INDUCE 4: A Program for Incrementally
Learning Structural Descriptions
from Examples

by
John A. Bentrup, Gary J. Mehler, Joel D. Riedesel

Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, Hlinois

File No. UTUCDCS-F-87-958
1SG Report 87-2

February, 1987

rted in part by the Office of Naval Research under Grant No. 00014-82-K0186, the National

This research was suppo
Science Foundation under Grant No. NSF DCR 84-06801, the Defense Advanced Research Project Agency under

Grant No. N0O0O014-85-K0878, and grant 1850058 from the Fund for the Improvement of Post-Secondary Education,
U.S. Department of Education.

TABLE OF CONTENTS

Acknowledgementsvvve e e s i
1. INtrOQUCHOM « + 2 v v e e v vvanes s s an e s seetsns s
1.1. Terminology . ..:cccervvevrosenrncnsnrnrarsasanas
1.2. Incremental Leaming . - - o« v v v veneronanaan it as

2. Implementation « v o vssvnseseosacectasnnasesasarissnsns
2.1. Algorithm Description . .. vovvvveiiienieaiaans

3. Additional Modifications« cctcrrereresascossararasens
3.1. NewCommands . .« coovuvcsssnsassarsossnaasanassss
3.2, Performance Enhancementsvv v vvenracaarnanorens
3.3, Code Modularization for Comprehensibility
3.4. Miscellaneous Work v veveciiianraranrasassnrans
3.5. Possibilitiesand Problems o iiiiiatiarsianinnans

B 11 . 3O PO S I
4.1. Organic Chemistrycocvevcennnrnrnnsnircrsrannss
42 BobolSovievnrsananrnanrssanraansasanasssas
4.3. Place Sethings «..vvceeoravanrsssssssarsnsrsmrsssasns
4.4 Railroad TraAiNS-vcvctassrmescaassannsrasenss

5, Conclusion « . v ovvwveeerasnorasiasanssnasasasssnssnss

6 Pl E IR oo s o e, o T8 B MM h M e g e

ABSTRACT

The program INDUCE 4 is a general-purpose incremental inductive learning program that
transforms symbolic descriptions of real-world events into more general and more useful
descriptions of these events. These events may be specified in terms of attribute as well as
structural descriptors. The program produces such descriptions by performing various
generalizing, simplifying and constructive transformations on the input descriptions, under the
guidance of background knowledge specified by the user. As new events are made available,
INDUCE 4 can incrementally modify what has been proviously generated to reflect this new
knowledge.

Key words:
Machine learning, Concept learning, Inductive inference, Learning from examples, Incremental
learning, Structural descriptors, Constructive induction.

ACKNOWLEDGEMENTS

We would like to thank Ryszard S. Michalski for stimulating our interest in Machine Learning
through this project. It has been very useful and interesting to have the facilities to implement and
research new areas in Machine Learning. It has also been very worthwhile to have had the
opportunity to contribute new research as a result of a class project. In spite of the fact the program
we worked with was modified once too many times, we were still able to come away from it with a
sense of accomplishment. We would also like to thank Debra Place for her help in providing
necessary materials. Thanks are also extended to Carl Kadie for his robot examples.

Furthermore, we would like to thank Prof. R.S. Michalski, Carl Uhrik, Carl Kadie, and Mark
Klein for providing valuable comments and criticisms.

This research was supported in part by the Office of Naval Research under Grant No.
00014-82-K-0186, the National Science Foundation under Grant No. NSF DCR 84-06801, the
Defense Advanced Research Project Agency under Grant No. N00014-85-K-0878, and grant
18500358 from the Fund for the Improvement of Post-Secondary Education, U.S. Department of
Education.

1. INTRODUCTION

INDUCE 4 is a general purpose leaming program that learns structural descriptions from examples
[Michalski 1980, 1983]. It may be run in both an incremental and a batch mode. The incremental
mode of learning is incremental in the sense that learning packets may be processed by the program
as they arrive. It is in this way that the program updates its descriptions of classes of examples.
This is in contrast to constructive induction (also called incremental learning) in which intermediate
hypotheses are generated in the process of learning a concept. A learning packet is any set of
examples from one or more classes about which we desire to learn.

This paper is a description of the program INDUCE 4. The predecessors of this program include
INDUCE 3 [Michalski & Stepp, in preparation], INDUCE 2 [Hoff, Michalski & Stepp, 1983], and
INDUCE 1 (described by the PhD thesis of James B. Larson [Larson 1977]). Enhancements were
made to INDUCE 1 by Thomas Dietterich in 1978 [Dietterich & Michalski 1978], and by Mihran
Tuceryan in 1980. The major difference between INDUCE 3 and INDUCE 4 is the addition of a
facility for performing incremental learning. Other changes include performance enhancements and
input parsing modifications.

1.1 TERMINOLOGY

This information is presented to familiarize the reader with key terms and ideas. A more thorough
treatment of this material may be found in [Larson 1977, Michalski 1983].

Objects and concepts are described by the language VL,, which is an extension of first-order

predicate logic [Michalski 1983]. Each object or concept is considered to be an event, which is a
conjunction of selectors. A selector is a relational statement that contains a predicate descripror
(with variables as arguments) and a list of values that the descriptor may assume, or only a

predicate descriptor if it is a boolean predicate. For example, Fig. 1 can be described in VL, as:

[contains (figurel,pl)] [contains(figurel,p2)] [contains {figurel,p3)]
[contains (figurel,pd)] [size(pl)=large] [size(p2) =madium] [size (p3)=medium]
[size (p4)=medium] [shape (pl)=rectangle] [shape (p2)=circle] [shape (p3)=circle]
[shape (p4) =triangle] [color (pl)=clear] [color (p2) =shaded] [color (p3)=shaded]
[color{pd)=striped] [ontop(pl,p2)] [ontop (pl,p3)] [ontop(pd,pl)].

P4

P1

Fig. 1.

While in english Fig. 1 could be described (translation from VL description):

Fig. 1 contains 4 parts of which one is a large rectangle and is on top of two medium
sized circles. There is a medium triangle on the rectangle. The circles are shaded, the
triangle is striped and the rectangle is clear.

Descriptors may be divided into two classes, null- or one-argument predicates (attributes), and two
or more argument (non-unary) predicates. Null- or one-argument descriptors typically represent
attributes such as size or shape, and are called attribute descriptors. Non-unary descriptors are

used to represent structural or relational information between objects such as ontop or inside,
and are called relarional descriptors.

A complex is a conjunction of selectors. A complex is satisfied by an event if every selector of the
complex is satisfied by the event. The event description on the preceding page is an example of a
complex. Each event is assigned to a class by the user. If one wishes to assign a complex to a

class, this would be specified as: [complex] => [class=class_name].

A concept descriprion is the disjunction of a set of complexes. A concept description covers an
event if at least one complex of the set is satisfied. Concept descriptions, also known as
hypotheses, are generated to describe a class of events. A set of candidate concept descriptions are
generated from a star. A star of an event e against a set of eventsT'is a maximally generalized set of
complexes which is satisfied by the evente but are not satisfied by any member of the set of avents
T.

A concept description is consistent if it does not cover an event from any other concept. A concept
description is complete if it covers all of the events from the concept being learned.

A characteristic concept description is an expression that satisfies the completeness condition, while
a discriminant concept description is an expression that satisfies both the consistency and
completeness conditions [Michalski 1983, Reinke & Michalski 1985]. Ideally, the best
characteristic description is maximal while the best discriminant description is minimal [Reinke &
Michalski 1985]. Here maximal means the largest possible description that characterizes the class,
while minimal means the smallest possible description that discriminates between classes.

1.2. INCREMENTAL LEARNING

Incremental learning is useful in many learning situations. It is sometimes useful to generate a
hypothesis for a small number of events and then modify it as new events become available. In this
way, the hypothesis is constructed, based on a small number of events and is tuned {or repaired, as
in [Michalski 1985]), by generalizing or specializing if necessary to accomodate new events. If the
new information is already described by the hypothesis, no modifications are necessary. This is
known as accretion [Rumelhart & Norman 1977]. In the early learning stages restructuring is often
necessary and is best performed with a small data set, which is representative of the entire data set.
Given this hypothesis, further tuning is relatively easy to perform, and accretion of new data is
trivial. This results in a substantial savings in resources over batch learning, in which a new
hypothesis must be generated every time a cover is attempted.

One method of incremental learning utilizes full memory [Reinke 1984]. In this method, all input
events are retained (remembered) to ensure that later modifications to hypotheses do not create
inaccuracies. Another method of incremental learning utilizes partial memory. Partial memory
implies saving few representative events (or generalizations of small numbers of events) from the
event space and "forgetting” the rest. Problems may arise during refinement of the hypotheses
when contradictory events are encountered, as illustrated in Fig. 2.

Fig. 2 shows an example of the differences between partial memory and full memory. On the left
is the full memory scheme FM, while on the right is the partial memory scheme PM. In order to
differentiate the circle events from the square events, two boxes (generalizations) are formed. Itcan
be seen that both methods produce the same hypotheses initially, but upon receiving two additional
examples from the class square, partial memory loses consistency at the expense of completeness.
In order to achieve complete coverage of the new information, consistency with the original data
can be lost. Full memory avoids this problem by retaining all of the input events.

Another important feature of learning is the quality of the hypotheses. One measure of this is -
comprehensibiliry. A measure of comprehensibility is the inverse of the sum of the number of
different attributes, selectors and complexes in the rule [Reinke & Michalski 1985]. For example,
in figure 1 the number of selectors is sixteen, the number of different attributes is five, and the
number of complexes is one. The sum of these is the complexity of the description: 22. The
comprehensibility is the inverse of the complexity: 1/22 or .045. Hypotheses generated by
incremental learning should not be substantially more complex than those generated by batch

learning.

-..... @E%@
(N BEBA
0000 O

o o° OO
00 gglOO

Fig. 2. Full Memory and Partial Memory

Fig. 3 shows a schematic version of the incremental hypothesis generation process. Suppose a
new event is entered into the system. If the new event belongs to the class that is being described
by the hypothesis, the event is a new positive event. Therefore, if the hypothesis does not cover
this new event it must be generalized so that it does cover the event. Similarly, if the new event
does not belong to the same class as the hypothesis and is covered by the hypothesis, the
hypothesis must be specialized to exclude that event from its hypothesis space. This is similar in
principle to a version space [Dietterich 1982, Mitchell 1978].

—+ RULE |¢

(GENERALIZE) ¢ ! ('sPECIALIZE)
4 DS%E'UT COVERS A
Tenr | EvenT
EW
PDNSITNE A 4 4 * Negﬂve
EVENT i EVENT

Fig. 3. Incremental hypothesis generation process [Reinke & Michalski 1985]
2. IMPLEMENTATION

INDUCE 4 uses VL, logic rules to represent events and hypotheses. The A1 algorithm is used to

learn generalized descriptions of events. INDUCE is able to learn structural descriptions as well as
attribute descriptions. NEWGEM [Mozetic 1985], which is able to learn attribute descriptions
incrementally, is the basis and inspiration for the incremental additions to the INDUCE algorithm.
This algorithm is described in Fig. 3 and in the preceding section. The difference between
NEWGEM and INDUCE 4 is that the INDUCE programs can handle structural descriptions (e.g.
[ontop (x1,x2) 1). Because of this, INDUCE 4's algorithm for incremental learning is slightly
different than NEWGEM's.

INDUCE 4 uses a two-phase approach for producing generalized descriptions of events; one for
relational predicates and another for unary predicates. Phase one searches the structure-specifying
descriptors. Once consistent generalizations are found in the structure-only space, the attribute
descriptor space is searched to complete the generalizations.

2.1. ALGORITHM DESCRIPTION

Fig. 4 indicates the primary distinction of incremental and non-incremental modes of operation.
When the user specifies a cover of a particular event set, the algorithm of Fig, 4 is performed. The
covering pmceéure calls two main subprocedures. (1) In incremental mode, hypothesis repair is
performed. (2) After repairing hypotheses, any remaining events are covered, producing a
disjunction. Finally, a Subset Elimination procedure is invoked to prune redundant hypotheses.
These algorithms are described further below.

A. Repair Hypotheses: This procedure is the core of the incremental learning algorithm,
The procedure is as follows:

I. Make Relevant Hypothesis List. This procedure makes a list of all the relevant
hypotheses for the current event set being covered. There may be more than one
hypothesis if a disjunction of descriptions is used to describe an event class.

1. Make: This procedure sets up three data structures to be used in subsequent steps.
False negative list is a list of the negative events that the hypotheses currently cover.
Negative list is a list of all the negative events in the event space: events that are not
members of the current event set. Positive list is a list of all the positive events:
events that belong to the current event set.

III. Specialize: This procedure is called if any false negative events exist. This means that
the hypotheses cover some negative events and therefore needs to be specialized.
This is done by calling the A9 algorithm with a restricted universe consisting of the
false negative events and the positive events. A7 is given the relevant hypotheses list
as the initial star, resulting in the specialization of the hypotheses. This works
because the A7 procedure restricts the current star against the false negative events.
The star is passed to the A? procedure as the generalized descriptions which need to
be extended against the negative events.

COVER

EVENTS

('sTART)

Incremental

No

Mode

Make Relevant
Hypothesis List

v

Make:

1. False Negative List
2. Negative List

3. Positive List

False
Negatives
?

v Repair Hypotheses

Specialize

False Yes

Positives
?

Generalize

11

Cover Remaining
Evenls

Subset
Elimination

v
(Enp)

Fig. &

A FLOWCHART OF THE ALGORITHM

10

IV. Generalize: This procedure is called if there are any new positive events that are not
currently covered and should be (false positive). In this case A9 is called with the
complete universe to keep it from generalizing too much and thereby covering some
of the negative events. The universe consists of all the negative events (negative list)
and all the positive events (positive list).

Cover Remaining Events: This procedure is the original non-incremental INDUCE
algorithm. It is used by the incremental version in two situations: (1) Cover Events is
called to produce the initial hypotheses. (2) If the incremental algorithm cannot modify the
hypotheses to completely cover all the positive events, new hypotheses must be generated.
Cover Events may then produce a disjunctive concept description.

