AGASSISTANT: AN EXPERIMENTAL EXPERT
SYSTEM BUILDER FOR AGRICULTURAL
APPLICATIONS

by

B. Katz
T. W. Fermanian
R. S. Michalski

ISG Report 87-16, UIUCDCS-F-87-978, Dept. of Computer Science,
University of Illinois, Oct.. 1987.

579

AgAssistant: An Experimental
Expert System Builder for

Agricultural Applications

by

Bruce Katz
Thomas W. Fermanian
Ryszard S. Michalski

Department of Computer Science
Department of Horticulture
University of Illinois at Urbana-Champaign
Urbana, Illinois

FILE NO.: UIUCDCS-F-87-978

ISG Report 87 - 16

October, 1987

This resesrch was supported in part by the Intemational Intelligent Systems, Inc.; the University of lllinois Research Board;
and Project No. ILLU-65-0357, of the Agricultural Experiment Station, College of Agricuiture, University of Olinois at Urbana-
Champaign.

AgAssistant: An Experimental Expert System Builder

Abstract

AgAssistant is a comprehensive expert system builder for [BM PC and compatible computers in the area of
agriculture. The inferencing mechanism was specifically designed to combine levels of uncertainty commanly
found in agricultural domains. It is both an enhancement and an extension of an earlier expert system for the IBM
PC, PLANT/ds, which was concerned with the diagnosis of soybean diseases common in Illinois. Unlike PLANT/
ds, in which all modifications of the system take place on a VAX minicomputer, AgAssistant provides a set of tools
for system modification and development directly on the PC. The work presented here is also based to a large extent

" . on the ADVISE Meta-Expert System.

AgAssistant is also more then an expert system builder. It provides a set of tools for the development of a
Knowledge base by example of expert knowledge (learning by example). These learning tools may be applied to
other agricultural problems were the classification or grouping of non-nummaric data is useful.

Among the many novel features incorporated into AgAssistant are:
* Multiple means of creating and refining knowledge.

AgAssistant can use rules developed directly from experts or acquired through inductive inference in the
same format .

* Probabilistic inference can be handled.

Of great use in agriculture, where the vagaries of nature can make identification or diagnosis a probabilistic
matter.

* The system is PC-based.

This allows wide dissemination of the program to farmers and others in need who are unlikely to have
access to larger systems. ’

« Menu-driven screens.

The novice user can quickly come up to speed in building experts systems.

AgAssistant: An Experimental Expert System Builder

Table of Contents
1. Introduction = o 1
1.1 An Overview of the program .y |
1.2 Knowledge Representation in AgAssistant 2
1.3 Relevance to Agricalture 4
2. The Advisory System -]
2.1 System Representation 5
2.2 Inference mechanism 8
2.2.1 Individual rule evaluation 8
2.2.2 Evaluation of rules in a hierarchical rule base 10
2.3 Control mechanism 10
2.3.1 Utility control scheme .10
232 Backtracking control scheme 11
3. Knowledge Acquisition Facilities 13
3.1 Direct Editing of Rules !
3.2 Rule Learning 14
3.2.1 Learning Rules from Examples .15
3.2.2 Improving Rules with Examples...... i i 15
3.2.3 Rule Optimization 16
3.3 Rule Compilation 17
4. An Exemplary System WEEDER e 19
4.1 Development of WEEDER NERRG 1
4.2 Validation of WEEDER 2
5. Conclusions 4 25
6. AgAssistant User’s Guide 26
6.1 The Main Menu 27
6.1.1 Getting Advice from an Expert System O 28
6.1.2 Getting Advice from a PATtCULAr SYSTEMcuuswsmssssmsssssssmasssssmassusssssasnsssssasissosss 29
6.1.3 Optons while an?wu-'mg E 0 (1L — IRTPATTY ||
6.2 The Windows ... 33

6.2.1 The Plan Window ... 13

AgAssistant: An Experimental Expert System Builder

6.2.2 The Answers Window

6.2.3 The Confirmation Window

6.2.4 The end of an advisory session

..... -

6.3 Develop a New or Improve an Old Expert System

6.3.1 Accessing Rules

6.3.2 Creating Rules
6.33 Accessing or Creating Examples

63.4 Accessing or Creating Variahles

6.3.5 Accessing or Creating System Description
63.6 Copying

6.3.7 Deleting

6.3.8 Printing

6.4 Variable Types

6.4.1 Nominal variables

6.42 Linear variables

M

b I R~ S T

6.43 Integer variables

6.4.4 Numeric variables

6.4.5 Structured variables

6.5 Rule Compiler Error Messages

7. Rules for WEEDER

7.1 Modifidea WEEDER Rules

8. References

b S i

55
57
62
63

AgAssistant: An Experimental Expert System Builder

List of Figures
Figure 1. An Overview 0f AZASSISTANL .v.vuwseresrssescmsssssssssmmrinisssss s s e ssssssnsanasssssss s BN
ﬁmzawmdwmummmwmumommm " 3
Figure 3. An illustrative rule base 5
Figure 4. Variable Definitions for illustrative system 6
. Figure 5. An example of a compiled expert system 7
Figure 6. General rule format 8
Figure 7. Utility control scheme ; 1
Figure 8. Backtracking Control Scheme 12
Figure 9. Knowledge Acquisition in AgAssistant 13
Figure 10. Rules before and after optimization 17
Figure 11. Grammar for rules 18
Figure 12. Variable names, types, and values for WEEDER 20
Figure 13. A rule for identifying Stinkgrass 2l
Figure 14. Do not apply conditions in WEEDER 21
Figure 15. An Overview of the AgAssistant Menu Structure 26
Figure 16. The AgAssistant Main Menuuuusses: . eerereeenn 27
Figure 17. Getting advice from an EXPErt SYSIEM ..c.ceruuisrmrsmsmmssermssssssmsessensssssssssnasssamsssssasssss sassssrsssssss 23
Figure 18. Responding to a question requiring an user to select an answer 30
Figure 19. Responding to a questions requiring a numeric answer 3
Figure 20, Screen for viewing confidence levels B
Figure 21, Typical eatries in the plan window. 34
Figure 22. The final screen of the adviSOry SESSI0Nisrcmssrsis s imrs s smss s sttt siass ssssstssassanses 35
Figure 23. Developing an Expert System 37
T3t T L T 1 S ———————————— 38
Figure 25, Rule COMPILAONcccimmsmmmmsrsssrssmsemsssstsistisissiauststosn st sasss s anes 43 (1881488 LS 108 39
Figure 26. Creating miescoosmsisssssmssses SR |
Figure 27. Learning Rules from Examples " 40

Figure 28. Screen displayed while learning rules 41

AgAssistant: An Experimental Expert System Builder

Figure 29. Improving Rules with Examples

Figure 30, Editing learning parameters

Figure 31. Editing examples

Figure 32. Editing variables

Figure 33. Editing System Description
Figure 34, Structure for the varisble shape

43

49
31

AgAssistant: An Experimental Expert System Builder

1. Introduction

Whtmmﬁwnmmmfumﬂmnmmmmﬂnufmmm.
mitmybuusedwcmmupmsyminmydnmﬁn.mmsymmdmpedspeciﬁcallym
handle the uncertainty found in many agricultural domains. It is an extension of a conceptual predecessor, Plant/ds,
muﬁummhmmuxwhﬁwmmdmmm&mhmMmmm
Ilinois and had the capacity to learn its rules through inductive leaming by example [Michalski et al., 1982].
Umnmmwmhmwmmvuwuwmmumwm one
mﬂmmmmmhum:nmmwmmgmhoﬁmumm
already exists. mmmhmuﬂthMmmmﬂEWSymwmd
Baskin, 1983]

Among the many important features of AgAssistant are:

» Multiple means of creating and refining knowledge.
AMMmMmhdm;ammmwmﬁwm

« Probabilistic inference is employed for handling uncertainty of data and rules.
It is of great use in agriculture, where the vagaries of nature make identification or diagnosis a probabilistic
maitter,

+ Implemented on a personal computer.
This allows wide dissemination of the program to farmers and others in need who are unlikely to have access 10
larger systems.

