0.1el)
(DOWNWARD bal CONTEXT 0.1l 0.199999996 0.0)))
(bal (
(UPWARD ba0 CONTEXT 0.75)
(MKVALTUPLE BANOT 0.lel 0.lel 0.199999999 0.0)
(DOWNWARD GLYCOSURIA EVIDENCE 0.1el 0.1el 0.1el)))
(ba2 |
(MKEXEC MKRULE 2010 MKNULL 0.1el 0.1el)
(MKTVARS MKLHSV URINE_OSM)
(UPWARD ba0 EVIDENCE)
(MKVALTUPLE BARULE 0.1 0.0 0.1 0.1e1 0.8)))
(bad (
(MKEXEC MKRULE u012 MKNULL 0.1el 0.1lel)
(MKTVARS MKLHSV URINE_OSM)
(UPWARD ba0 EVIDENCE)
(MKVALTUPLE BARULE 0.1 0.0 0.1 0.1¢1 0.8)))
(bad {
(MKEXEC MKRULE 2014 MKNULL 0.1el 0.lei)
(MKTVARS MKLHSV URINE_SG)
(UPWARD ba0 EVIDENCE) |
(MKVALTUPLE BARULE 0.1 0.0 0.1 0.1el 0.8) }}
(GLOBALS (|
(MKVARS NRF NAF HYP GLY SERUM_OSM URINE_OSM URINE_SG)))
(SERUM_OSM (
(MKDOMAIN MKINTERVAL 1 1000 }))
(URINE_OSM {
(MKDOMAIN MKINTERVAL 1 1000) })
(URINE_SG (
(MKDOMAIN MKINTERVAL 0.lel 0.2e1)))
(RULESET (.
(MKLHSV URINE_SG ba4)
(MKLHSV URINE_OSM ba2 ba3)

(MKEXEC MKRULES NORMAL RENAL FUNCTION NORMAL_ADRENAL FUNCTION
GLYCOSURIA HYPONATREMIC ba2 ba3 bat)

(MKVARDCL GLOBALS)))

(w010 {
(MKEXEC MKVAR URINE_OSM MKGT MKREF2

SERUM_OSM SERUM_OSM 0.1)))

(w012 (
(MKEXEC MKVAR URINE_OSM MKGT MKREF2 300 300 0.9)))
{ull4 { |

(MKEXEC MKVAR URINE_SG MKGT MKREF2 0.101el 0.10lel 0.8))

)