Subset Elimination: In certain cases, the cover may return superfluous hypotheses. The
subset elimination procedure removes hypotheses that cover events which are a proper subset
of the events covered by another hypothesis. For example, Fig. 5A shows hypothesis H1
covering events 1, 2 and 3, while H2 covers events 2, 3 and 4. Fig. 5B shows the result of
deleting event 4. H1 still covers events 1, 2 and 3, but since H2 now covers only events 2
and 3, H2 is subsumed by H1.

Fig. 5.

In Fig. 5A, H1 (denoted by the black oval) covers events 1, 2, and 3, while H2 (the grey oval) covers
events 2, 3, and 4. Fig. 5B is the result of deleting event 4, Since no new events are covered by the
additional hypothesis, H2 may be subsumad by H1.

11

3, ADDITIONAL MODIFICATIONS
3.1. NEW COMMANDS

Two new commands were added to INDUCE 4 that weren't available in previous version of the
system.

1. An additional command to add or delete hypotheses. Similar to the 'm' command in INDUCE 3
that allows the user to add or delete any event, INDUCE 4 has the 'y’ command that allows the
same operations on hypotheses. With this command, the user may guide the learning process by
either entering or removing a hypothesis.

2. The addition of a command, 't', that prints both the cumulative and the elapsed CPU time used.
This can be used to determine the time required to generate a particular hypothesis.

3.2. PERFORMANCE ENHANCEMENTS

Several changes were made to enhance the performance of the system in the incremental mode of
operation.

1. A new data structure was added that indicates whether an event set must be re-covered. In
non-incremental mode, a cover operation is performed whenever specified by the user. However,
using previously-computed hypotheses, a cover may not be necessary. If no new events have been
added by the user, the hypotheses do not need to be modified. Likewise, if an event is deleted
from an event set other than the one being covered, the hypotheses are still valid. The data structure
that facilitates this tracking of events is an array of flags, one flag for each event set. This alleviates
the necessity for checking the hypotheses against all of the events.

2. The hypothesis data type was modified to include a list specifying the events it covers.
Previously, this information was computed many times in the cover procedure. In the present
version, this information is computed once and stored with the hypothesis.

12

3. A flag was added that specifies whether incremental mode is enabled. This flag may be modified
by the user as a parameter setting using the command iner=true. Initially, this flag is set to
false for compatibility with INDUCE 3.

4, The INDUCE input parsing mechanism has been simplified so that less computation is required
when reading single characters.

5. Symbolic event set names (e.g. sulfates) may now be specified, rather than merely event
set numbers when performing covering operations.

3.3. CODE MODULARIZATION FOR COMPREHENSIBILITY

Various procedures of INDUCE were modularized to increase their comprehensibility. These
include the main command processing loop, the main cover procedure, and the main VL rule
parsing procedure.

3.4, MISCELLANEOUS WORK
Major and minor "bugs” were repaired as encountered. The major fixes included:

1. Proper exiting from the rule/hypothesis modification mode. Previously, the program terminated
when exiting the mode with the g command.

2. Correct parsing of numbers. Previously, any item beginning with a number was parsed as a
number, For example, the input 3.9 would have been incorrectly parsed as a number.

3. The correction of an error that caused the program to grow monstrously large for certain in puts.
The failure to free certain data structures resulted in unbounded growth which eventually led to
program termination due to insufficient memeory.

13

3.5. POSSIBILITIES and PROBLEMS

1. INDUCE 4 uses full memory learning, which does not lend itself to large numbers of events. A
partial memory method would be able to handle large numbers of events at the cost of possible
inaccuracy. A scheme is needed to deal with uncertainty that may arise due to the forgetting of
events.

2. A possibility is to allow the attachment of functions to predicates. This would enable internal
operations to be performed. For example, a predicate could cause an internal table to be updated
each time the predicate is used, or a counter could be decremented each time a predicate is
encountered.

3. Although INDUCE can perform arithmetic operations, its range of values is limited and the
arithmetic rules are difficult to use. The arithmetic values are mapped into a table, obviously
limiting their usefulness. A re-implementation of portions of the system that perform these
operations seems necessary. The arithmetic rules are limited to the basic operations; the ability to
define functions would be useful.

4. The current implementation is approximately ten thousand lines of Pascal. This code has been
repeatedly modified and has become quite difficult to understand. Perhaps a rewriting into LISP

would aid readability.

5. Subset elimination is only performed for proper subsets. One way to modify this is to use the
A9 algorithm to find a cover for all the hypotheses in an event set. This would produce a minimal
hypothesis list.

6. An interface that presents the examples in a pedagogical order (i.e. ESEL [Michalski & Larson
1978]). In this order, the initial hypotheses would be most representative and easy to tune to
accommodate later examples.

7. The INDUCE methodology doesn't support uncertainty of attributes. This is important in
certain domains, but would require major changes in INDUCE.

14

4. RESULTS

INDUCE 4 has been tested on a variety of data sets with events taken from four domains. These
tests involved the correct formulation of hypotheses to describe event classes from the domains of
organic chemistry, railroad trains, dinner table place settings, and the sensory input of a robot.

Several "standardized" input data sets were employed to compare the non-incremental (or batch
mode) approach of INDUCE 3 with the incremental operation of INDUCE 4. These standardized

data sets demonstrate different ways in which large numbers of events may be presented for
consideration. For example, batch mode involves a one-step cover operation during which all
events are covered at one time. Alternatively, a hypothesis may be generated for a small number of
events and then modified as additional events are encountered. Four incremental formats were
used: rwo-step, layered, random, and haphazard.

First, let us describe how each of these methods is utilized in the characteristic mode of operation,
whereby only a single class of events is considered at a time. The result of such a cover is the
creation of a characterization of the class.

In one-step covering, after all of the events of the class have been entered, a cover is performed.
This is equivalent to the batch mode operation of INDUCE 3. '

In two-step covering, a hypothesis is generated after two events have been entered. Then the
remainder of events for the class are entered and another cover is performed, making use of both
the events and the previously generated hypothesis. This covering method seems like it could be
the best possible strategy if the initial hypothesis is generated from sufficiently representative
events. In theory, if events are selected for maximally effective learning, the hypotheses learned
during the first cover will need little modification when new events are subsequently covered. If
this is the case, this method could produce the best resullts.

The layered method creates a hypothesis after two events have been entered and then a new cover
is performed after the addition of every new event. This is a worst case scenario in which events
become available one by one and it is important to maintain an accurate hypothesis,

15

There is no random covering scheme in the characteristic mode. It is subsumed by the layered and
haphazard methods.

The haphazard method is similar to the approach used by Reinke [Reinke & Michalski 1985].
Initially twenty percent of the events are submitted and the first hypothesis is generated. Then a
random percentage of the remaining events is submitted and a new cover is made until the pool of
events has been exhausted.

In discriminant mode, each hypothesis formed describes how the particular class may be
distinguished from all other classes. Thus, all of the classes are viewed simultancously and the
input data sets must be arranged by the user to reflect this fact.

In discriminant one-step covering, a cover is performed on each event class after all of the events
of all of the classes have been entered. Again, this is equivalent to the batch mode operation of
INDUCE 3.

In two-step covering, hypotheses are generated after two events from each class have been
entered. Then the remainder of events for the classes are entered and another set of covers is
performed, making use of the events as well as the previously generated hypotheses.

The layered method creates initial hypotheses after two events from each class have been entered.
After this, a new set of covers is performed following the addition of one new event from each
class. This continues until all of the events have been entered.

In random covering, two events from different classes are selected and an initial set of hypotheses
is formed. Then, until all of the events have been used, an event drawn from a randomly selected
event set is submitted to the system and covers are performed on all of the known classes. This is
the worst-case method in discriminant mode since this method requires the largest number of

COVETS.

In the haphazard method, twenty percent of the events from each class are submitted and the first
hypotheses are generated. Then a different random percentage of the remaining events of each

16

class is submitted and a new set of covers is made until all of the events have been utilized.

Runs were made in incremental mode as well as non-incremental mode of INDUCE 4 to verify that
both modes would generate similar output for each of these methods. The non-incremental (or
batch) mode is what a user would have seen if using INDUCE 3. All runs shown were performed
on a SUN-2 workstation. JNDUCE may also be used on VAX and Pyramid computers.

The results may be analyzed based on the criteria of resources used and the complexity of the
generated hypotheses. Resource usage is based on the amount of CPU time used. A rule's
complexity, assumed to be the inverse of it's comprehensibility, was defined as the number of
selectors, number of different attributes and number of complexes in the rule. The complexity of a
hypothesis is the average of the complexities of it's disjunctions [Reinke & Michalski 1985].

4.1. ORGANIC CHEMISTRY

There were 84 input events. These events were from the following classes: alcohol, ether, alkene, alkyne
aldehyde, ketone, carbacid, ester, acid anhydride, amida, nitrile, amine, thicl, sulfide, sulfonic acid, sulfate, phosphing
phosphate, alkyl halide, acyl halide, and organometallic. Fig. 6 shows the input examples for acylhalide. Fig.
7 shows the resulting rules obtained by both the incremental and nonincremental runs for the 2-step

cover. All the results are then summarized in the graph of Fig. 8.

17

ACYLHALIDE
h {t(al)mol] [ti{a2)=c] (t(adl=c] [sb(al.a2}]
Iol ‘ (do(aZ.a3)l(sbia2_ad)][tlad)=c]
cl c c h [t (aS)=h][C{ab)=h] [£{aT)=h] [=biad.a8}]
I [sbi{ad.a6)] (sbiad.a?)] =-> [d=acylhal].

; h

There are seven atems; the typa of atom 1 is chlorine, 2 is carban, 3 Is axygen, 4 is carban, 5 is
hydrogen, & is hydrogen, and 7 is hydregen. Atomi has a single band to atom 2. Atem 2 has a double
band to atom three and a single bond to atom 4. And atom 4 has a single bond to aloms 5, 6and 7. The
domain is acylhal.

(s] h h [tial)=f] [c(a2}=c] [tl{a3)=o] [sklal.a2)]
|] | | [dB{aZ.al] [sb(a2.as)) (t (ad)=c] [t {a5)=h]

f [(o] [h [ttaBl=h] [sbfad.a%)] [sblad.a8)]
l ‘ [ebtad.aT)]l[tlaT?)=c] ([t (a8)=h] it (ad)=h]

|"I h {1 [2{al0i=h] [sb({aT7.a8)] [sbiaT.a®l]

[=b(aT.al0)] => [d-acylhal].

Here there are len atams. Atom 1 is of type 1, 2, 4 and 7 are of type carban, 3 is of type oxygen, and 5, 6,
8. @ and 10 ara of type hydrogen. Atom 1 has a single bond 1o atom 2. Atom 2 has a single bond to atom 4
and a double bond 1o atem 3, atom 4 has single bonds to atoms 5, & and 7, and atem 7 has single bonds to
atorms 8, 9@ and 10. The domain is acylhal

[tiall=brl [t {aZ)=c] (t{ad)=a] [sbilal.a2)]

(] hl hl h {dh{aZ.a3)]sbiaZ.a4)][ti{ad)=c] [t (aB)=h]
I [sb(ad.a%)] [sbia4.ac6)] [sbiad.ald)]
b=~ G C c h [ttab)=s] (t(aT)=h] [t{ad)=h] [t (a3} =h]
I I I [sbi{a6.a7])] [sb{as.aB)] [selad.ad)]
h — cl—h h h [t{al0}=e] [t {all}=h] [t {al2)=h]
[sB(al0.all}] [sbi{al0.al2)] [sb(ald.all)]
h [ttald}=c] [£{ald)=h](t(alS}=n] [tlalél=h]

[sbfalld.ald)] (sbialld.als)] (sblalld.als)]
-3 [d=acylhall].

This example has 18 atoms. Atom 1 is of type bromina, atem 3 is of type oxygen, atems 2, 4,6, 10 and 13
are of type earban and atoms 5, 7. 8, 8, 11, 12, 14, 15 and 16 are of type hydrogen. Alam 1 has a single
bond to atam 2. Atom 2 has a double bond ta atom 3 and a single bond to atem 4. Alem 4 has single
bonds 1o atoms 4, 6 and 10. Atam & has single bonds 1o atoms 7, 8 and 8. Atom 10 has zingle bonds 1o
atoms 11, 12 and 13. And, finally, atom 13 has single bonds to atoms 14, 15 and 16.

eiali=i] (t{a2)=e] [t {ad)mo] [sbial.a2)]
[db{aZ.al)] {sbia2.ad}][tiad)=c] [ab(ad.a3}]

h — ?-I h [sbi{ad4.a®)] [sbiad.al3d][t iaSi=c] [E{ad)=h]
H q rl [£(a7)=h] [t(ad)=h] (sk(a5.a6)][sbiab.aT)]
i— c h [sh{a5.a8)] [£{a9)==] [t (al0}=h] [t {all)=h]
4 N [t (al2)=h][ab{ad.ald)] [ab(ad.all)]
h — ci— h h [sbi{a®.al2)] [t{alld)=c] [t(ald)=n] it (15]=h]
[¢tal6)=h][sb{ald,ald)] [sb(alld.15)]
h [sb({al3.al6)] => [dwacylhal].

Here there are alsa 16 atoms. Atem 1 is of type iedine. Atom 3 is of type oxygen. Atoems 2, 4,5, 9 and
13 are of typa carbon. And atoms 6, 7, 8, 10, 11,12, 14, 15 and 16 are of type hydrogen. Atom 1 has a
single bond to atom 2. Atom 2 has a doubls bond to atom three and a single bond 1o atam 4. Atom 4 has
single bonds to atoms 5, 9 and 13, Atom 5 has single bends to aloms &, 7 and 8. Atam 9 has single
bands to atoms 10, 11 and 12, And atom 13 has single bonds to stoms 14, 15 and 16.

Fig. 6. Acylhalide Examples

In this figure, 1 stands for type, sb stands for single bond, db stands for double bond, and d stands for the domain of
the example.

18

Output Rules for Acylhalide

Non-lncremental mode:
[#as#0,1,2,3,4,5,6,8,11,14,29] [t (al)]

Incremental mode:

[#as=13,15,16,17,18,19,20,21,22,23,24,25,26,27,28] [t(al)]
o
[#as=6,7,8,9,10] [t{al)]

Fig. 7. Output rules for Fig. 6

Here, "#as' is the result of a meta rule that counted the number of 2's in the examples. An '3’ is an atom, as in figure
6 description.