» Menu-driven screens.
The novice user can quickly come up to speed in building experts systems.

1.1 An Overview of the program

mﬁmm&nmﬁmﬁmﬁhmﬁmﬁmm{mﬁgm 1). The
AdvimyMndulsﬂuummpmamﬁmmmwmnmmumqmﬁmhﬂnw.awm
as give advice on the basis of the answers 1 these questions. It is described in more demil in chapier 2. The
compiled system is created by the compiler, which, in addition to parsing rules for correct syntax, creates a more
compact version of the system for faster execution. Rules may be created by hand, or created through induction on
examples. The inductive module calls the program NEWGEM [Reinke, 1984] o operate on examples, and variable
definitions to produce rules. Additionally, this module may start with existing rules and improve them with ex-

AgAssistant: An Experimental Expert System Builder

amples (incremental learning), or optimize them according to differing criteria. The methods for building, refining,
and compiling an expert system are described in chapter 3. The User's Guide, chapter 6 of this report, describes how
one would actually go about using AgAssistant.

Syssam Modules Systam Data
— =
/_,,.- Interaction
— é/ Te
‘_--‘ Rule Base

Indocie 5"#%3
Rl o o N Y

5

.

Figure 1. An Overview of AgAssistent

1.2 Knowledge Representation in AgAssistant

Knowledge in represented in AgAssistant primarily in the form of VL1 rules [Michalski, 1975]. Variables
in these rules may be nominal, linear, integer, structured, or numeric. The exact syntax and constraints on the rules
appears in section 4.3, while the various variable types and their representations is described fully in chapter 6. Here
wewilisimply;ive:hemaduafeelhﬁﬂmyhmwbdphmmmdmmhﬂurSMMMHem
the following chapters. A hypothetical rule that incorporates all of the allowed variable types appears in Figure 2.

AgAssistant: An Experimental Expert System Builder

Crop should_be harvesied if: cl

1. Crop_length*crop_width > 12 inches,
2. Crop_shape is oblong.

3, Temperature is 65 w 73,

4, Soil_moistore is medinm o high,

5. Sky is sunmy.

wzGB3

OR

1. Month is Ocwober,
2 Weather is fuir.

®a

Figure 2. A hypothetical rule in the knowledge base of an expert system

The above rule contains two complexes (conjunctive set of conditions), the first of which consists of five
conditions (or selectors), while the second complex contains two selectors. Each selector is followed by a weight or
confidence level (cI), which indicates the relative importance of the selector as a condition for the decision concept
For example, if the only fact which is known is the crop shape is oblong then the expert is 50 % confident that the
crop should be harvested. The method of combining these weights if more than one fact is known is explained in
chapter 2. The action for this rule, namely that the crop should be harvested, depends on whether those conditions
are satisfied. The degree to which the set of conditions must be satisfied can be set in the system threshold (Chapter
2.). Unlike other inferencing mechanisms, this system can support a decision with only an approximate match of the
evidence to the sateted conditions.

The first conditionof the first complex will be fulfilled if the arithmetic expression is true, that is, if the
product of the crop_length and the crop_width exceeds 12.5 inches. The second condition will be satisfied if the
shape of the crop is oblong. Since this is a stractured variable, values of the variable are arranged in a hierarchy;
thus this condition will be true if crop_shape takes the value of oblong, or any child of oblong. The third selector
will be true if the temperature is between 63" and 75°. The fourth selector will be fulfilled if soil_moisture is in the
range of medium to high; there may be values in between medium and high (such as medium-high) which are
implicitly included in this selector. The last condition will be satisfied only if the nominal variable sky receives the
value sunny, out of a possible set of values including raining, cloudy, etc. The second complex of the rule, follow-
‘mgdlc'DR'mﬁmdm:ﬂmmmawmmurlmthﬂifynnhnm'thmu@timbumpbyﬂcwbu.you
should do so now if the weather is fair.

AgAssistant: An Experimental Expert System Builder

A knowledge base for an expert system consists of a set of such rules. Rules may also be structured in a
hierarchical fashion, i.e., the condition of one rule may be the action of another rule. The process of building a
knowledge base is described in more detail in the User's Guide. The reader may also refer to Chapter 4 which
outlines the exemplary expert system WEEDER 1o see a complete expert system.

1.3 Relevance to Agriculture

Muﬂyﬁuﬁﬁpﬁdwﬁuﬁﬂxﬁmmhuwﬂmmﬂlymﬂhﬁﬂmm
mmummm.m;mmammmmw&w
expected in nawre, This namral variation has made the development of realistic models of agricultural systems
difficult mw“mﬂdfwmmwﬁmphmwmm Expert systems
technology, for the first time, will offer a technique for working with fuzzy or uncertain knowledge.

Agricultural scientists often provide advice to agriculral managers on the basis of an evaluation of their
incomplete knowledge and experience. This closely parallels the process of an expert system. Due t0 natural
Mq.wmmwmﬂmmmmm»muwmm
or knowledge. Adﬁmmwﬁﬂmmﬁvhwm&mﬂmhﬁnumwmwcmﬂndm
development cannot keep up with the rapid changes necessary. AgAssistant represents an expert system develop-
ment environment which can be easily modified in the field. It can therefore truly reflect any changes seen in the
natural responses of the model in question.

While many agricultural production processes are inherently complex, a subgroup of production processes
can adequately be described and converted 10 an appropriate knowledge base for use with AgAssistant. An example
of these are pest or crop identification or pest damage diagnosis systems. In addition, simple designing of agricul-
tural production systems would be appropriate domains for AgAssistant. Oftentimes agricultural data is of a
subﬂw.qﬂﬂﬁumu&hmhmwﬂymwmmm:hmmmI
techniques. mﬂmmmamwmmhmﬂtmlmmwwmm
managers 10 better interpret the observed phenomenon.

AgAssistant: An Experimental Expert System Builder

2. The Advisory System

mmuhmdmshg).saimmimrymmuaﬂeﬂhmmfmemgimmnmnuacumpﬂedmuf
rules. The exact form of of this file is described in detail in section 1 of this chapter. Section 2 explains how
individual rules are evaluated and how uncertainties are propagated through a hierarchical knowledge base. Section
Smmhuummlmdﬁeqm.mhmmhwmuﬂmumwm.
This chapter explains the technical details upon which the advisory system is based. The reader should refer o the
User’s Guide for informarion on getting advice from an actoal expert sysiem.

2.1. System Representation

The rule parser takes a set of rules and a set of variable definitions and produces a file containing the
compiled version of the expert system. This file consists of a cross-referenced version of the original system.
FigmaslnwumMarﬂshufuuupmaymm.whﬂeﬁm4mmmmueﬂnimntﬂnvaﬁablﬁ
involved.

Crop should be harvested ifs el

1, Crop is ripe,
2 Weather is good.

&8

Crop is ripe if:

1. Crop_color is yellow or green,
2. (Crop_width * Crop_length) > 12,

83

Weather is good if:
1. Sky is summy,
. 2 Soilmoistare is low,
3, Windstrength is very_mild to medium

ngs

Figure 3. An illustrative rule base

The rules in the above system represent a section of a hypothetical expert system for crop management.
Undoubtedly, an actual system, would contain many additional rules, (e.g. rules for fertilization, plowing. etc.) and
each rule would be of greater complexity; this rule base is meant solely for illustrative purposes. The rules indicates
that the crop should be harvested if the weather is good and the crop is ripe. Each of these conditions are in tum
based on further conditions as indicated in the first two rules. The variables and their respective types and domains
are shown in Figure 4. The compiled system appears in Figure 5.

AgAssistant: An Experimental Expert System Builder

VARIABLE|| Crop_length Crop_width W Soilmeisture Crop_color Windswength Crop Sky
Vaue 1 0-50 0-10 bad low yellow very_mild ripe sunmy
Value 2 tair madium green mild umipe cloudy
Valoe 3 good high beown madiom Tainy
Vale 4 black madiumstrong

Value 5 strong

Vahue 6

Value 7

Value 8

Figure 4. Varisbls Definitions for illustrative system

Bdmmﬁﬁnghhﬁnhﬂqdmm&gmsmwmmmpﬂﬂdm.hmat
the file in Figure 5 will be explicated. The file consists first of a list of variables and information relevant to them.
memmm&m_muuuﬁfmmmmnﬂmmmm). Following the variable
name is the relation used with this variable, and then the values associated with the variable obtained from the
variable table. Following each value is a list of wples, each containing four elements, viz. rule number, rule
complex, selector within the complex, and a weight. For example, if Crop_color takes the value yellow, then
selector 1 of complex 1 of rule 2 (rules are given numbers in order of appearance within the rule base) will be
mmwmcm“immmmuwﬁmmmmmmmmm
possibility of roundoff error). Values may have more that one tuple following them if the variable value pair
appears in more than one complex. Variables that are numeric and which appear in arithmetic expressions, are
indicated as such in the line of #'s separating the variables.

Following the variables, appear two lines of #'s, after which appear the rule actions. Each action has three
lines of information, The first line is simply the action verbatim, as it appears in the rule base. The second line,
possiblyi:lnnk.mnimthsmﬂam&{&m,hvmmfumm“mpmummﬁinmhdﬁ
the rule associated with the action receives the highest confirmation at the completion of the advisory session. The
third line consists of a number that indicates which variable, if any, is identical with the action, followed by a list of
four-tuples, with the same ordering as described above, which list the locations of the action as conditions in other
rules. For example, this line for the action *Crop is ripe’ begins with an 8 to indicate that this action variable, viz.,
‘crop’, is also the eighth variable in the variable list at the beginning of the file. Additional information indicates
Mmemﬁnndmappmhmhl,mmﬁlﬂmnfﬂwﬁﬁtmm

AgAssistant: An Experimental Expert System Builder

Sky
is
cloudy
c ﬁ 111500
Crop_length
050 SR
SR Cop
*nomeric® is
Crop_with tpe 311600
0-10
pre) FRERRRMEEHRD
Weather S
is Crop should_be harvestsd
harvest.oxt
bad
fair 38
good 312399
B g Crop is dipe
Soilmoristurs
is B111
low 1122% 125
mediom Weather is good
kigh
R AR 3112
Crop_color 467
is SPEMEEE R
yellow 21150 12345678
green 211500 MR
brown ﬁmqm
black g3 (Crop_width * Crop_Jength) > 12 212500
AR ey
Windstrength Weather What is the weather like?
is Soilmoisture To what extent is the soil saturated?
il Crop_color What color is the crop?
i H;% Windsrength How strong is the wind?
: Sky What is the sppearance of the sky?
oo RO Kz Crop Is the crop ripe yet?
Crop_length What is the length of the crop?
’"“Fm Crop_width What is the width of the crop?

Figore 5. An example of a compilad expernt systam

In the fourth and last line the order which variables should be asked is presented (see section 2.3 for an
explanation of this ordering). Following this is a list of arithmetic expressions found throughout the rule base, with
the appropriate tuple list trailing each. Finally, variables and questions that will be asked during the advisory
session when the system wishes to know the value of a variable are listed.

One may contend that the information contained in the compiled system, is, with a few minor additions,
just a rehashing of the system in its original form. While this is correct, there is an important reason for representing
the system in such a way. Consider what needs 1o be done to update a rale after a new value is associated with the

AgAssistant: An Experimental Expert System Builder

variable. Suppoumesmmmuimutnnﬂthwinhmmlaoﬁulm. One must then search the
mmmhmwdmwmvﬂupm.wpﬁmmm Additionally, in the worst
poss-ibl:cuse.mmmtmhfm'meacﬁmappmin:usehcminumumksmnﬁngm sn” maiches, or ns
matches for each of n rules . While both of these figures are polynomial quantities, they will nevertheless prove
prohibitively large for a PC system if n is large. Thus the appearance of all values, as well as the location of all
actions as conditions in other rules, are cross-referenced beforehand in the compiled file, resulting in almost no
search. MMMMMMWMMmMBmhmmu
following section.

2.2, Inference mechanism

Rules have the general format shown in figure 6. Since the conditions in rules are annotated by weights o
represent strength of evidence in favor of the decision, it is not sufficient to simply invoke the standard laws of
deductive inference in evaluating confidence levels of the rules. Section 2.2.1 describes the method for evaluating
individual rules, while Section 2.2.2 shows how rules are evaluated in a hierarchical system.

Action is xxxxx if

1. variahle] is valosl,
2. varishle? is valuel or valued,
3. variable3 is valued o values.

8B &3
W
g
2

OR

1. variabled is value7,
2. variable5 is valued.

& 8

Figure 6. General ruls format

2.2.1 Individual rule evaluation

The complex of a given rule is transparent to evaluate given the form of the compiled system described in
Section 2.1. A sum is maintained for each complex of each rule, and this sum is augmented by the amount indi-
cated by the tple associated with the satisfied variable-value pair. The general formula for evaluating a complex is

AgAssistant: An Experimental Expert System Builder

T (weights of sarisfied selectors) :
T (all weights in the complex) [1]

For example in complex1 of the general rule in figure 6., if variable1 had the value of valuel , and variable2 took the
mw.mmumwmhmmmw to valoes) thea complex one of this
rule would have the value of:

60 + 40
60+40+20 [2])

or 83%. Selectors with internal disjunction (selector with a set of disjunctive values) are assumed satisfied if any
of their values is the current value of the variable. Selectors with linear variables are satisfied if the variable takes
on any value within that range inclusive of the end points. Selectors involving numeric ranges are satisfied if the
answer given falls within the specified range. Similarly, selectors that are arithmetic expressions are satisfied if the
the expression evaluates to rue. Finally, selectors with structured variables are true if the variable receives the
indicated value or some child of that value.

Evaluation of rules with multiple complexes is performed by recursively taking the probalistic sum
(referred to as ‘psum’ evaluation in Advise [Michalski and Baskin, 1983]) of the nth complex with the psum of the
first n-1 complexes. The formula for this is:

psum(V(n),V(2-1),-.V(1)) = V(n) + psum(V(n-1),-V(1)) - V(n)*psum(V(2-1),-.V(1)), [31]

where V(x) is the evaluated value of complex x

Other evaluation schemes such as taking the complex with the highest value are possible but are not
included in this version of the system. The virtue of the psum scheme is that it fits well w the intuitive notion that if
any complex is completely satisfied, the rule will also be, as well as the mathematical notion that the probability of
two independent events occurring is the probalistic sum of the event probabilities.

A rule is considered to be satisfied if its confidence level goes above a threshold, currently set at 85%.
Notice that if all selectors are assumed to have equal weights and the threshold is set at 100%, then the evaluation
schemes described here collapse into formal deduction.

AgAssistant: An Experimental Expert System Builder

2.2.2 Evaluation of rules in a hierarchical rule base

Selectors in rules which are in turn actions of another rule receive the value of the rule times the weight for
that sslector. mmﬂmswﬂ.ummummhmmmmmmmmmﬁm
that the weather is good is 50%. The confidence that the weather is good in the first rule is 50%*40%, or 20%.