¢ 20000 -

=

[=]

Qo

@

o 15000 - P

% % Incremental

E Non-incremental

S 10000 -

7] Individual Cover Steps

2

£ 5000 -

E

3

Q

0
1-step 2-step Layered

Type of Cover

Fig. 8. Discriminant Mode - Organic chemistry examples

19

The chemistry examples were run in both incremental and non-incremental mode with
meta-selectors (constructive induction rules) enabled. The average complexity of the 2-step cover
was 11.48 for non-incremental mode and 11.095 for incremental mode, a 3.35% increase in
comprehensibility. The average complexity of the layered cover was 11.095 for non-incremental
mode and 10.095 for incremenatl mode, a 9% increase in comprehensibility. Although these
figures are not significant, it is interesting to note that the incremental mode is not more complex.
Also of interest is that the two-step cover of the examples outperformed the one-step method of
learning. This suggests that in some cases, when presented with events in a pedagogical order,
two-step incremental learning may outperform other methods of learning. It can also be seen that
when events occur over a period of time, there are true gains to be made by utilizing the incremental
mode of learning as is demonstrated in the layered method example.

4.2, ROBOTS

These examples were contributed by Carl Kadie and serve well to show the benefit of incremental
learning. There were 99 events from five different classes in this domain. Each event depicts
sensory information of a robot learning to navigate in a restricted environment. The graph shown
in Fig. 9 depicts INDUCE 4 learning rules for the robot's movement events presented to the system
in the random method. A cover was performed for every learning class as each new event was
entered.

It is interesting to note that after about 190 covers (when approximately 40 events had been
presented to the system) the hypotheses seem to have stabilized. The increasing time per cover is a
result of checking to ensure that all events are appropriately covered by the existing hypotheses. A
partial memory method that remembered only interesting (or surprising) events might be used to
produce a flatter CPU time per cover line. Interesting events would be those that modify existing
hypotheses. These interesting events are indicated by large spikes in the graph.

20

640 40
L]
k=]
=
a L)
8 515 - 32§
@ =)
o
Z f 5
© [7r]
[| [T -
g. 385 24 §
w 0
=
1] - L
2 260 16 &
= o
=3 =
£ i 5 3
© 120 8
l I [
0 0
1 95 185 280 370 465

Number of Covers

Fig. 9. Discriminant Mode, Random Method - Robot examples

The heavy black line indicates cumulative CPU seconds (the left axis) while the lighter line {lower) corresponds to
the time required per cover (the right axis). Note that the left and right axes have different scales,

Whereas the graph in Fig. 9 shows CPU times irrespective of particular event sets, Fig. 8
disseminates this information for each of the event sets. Note that the abscissa of Fig. 10 is
different than that of Fig. 9: this is due to the fact that there were one hundred events, and that 464
covers were performed on these events. This allows the reader to see how the hypotheses evolve
over time. For example, covers for event set eighteen require a large amount of CPU time initially,
but subsequent covers require very little time. The largest spike is the fourth cover of event set
eighteen which corresponds to the largest spike of Fig. 9 that occurs on cover 190.

21

227

. | Event Set 12

g 18.2 coooooo Event Set 14
+++++4++ Event Set 15

R B | T Event Set 16

(=%

2 e — Event Set 18

-

=

8

(4]

oy

=

(o

o

o

=

=

o

100

Number of Covers
Fig. 10. Discriminant Mode, Random Method - Robot examples

The height of a spike in Fig. 9 and Fig. 10 is proportional to the amount of modification performed
on a hypothesis. Initially, large spikes occur before the hypotheses converge to consistent concept
descriptions. Once sufficiently accurate descriptions of the actual concepts are formed (those that
are consistent with all events, including examples not yet seen), new events are easily
accommodated (no modifications are necessary). In Fig. 10, after approximately thirty covers were
performed on each of the event sets, no substantial modifications were required to be made to the
hypotheses. Based on a small number of events (roughly one-third) sufficiently accurate
hypotheses were formed so that the remaining events did not disturb the concept descriptions.

This implies that the predictive power of INDUCE 4's hypotheses can be quite good. In this
example, one hundred percent predictability occurs after one-third (35) of the events have been
covered. This means that all of the remaining events would be correctly classified based on the
initial third of all examples. While this example gives a rough idea of the predictive power of
INDUCE 4's hypotheses, predictive power is not a focus of this paper.

The following edited transcript shows steps one, two, three and the last step of the input and output
for the robots example. It gives some idea of the problem that INDUCE 4 is covering.

22

Beginning of Transcript

Stepl:

Input:
[shock (21} =15] [heading{zl)=15] [distance (dl)=15]
{disztance(fl)=19] [distance(ll)=22] (disctance(rl)=17]

[deltadist {11} =12] [deltadist(rl)=17] [touch{ul}=t] [touch{lli=nil]
[touch{dl)=nil] [cperation(zl)=nothing]

=

[value=15]

[shock (z1)=15] [heading(zl}=16] [distance(dl)=15]
[distance(£f1)=17] [distance{ll}=19] [distance{rl)}=20]

[deltadist (11} =13] [deltadist(rl}=12] [touch{ul)=t] [touch(ll)=nll]
[touch{dll=nil] [operationizl) =right]

=

[value=14]

Qutput:

Class14:
[heading (z1=15]

Class15;
[heading (z1)=16]

Step2:

[nput

ishock(zl)=15] [heading (zl)=16] [distance (dl)=15]

[distance (£1)=17] [distance (11)=19] [distance(rl}=20]
[deltadist{11)=13] [deltadist (r1)}=12] [touch{ul)=t] [touch(ll)}=nil]
[touch({dl)=nil] [operation(zl)=nothing]

=3

[value=153]

Output;

Class14:
[operation({zl)=right]

Class15:

[eperation{zl)=nothing]

Step 3:

Input:

[shock {z1)=15] (heading(zl)=18] [distance(dl)=15]

[distance(f1)=16] [distance(l1l}=19] [distance({cl)=20]
[deltadist(11)=13] [deltadist (rl)=11] [touchiul)=t] [touch(ll)=nil]
[touch{dl}=nil] [operation(zl)=forward]

-

[walue=15]

23

Cutput:

Classi4:
[operation{zl)=right]

Class15:
[eperation(2zl)=right]

Step N:

Input:

[shock(zl)=15] [heading(zl)=16] [distance (dl)=13]

[distance(fl)=23] [distance{l1l)=23] [distance (rl)=1¢]

[deltadist (11)=15] [deltadist (rl)=22] [touch(ul}=t] [touch (11} =nil]
[tnuchidllﬂnil][operationtzli=riqht]

>
[value=14]
Output:

Class14:
[heading (z1}=»15] [operation{2l)=right]

Classi5:

[operation{zl)=nothing, forward]

End of Transcript.

4.3. PLACE SETTINGS

“The examples were from two classes: those that were good place settings, and those that were bad.

There were ten place settings for each class. Fig. 11 shows representative input examples, and
Fig. 12 shows the results for the various methods of covering. Fig. 13 is a graph showing all the
results for the various covering methods in the discriminant mode. Here, two-step leamning does
not outperform one-step learning as it did with the chemistry examples.

24

The complexity of the results between incremental and non-incremental mode are significant for this
example. The complexity for the non-incremental mode is 29 in all cases. In incremental mode the
complexities are 28.5, 24.5, 25.5, and 24 for 2-step, layered, random, and haphazard respectively.
In the case of the haphazard cover there is an increase of 17.24% in comprehensibility when using
incremental mode. As can be seen in Fig. 12, a complexity of 24 is not that good, it gives a
comprehensibility rating of 0.04167. A comprehensibility rating much closer to 0.25 is desired.
The chemistry example with a complexity of 10.095 gives a comprehensiblity of 0.099058.

Pl ttin

C t®

Bad Plac ings

Lg. Lg.
\’/ Plate Plate

Fig. 11. Place Setting Examples

25

-incremental:
Good Place Settings

[pns(pl.pEJ#righ:,abvleftEIsizathﬁ—smalli[typﬂtpl!#spocn][typﬁ{pzﬁtbawl] or
[pos (g2, pl)=blwrght, abvrght,blwleft] [size(pl)=small] [type (p2)#spoon] oF

[pos (pl,p2)#right, abvleft] [size(p2) =large] [type (p2)#plate] or
[pgatpl,p?}#abvlaf:,aburght!1postp2,p31=left][pﬂs!pE.pﬁl-ahvrqht] and
[typeipll=»knife] (Lype (p3iwplata] [type(pd) =cup] or

[pos (pl,p2)#abvieft] [pos (p3,p2)wleft, abvieft] (type(pl)#plate] [type (p3) =knife] or
[posipl,p2)=left] [pos (p2,p3) =left] [pos (pd,p3)»wleft, right] [type (pd) Acup]

Paraphrase:

Piece one which is not a spoon is not to the right or above left of piece 2 which is small and is not
a bowl. Or piece two which is not a spoon is below right, above right or below left of piece one
which is small. Or there is a piece one not to the right or above left of another piece two which
large and is not a plate. Or There is a piece one which is not a knive that is not above left or above
right of a peice two; this piece two is left of a piece three that is not a plate and piece, and
furthermore, piece two is also above right of a piece four which is a cup. Or there is a piece one
that is not a plate not above left of a piece two which in turn is related to piece three; piece three is
a knife and is not to the left or above left of piece two. Or, finally, there is a piece one left of piece
two which is left of piece three; there is also a piece four that is not a cup that is not to the left or
right of piece three.

Bad Place Settings

[posipl, p2)#abvleft] [pos (p3, p2)=left, abvrght] [type (p2)#plate] or

[pes {pl,pl)wleft, right] [pos (p2,pd)=abvieft] [size(p?) =small] [type (pli#glass] or
(pesipl,p2)=left] [pos (p2,p3)=left] [pos(p3, pd)=left] [type(p2lwplate] and
[type(p3)®plate] or

[pos (pl,p2)#abveght] (type (pl) =bvgware] or

[pos (pl,p2)2right, abvleft] [type (pl) =bowl] [type (p2)#spoon]

Paraphrase:

There is 2 piece one that is not above left of a piece two; piece two is not a plate, and a piece three
is not to the left or above right of piece two. Or there is a piece one that is not a glass not to the
left or right of a piece three; there is also a piece two that is small and is above left of piece three.
Or there is a piece one left of a piece two which is not a plate and is left of a piece three which is
also not a plate is left of a piece four. Or there is a piece one which is beverageware that is not
above right of a piece two, Or there is a piece one that is a bowl that is not right or above left of a
piece two that is not a spoon.

Incremental: Haphaz

Good Place Settings

[pos (p2,pli#right, abvleft] [size(pl)=small] [type (p2)®#plate] or
[pﬁs{pl,p?}#riqht][pos[pa,pQJ*ahvrqht]Eslzeﬂpzﬁ-large][typa{pl]-fcrk] or
[pnstpl,p?b-left][poa{pz,pﬂlﬂleftiEsizathb-larqe][typetpl!=fnrk] and
[type(pi)l#plate] or

[pos¢p1,92}=riqhtjEsiza[PZ%-largE][typE{p2l#platei or
[pos{pl.pEﬁ#tiqht,ﬂbleftl[5126{F2F‘$mall][Lypa{pl}#spﬂﬂn]!type!pE}#bOHl]

26

Paraphrase:
There is a piece two that is not a plate that is not to the right or above left of a piece one that is not
small. Or there is a piece one that is a fork that is not to the right of a piece two that is large, and
there is a piece three that is not above right of piece two. Or there is a piece one that is a fork that
is left of a piece two which is large and is left of a piece three that is not a plate. Or there is a piece
one that is not right of a piece two that is large and is not a plate. Or there is a piece one that is
ndt a spoon that is not right or above left of a piece two which is small and not a bowl.

Bad Place Settings :

[pos(pl,pl)#right] [pos (p2, p3)#right] [type (pl)=cup] [typa (p2imfork] or

[pos {pl, p2)wabvleft, abvrght] [type (pl)=bvgware] [type(p2)=#spoon] or

[pos (pl,p2)#right, abvrght] [pos (p2,p3) =left] [type ipl)=plate] [type(p2)wfork] and
[type(pl)#2knife] or

[pos {pl, p2)wabvrght] [pos (p3,p2)=right, blwrght, blwleft] [type (p2)z2platea]

Paraphrase:
There is a piece one that is a cup and is not right of a piece three, and there is a piece two that is
not a fork and is not right of piece three. Or there is a piece one that is beverage ware and is not
above left or above right of a piece two that is not a spoon. Or there is a piece one that is not a
plate and is not right or above right of a piece two which is not a fork and is left of a piece three
which is not a knife. Or there is a piece one that is not above right of a piece two which is not a
plate, and there is a piece three that is right, below right, or below left of piece two,

Fig. 12. Output Rules for Place Settings

In this example, the place settings are described as follows: Each piece is denoted as pN, where N is the (arbitrary)
number assigned to each piece of tableware. Each piece has a type, which can be one of: plate, bowl, cup, glass,
knife, spoon, or fork. Each piece also has an associated size, which is either small or large. Finally, the relative
positions of the pieces are given using the pos predicate. The relative placements are: left, right, above-left,
above-right, below-left, and below-right. Abbreviations are used above for each term.

27

450 ’
% Incremental
- 400 .
-g Non-incremental
8 350
- Individual Cover Steps
b | 300
o
(]
o 250
= € s
@ 200- .
q, Ly %
2 i T
5 150 - -~
2 o L o
E 100 i -
] - - = i % —
50_ @H : . S 5
| : —— —
0 R v e
1-step 2-step Layered Random Haphazard

Type of Cover
Fig. 13. Discriminant Mode - Place Settings

In the above figure, the time required 1o generate hypotheses is identical for both incremental and non-incremental
mode of the 1-step cover. Even when two covers were performed as specified by the definition of 2-step, roughly the
same amount of time was required for both modes, In the other three approaches to covering the events, the
incremental mode of operation requires more time than a 1- or 2-step cover, but much less time than the
non-incremental mode when performing large numbers of covering operations. For each mode of Layered, Random,
and Haphazard, the incremental mode of operation results in the same type of resource usage. In non-incremental
mode, however, the time required varied widely as the covering approach varied.