A hierarchical rule base contains a partial ordering between the rules. The rule evaluation module topologi-
mmmmmmmwmmummmmmmmm
to evaluate all rules after each new value is entered. This ensures that all weights are propagated in the correct
SEquence, mmﬂmmmmmofmmmqﬂwmmﬁmwﬂm
ﬂ@ghlmmemmm:mdndfuwngmm

2.3. Control mechanism

AgAssistant has two control mechanisms, that is, schemes which determine the order in which questions
are asked. Thﬁrnmeﬁndmﬁummhhu&whhhnﬂmumhmﬂhmndhm-m
utility scheme. The second mechanism, for hiearchical rule base, is a backtracking scheme.

2.3.1 Utility control scheme

The utility control scheme is pictured above in Figure 7. At the start of the advisory session questions are
asked for variables in order of the utility of the variables. The utility measure, precalculated and found in the
mpuwmmmmuuwuwmmmmmmmmamm Those
variahluw;hm“mhhmﬁmﬁmmmmuﬁﬁw.mmmmﬁmﬂmﬁl
m:mhvﬂdlrﬂewahmnm;mmﬂynlliﬁﬁuﬂnwmmm. ‘When this
occurs, the system will focus on that rule by asking for the values of all variables relevant to the rule. This continues
until the ruls is rejected, or all variables for that rule are exhansted. At this point the system will focus on another
rule which is above the threshold, or if none exists it will return to the utility measure. The entire process continues
until all rules are rejected or confirmed. This may require that all variables be queried for, but usually occurs much

" sooner. In general, a rule is confirmed if it has a confidence level above the confirmation thresold, while it is
rejectndit'ilmmmpossibiyhecmmmnd,mmmuwhnlheﬂlmfwﬂnmmhﬁnlnﬂum. The system makes
use of the method of keeping a "negative” confidence for all rules; thus there is no need to dynamically determine
whather a rule is rejected after each new answer. Rather, the rule is rejected if its calculated negative confidence
exceeds 100 - (threshold of confirmation). For example the WEEDER system has a confirmation thresold of 83%,
therefore, a rule is rejected in the system if its negative confidence exceeds 15%.

ot U 4

AgAssistant: An Experimental Expert System Builder

Focus on Highest Ruls Focus on Salient Variable

Figure 7. Unility control scheme

2.3.2 Backtracking control scheme

The backtracking control scheme is automatically invoked if the rule base is hiearchical. It is pictured in
ngms.mmuﬁmwmmhm&uﬁuﬂmuﬂmmmmmm,mi
the user answers *don’t know" for a variable which also appears in the action of some rule in the system. For
example, if the user answers ‘don't know’ for the varisble Weather in the rule base of figure 3, then the system will
auunp:min.fermenlmuchmhabyuﬁngmrmevﬂmufSky.Soﬂmm.mdwmngm The process
continues recursively until the system is able to find the value for the original variable it was focusing on, in this
caseWmhrr,uwhkhpohuilmmmmﬂwuﬁlityxhem.ﬁsymlri]lmluinu:mquefythﬂusuunti]aﬂ
rules are either rejected or confirmed.

page 11

AgAssistant: An Experimental Expert System Builder

ariable sppears in no Yy
action of another rule

e Use Uty Scheme

Figure 8. Backiracking Control Scheme

AgAssistant: An Experimental Expert System Builder

3. Knowledge Acquisition Facilities

Flgm?inmﬂwhwwledg:muiﬁﬁunfacﬂiﬁuumm As stated in Chapter 1, knowledge
isrqnsmmdinmu:rminmﬁmmuimiuinmdiﬁedﬂlmm These rules can be acquired in four
mm‘ﬂamphymhlmﬂﬁmmh@dwﬂmhap&miﬂueﬁuﬂdhﬂy. It is also
possible 10 use these methods in combination. F«xmph.mmmwmh&iluﬁtmhdimﬁy.md
Mmﬁuhﬂnmmmm Once acquired, rules are compiled to produce an advisory
system. The various facets of knowledge acquisition are described below.

Figure 9. Knowledge Acquisition in AgAssistant

AgAssistant: An Experimental Expert System Builder

3.1 Direct Editing of Rules

The simplest way to enter knowledge into the system is to enter it directly. The necessary condition for this
method is an expert capable of expressing knowledge in the form of rules. This notoriously difficuit problem is
often referred to as the knowledge acquisition bottleneck [Michalski and Chilausky, 1980b]. For example, one may
be a perfectly adequate driver and yet have difficulty expressing this knowledge in rule format. Nevertheless, there
are many domains in which direct entry of rules is appropriate. In AgAssistant, this is accomplished in two steps.
First, the relevant variables are entered into the variable editor. The variable type, and its domain, are specified
within the editor. anﬂndhﬁmmmmmm'smmndﬁum
will be created. mMmdhmmthﬂmhﬂedhhﬁh'mm‘}mm
file to edit being concatenation of the current system name and the extension *xle’. The command processor of
MSDOS will return the user 1o the AgAssistant system upon termination of the edit. The user will then typically
aump;mcumpihﬂmmwiyunudmhhm,mdwiﬂupu;msdhmpﬂacychifmmmﬁmdbym
compiler.

nmmummmmyuymummmmnmmm
WMEWMWRMhmmmWMHuMMMWﬁ
constructing a knowledge base with intermediate layers of knowledge. They can only make correlations between
the input events and their respective decision classes. One can partially work sround this, if desired, by leaming a
mturmw.mmmmghmﬁmmmwﬂmwrmﬂchmm For example, one
could first learn a set of rules describing diseases that afflict a given species. One could then do a another experi-
mnmhmrh:bmmmﬁnrﬂnplmtm“ufmmmﬂﬁsupuimnhdngﬂndismifmy.of
mepIMLOnemmmmwmmmmmmmmmammww
base. This method can be used to produce a rule group of arbitrary depth, although it is likely that any complex
domain will consist of a mixmure of expert and induced rules.

3.2 Rule Learning

At the heart of all the leaming facilities within AgAssistant sits the NEWGEM program [Reinke, 1984],
and at the heart of NEWGEM is the Aq quasi-optimimal covering procedure, As Aq is described in detail in many
previous papers, [see e.g. Michalski, 1973] we will not go into great detail about it here. Suffice it to say that Aq
works by atempting to find a rule which covers all of the positive events and none of the negative events, positive
events being those belonging to the decision class under consideration, and negative events being all others. It does
LhisbysdmﬁngammﬂrhinlhcmofposiﬁvummaNmnﬁugﬂngw successive negative events
until it covers none of the negative events. Extending a partial cover against a negative event simply means special-

AgAssistant: An Experimental Expert System Builder

izing it so that it no longer covers the negative event if indeed it did to begin with. This process is continued until a
cover ar disjunction of covers is produced for all of the original positive events.

3.2.1 Learning Rules from Examples

Learning from examples, is one of the most explored arcas in Machine Learning [Dietterich and Michalski,
1983). In this form of learning, 4 teacher provides characteristic examples and their respective decision classes 10
the Jearner. The task is then o create a set of rules which classify the given events. While simple in principal, this
method of building descriptions of concepts is often powerful in practice. For example, in a now famous case it was
shown that inductively derived rules for soybean disesse diagnosis outperformed expert give rules [Michalski and
Chilausky, 1980a]

AgAssistant combines variable definitions as found in the variable table, events as found in the data table,
mmﬂmumhmwmemubhmmmm‘m'mummdmﬂuﬂsm
leamning program. The parameters for the program determine varicus aspects of the rule creation process, including
mmammmmwmmmuu«mmwmnmmm
candidate hypotheses, and mumwwhiﬂhp'odludnﬂuwiﬂhmmd[m[kainh,lm for mare informa-
tinnonmcm&mmme,MMUﬂ‘sﬂmmmﬁhﬁmﬂmmmﬁum
parameters). The NEWGEM module takes the input from “special.gem’ and sends its output to the file ‘last gem’,
which is then copied 1o the file *system name).rle’ if the user decides to save the produced rules.

Each selector in a produced rule is associated with a weight. These weights are calculated by the following
formula, and then normalized so that the weights of a given complex sum to 100.

(4]
ps+ne

where pe is the number of positive events covered, and ne is the number of negative events covered by the selector.

Thus, the weight produced represents the probability that the given decision class is indicated given that the
selector is satisfied.

3.2.2 Improving Rules with Examples

AgAssistant is capable of improving its knowledge as new examples are presented to it. This method is
known as incremental learning with perfect memory, and the algorithm for performing this task is presented in detail
page 15

AgAssistant: An Experimental Expert System Builder

in Reinke, 1984, Smmmmmwﬂmmemﬂmdmhammwwardmmmmem
algorithm. First, the existing cover for a class of events is specialized o take into account new negative examples.
This new cover is then used as the original seed event for Ag.

Mmbemhﬁmimmfamhimpmmisw&mmm;mkbmm
mﬁmﬂummumwmmmmmm This file is then sent to the
mﬁmmmmmumamwﬂmmmw.
MMMMMMMMM&WMMHBM;MMWG&M
mﬂﬂ“a@hwdﬁﬁmﬂmmhmdhmm Clearly,
Hhmmnhhmmhmmdﬂuhmbﬁﬂmwmmﬂy.
MMMWMWWMIMWWWEM If the new
mmmmmuﬁmmmmmm:mmmnﬂummmm
the rules will exhibit a proportional increase in complexity. The chief advantage of the incremental learning method
presented here is the speed increase of the induction process.

3.2.3 Rule Optimization

mmwdmmﬁmmmmﬁwmum
rules. mhmdmcmmmﬂmmm:mmﬁﬂwmmMuhcm.m
discriminate rules as those which have only enough information 1o distinguish one class from another or another set
ufciasses.[Swpp,lgﬂalﬂmchmwiﬂicmbsudﬂmfunmyﬂmmmtm For example, expert-
created rules typically fall somewhere in-between the discriminant and characteristic categorizations. Indeed, one
common use for this facility is to compress rules provided by an expert to their discriminant versions.

The method for rule optimization takes advantage of facilities already provided by the NEWGEM learning
program [Reinke, 1984]. Rules are converted to the proper internal format for NEWGEM and submitted as input
hypotheses with no corresponding input examples. If the rule type parameter is set to produce discriminant rules,
these rules will be generalized to discriminant form.

Figure 10 shows the results of converting three characteristic rules o discriminant form. Notice that the
mmmmmmummmmwﬂmmmmmmmm
values of the variables shape and texture. This method of rule optimization only makes sense in context of an expert
system if one is confident that the values of the discriminatory variables will be knownby the user of the expert
system. IF this is not the case, the system will perform beter if the rules are lefl in their characteristic form.

AgAssistant: An Experimental Expert System Builder

Before optimization
Action is one if: Action is two if: Action is three ift
1. Color is red, 1. Color is red, 1. Color is red,
2. Size is small, 2. Size is small, 2. Shape is small,

3, Shape is round, 3. Shape is square, 3. Shape is square,
4. Textmre issmooth. 4, Texmre isrough. 4. Texmre is smooth.

After optimization
Action is one if: Action is two if: Action is three if:

1. Shape is round, 1. Shape is square, 1. Shape is square,
2. Texture is smooth. 2. Texture is rough. 2. Texture is smooth.

Figure 10. Rules before end after optimization

3.3 Rule Compilation

Once acquired, rules must be compiled if they are to be used in an advisory capacity. The compiler has two
chores. One is to check the syntax of the rules and provide the user with the appropriate error messages if the rules
do not parse. (A complete listing of error messages is provide in section 6.5). If the rules parse successfully, the
compiler will then create an file suitable for asking questions and giving advice. The exact nature of this file is
detailed in section 2.1 and will not be repeated here,

Figure 11 below contains the complete grammar for rules in the system. Summarizing this figure, we see
that a rule consists of a condition part and an action part. A condition consists of the disjunction of a set of com-
plexes, which in turn consist of the conjunction of selectors. A selector consists of a variable, a relation, and either a
value, a disjunction of values, or a range of values, plus an optional weight. A selector may also consist of an
arithmetic expression.

The rules are parsed in a straightforward way by an ATN-like parser. That is, the parser is structured as a
finite-state machine, with each of the elements of the machine optionally being another sub-machine. The only real
complication comes in the handling of arithmetic expressions. All arithmetic expressions are converted to reverse
Polish notation to ease the checking of the syntax. A similar conversion is performed at the time of running the

pags 17

AgAssistant: An Experimental Expert System Builder

advisory system, to allow the expression to be evaluated by recursive descent through the previously developed tree.
Cmﬂy,mmwmawminaﬁmﬁcmm“ plus, minus, multiplicadon and division. An
arithmetic expression may also consist of a single real number. The parser recognizes arithmetic expressions within
a selector only if the relation is one of “<", “<=", “=", “s® or oa”,

<ules - <actions <condition>
<action> - <varishle> <relation> <values "if:"
<condition> - <complex> "OR" <condition>
: <complexc>
<complex> - <elecior> <complexcs
«<salecor>
<selector> - <varishles> <relation> <value-list> <terminstor>
<a-expressions> <a-relation> <a-eXpressions <teTURLOT>
<variable> - string of lecters
«<yelation> - string of lecters
<value-list> - <valne> "or" <value-list>
<value> "lo” <values
z sring of letters
<lerminators> - <mmchers
<termchar> <weight>
<termchar> - g
<weight> = nanral number
<a-gXpression> - (" <A-eXPrEssion> <a-OpeTalors <a-eXpression ")"
: <variable>
$ <r-number>
<2-OpErators> - " ok
<r-number> - real mumber
<a-relation> E gt "

Figure 11. Grammar for Rules

AgAssistant: An Experimental Expert System Builder

4. An Exemplary System: WEEDER

Inﬂﬂdﬂﬁplﬂfmeﬂmﬁwwmd%mhhﬂ,hhﬂﬂmﬂcm&cﬂyﬂm&fym
mﬂm:)mmmmmmwﬂmmm Morse (1971) outlines five basic identifi-
cation methods for determining unknown plant species: i) Expert determination, which is generally regarded as the
most relishle of all identification techniques. This method merely transfers the responsibility of identification (o an
appropriale expert. This service can be slow and costly, and is often limited by the availability of an expert. ii)
Immediate recognition, spproaches expert determination and accurscy. This is the ability of an individual o
recognize an unknown weed by past examples of identification. For some axonomic groups and immature plants,
m,ﬁlmdmmdﬁnﬁmhmmmdhﬂmmm“pnm iif) A
comparison of an unknown specimen with identifled species of illusrations. It offers a rapid, simple diagnosis and is
often useful for many weeds commonly found in native populations. iv) An idensification key which is based on the
mdwmumﬂmmubmﬂchm Identification keys
wmmmﬂm;ﬁdﬁummwﬂﬂwmmmmmﬂm
matches that present on the unknown sample. The selection of this character then leads to the next set of identifying
characteristics. thmeﬂmﬂcmhmhmidmﬁﬁdwmhmﬁh
tion of the specimen. v) The last identification technique is a diagnostic table or polyclave. Diagnostic tables are a
matrix of rows of species and columns of ideatifying characteristics. Users of a diagnostic tables can identify the
listed characteristics in any order they wishes.

Morse (1971) lists two major faults of identification keys: i) They require a user to utilize certain charac-
teristics whether or not they are convenient or can be identified; ii) They implicitly rely on rigid descriptions of
: sl vackation s A isidentificati

The use of expert systems techniques offers a new, unique method for assisting with species identification.
The relative merits of an expert or advisory systems is the ability to select answers or queries about characters that
are available on the unknown specimen. They can operate on various levels of uncertainty providing a more
efficient mechanism for identification, particularly for immature plants which are even difficult for experts to
identify.