28

4.4, RAILROAD TRAINS

This data set consisted of East-bound and West-bound trains. Each of the two classes contained

five events, as depicted in Fig. 14. The task was to distinguish between East-bound and
West-bound trains.

O H = HAaHo o oH

i
NI

|
b
P
D
0o
I

I

i e I

Eastbound
r?;il H OO OH - | Trains

Westbound
Trains

Fig. 14. Railroad Trains

29

The results (shown in Fig. 15) were essentially similar to the results of the place setting examples.
Again the two-step cover was the most efficient when all of the input events were not initially
available for covering as in the one-step method. The complexity of the results were exactly the
same in both the incremental and non-incremental modes of operation for all types of covers. The
complexity wasiﬁ, giving a comprehensibility of .1667.

100+ Individual Cover Steps

% Incremental

MNon-incremental

754

S

Cumulative SUN-2 CPU seconds

PELLLETS
s

s

1-step

Layered Random Haphazard

Type of Cover

Fig, 15. Discriminant Mode - Railroad Trains

In this example set, the incremental mode outperformed non-incremental in the 2-step approach to covering, as well
as in the Layered, Random, and Haphazard approaches.

30

The following edited transcript shows the example input and output for the Reinke Random method
of covering the train examples. This example is a good example showing how much faster the
incremental method works as compared to the non-incremental method. Part a. is the
non-incremental run while part b. is the incremental run. Each step is a set of input followed by the
output as produced by INDUCE 4.

Part a. (Non-incremental run)

-

Step 1:

Input:

[cocont (tl,carl)] [econt(tl,car2)] [ccont{tl.carl)] [ccont(tl,card))
[nearitl}=4]
[infront{carl,car2)] [infront (car2,.car3)] [infront (carld,card)
[loc{carl)=1] [loc{car2)=2] [loc{car3)=3][lecicard)=4]

[nwhl (carl)=2] [nwhl(car2)=2] [nwhlicar3)=3] [nwhl(card)=2]
[ln{carl)=long}[ln(car2)=shert] [lan{card)=long] [ln(card)=short]
[eshape(carl)=engine] [cshape (car?) =dblopnrect] (cshape (carl) —closedract)
[eshape (card)=closedrect]

[npli{carl)=0] [npl{car2)=1][nplicari)=1] [npl{cards)=1]

[lcont (car2, lodl)] [lecont {car3, led2)] [lcont (card, lod3)]
[lshape(lodl)=triangle] [lshape{lod2)=rectangleod) [lshaple (lodd) =circleled]
=3

[dir=east]

Paraphrase:

There is an eastbound train containg four cars; one, two, three and four, Car one is in front of car two which is in
front of car three, in front of car four. Car one is in location one, car two in location two and so forth. Car one,
two, three, and four have two, two, three, and two wheels respectively. The shape of car one is engine shape, car two
is double open rectangle shape, car three is closed rectangle shape and car four is also closed rectangle shape. The
number of places where car one has a load is zero, car two has one as with car three and car four. Car two contains a
triangle load, car three a rectangle load and car four a circle load,

Ecccnt{tl.:arl}]iccontitl,carZ:;[cconhttl,carj]][ccnntitl,catdj][ccnnt{tl;caTSII
ncaritl)=5]

[Infront (carl,car2)] [infront (car?,car3)] [(infront{card, card)][infront (card,cars)]
[loc({carli=1] [loc{car2)}=2] [loc{car3d)=3] [loc{card)=4] [locicarS)=5]

[nwhl (carl)=2] [nwhl(car2)=2] [nwhl(car3)=2)] [nwhlicard)=2] [nwhl{cars)=2]
[ln{carl)=long] [ln{car2)=short] [ln{car3)=long] [ln{card4)=short] [ln{car5)=short]
[cshape (carl)=engine]| [cshape(carl)=opentrap] [cshape (carl)=jaggedtop]
[eshape(card)=cpenrect] EcahapetcarS]-'ﬂnpentrgp]

[npl{carl)=0] [apl{car2)=1] [npl{car3)=1] [npl{card4)=1] [nplicarS)=1]

[leont (car2, lodl) | [1lcont {car3, lod?)] [lcont (card, lod3)] [leont (car5, lod4)]

[lshape (lodl)=circlelod] [lshapa (lod2) =rectanglod] [1shape (lod3)=rectanglod]
[lshaple(lodd)=circlelod]

E

[Eir=west]

Paraphrase:

There is a westhbound train that contains five cars: one, two, three, four and five. Car one is in front of car two and
so on down the line. The location of car one is in position one, car two in position two, etc. Each car has two
wheels. The length of cars one and three is long, the other cars are short, Car one is an engine. Car two has an
open trapezoidal shape, car three a jagged top shape, car four an open rectangle shape and car five has an open

31

trapezoidal shape. Car one has no load, all the other cars each have one load. Car one has a circleload, cars two and
three both have a rectangle load and car four has a circle load.

Qutput:

Eastbound Trains:
[ncar(tllws)

Paraphrase:
The number of cars of the train is not five.

Westbound Trains:
[ncar (tl)=4]

Paraphrase:
The number of cars of the train is not four.

Step 2:

Input:

[econt (tl,carl)] [ccont (tl,car2)] [ccont (tl,car3)] [ccontitl,card)]

[noar(tl)=4]

[infront (carl,car2?)] [infront (car2,car3d)] [infront (card,card)|]

[lociearl)=1] [loc(car2)=2) (loc(car3d)=3] [loc(card)=4]

[nwhl{carl)=2] [nwhl{car2)=2] (nwhl({cari)=2] [nwhlicar4)=3]

[lni{ecarl}=long] [Ln{car2)=short] (ln(car3)l=short] [1n(card]} =lang]

{cshape (carl)=engine] [cshapa (sard) =cpenrect] [cshape (card) =hexagon] [cshape(card)=closedrect
1

[nplicarl)=0] (nplicar2)=1][npl{card)=1] (npl{card)=1]

[leont (car2, lodl)] [leent (card, lod2) | [leonticard, lodld)]

(lshape (ledl)=circlelod] [lshape (lod2)=trianglod] [lshaple{led3)=triangled]
=3

[dir=east]

Paraphrase:

This eastbound train has four cars one, two, three and four each in front of the next. They are each in their respective
locations. Cars one, two and three have two wheels, while car four has three wheels. The lengths of cars one and
four are long, cars two and three are short. Car one has an engine shape, car two an open rectangle shape, car three is
shaped like a hexagon and car four has a closed rectangle shape. the number of places where car one has a load is zero
while all the other cars each have one load. Car two has a circle load, cars three and four both have triangle loads.

Eccanu{tl,:arl)][ccunti:l,c4r2j][cccntttl,caraj][ccontitl.:arﬂb]
[ncar{tl)=4]
{infrnnticarl.carZ]][infrontﬁcarz,carBh]linfrontlcarl.carQIl
[loc{carl)=1] [loc(car2)=2][loc(card)=3] [locicard)=4)
inwhl{carl)=2] [nwhl{car2)=2] [nwhl{car3)=2] [nwhl{card}=2Z]
(lni{carl)=long] [ln(car2)=short] [ln{car3)=short] (ln{card)=long]
[eshape (carl) =englne] [cshape{car2)=dblopnrect] [cshapa {card) =ushaped]
[cshape (card) =jaggedtop]

[npli{carl}=0] [npli{car2)=1][npl(car3)=1] [npl{card)=0]

[leont {(car?, ledl) | [leont (card, lodd)]
[lshapei{lodl)=circlelod] [1shape (lodZ)=trianglod]

=>

[dir=west]

Paraphrase:
The train contains four cars each in front of the other in their respective locations. Each car has two wheels. The

32

length of cars one and four are long while the other cars are short. Car one is shaped like an engine, car two has a
double open rectangle shape, car three is u-shaped and car four has a jagged top. Cars two and three each have one
load, the other cars have no loads. Car two has a circle load and car three has a triangle load.

[ccont (tl,carl)] [ccont{tl,car?)] [ccont (tl,car3)]

[nocar{tl)=3]

[infront (carl,car2)] [infront (car2,carl)]
[loe(carl)=1]1[leci{car2)=2][loc{car3)=3]

[nwhl {carl)=2] [nwhl{car2)=2] [nwhl{car3}=2]

[In{ecarl}=long]l [ln{car2)=long] [In(car3)=short]
[eshape{carl)=engine] [cshape (car?)=closedrect] [cshapel{cari)=openrect]
[npl{carl)=0] [npl{carZ)=3] [npl{car3)=1]

[leont (card, lodl)] [leont (car2, lod2)] (leont (car2, lod3) | [lcont {car3d, lodd)]
[lshape (lodl)=circleled] [leshape (led2)=circlelad] [Lshaple (lod3) =circlelod]
[lshape{lodd)=trfangled]

-

[dir=west]

Paraphrase:

This train has three cars. The first one is an engine and has no load. The second car looks like a closed rectangle and
has three loads, all circle loads. The third car looks like an open rectangle and has a triangle load. All three cars have
two wheels. Only the third car is short, the others are long. This train is traveling west.

Output:

Eastbound Trains:
[nwhl (carlj=2]

Paraphrase:
The number of wheels of a car is not two.

Westbound Trains:
[cshape{carl)=ushaped] or [ncar{tli=d]

Paraphrase:
There is a car that is u-shaped or there is a train that does not have four cars.

Step 3:

Input:

[ceent (t1,carl)] [coent (1, car2)d] (ceont (tl, card)]
[ncar{tl)=3]

[infront (carl,car?)] [infront {carl,card) |
[loci{carl)=l1] [loc(car2)=2] [loc{car3)=3]

[nwhl {carl)=2)] [nwhl(car2}=3] [nwhl(cari}=2}
{ln{carl)=long] [ln{car2)=long] [ln(car3}=short]
[cshape (carl) =engine] [cshape {car?)=closedrect] [cshape{carld)=ushaped]
[nplicarl)=0] [npl{car2)=1] [npl{cari)=1]

llcont (car2,lodl)] [lcont {carl, lod2)]

[Lshape(lodl)= rectanglod] [lshape{lod?)= circlelod]
=x

[dir=west]

Paraphrase:

There is a train with three cars each in front of the other. The first and third cars have two wheels while the second
car has three wheels, Cars one and two are long and car three is short. The shape of car one is an engine, car two
looks like a closed rectangle and car three is u-shaped. Cars two and three each have one load while the first car has
no loads. The load of the second car is a rectangle load and the load of the third car is a circle load. The train is

33

traveling west.
Qutput:

Eastbound Trains:
[loe(carl)mw2] [nwhl (carl}=2]

Paraphrase:
There is a car that isn't in the second position which does not have two wheels,

Westbound Trains:
[eshape (sarl) =opentop] [loc(carl)=*2]

Paraphrase:
Thereis a car with an open top that is not in position two.

Step 4:

Input:

[ccont tr.l,ga]:rn] [ccont (tl,car2)] [econt (t1l,card)] [ccont (L1,card)] [econt {tl,cars)]
[near(tl)=

[infrent {carl,car2)] [infront (car?,carl)] [infront (card,card)] [infront (card,cars]]
[loc(carl)=1] [loc{car2)=2] [locicar3)=3] [loc(card)=4] [loc(cars)=5]
[nwhltuarL}-ZI;nwhlgcarz}-z]anhl{caraj-z][nuhlicar4}=3][nwhltcarﬁb-z]
[ln{carl)=leong] [ln({car2)=long] [ln{car3d)=shoert] (1ln(card)=long] [1n{car5)=short]
[:shdpgqcarlluenging][c:hapa{caril=npenract][CShﬂPE(ﬂirB}'ElopEtup]
[cshape(card)=openrect] [cshape (car3) =openrect]
[npl{carl}=01[nplicar2}=3] [npl(car3d)=1] [npl{card)=1] [npl (cari)=1]

[lecont {car2,lodl)] [lcont {car2,lod2)] [lcont (car2, lodd)] {leont {card, lodd]] [lcont (card, lods)]
[lcont {car5, lodé)]
[lshape[1od1}-rectanq1od}[Lahapa{lndzl-rectanqlod][lshape{lddEJ=raﬂtanqlﬂdj
[lshaple(lodd)=trianglod] [1shape (lod5)=hexagonled] [lshape (lod6) =cirelelod]

=3

[dir=east]

Paraphrase:

There is a train with five cars each in front of the other and in positions one, two, three, four and five. All the cars
but the fourth have two wheels, the fourth car has three. The length of cars one, two and four are long, the others are
short. The first car looks like an engine, the second, fourth and fifth cars have an open rectangle shape, and the third
car has a sloped top. The third, fourth and fifth cars have one load apiece. The second car has three loads and the first
car has no loads, The second car's loads are all rectangle loads. The third car has a triangle load, the fourth car has a
hexagon load and the fifth car has a circle load. This train is traveling east.

[ccont (tl,carl)] [econt (tl,car2)] [ccontitli,card)] [ceont{tl,card)]

[ncaritl)=4]

[infront (carl,car2)] [infront (car2,car3}] [infront (card, card)]

[loci{carl)=1] [locicar2)=2] [locicar3)=3] [locicard)=4]

[nwhl{carl)=2] [nwhl{car2)=2][awhl{sar3}=2] [nwhl(card)}=2]

[ln{carl)=leng] [ln{car2}=shert] [ln(ecard)=short] [ln(car4)=short]

{cshape (carl)=engine] [cshape{car2) =ushaped] [¢zhape{car3d)=cpentrap] (cshape (card)=closedrect

[nplicarl)=0] [npl(car2) =11(npl{car3)=1] [nplicard)=2]

[lcont {car2, lodl) 1 [leont {car3, led2)] [leent (card,lodd}] [lcont (card, lodd)]
[lshape (lodl)=trianglod] [lshape{led2}=triangled] [lshape (lod3)=rectanglod]
[lshape{lodd)=rectanglod]

-

[dir=east]

Paraphrase:

34

This eastbound train has four cars each in front of the other and in positions one, two, three and four. They all have
two wheels. Car one is long and all the others are short. Car one locks like an engine, car two is u-shaped, car three
has an open trapezoidal shape and car four has a closed rectangle shape. Cars two and three each carry one load while
car four has two loads. Car one has no loads. Cars two and three have triangle loads. Car four has two rectangle
loads.