4.1 Development of WEEDER

InMmmemmmhmm&mnMWmmmm;mhmn-
tial grass weed. Eleven identifying characteristics, both vegetative and floral were determined for each weed. The
information for this table was obtained from many sources: textbooks, weed identification manuals, botanical
manuals, and the authors experience. The variable name, type, and set of values is shown in Figure 12.

AgAssistant: An Experimental Expert System Builder

VARIABLE Vernation Auricle Ligule Sheath Collar Blade_width
folded absent compressed naTOW fine
rolled short round divided medium
claw_liks closed broad cosre

00 =J nun B Ul B

bunch shorter shove absent 1 panicle 1
thizome longer below present 3 Taceme 3
thiz_stolon bifid 5 spike 3
swolon

00 =1 o s L b e

Figure 12. Variable names, types, and values for WEEDER

The characteristics selected were those thought 1o be most easily recognized in the field without supportive equip-
ment. [Shurtleff, et al., 1987] Figure 13. presents a typical rule. This rule consists of 10 selectors. Each selector is
associated with a weight or confidence level (ci) that indicates the relevant importance of the condition in making
the decision. Notice that these weights need not add up to 100; they are normalized by the system. The weights
give a rough estimate of the importance of each of the conditions in discriminating between the rules. These weights
were then refined by the domain expert (T. Fermanian)

Rules for WEEDER were developed utilizing the NEWGEM module of AgAssistant. Separate rule sets
_mfma,ﬂmbymm;amurcmmﬁmm.mmwwmamommumm The
mostappmpﬂa:cnﬂesﬁmnbmhaﬂswnﬂmmodiﬁad.uﬁliﬁnsnpmnpuimamdmimmuingkmiesu
used in the initial evaluation.

Grass weed identification in turf is generally only available through the use of vegetative characteristics.
This is due to the frequent mowing of the turf which often removes any floral portions of the plant. WEEDER
allows the user to select either vegetative or a combination of floral and vegetative characteristics at the beginning of

AgAssistant: An Experimental Expert System Builder

each session. This is done through a “does-not-apply” question which is always asked first in the consultation.

Weed is Stinkgrass if:

1. Florets are 1010 12,

2. Flower is panicle,

3. Collar is nammow,

4. Blade_width is medium,
5. Habit is bunch,

6. Sheath is compressed,
7. Vernation is rollad,

8. Glumes are shorter,
9.Florets is 1,

10. Disart is below.

REBRBBLEBIR &

Hﬂilﬂ.&mhfum Stinkgrass

“Does not apply” questions were established in order o provide a meaningful subset of variables for
WEEDER to act on. The question “Are seedheads or flowers present?” 1o which the user responds “yes,” “no,” or
“don"t know™ begins each session. If a “don’t know"” answer is given, then all identifying characteristics are asked.
If “yes™ is answered, then eleven of the possible characteristics are presented to the user. If “no” is answered, which
is the usual situation for turf, then seven characteristics are presented—only those pertaining to vegetative portions
of the plant, Paraphrased versions of theése do not apply conditions are shown in figure 14.

If seedheads are present then
Auricle, and Blade_width do not apply.

If seedheads are not present then
Florets, Flower, Awns, Disart, and Glumes do not apply.

Figure 14. Does not apply conditions in WEEDER

nass 11

AgAssistant: An Experimental Expert System Builder

4.2 Validation of WEEDER

In order to measure the relative efficiency of WEEDER in identifying unknown grasses, a study was
condncted in which individuals were asked to identify four unknown grasses. Four grasses were selected randomly
from a set of fiteen grass species commonly found in central Tlinois. The four species selected were: creeping
WWMU-MMWWH-WWWM-N
large crabgrass (Digitaria sanguinalis (L.) Scop.). Forty-cne volunteers were assigned to one of two groups, if they
mummwhmmwmwmhmmmmw&m
those volunteers who had no biclogical or plant science training or experience. Each individual randomly selected
two of the four unknown weeds for identification using WEEDER, the other two weeds were identified using a
diagnostic key, a commonly used tool (Shurtleff et al., 1987).

Mﬂﬂhmemmp&meﬁdmﬂwam&dﬁmam-@wm&u
mwmmmsmmamwwmoﬁmm
potential configurations of morphological characters. Each individual was allowed up to 30 minutes per weed for
identification. Fifteen minutes was reserved for a demonstration of each character and an explanation of how it
could be identified. For the plants identified through the diagnostic key, each participant only supplied their first
and possibly a second choice, as suggested by the key. Grasses identified with WEEDER, however, offered
participants the ability to indicate the configuration chosen for each plant character. A frequency analysis of the
correctly identified grasses was then conducted to determine their fit to the x* distribution.

Based on the consistency of participant identified configurarions of several characters for each plant, rules
mmmrwmmmaﬁwwmmammmmmmmﬁmm
disjunctions of additional configurations. The second set of correctly ideatified grasses, occurring after rule
adjustment, were then evaluated for their fit to the 3* distribution as previously described. The results of both
evaluations is shown in table 1.

£

WEEDER has the ability to rank all the grasses in its knowledge base from most likely to least likely
representing the unknown grass. This could potentially provide 39 answers or identifications for each unknown
sample, Table 1 presents the percentage of correctly identified grasses listed as either the first or second choice
using either identification tol (WEEDER or the key.) Regardless of the tool, the level of performance was quite
low. Asnpenud.ammrmwﬂum&muwimaphmmmmmimmmiﬁmﬁmkw.
showed a modest success rate (22%.) The 15% success rate of the plant science group in correctly identifying the
grasses using WEEDER was initially disappointing. While the 7.1% success raie for the non-plant science group
using WEEDER was considerably less, it appeared to be independent with a probability of .8.

AgAssistant: An Experimental Expert System Builder

Tabls 1. mﬁmmﬂmmmm-ﬁmummnm;wmﬁn

or 2 key.
User groups
Plant science BackgroundNo previous Both groups
Training
Identification Ruls readjustment
Tools Before After Before After Before After
%
WEEDER
Bentgrass 125 615 2.1 345 105 579
Per. ryegrass 12.5 75 9.1 455 105 42.1
Zoyrisgras 16.7 750 0.0 £0.0 9.1 T3
Large crabgrass 167 41.7 10.0 0.0 135 1
All grasses 15.0 550 7.1 452 11.0 500
z2 13 397 02 1382 129 78
P 9 26 30 004 26 32
Id key
Benigrass 167 t 10.0 - 13.6 =
Per. ryegrass 41.7 - 40.0 — 409 =
Zoysiagrass 30 - 10.0 - 15.8 =
Large crabgrass 0.0 - 10.0 - 53 -
All grasses ns = 175 - 19.5 -
12 7.11 = 255 - 130 =
P o7 - a5 =] -
Both tools 188 40,0 119 29.3
! 2 125 7.50 1.12 9.62
P 26 o1 2 002
tnot readjusted

Rules for the four grasses were modified to raise the level of confidence of the more readily identified
characters and to reflect the strongly identified configurations which had not been included in the original rules. The
results of an analysis of these changes showed a lar ge gain in the percentage of correctly identified grasses as shown
in Table 1. On the average, the percentage of comectly identified grasses rose o 50%, as compared to the 19% for
grasses identified with the key. A %2 evaluation showed no significant dependence on previous training when using
WEEDER. A summary of the independence of correctly identified grasses is shown in Table 2. While no signifi-
cant indication of dependence was shown before rule adjustment, a very significant dependence (.00) indicates the

AgAssistant: An Experimental Expert System Builder

relative advantage of WEEDER over the identification key. The key appeared o be equally useful to groups with
either training, showing no significant dependence before or after rule adjustment.