Qutput:
Eastbound Trains:

[eshape {carl) =clesedtop] [ln{carl}=short] or [nplicarl)=2]

Paraphrase:
There is a short car with a closed top or there is a car that is carrying two loads.

Westbound Trains:
[cshape {carl)=jaggedtop] or [ncar(tl)=4,5]

Paraphrase:
There is a car with a jagged top shape, or the train does not have four or five cars.

Step 5:

Input:

[econt (tl,carl)] (ccont (t1l,cazr2}] (econt (tl,car3)] [ccontitl, card)] [ccontitl, car5)]
[ncar(tl)=5]
{1nfront{car1.car2il[infrnnt{carz,caraz][infrant:c;ra,;arql][1nf:ant(¢g:g,car51]
[loc(carl)=1] (loc({car2)=2] [lec({car3)=3] [loc{card)=4] [loc{car5)=5]

[nwhl (carl)=2] [nwhl{car2)=2] [nwhl(car3}=2] [nwhli{card)=2] [nwhl (cars)=2]
[ln{carl)=long] [1n{car2}=short] [ln{car3}=short] [ln{card)=short][lnicar5}=short]
[cshape {carl) =engine| [cshape (car2) =opentrap] [cshape(car3}=dblopnrect]

[eshape (card)=ellipse] [cshape (carS)=openrect]

(gl (carl) =0] [npl (car2)=1] (npl{car3)=1][nplicard)=1] [rplicar5)=1]
[lc&ntlcarz,lcdl]][1conticar3,lod2i]{1conttcarq,1od3}][1cont:ua:5,1od4;]
[lshape(leodl)=trilangled] [lshape({lod2)~trianglod] [lshape{lod3)=rectanglod]
[lshaple(lodd)=rectanglod]

=2

[dir=east]

Paraphrase:

There is an eastbound train with five cars each in front of the other and in locations one, two, three, four and five,
They all have two wheels. Only the first car is long, all the others are short. The shape of car one is engine shape.
Car two looks like an open trapezoid, car three looks like a double open rectangle, car four looks like an ellipse and
car five looks like an open rectangle. Each of the cars except the first car have one load, the first car doesn't have any
loads. Cars two and three have triangle loads and cars four and five have rectangle loads.

[ccont (t1,carl)] [cecont(tl,card)] [ccont(tl,card)]

[ncar(tl)=3}

[infront (carl,car?) | [(infront{car?,carl)

{loci{carl)=l] [loc{car2)=2] [loc(card)=3]

[nwhl {carl)=2] [nwhl(car2)=2] [nwhl (card)=2]

[In{carl)=long] [ln(car2)=short] [ln(car3)=long]
[cshape({carl)=engine] [cghape (car?)=ushaped] [cshape (car3) =opentect]
[nplicarl)=0] [npl{car2)=1] [npl{cari)=2]

[leont {car2, lodl)] [1lcont (car3d, lod2)]| [lecont (car3, lod3d})]
[1shape(lodl)=rectanglod] [lshape {lod?)=rectanglod] [lshape (lod3) =rectanglod]
=

[dir=west]

35

Paraphrase:

There is a westbound train with three cars in locations one, two and three. They all have two wheels. Cars one and
three are long and car two is short. Car one is engine shaped, car two is u-shaped and car three looks like an open
rectangle. Car two has one load and car three has two loads. Car one has no loads. All the loads are rectangle loads.
Qutput:

Eastbound Trains:

[cshape (carl)=clssaedteop] [In(carl)=short]

Paraphrase:
There is a short car with a closed top.

Westbound Trains:
[eshape (carl)=jaggedtep] or [ncar(tl)=4,5]

Paraphrase:
There is a car with a jagged top or the number of cars in the train is not four or five.

Part b, (Incremental Run)

Step 1:

inpiﬂi

[ceant (tl,carl)) [ccontitl,car2)] [ccont (tl,car3)] [ccont (£1,card)
[near(tl)=4]

[infront (carl,car2)][infront (car2,car3)] [infront (carld, cardl]
[loc{carl)=1] [loc{car2)=2] [loc(card)=3] [locicard)=4]

[nwhl{carl)=2] [nwhl{car2)=2) [awhl(car3)=2] [awhl{card)=2]
[ln{carl}=long] [lnicar2)=shert] [ln{card)=long] [Ln(card)=short]
[cahapet:a:l}-enqine][ushapo:carz}-dhlopnrect][cshaps{carjj-closedrect]
[cshape (card)=closedrect]

[npl(carl)=0] [npl{car2)=1] [npl(car3)=1] (nplicard)=1]

[leont (car2,ledl}] [leont (car3d, lod2)] [1cont (card, 1od3)]
[lshnpeqlcdl:=trianglelrlahapetlodzi-rectanqlod][ishaple:lodﬂ]ucirnlelud]
=>

[dir=east]

Paraphrase:

Thete is an eastbound train containg four cars; one, two, three and four. Car one is in front of car two which is in
front of car three, in front of car four. Car one is in location one, car two in location two and so forth. Car one,
two, three, and four have two, two, three, and two wheels respectively. The shape of car one is engine shape, car two
is double open rectangle shape, car three is closed rectangle shape and car four is also closed rectangle shape. The
number of places where car one has a load is zero, car two has one as with car three and car four. Car two contains a
triangle load, car three a rectangle load and car four a circle load.

[::nnt:tl,carl:][¢c0nt1t1,uar21][ccont{tl,caral][ccann{tl.ca:d}][ccunt#tl.carSh
[ncar{tl)=5]
[in!:ont{carl,cari!][infrunt{carE,canl][in!tont{car3.car¢ii[infronttcarﬂ.cﬂtﬁhi
(loe{carl)=1] [loc{car2)=2][loc(car3}=3] [loc(card)=4] [loc(car3}=3]

{nwhl(carl}=2) [nwhl (car2)=2] [awhl{car3)=2] [awhl (card)=2] [nwhl (car5)=2]
{ln(cari)=long] [ln(car2)=short](ln(card)=long] [ln{card)=short][lnicars}=short]

36

[eshape (carl)=englne] [cshape (car?)=opentrap] [cshape (carl) =jaggedtop]
[eshapa{card)=openrect) [cshape (car3) =cpentrap]
(nplicarl)=0][nplicar2)=1] [nplicari}=1] [nplicard)=1] [npl(car3)=1]

[lecont {car?, lodl)} | [lcont {car3, lod2)] [lcont (card, lodl}] [lecont (car5, lodd))
[lshape(ledl)=circlelod] [lshape(lod?}=rectanglod] [1shape (lod3)=rectanglod]
[lshaple (lodd)=circlelod]

=5

[dir=west]

Paraphrase:

There is a westbound train that contains five cars; one, two, three, four and five. Car one is in front of car two and
so on down the line. The location of car one is in position one, car two in position two, etc. Each car has two
wheels. The length of cars one and three is long, the other cars are short. Car one is an engine. Car two has an
open trapezoidal shape, car three a jagged top shape, car four an open rectangle shape and car five has an open
trapezoidal shape. Car one has no load, all the other cars each have one load. Car one has a circleload, cars two and
three both have a rectanple load and car four has a circle load.

Output:

Eastbound Trains:
[ncar{tl)=#5]

Paraphrase:
The number of cars of the train is not five.

Woestbound Trains:
[near(tli=4]

Paraphrase:
The number of cars of the train is not four.

Step 2:

Input:

[ccont (tl,carl)] [ccontitl,car2)] (ccont(tl,car3)] [ccont (t1,card)]

[ncar{tl)=4]

linfront (carl,car?)] [infront{car2,card)] [infront (car3,card)]

[locicarlli=1] [loc{car2i=2][locicar3d)}=3] [loc(card)=4]

[nwhl{carl)=2] [nwhl (car2)=2] [awhl (car3d)=2)] [awhl(car4)=3]

[1n{ecarl})=long] [ln{car2)=short] [ln(car3i=short] [1ln({car4)=long]

[eshape (carl)=engine] [cshape (car2)=cpenrect] [czhape (car3) ~hexagon] (eshape (card) =closedrect

[npl (carl)=0] [npl (car2)=1] [npl{carid}=1] [apl (card)=1]

[lecont (car2,ledl)] [lcont (car3d, lod2)] [lcont (card, lod3d)]
[lshapeilodlb-circlelad][13hapetlod2l—trianqlod][Eshap:.¢lod3|-tri;nqlgd]
=

[dir=east]

Paraphrase:

This eastbound train has four cars one, two, three and four each in front of the next. They are each in their respective
locations. Cars one, two and three have two wheels, while car four has three wheels. The lengths of cars one and
four are long, cars two and three are short. Car one has an engine shape, car two an open rectangle shape, car three is
shaped like a hexagon and car four has a closed rectangle shape. the number of places where car one has a load is zero
while all the other cars each have one load. Car two has a circle load, cars three and four both have triangle loads.

[ecent (E1l,carl)] [ccont(tl,car2)] [econt (tl,car3)] [ccont{tl,card)]

37

[near(tl)=4] ;

{iafront {carl,car?)] [infront {car?,car3}][infront (card, card]]
[loc(carl)=1][loc(car2)=2] [loc{car3}=3] [loc({card}=4]
[nwhl{carl)=2] [nwhl({car2)=2] [nwhl{car3}=2] [awhl (card§)=2]
[ln{carl)=long] [ln{car2)=short] [ln(car3d)=shert][ln(card)=long]
[cshape(carl)=engine] [sshape (car?)=dblopnrect] [cshape(card)=ushaped]
[eshape (card)=jaggedtop]

[nplicarl)=0] [nplicar2)=1] [npl(car3d)=1] [npl(card)=0]

[locont {car2, Lledl)] [lcont (card, lodl) |
[l1shape{lodl)=circlelod] [lshape (lodZ)=trianglod]

==

[dir=west]

Paraphrase:

The train contains four cars each in front of the other in their respective locations. Each car has two wheels. The
length of cars one and four are long while the other cars are short. Car one is shaped like an engine, car two has a
double open rectangle shape, car three is u-shaped and car four has a jagged top. Cars two and three each have one
load, the other cars have no loads. Car two has a circle load and car three has a triangle load.

[cecont {tl,carl)] [ccont (tl,car2)] [econt (tl,carl}]

[ncar{tl)=3]

{infront (carl,car?) J{infront (card.carl)]

[loc{carl)=1]) [lec(car2)=2] [loc({car3)=3]

[nwhl{carl)=2] [nwhl{car2)=2] [nwhl(card}=2]

[lniecarl)=long] [lni{car2)=long) [ln(car3})=short]

[eshape (carl) =engine] [cshape (car?) =closedrect] [eshape(car3)=cpenrect]
[npl{carl)=0] [npl(car2)=3] [npl (car3)j=1]

[lcont (car2, ladl) } [leent (ear2, lod2)] [leont (car2, lod3) j[leont (card, lodd))
[lshape (ledl)-elrclelod] [1shape (led2) =eircleled] [lzhaple {lod3) =circleled]
[lshape (lodd)=triangled]

-3

[dir=west]

Paraphrase:

This train has three cars. The first one is an engine and has no load. The second car looks like a closed rectangle and
has three loads, all circle loads. The third car looks like an open rectangle and has a triangle load. All three cars have
two wheels, Only the third car is short, the others are long. This train is traveling west.

Output:

Eastbound Trains:
[nwhl (carl)=2]

Paraphrase:
There is a car that does not have two wheels.

Westbound Trains:
[eshape (carl)=ushaped] or [ncar(tl)m4]

Paraphrase:
There is a car that is ushaped or the train does not have four wheels.

Step 3:

Input:

[ccont {tl,carl)] [ccont (t1l,car2)] [ccont (tl,.cardl]
[ncar{tl)=3]

[infrent {carl,car2)] [infront (card.card)])
[loc{carl)=1] [loc{car2}=2][locicar3}=3]

[nwhl {carl)=2] [awhl (car2)=3] [nwhl{car3}=2)
[ln{carl)=long] [1ln{car2)=long] [ln{car3)=short]

38

[eshape (carl)=angine] [cshape{cari)=closedrect] [cshape{car3)=ushaped]
[nplicarl)=0] [nplicar2)=1][nplcarl)=1]

[leont (car2, lodl)] [lcont (car3, lod2) |

[lshape{lodl)= rectanglod][lshape{lod2)= circlelod]

=>

[dir=west]

Paraphrase: .

There is a train with three cars each in front of the other. The first and third cars have two wheels while the second
car has three wheels. Cars one and two are long and car three is short, The shape of car one is an engine, car two
looks like a closed rectangle and car three is u-shaped. Cars two and three each have one load while the first car has
no loads. The load of the second car is a rectangle load and the load of the third car is a circle load. The train is
traveling west.

Qutput:

Eastbound Trains:

{loc{carl)w2] [nwhls {carl)=2]

Paraphrase:
There is a car that is not in the second position that does not have two wheels.

Westbound Trains:
[cashape{carl)=ushaped] or [ncar{tlj=4]

Paraphrase:
There is a car that is ushaped or the train does not have four wheels,

Step 4:

Input:

[ceont (tl,carl)] [ccont (tl,car2)) [ccont (tl,car3d)] [ccont(tl,card) | [ceont (tl, cars)]
[ncari{tl)=5]

[infront (carl,car2)] [infront (car?,carld)] [infront (car3,card)] [infront (card, cars)]
[loc{carl)=1] [loci{car2)=2][loc{card)=3] [loc(card)=4] [loc{car5)=5]

[nwhl{carl}=2] [nwhlicar2)=2] [nwhl(card)=2] [nwhlicar4)=3][nwhl{car5)=2]
[ln{carl)=longl[lnicard)=long] [In(car3d)=shert] [ln({card)~long] [1ln{car5)=short]
[eshapeicarl)=engine] [cshape ({car2)=openrect] [cshape (carld) =slopetop]
[eshape(card)=openrect| [cshape (cars)=openrect|

[npl (carl)=0] [npl{car2)=3] [npl{card)=1] [nplicard)=1] [npl{cars}=1]

[leent (car2, lodl)]} [lcont (card, lod2)] [leont (car2, lodl) | [leont (car3, lodd)] [leont (card, lods)
[legnt (cars, lodE) |
[lshape{ledl)~rectangled] [leshape (lod2)=rectangled] {lzhapei{ledl) =rectangled]
[lshaple(lodd)=triangled] [lshape (lod5)=hexagonlod] [lshape{lodé) =circlelod]

=

[dir=east]

Paraphrase:

There is a train with five cars each in front of the other and in positions one, two, three, four and five, All the cars
but the fourth have two wheels, the fourth car has three, The length of cars one, two and four are long, the others are
short. The first car looks like an engine, the second, fourth and fifth cars have an open rectangle shape, and the third
car has a sloped top. The third, fourth and fifth cars have one load apiece. The second car has three loads and the first
car has no loads. The second car's loads are all rectangle loads. The third car has a triangle load, the fourth car has a
hexagon load and the fifth car has a circle load. This train is traveling east.