Table 2. Summary of the independence of correctly identifying four grasses as the first or second choice

using WEEDER
Rule
readjustment Identification tool User group
Before
x 2 231 274
P J13 10
After

% 2 16.8 1.89
P

mammmmﬁnﬁgdﬁ:mwﬁpﬁmwmeuhﬁmrmmfmmmm
tion of unknown grasses by individuals regardless of their background. When using the key, performance was
generally beter from the group with the plant science background. This difference in performance, however, was
not found when the same group used WEEDER, which benefited either group equally. It is important to note that a
significant gain in the ability to correctly identify weeds was found with WEEDER, particularly after rules were
adjusted. This smdy brings out one important aspect to the use of expert advisory systems. ‘While the use of
knowledge is central to all advisory systems, the skills associated with recognizing queried characters is paramount
in weed or species identification. These recognition skills were lacking in the test population, as indicated by the
low ratios of success.

While WEEDER provided an initial test of AgAssistants inferencing capabilities, other portions of the
program remain untested (leaming module, rule optimization, eic.). Additional systems are currently being devel-
oped to test these functions,

AgAssistant: An Experimental Expert System Builder

5. Conclusions

An expert system builder that is capable of learning and improving its knowledge has been presented. Thus
it is has been demonstrated that sophisticated kmowledge acquisition facilities are suitable for creating expert
systems in the microcomputer environment. This should be of great use in disseminating this technology to the
typical agricultural user who does not have access o large computers

A namber of improvements and extensions to AgAssistant are possibie, however.

1) New and maore powerful learning systems could be incorporated into the system. One such method is
leaming by analogy, in which the program acquires knowledge by comparison with similar cases
it has seen in the past.

2) The ideal system should be able to adjust its knowledge during the advisory session. That is, if it is told
that it made an incorrect decision, it should be able to update its knowledge in light of this
information.

3}mmmmammmmrwmhﬁu¢Mncmutmm
should be able to state the importance of groups of conditions in addition o weighting individual
conditions.

4) Automated methods for generated explanation and other text during the advisory session need 10 be
developed.

5) The learning module should be able 1 incorporate background knowledge. In addition, it should be able
to suggest a hiearchical structure in addition whereby input events are connected to decision
classes through intermediate nodes.

6) The programs CLUSTER (Stepp, 1983], for clustering examples into categories, and ATEST [Michalski,
1985], for testing the consistency and completeness of rules could be incorparated into the
system.

7) Finally, the system could be integrated with a video system. This would enable the system to display
plants and other items during the question answering phase of the advisory session

This list provides suggestions for further research in this area.

AgAssistant: An Experimental Expert System Builder

6. AgAssistant User’s Guide

Figure 15 below gives an overview of the AgAssistant from the point of view of the system user. From the
mmﬂmdmmmmwdﬁagam&mmmﬂm.um“msmm. This
chapter explains in detail these options.

Main Menu
Get Advice from Develop an
Create ;| Exampl
es
Variables
ggz System
Print | Description|
i Interaction
¢ Texts
‘'Whole
- System
Access Rules Create Rules
Test me

Figure 15. An Overview of the AgAssistant Menu Structure

AgAssistant: An Experimental Expert System Builder

6.1 The Main Menu

Enu-ing'a:r’ﬁumﬂnupmﬂngsymwﬂlhrmmnummumm.audbﬁngupthcminmmu
[Figure 16] for the system. Entering ‘agr demo’ will do the same after greeting the user with a short animated

display.

AgAssistant Main Menu

WELCOME to AgAssistant
What do you want to do?

Get Advice from an Expert System
Develop a New or Improve an Old Expert System
Quit

Figure 16. The Agassistant Main Memu

The main menu displays thethree major options one can choose from the start of the program. As with all
menus in the AgAssistant system, options are selected by moving the ‘box’ which highlights a selection to the one
that you desire, and then typing RETURN (.J) to activate it. Movement of the box corresponds in a natural way to
the direction keys located in the numeric keyboard to the right of the PC keyboard. The user may also type SPACE
to move the box forward, or BACKSPACE to move the box backward. The options for this menu are:

1) Get Advice from an Expert System

The user chooses this option to get advice from an existing expert system. One cannot modify the system in
any way with this option. This selection will bring you to the menu described in section 6.1.1.
2) Develop a New or Improve an Old Expert System

One selects this option if one wishes to modify an existing sysiem, or to build a new intelligent system

AgAssistant: An Experimental Expert System Builder
from scratch. mmmmmmdmmwcﬁmmﬁnmormuwﬁmm
learning facilities. This choice brings you to the menu described in section 6.3.
3) Quit (Leave the program)

6.1.1 Getting Advice from an Expert System

After choosing the option, ‘Getting Advice from an Expert System’, from the Main Menu, the screen
pictured in figure 17 is displayed. Notice that the top line of the screen tells you what you are doing now (on the
right), and which menu you came from (to the left). This convention is followed throughout AgAssistant.

Getting Advice Came from: Main Menu
Expert System Description of Expert System
Domain: Weed Identification
xﬂ' Expert defined rules for weed identification
Weed2 Characteristic rules for weed identification
Discriminant rules for weed identification
Golf Selecting and maintaining torf for golf courses
Field Selecting and maintaining turf for playing fields
_ Options: Pagelaof1
PgUP - Previcus page of Systems RETURN = Select system
PgDN - Nextpage of systems ESC = Mors Options

Figure 17, Getting advice from an Expert System

The expert systems and their domains are displayed on the left of the screen. The right hand side contains a
brief description of the expert systems. Options for this menu are:

AgAssistant: An Experimental Expert System Builder

1) PgUp - Previous page of systems

Hmatmmmmmmdm“mmmﬁnm:mmmmmuw. or sound
the bell if one is already on the first page. A page cOunt appears on the right hand side of the screen adjacent to the
word “Options:”.

2) PgDn - Next page of systems

If there are more than one pages of expert systems, this option will bring one to the previous page, or sound
the bell if one is on the last page.

3) RETURN - Start an advisory session

Move to the desired system with the direction keys, or the paging keys. When the system you desire is
hilighted, type RETURN. This will bring start the advisory session (described in section 6.1.2.).

4) ? - Learn more about a system

Afwagimupmnmhhighﬁghmd,qﬁnr?’willhringnpmctmpawuﬁnfmmﬁmabnm
that particular system.

5) ESC - More options

Typing ESC at any time will bring up further options that allow one to either retumn to the main menu, or 10
quit the program. This convention is followed throughout AgAssistant.

6.1.2 Getting Advice from a particular system

After selecting the desired system, a series of questions will be put 1o the user of the program in order to
determine what course of action to follow, Questions are in two basic formats, those requiring the user to select an
answer,and those in which the user is expected to type in a numeric answer. The appropriate methods of response
these questions are explained below.

Figure 18 contains a sample screen in which the user is being asked for the appearance of the
ligule(morphological character of a grass). The choices in this case are ciliate, round, truncate, acute, toothed,
acuminate, absent, and don’t know. An answer is selected simply by moving the box to the required entry with the
direction keys and pressing RETURN. Additional options are explained below in section 6.1.3 All questions permit
the user to answer that he does not know that particular answer. If the system can, it tries to determine the value
through alternative means, otherwise it simply goes onto the next question.