[econt {tl,carl)) [ccont{tl.carl)] [ccont (tl,car3)] [ccent(tl,card)]
[ncar(tl)=4]
[infront (carl,car2)] [infront (card,car3)] [infronticar3d,card)]

39

[loec{carl}=1] {loc(car2)=2] [loc (zar3)=3] [loc(card)=4]

[nwhl {zarl) =2] [nwhl (car2)=2] [nwhl (car3}=2] [nawhl (card}=2]

[ln{carl)=long) [ln(car2)=short] [1n(car3)=short][ln(card4)=short]
[cshape{carlj-cnglne]{cshapetcarE)nushaped]lcshapetcar3imopantrap]lcshapa[cardﬁ—closedract

1

[npl{carl}=0] [npl{car2)=1] [nplicar3)=1] [npl (card)=2]

{lesnt (ear2, lodl) | [leont {car3, lod2)] [leont (card, lodd}]| [lcont [card, ladd)]
[lshape(ledl)=trlangled] [lshape{lod2)=trianglod] [lshape (lod3)=rectanglod]
[lshape(lodd)=rectangleod]

=>

[dir=aast]

Paraphrase:

This eastbound train has four cars each in front of the other and in positions one, two, three and four. They all have
two wheels, Car one is long and all the others are short. Car one looks like an engine, car two is u-shaped, car three
has an open trapezoidal shape and car four has a closed rectangle shape. Cars two and three each carry one load while
car four has two loads. Car one has no loads. Cars two and three have triangle loads. Car four has two rectangle
loads.

Quiput:
Eastbound Trains:

[npl(carl)=2) or [loc(carl)=2][nwhl({carl)=2]

Paraphrase:
Ther= is a car that has two loads or there is a car not in the second position that does not have two wheels,

Westbound Trains:
[cshape(carl)=jaggedtop] or [ncar(t1)=4,5]

Paraphrase:
There is a car with a jagged top or there is a train that doesn't have four or five cars.

Step 5:

Input:

[esont (tl,carl)] [ccont (tl,car?)] (ccont(tl,car3)] [ccont (tl,card)] [cocont (tl,car3)]
[near (tl)=5]
[1nfrcnttca:1,ca:23][infrcnttcarQ,carJ}][infrnnttcar],card]][Lnfront#car4,car5]]
[loc{carl}=1] [leci{car2)=2][loc({car3)=3] [loc(card)=4] [loc|cars)=5]

[nwhl{carl)=2] [nwhl (car2)}=2] [nwhl (car3)=2] [awhl{card}=2] [nwhl (car3}=2]
[1n{ca:;J=lnnq][lnlcarE]wshGrt][ln[carBJ-short][ln{cari]-short][lnﬂcarSF-ahnrt]
[cshape{carl)=engine] [cshape (car2) opentrap] [cshape (car3)=dblopnrect]
[cshape{card4)=ellipse] [cshape(car3)=openrect]
[npl:carl}-ﬂ][npltcarzlﬂl]fnpltcar3l=l][npl:car4]=1][npl{carsﬁmj]

[lcont {car2, lodl)] [locont (ear3, led2)] [lcont (card, lod3) | [loont (cars, lodd) |
{lshape(lodl)=triangleod] [lshape (lod2)=triangled] [lshape{lod3}=rectanglod]
[lshaple(lodd)=rectangled]

=>

[dir=east]

Paraphrase:
There is an eastbound train with five cars each in front of the other and in locations one, two, three, four and five.

They all have two wheels. Only the first car is long, all the others are short. The shape of car one is engine shape.
Car two looks like an open trapezoid, car three looks like a double open rectangle, car four looks like an ellipse and
car five looks like an open rectangle. Each of the cars except the first car have one load, the first car doesn't have any
loads. Cars two and three have triangle loads and cars four and five have rectangle loads.

40

[ccont (tl,carl) | {ccont (tl,car2)] [econt(tl,card)]
[ncar(tl)=3]

[infront{carl,car2)] [infront (car?,cari)]

[loc{carl)=1] [loc(car2)}=2) [loc{cari)=3]

[nwhl{carl)=2] [nwhl(car2)=2] [nwhl{cari)=2]

[In{carl)=long] [1n{car2)=short][ln(car3)=long)

[cshape (carl)=engine) [cshape{car2) =ushaped] [eshape (card) =epenract]
[aplicarl)=0] [npl(car2)=1] [npl{car3)=2]

[lcont (car2, lodl)] [leont (car3, 1lod?)] [lcont (car3, lod3)]
[lshﬂplllodll=rﬂchanqlud][lshapE[lndzl-roctanglod][lshap&:lodj]=rectanql¢dj
=»

[dir=wast]

Paraphrase:

There is a westbound train with three cars in locations one, two and three. They all have two wheels. Cars one and
three are long and car two is short. Car one is engine shaped, car two is u-shaped and car three looks like an open
rectangle. Car two has one load and car three has two loads. Car one has no loads. All the loads are rectangle loads.

Qutput:

Eastbound Trains:
[cshape (carl) =closedtopl [lni{carl)=short)

Paraphrase:
There is a short car with a closed top. .

Westbound Trains:

[cshape (carl)=jaggedtop] or [ncar(tl)=4,5]

Paraphrase:
There is a car with a jagged top or the number of cars in the train is not four or five.

End of transcript.

The following edited transcript shows the example input and output for the 1-step method of
covering the train examples. This example is not a good example in the sense that the incremental
version does not perform any better than it's non-incremental counterpart. In fact the incremental
version runs about one second slower for this example. Part a. is the non-incremental run while
part b. is the incremental run. Each step is a set of input examples followed by the output as
produced by INDUCE 4.

Part a. (Non-incremental run)

Step 1:

Input:

41

{econt (tl,carl)] [ecent(tl,car2)] [ccontitl, card}] [ccentitl, card)])
[ncar(tl)=4]
[infrantggarl,caerj{infrnntqcarz,caraji[infront{carj,car!]]
[loclcarl)=1] [loc{car2)=2] [locicar3}=3] [loc{card)=4]

[awhl (earl)=2] [awhl (car2) =2} [nwhl(car3)=3] [nwhl (card)=2]
[ln{carl!-lnnq][ln[carzj—shurt][ln{carBj—lanq]{ln{car&]-shnrt]
[nshap«tcarl:mengine][cshape{car?hndblopnractl[cshape{carEchlnsedr&ct]
[eshape (card) =cleosedract]

[nplicarl)=0] [gplicar2}=1][npl{car3)=1] (nplicard)=1]

[lcont {car2, lodl)] [lesnt {(eard, lod2) | (leont (card, lod3d)]
[1shape:lod1}-triangloj[lshape{ludzl-rectanq;od][lshaplo:lquP-cl:clelcd]
=

[dir=east]

Paraphrase:

There is an eastbound train containg four cars; one, two, three and four. Car one is in front of car two which is in
front of car three, in front of car four. Car one is in location one, car two in location two and so forth, Car one,
two, three, and four have two, two, three, and two wheels respectively. The shape of car one is engine shape, car two
is double open rectangle shape, car three is closed rectangle shape and car four is also closed rectangle shape. The
number of places where car one has a load is zero, car two has one as with car three and car four. Car two contains a
triangle load, car three a rectangle load and car four a circle load.

Iccont{tl,garlk jlecont(tl,car2)] [ccont {tl,car3d)] [ccont(tl,card)] [cocent{tl,carsy]
[ncar(tl)=5]
[infrgnt:carl,carzr][infrnnt:carz,car3il[infrant{car3.c&r4!][infrunttuarQ.caISﬁE
[loci{carl)=1][loc(car2)=2] [loc(car3)=3][loc{card)=4] [loc(cari)=3]

[nwhl (carl)=2] [nwhl{car2)=2] [nwhl{car3)=2] [awhl(car4}=2] [nwhl [cars)=2]
[lnlcarljzlﬁnq]lln{cBr2h=shurt![ln{car3lﬂlnngl[ln#car4l'$h0rt][lﬂfﬂar51=5hﬂrt]
[cshape {carl) =engine] [cshape (car2)=cpentrap] [cshape(car3)=jaggedtop]
[cshapeicar4ﬁ=cpdnrect]{nahape[carﬁ}-opentrap]

[npl(carl)=0]{npl(car2)=1] [npl{car3)=1](npl{card)=1] [nplicar5)=1]

[leont {carZ, lodl)] [lecont (car3, lod2)] [lcont {card, lod3)] [lcont{cars, lodd}]

[lshape (lodl)=cirelelod] [lshape {lod2) =rectangled] [lshape (lodl) =rectangled]
[lshaple(lod4)=circleled]

=3

[dir=west]

Paraphrase:

There is a westbound train that contains five cars; one, two, three, four and five. Car one is in front of car two and
so on down the line. The location of car one is in position one, car two in position two, etc. Each car has two
wheels. The length of cars one and three is long, the other cars are short. Car one is an engine. Car two has an
open trapezoidal shape, car three a jagged top shape, car four an open rectangle shape and car five has an open
trapezoidal shape. Car one has no load, all the other cars each have one load. Car one has a circleload, cars two and
three both have a rectangle load and car four has a circle load.

tccont{tl.narlh}[ccunt:tl,carzi}[ccuntttl.car3:3[ccontttl,carQ}]

[ncar{tl)=4]

{infrent {carl,car2)] [infront (card,card)] [infront (card,card)]
{locicarll-ll[Locicar2}=2][1n¢{uar3!=3][loctcard}-d]
[nwhl{carlh—ﬂ][nwhllcarZJ-z][nwhllcann-zl{nwhl:carqzna}

{lnicarl}=long] [lnilecar2)=shert] {ln{car3)=short] [ln(card)=longl
[cshapcqcarll-enqina][cshape{carzn-npenrect][cshapa{carBF*hexaqonl[csnape{car4l-clesedrecc

1

[npl{carl}-u][npltcar?)-l][npltcarE]:l![npl{cari]all

[leont {car2, ledl) | [lecont (card, lod2)] [leont (card, lodld)]
[1ahapg{1od1;-circlglod}[lshapeilon;-trianqlnd][lshapletlodSi-trianqlcd]
=3

[dir=east]

Paraphrase:
This eastbound train has four cars one, two, three and four each in front of the next. They are each in their respective
locations. Cars one, two and three have two wheels, while car four has three wheels. The lengths of cars one and

42

four are long, cars two and three are short, Car one has an engine shape, car two an open rectangle shape, car three is
shaped like a hexagon and car four has a closed rectangle shape. the number of places where car one has a load is zero
while all the other cars each have one load. Car two has a circle load, cars three and four both have triangle loads.

[cecont (t1l,carl)] [ccont (t]l,car2)] [ccont (tl,carld)] [ccont (tl, card)]
[ncarc{tl)=4]

[lnfront (carl,car2)] [infront {car?,car3d)] [infront (car3, card)]
[loc(carl)=1] [loc(car2)=2] [loc(card)=3] [loc(card) =4]
[nwhl{carl)=2] [nwhl({car2)=2] [nwhl({car3)=2) [nwhli{card}=2]
[ln{carl)=longl [ln(car2)=short] [In(car3)=short] [ln{card)=long]
[cshape (carl)=englne] [cshape (car2)=dblopnrect] [cshape (card) =ushaped]
[eshape (card) =jaggedtop]

[npl{carl)=0] [npl (car2}=1][npl(car3)=1][npl(card}=0]

[lecont (card, lodl)) (leont (card, lod2) |

[lshape ({lodl)=clrcleled] [lshape (lod2)=trianglod]

-7

[dir=west]

Paraphrase:

The train contains four cars each in front of the other in their respective locations. Each car has two wheels, The
length of cars one and four are long while the other cars are short. Car one is shaped like an engine, car two has a
double open rectangle shape, car three is u-shaped and car four has a jagged top. Cars two and three each have one
load, the other cars have no loads. Car two has a circle load and car three has a triangle load,

[econt (tl,carl)] [ceconti{tl,car2)] [ccont (tl,car3)]

[mcar(el)=3]

[infront (carl,car?)] [infront (car2,card)]

[loc(carl)=1] [locicar2)=2]}[loc(card)=3]

[nwhl({carl)=2] [nwhl{car2)=2] [nwhl{car3)=2]

[(ln(carl)=long] [ln{car2)=long] [la(card)=short]

[cshape{carl)=engine] [cahape (¢carl) =clesedrect) [cshape (carl) =openrect]
[nplicacl)=0] [npl(car?)=3] [npl{carl)=l]

[leont {car2, lodl)] [lcont (car2, lod2)] [lcont {card, lod3)) [lcont (card, ladd) |
[lshape(lodl)=circlelod] [lshape(lod2)=circlelod] [lshaple (lod3)=circlelod]
[lshape({lodd)=triangleod]

=3

[dir=west]

Paraphrase:

This train has three cars. The first one is an engine and has no load. The second car looks like a closed rectangle and
has three loads, all circle loads. The third car looks like an open rectangle and has a triangle load. All three cars have
two wheels. Only the third car is short, the others are long, This train is raveling west,

[econt (tl,carl)]l (cecont(tl,.car2)] [ccont (t1l,car3))
[near{tl)=3]

[infront (carl,car?) | (infronti{car2,carl)]
[lec(carl)=1] [loc{card)=2] [loc(card)=3]
[awhl(carl)=2] [nwhl(car2)=32] [awhl (card)=2]
[lnicarl)=long] [ln(car2)=long] [ln{car3)=short]
[cshape({carl)=engine] [cshape (carl)=clesedrect] [cshape (car3)=ushaped]
[npl(carl)=0] [npl(car2)=1] [npl(card)=1]

[leent {(car2, ledl) | [lecent (card, lod2)]

[lshape({lodl)= rectangled] (lshape{lod2)= circlalod]
=3

[dir=west]

Paraphrase:

There is a train with three cars each in front of the other. The first and third cars have two wheels while the second
car has three wheels. Cars one and two are long and car three is short. The shape of car one is an engine, car two
looks like a closed rectangle and car three is u-shaped. Cars two and three each have one load while the first car has
no loads. The load of the second car is a rectangle load and the load of the third car is a circle load. The train is
traveling west.

43

[econt (t1,carl)] [econt {tl,car2)] [ccont (tl,card)](eccont(tl,card)] feccont(tl, caxrs)]
[ncar(tl)=5]

{infront (carl,car?)] [infront {car2,car3)] [infront (card,card)] [Llnfront{card,car5}]
’locicar1i=1][Loctcar?:'E][loc[:arll =3] [loc(card)=4][locicarS)=5]
inwhl(carl)=2][nwhl(car2)=2] [nwhl{car3)=2] [awhl{card)=3] [nwhl(cari)=2]
[ln{carl)=long] [ln{car2)=long] [ln(card)=sheort] [ln{card)=long] [1ln{car3)=short]
[cshape (carl)=engine] [cshape(car?) =cpenrect] [cshape (car3) =slopetop]

[cshape (card) =openrect] [cshape (card) =openrect]

(apl (carl)=0] [ppl{car2)=3] [npl(card)=1] [npl(card)=1]
[lcont {(car2, ledl)] [lecont (card, lod2)] [lcont (car2, lod3
[leont {cars, lodg)]
[1shape(ledl)=rectanglod] [1shape (lod2) =rectanglod] [1shape (lod3)=rectanglod]
[1shaple(lodd)=trianglod] [lshape (lod5) =hexagonlod] [1shape (lod6) =circlelod]

[dir=gast]

[npl {car5)=1}
11[lcont{car3,lodd)]| [Llcont {card, lod5)]

Paraphrase:

There is a train with five cars each in front of the other and in positions one, two, three, four and five. All the cars
but the fourth have two wheels, the fourth car has three. The length of cars one, two and four are long, the others are
short. The first car looks like an engine, the second, fourth and fifth cars have an open rectangle shape, and the third
car has a sloped top. The third, fourth and fifth cars have one load apiece. The second car has three loads and the first
car has no loads. The second car's loads are all rectangle lpads, The third car has a triangle load, the fourth car has a
hexagon load and the fifth car has a circle load. This train is raveling east.

[econt (tl,carl) | [ccont(tl,car2)) [cecont(tl,card)] [ccont(tl,card}]

[necar{tl) =4]

[infront (carl,car2)] linfront {car2,.card}] [(infront {carld.cacd)]

[loc{carl)=1] [loc(car2)=2][locicari}=3][loc (card)=4]

[mwhl({carl)}=2] ([nwhl(car2)=2) [nwhl(car3})=2] [nwhl (card)=2]

[ln{carl)=long] [ln(car2)=short] [1n({card)=short]{ln{card)=short]

[eshape (carl)=engine] [cshape {car2)=ushaped)] [cshape (car3)l=-opentrap] [cshape (card)=closedrect

[npl{carl)=0] [npl (car2)=1] [nplicard)}=1] [apl (car4)=2]

[lcont (car2, ledl)] [lecont (card, lod2) | [leont (card, lod3)] [locont {(card, lodd) |
[lshape (lodl)=triangled] [l1shape(lodl)=triangled] [lshape(lod3)=rectangled]
[lshapa (lodd)=rectanglod]

-

[dir=east]

Paraphrase:

This eastbound train has four cars each in front of the other and in positions one, two, three and four. They all have
two wheels. Car one is long and all the others are short, Car one looks like an engine, car two is u-shaped, car three
has an open trapezoidal shape and car four has a closed rectangle shape. Cars two and three each carry one load while
car four has two loads. Car one has no loads. Cars two and three have triangle loads. Car four has two rectangle
loads.

[econt (tl,carl)] [ccont{tl,car?)] [ccont(tl,card)] (ccont (tl,card)] [ccont(tl,car3))
[near(tl)=5]

[infront{carl,car?)] [infront{car2,car3)| [infront (car3,card)] [infront (card,cari)]
[1oc1car13-1][+nc:car2h=2![loc{cnrﬁ]-S][zoclcarll-il[lﬂctcar5]-5-

[nwhl{carl)=2] ([nwhl (car2)=2] [nwhl{car3)=2] [nwhl (card)=2] [nwhl (car3) =2]
[1n{carl)=long] [ln{car2)=short] [1ln{car3}=short] (lnicard)=short] [1ln{carS5)=short]
[cshapei{carl)=engline] [cshape(carl) =ocpentrap] [cshape (card)=dblopnrect]

|eshape (card)=ellipse] [cshape (cars) =openrect|

[npl {carl)=0] [npl{car2)=1][npl(card}=1] (npl(card}=1] [npl(car3}=1]

[locont {ear2, lodl)) [leont (car3, lod2)) [Loont (card, lod3) | [lecont (card, lodd)]
[1shapeqlod11—tr;anqlnd][lshapeqloGZ:-trianqlod][1$hape:lud3r-rectanglodl
[lshapla{lcodd) =rectanglod]

=

[dir=east]

Paraphrase:
There is an eastbound train with five cars each in front of the other and in locations one, two, three, four and five.
They all have two wheels. Only the first car is long, all the others are short. The shape of car one is engine shape.

44

Car two looks like an open trapezoid, car three looks like a double open rectangle, car four looks like an ellipse and
car five looks like an open rectangle, Each of the cars except the first car have one load, the first car doesn't have any
loads. Cars two and three have triangle loads and cars four and five have rectangle loads.

[ceont (El,carl)] [ccont{tl,car2)] [ccont (El,car3)]

incar{tl)=3]

[infront{carl,gar2)] [infront {car2,carl)]
[loc{carli=l][loci{car2)=2] [loc{car3)=13]

[nwhl{carl)=2] [nwhl{car2)=2][nwhlicar3}=2]

[Iln(carl}=long] [lni{car?)=short] [ln{car3d)=long]
[cshape(carl)=engine] [cshapeicar?) =ushaped] [cshape (carl)=openrect]
[npltcarll-ﬂ][n{l[car2!-1][npllcarJ]*E]

[leent (car2,ledl) | [leont (car3, lod2) | [leont (card, lod3)]
[lshape(lodl)=rectanglod] [lshape (lodd) =rectangled] [lshape (lodd) =rectangleod]
=>

[dir=wast]

Paraphrase:

There is a westbound train with three cars in locations one, two and three. They all have two wheels. Cars one and
three are long and car two is short. Car one is engine shaped, car two is u-shaped and car three looks like an open
rectangle. Car two has one load and car three has two loads, Car one has no loads. All the loads are rectangle loads.

Output:
Eastbound Trains:

[cshape (carl) =clozedtop] [ln{carl) =short]

Paraphrase:
There is a short car with a closed top.

Westbound Trains:

[eshape (carl)=jaggedtop] or [ncar(tl)=4,5]

Paraphrase:
There is a car with a jagged top or the number of cars in the train is not four or five.

Part b. (Incremental run)

Input:

[econt (t1,carl) | [cecont (tl,car2)] [econt {tl,card}] [cecont(tl,card)]
[ncar{tl)=4]

[infront (carl,carl}] [infront (card,carl)] (infront {car3,car4)
[loc(carl)=l] [locicar2)=2] [loc(card)=1] [locicard)=4]

[nwhli{carl)=2] [nwhl (car2)=2] [nwhl(car3)=3] [nwhl(card)=2]
[ln(carl)=long] [ln(car2)=shert]{ln(car3)=long][ln(card}=short]
[cshape{carl)=engine] [cshape (car2)=dblopnrect] [cshape(cari)=cleosedrect]
[cshape (card) =closedrect]

[nplicarl)=0] [nplicac2)=1] [npl{car3)=1][nplicacrd)=1]

[leont {(car, lodl)] [lcont {card, led2)] [lcont {card, lod3)]
[Lshape(lodl)=trlangle] [lshape|{lod2)-rectanglod] [lshaple(lodi)=circlelod]
-

[dir=east]

Paraphrase:

45

There is an eastbound train containg four cars; one, two, three and four. Car one is in front of car two which is in
front of car three, in front of car four, Car one is in location one, car two in location two and so forth. Car one,
two, three, and four have two, two, three, and two wheels respectively. The shape of car one is engine shape, car two
is double open rectangle shape, car three is closed rectangle shape and car four is also closed rectangle shape. The
number of places where car one has a load is zero, car two has one as with car three and car four. Car two contains a
triangle load, car three a rectangle load and car four a circle load.

[ccont (t1l,carl)] [econt (tl,car2)] [ccont {tl,card)] [ccont (tl,card)] [econt(tl, cars)]
[near(tl)=5]
[intrnnn{carl,carZJ][lnfranttcarz,carﬂl][infronttcarﬁ,ca!d}][1n{ront{car1,:ar5}]
[loe(carl)=1] [loc{carZ)=2] [loc{car3)}=3)] [loc(card)=4] [loc({car5)=5]

[rwhl (carl)}=2] {nwhl (car2)=2] [nwhl (car3)=2] [nwhl{card}=2] [nwhl{car3)=2]
[ln{carl)=long] [ln({car2)=short] [ln{carl}i=long] [ln{card)=short] [lnicar3)=short]
[cshape (carl)=engine] [cshape (car?)—opentrap) [eshape {card) =jaggedtop]

[cshape (card)=openrect] [cshape (car5)=opentrap]

[npl{carl)=0] [npl{car2)=1] [nplicar3)=1] [nplicard)=1] [npl{cars)=-1]

[leont (car?, lodl)] [lcont {(card, led2)] [leont {(card,lod3)] [lcont (card, lodd)]
[Lghapa[lodlj-circlelud][Lahapu{lodib—rectangludl{lshape11nd3?=rectangiod]
[1shaple {lod4)=circlaled]

-

[dir=wast]

Paraphrase:

There is a westhound train that contains five cars; one, two, three, four and five. Car one is in front of car two and
so on down the line. The location of car one is in position one, car two in position two, etc. Each car has two
wheels. The length of cars one and three is long, the other cars are short. Car one is an engine. Car two has an
open trapezoidal shape, car three a jagged top shape, car four an open rectangle shape and car five has an open
trapezoidal shape. Car one has no load, all the other cars each have one load. Car one has a circleload, cars two and
three both have a rectangle load and car four has a circle load.

[ccont (tl,carl)] [ccontitl,car2)] [ccent(tl,card)] [ccont(tl,card)]

[ncac{tli=4]

iinfront{carl,car2)) {infront{car?,car)] [infront {carld, card)]
[locicarl)=1][loci{car2)=2] [loc(cazd)=23] [loclcard)=4]

[nwhl {carl)=2] [nwhl {car2)}=2][nwhl (car3)=2] [nwhl{card)=3]

[Inicarl)=long] {1ni{car2)=short] [ln{car3d)=short] [lni{cardi=long]

[eshape (carl)=engine] [cshape (carZ) =cpenrect] [cshape (carl)=hexagon] [cshape (card) =closedrect

1

[npl{carl}=0]{npl (car2)=1] (nplicar3d}=1] [npl (card)=1]

[leont (car2,lodl)] [lecont {card, lod2) | [leont (card, lodl)]
[lshape(lodl)=circleled] [lshapae(led2)=triangled] [1zhaple (led3)striangled)
[dir=east]

Paraphrase:

This eastbound train has four cars one, two, three and four each in front of the next. They are each in their respective
locations, Cars one, two and three have two wheels, while car four has three wheels, The lengths of cars one and
four are long, cars two and three are short. Car one has an engine shape, car two an open rectangle shape, car three is
shaped like a hexagon and car four has a closed rectangle shape. the number of places where car one has a load is zero
while all the other cars each have one load. Car two has a circle load, cars three and four both have riangle loads.

[eeent (£1,carl)] [ccont (tl,car2)] [econt (tl,card)] [ccont (tl,card)]
[near(tl)=4]

(infrent {carl,car?) | (infront (car2,car3) | [infront(carl, card)]
[loc(carl)=1][locicar2)=2][loc(card)=3] [locicard)=4]

[nwhl (carl)=2] [awhl{car2)=2] [nwhl{car3)}=2] [nwhl{card)=2]
{ln{ecarll=long] [ln(carZ)=short] [ln{card}=short] [ln{card)=long]
[cshape (carl) =engine] [cshape(car?)=dblopnrect] [cshape {car3) =ushaped]
(cshape (card)=jaggedtop]
[nplicarl)=0][nplicar2}=1][npl{car3)=1] (nplicard)=0]

[lzont (car2, lodl)] [leont {car3, lod2) |

(lzhape (lodl)=circlelod] [lshape{lod2)=trianglod]

46

=5
[dir=west]

Paraphrase:

The train contains four cars each in front of the other in their respective locations. Each car has two wheels. The
length of cars one and four are long while the other cars are short. Car one is shaped like an engine, car two has a
double open rectangle shape, car three is u-shaped and car four has a jagged top. Cars two and three each have one
load, the other cars have no loads. Car two has a circle load and car three has a triangle load.

[econt (t1l,carl)] [ccont (tl, car2)] [econt (tl,car3)]

[near(tl)=3]

[infront (carl,carl)]l [infront(car?,carld)]
[loc{carl)=1][locicard)=2][loc(card)=3)

[awhl (carl)=2] [nwhl{car2)=2][nwhl{car3)=2]

[ln{carl)=long] [ln{car2)=long] [ln{car3)=short]
[GShaPElcarli“Engiﬂe](c!hap&I:arE]'clesﬂdrect][cshapn:carSi-qpanacLI
[npl{carl)=0] [npl(car2)=3] [npl(cari)=1]

[leont (car2, lodl)] {1cont (car2, lod2) | [leont (car2, lod3) | [leont (card, lodd))
[lshape {lodl)=circlelod] [1shape{lodZ)=circlelod] [lshaple(lodi)=circlelod)
[lshape{lodd4)=triangled]

=5

[dir=west]

Paraphrase:

This train has three cars. The first one is an engine and has no load. The second car looks like a closed rectangle and
has three loads, all circle loads. The third car looks like an open rectangle and has a triangle load. All three cars have
two wheels. Only the third car is short, the others are long. This train is traveling west.

[econt(tl,carl)] [cecont{tl,car2)] [ccont({tl,car3)]
[near{tl)=3)

[infront {carl,car2) | [infront (car2,card)]
[loc(zarl)=1] [loc{car2)=2] [loc(card)=3]
fnwhl{carl)=2] [awhl{car2)=3] [awhl{carld)=2)
[ln{carl)=long] [In{car2)=long] [ln{carl}=short]
[eshape{carl)=engine] [cshape (car2)=closedrect] [cshape (carl)=ushaped]
[npl{carl)=0] [npl{carZ)=1] [npl{carl)=1]

[lcont {car2, lodl)] [lecont {car3, lod2)]

[lzhape({lodl)= rectanglod] [lshape(led2)= circleled]
=3

[dir=west]

Paraphrase;

There is a train with three cars each in front of the other. The first and third cars have two wheels while the second
car has three wheels. Cars one and two are long and car three is short. The shape of car one is an engine, car two
looks like a closed rectangle and car three is u-shaped. Cars two and three each have one load while the first car has
no loads. The load of the second car is a rectangle load and the load of the third car is a circle load. The train is
traveling west.

[ccont (tl,carl)] [ccont (tl,car2)] [ccont (tl,carld)] (ccont (tl,card)] [ccont (L1, cars)])
[ncar{tl)=5]

[infront (carl,car2)] [infront (car2,car3)] [infront (card,card) | [infront (card, cars)]
[lec({ecarl)=1) [loc(car?)=2] [loc(card)=3] [locicard) =4] [loc(car5)=5]

[nwhl{carl)=2] [nwhl{car2}=2] [nwhl{carl)=2] [nwhl{card4)=3] [nwhl{car5)=2]
[In(carl}=leng] [In({car?2)=long] [Iln(car3)=short] [lnicard)=long] [1n(car5)=shart]
[cshape (carl)=engine) [cshape (car2)=openrect] [cshape(cari)=slopetop]

[eshape (card)=openrect] [cshape (car5) =openrect]

[npl (carl)=0] [apl (car2)=3] [npl (car3}=1] [npl (card)=1] [npl{car5)=1]
[lnunttcarz,lodll][1cnnt[car2,lod2]][lcont:carz,lodBﬁ}Ilcontﬁcara,lodqp;[1cant{car4,1oq5;]
[lcont {(cars, lodé)]

[lshape (lodl)=rectanglod] [lshape(lod2)=rectanglod] [lshape (ledi)=rectanglecd]
[lshaple(ledd)=trianglod] [lshape(lod5)=hexagonled] [lshape (lod6) =circlelod]

-

[dir=east]

47

Paraphrase:

There is a train with five cars each in front of the other and in positions one, two, three, four and five. All the cars
but the fourth have two wheels, the fourth car has three, The length of cars one, two and four are long, the others are
shart. The first car looks like an engine, the second, fourth and fifth cars have an open rectangle shape, and the third
car has a sloped top. The third, fourth and fifth cars have one load apiece. The second car has three loads and the first
car has no loads. The second car'’s loads are all rectangle loads. The third car has a triangle load, the fourth car has a
hexagon load and the fifth car has a circle load. This train is traveling east.

[econt (1, carl)] [econt (t1l,car2)] [ccont(tl,card)] [ccont (tl,card)]

[near (1) =4]

[infront (carl,car2)) [infront (car2.card)][infront (car3, card)]

[loe{carl)=1] [loc{car2)=2] [loc(car3)=3] [loc{card)=4]

[awhl(carl)=2] [nwhl(car2)=2] [nwhl (car3)=2] [nawhl (card)=2]

[ln{carl)=1long) [1n({car2)=short] [1ln{car3d)=short] [1ln{card)=short]

[cshape (carl) =engine] [cshape (carZ)=ushaped] [cshape (car3)=opentrap] [cshape (card) =closedrect

|

[nplicarl)=0] [nplicar2)=1] [npl(car3)=1] [npl(cardq)=2]

[leont {zar2, Lodl) | [leont (car3, lod2}] [leont (card, led3)] [lcont {card, lodd)]

[lshipitlﬂdll =triangled] [leshape(lod2)=trianglod] [lshape{lod3)=rectanglod] [1shape(lodd)=rec
tanglaod]

-
[dir=east]

Paraphrase:

This eastbound train has four cars each in front of the other and in positions one, two, thres and four. They all have
two wheels. Car one is long and all the others are short. Car one looks like an engine, car two is u-shaped, car three
has an open trapezoidal shape and car four has a closed rectangle shape. Cars two and three each carry one load while
car four has two loads. Car one has no loads. Cars two and three have triangle loads. Car four has two rectangle
loads,

[c:nnt(tl,gTrlj}[ccunt:tl,carZ:![ccnntltl.carall[ccan:[tl,cardr][ccont|t1,car5]]
[ncar{tl)=

[infront {carl,car?}] [infront {car2,card)] (infront {card, eard)) [infreont (card,cars)]
[locicarl)=1] [loc({car2}=2] [loc(car3d)=3] [loc(carq)=4] [loc{cars) =5}

Inwhl{carl)=2] [nwhl{car2)=2) [nwhl(car3)=2] [nwhl{car4)=2] [nwhl{cari)=2]
;1n;;ar1}.l¢nq][;nq;grzp-shorn]{ancarajnshort]Elntcazqrrshort]iln{cafﬁj-shart]
{eshape (carl)=engine) [cshape (car?) =opentrap] [eshape (car3) =dblopnrect]

[cshape (card)=ellipse] [cshape(car5)=cpenrect]

[nplicarl)=0] [npli{car2)=1] [npl (card)=1] [nplicard)=1] [npl (car3)=1]
[lcanticarz,lndljj[lcnnticar],lude]llc&nticaIQ.ladSH]{lcunt[carﬁ.lGGQJ]
[1shapeilodl)=trianglod] [lshape (led2)=triangled] [lshape (lod3)=rectangled]
[lshaple ({lodd) =rectanglod]

-

[dir=east]

Paraphrase:

There is an eastbound train with five cars each in front of the other and in locations one, two, three, four and five.
They all have two wheels. Only the first car is long, all the others are short. The shape of car one is engine shape.
Car two looks like an open trapezoid, car three looks like a double open rectangle, car four looks like an ellipse and
car five looks like an open rectangle. Each of the cars except the first car have one load, the first car doesn't have any
loads. Cars two and three have triangle loads and cars four and five have rectangle loads.

[econt (tl,carl)) (econt{tl,card)] [ccont(tl,card)]

[ncari(tl)=3]

[infront (carl,car2)] [infront {car2.carl)]

[loc{earl)=1] [loc(car2)=2] {loc(cari)=3]
[nwhl[cari}*?]{nwhl{carzj-zl[nwhlicar3}=2]

[ln{carl)=long] [ln{car2)=short] [ln(car3d)=1long]

[eshape (carl)=engine] [cshape{carZ) =ushaped] [cshape (card) -openrect]
[nplicarl)=0] (npl{car?}=1] [npl (car3d}=2]

{icont {car?, lodl) | [leont (card, led2)] [leont (card, lodld)]
[l1shape{lodl)=rectangled] [lshape(lodd) =rectanglod] [lshape (led3}=rectangled]
=3

48

[dir=west]

Paraphrase:

There is a westbound train with three cars in locations one, two and three. They all have two wheels. Cars one and
three are long and car two is short. Car one is engine shaped, car two is u-shaped and car three looks like an open
rectangle. Car two has one load and car three has two loads. Car one has no loads. All the loads are rectangle loads.

Qutput:
Eastbound Trains:

[eshape (carl) =closadtop] [ln{carl)=short]

Paraphrase:
There is a short car with a closed top.

Westbound Trains:
[cshape (carl) =jaggedtoep] or [necaritl)=4,5]

Paraphrase:
There is a car with a jagged top or the number of cars in the train is not four or five.

To summarize our test results, the two-step method seems to be the best for learning incrementally,
It has also been shown that when events are selected in a good order, two-step covering in
incremental mode may even be faster than one-step covering. It seems that in those cases in which
all events are not initially available, INDUCE 4, with its incremental learning capability, results in
significantly less resource usage while producing rules of similar or better comprehensibility values
than the non-incremental INDUCE 3.

5. CONCLUSION

Incremental learning of structural descriptions from examples has been shown to be successful. In
our tests, INDUCE 4 required less time to modify hypotheses than it would to generate them in
non-incremental mode. The incremental algorithm generated hypotheses that were of comparable
complexity to those generated in batch mode, but with a considerable savings in resources. The
best performance was achieved when a small number of the most representative examples were
given to form the initial hypotheses. INDUCE 4 is a superior system to use when not all of the
events are initially known.

49

6. REFERENCES

Cohen, Paul P., and Fiegenbaum, E. A. (eds.), The Handbook of Artificial Intelligence, William
Kaufman, Inc., 1982.

Dietterich, T. G., Description of Inductive Program INDUCE 1.1, Department of Computer
Science, Internal Report, University of Illinois, Urbana-Champaign, 1978.

Dietterich, T. G., and Michalski, R. S., "Inductive Learning of Structural Descriptions: Evaluation
Criteria and Comparative Review of Selected Methods", Arrificial Intelligence Journal, Vol. 16,
No. 3, 1981.

Dietterich, T.G., Chapter 14 of The Handbook of Artificial Intelligence, William Kaufman, Inc.,
1982.

Hoff, W., Michalski, R.S., Stepp, R., Induce 2: A Program for Learning Structural Descriptions
from Examples, 1SG-83-4, UTUCDCS-F-83-904, Department of Computer Science, University of
Illinois, Urbana, I1., 1983.

Larson, I., INDUCE-I: An Interactive Inductive Inference Program in VL4 Logic System, DCS

Tech. Report UITUCDCS-R-77-876, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1977.

Michalski, R. S., Learning by Inductive Inference, NATO Advanced Study Institute on Computer
Oriented Learning Process, France, 1974,

Michalski, R.S., "Pattern Recognition as Rule-Guided Inductive Inference.", IEEE Transactions
on Pattern Anaylsis and Machine Intelligence, Vol. PAMI-2, No. 4, July 1980.

Michalski, R. S. , "A Theory and Methodology of Inductive Learning”, Machine Learning, An
Artificial Intelligence Approach, (eds. Michalski, R. S., Carbonell, J. B., Mitchell, T.), Tioga
Publishing Company, 1983.

Michalski, R. §., Knowledge Repair Mechanisms: Evolution vs. Revolution, Report
UIUCDCS-F-85-946, Computer Science Department, University of Illinois at Urbana-Champaign,
1985.

Michalski, R. S., Chilausky, R. L., "Learning by Being Told and Learning from Examples: An
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnose”, Internarional Journal of Policy
Analysis and Information Systems, Vol. 4, No.2, 1980.

Michalski, R. S., Stepp, R. E., INDUCE 3: A Program for Learning Structural Descriptions from
Examples, Report of the Dept. of Computer Science, University of Illinois at Urbana-Champaign,
in preparation.

50

Michalski, R. S., Larson, 1. B., Selection of Most Representative Training Examples and
Incremental Generation of VL] Hypotheses: the underlying methodology and the description of

programs ESEL and AQ11, Report No. 867, Department of Computer Science, University of
Illinois, Urbana, 11, May 1978.

Mitchell, T. M.,;Version Spaces: An Approach to Concept Learning, Report STAN-CS-78-711,
PhD Dissertation, Computer Science Department, Stanford University, 1978,

Mozetic, 1., NEWGEM: Program for Learning from Examples; Program Documentation and
User's Guide, Report of the Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1985.

Reinke, R.E., Knowledge Acquisition and Refinement Tools for the ADVISE META-Expert
System, M.S. Thesis, 1SG-84-4, UIUCDCS-F-84-921, Department of Computer Science,
University of Illinois, Urbana, July 1984,

Reinke, R.E., and Michalski, R. S., Incremental Learning of Concept Descriptions: A Method and
Experimental Results, Machine Inteiligence 11 (ed. Donald Michie), 1985.

Rumelhart, D. E., Norman, D. A., Accretion, Tuning, and Restruciuring: Three Modes of
Learning, Semantic Factors in Cognition , (eds. Cotton, J. W., Klatzky, R.), Lawrence Erlbaum
Publisher, 1977,

1. R No. 2 3. Recipient’"s Accession No.
SIBLIOCRARRISOATS. |- UITbDCs-p-87 -058

4. Title and Subuitle

5. Report Date

February, 1987
INDUCE 4: A Program For Incrementally

b,
Learning Structural Descriptions from Examples
7. Auhor(s) 8. tl:erluruin; Organization Repr.
[- 9
John A. Bentrup, Gary J. Mehler, Jocel D. Riedesel : :
9. Performing Organization Name and Address 10. Project/Task/Work Unit Neo.
Department of Computer Science
University of Illineis 11. Contract/Grane MNo.
Urbana, IL 6&1801 NSF DCR 84-06801
ONE_NQO014-82-K-0186 |
12 Sponsoring Organization Name and Address 13 35:,:5 Report & Period
National Science Feoundation Ottice of Naval Research
Washington, DC Arlington, VA Ta.

15. Supplementary Notes

14. Abstracts

The program INDUCE 4 is a general-purpose incremental inductive learning program that
transforms symbolic descriptions of real-world events into more general and more useful
descriptions of these events. These events may be specified in terms of attribute as well as
structural descriptors. The program produces such descriptions by performing various
generalizing, simplifying and constructive transformations on the input descriptions, under the
guidance of background knowledge specified by the user. As new events are made available,

INDUCE 4 can incrementally modify what has been proviously generated to reflect this new
knowledge.

17. Key Words and Document Analysis. 170 Descriptors

Machine leamning, Concept learning, Inductive inference, Leamning from examples, Incrementa
learning, Structural descriptors, Constructive induction.

176 ldemtifiers /Open-Ended Terms

17e. COSATI Field/Group

18. Availabiliry Statement 19. Security Class (This 21. No. of Fages
Report)
UNCLASSIFIED 34
. Security Class (This 22. Price
Pa%r
NCLASSIFIED
FORM MTid 38 (10-T0]

USCOMM=DC 403258=A 71