AgAssistant: An Experimental Expert System Builder

Getting advice from Weed Came from: Selecting a system
Plan Answers so far mm——
. ; 4, Blade width is fine
Fossslng sa lyportads 5. Awns s absens
Weed is Yellw Fxuail 6. Flowers is panicle
7.Nerves are 0

e Ruiles with highests confirmation ===
1. Weed is Yellw Pxtmil 73%
2. Weed is Anl Bluegrass 30%
3, Wead is Alkaligrass 28%
4. Weed is Rescuegrass 28%

How does the ligule sppear?
ciliste round
mmeats acute
toothed acuminate
absent don't kmow
Options:
RETURN - Select Answer ESC —~ More Options

T = Help with an snswer

Figure 18. Responding to a questions requiring m user (0 select an answer

In some cases, a numeric answer is required. The user will be requested to type in a real number within the
specified range. For example, in figure 19, the following are valid answers: 3.9,8.14521,0, 12.0. the following are
not in the range specified, and are invalid entries: -100, 12.1, xyz, and 8b. The user may also type RETURN only,
with no characters appearing in the field, if he does not know the answer 1o the question.

6.1.3 Options while answering a question

1) RETURN - enter answer

After highlighting the appropriate answer by using the space bar, or entering a numeric value, typing RE-
TURN will tell the system to accept that value, update its knowledge, and move on the the next question.

AgAssistant: An Experimental Expert System Builder

Getting advice from Weed Came from: Selecting a system
— Plan ———— — Angwen 50 fr =
Focusing on veriable:

pH

e Rules with highests confirmation = =
What is the pH of the soil? <Rmge: 0-14>
(If you don't know the mswer, type RETURN only.)
Options:
RETURN - Select Answer ESC — More Options
? - Help with m snswer

Figure 19. Responding 1o a questions requiring a numeric answer

2) ? - Help with an answer
This option will display more information about a highlighted answer, if such information was entered
during system development.

3) ESC - More options

Typing ESC will bring up a number of options that allow one to move to other menus. These are:

a) View Confidence Levels

H:Msm.thisnpﬁoﬂpermiumsmviewthemnﬁdenulwelufavuymleinlheexputsyswm.as
illustrated in Figure 20. Notice that across from each rule, a confidence level is displayed both numerically
and graphically. Rules are divided into three classes. Rules that are confirmed are those rules above the

AgAssistant: An Experimental Expert System Builder

Viewing Rule Confidence Levels Came from: snswering questions
Rule Action 0 100 %

Weed is Stinkgrass S
Weed is Anl Bluegrass [P—
Wead is Alkaligrmss =000 s
Weed is Rescuegrass e
Weedis Fall Pamicom ™~ [
Weed is Ken Bluegrass p—
Weed is Smutgras 00 |7
‘Weed is Redtop F—
Rejected rules:
WeedisLrgeCrbgss = e
Weedis Torpedograss = |ewees 17

HRRNRRES

8

PgUP -- Previous Page of Rules Retum -- Retum to snswering questions
PgDN -- Next Page of Rules

Figure 20. Screen for viewing confidence levels

confirmation threshold, cusrently set at 85%. Rules that are unconfirmed are those rules not above this
threshold, but with a chance of being such depending on the answers to further questions. Rules that are
rejected are those that have no chance of being confirmed. Note that it is possible for a rejected rule w0
have a higher confidence level than one which is unconfirmed. Options from this menu include paging
through the rules, or retuming to answering questions.

b) View a Rule

This option permits one to view any rule in the sysiem. One will be asked to type in a rule name, or (o type
“m 1 select from the rules listed. The entire body of the rule will then be displayed. This is useful for

AgAssistant: An Experimental Expert System Builder

informing the user of the conditions which are associated with a rule and why the confidence is at a given
level,

c) Start a new advisory session

mammmmmmmmﬁm

d) End this advisory session

End the session prematurely. Namm.-mwmmmmmmmm:emm
confirmed. This option allows one to terminase it before this time. One will be brought to the screen
described in section 6.1.1.

¢) Resume this advisory session

I.fESCisnpedbyamidmnummﬂywishdmviwmuvﬂhbhupﬁm.mmywhctmjmpdm
to restart the session where you left off.

1) Quit

Quit the program.

6.2 The Windows

ammpmymgmhqusﬁﬂnmmmwhﬁuwmﬂdMWinhismﬂmdiuonmme
system is doing, The Plan Window describes to the user why a particular question is being asked at this ime. The
Answers Window shows the user his answers to the last four questions. The Confirmation Window indicates the
rules with the four highest confirmation levels.

6.2.1 The Plan Window

The Plan Window Consists of three sorts of messages to inform the user of the intentions of the expert
advisor. Figure 21 shows examples of these messages.

In A) we learn that the system is focusing on a specific variable. This will typically occur at the beginning
of an advisory session. When enough evidence accumulates to point to a specific rule, messages such as those found
in B) will appear. In this case, the system first tried to confirm the hypothesis “Weed is Torpedograss™ by asking a
series of questions relevant w this rule. Tt was rejected, however, and the system is now concentrating a new rule

AgAssistant: An Experimental Expert System Builder

Focusing on the variable pH.

The hypothesis "Weed is Tropedograss' is rejectsd.
Now focusing on the hypothesis "Weed is Stinkgrass'.

Focusing on the variable temperatore,
In order to determine the vaine of weather,
In order to determine the value of planting conditions.

Figure 21. Typical entries in the plan window

A) The system is focusing on a varisble.
B) The system is focusing on a rule.
C) The system is attempting to find

the value of a variable indirectly

“Weed is Stinkgrass”. Case C) applies only to hierarchically structured rule bases. In this sitation, the user
answered “don’t kmow™ to the question “What are planting conditions like”, The system then backtracked and tried
to infer the answer to this question by asking for a description of the weather. The user answered “don’t know™
once again, and the system is now focusing on the temperature in order to ascertain weather conditions.

6.2.2 The Answers Window

The Answers Window simply presents the user with the answer to his last four questions. for example, in
figure 18 above, we see the previously entered values of blade width, awns, flowers, and nerves.

6.2.3 The Confirmation Window

The confirmation window lists the rules with the highest four confirmation levels. Note that this does not
mean that these rules are necessarily confirmed absolutely. Rules cannot appear here, however, once rejected.
Figure 18 above includes a typical Confirmation Window found in the upper half of the screen. Note that the rule
actions are followed by their respective confirmation levels.

AgAssistant: An Experimental Expert System Builder

6.2.4 The end of an advisory session

wmmnmmuwmmmamuﬂmcmmﬁcmwmmmmmy
session, a new menu will appear. A typical screen appears in Figure 22. The screen offers advice on the basis of the
user’s responses. This advice can take one of two forms. It can consist of a listing of ooe or more confirmed
wwmwm&mm Or, as in the case below, it may be a page of text associated
with the rule with the largest confirmation level.

Advise Session Complete Came from: Answering questions

On the basis of your responses, I offer the following advice:

The weed that fits closets to your description is Yellw Fxiail e —— i

Opticns:
View Confidence Levels Change an Answer Main Menu
View a Rule Start Another Advise Sesgion Quit

Figure 22. the final screen of the advisory session

Options for this menu are:

1) View of confidence levels

This will bring one o the screen in figure 19. One can then view the final confirmation levels of all rules.

2) View a Rule

This option is identical to the one during the advisory session, lets one sce the full body of a rule.

AgAssistant: An Experimental Expert System Builder

3) Change an answer

Schcﬁngﬂﬁsupﬁmaﬂummmﬂmnmymerﬂmdmingdnmhudummmwmw
sponding change in the confirmation levels of the rules.

4) Start another advise session

Go to the menu in figure 17 above.

5) Main Menu

Go to the menu in figure 16 above.

6) Quit

Quit the program.

6.3 Develop a New or Improve an Old Expert System

After choosing the option ‘Develop a New or Improve an Old Expert System’, the screen in figure 23
appears. This menu allows one to access all of the knowledge acquisition facilities of AgAssistant. One uses this
menu by selecting an item from each of the three columns on the screen. The header of each column is hilighted
upon entry. The user moves from column to column with the right and left direction keys, and within a column with
the up and down direction keys.

Typically, one will first sslect an expert system from the right most column. this may be an existing system,
or the special entry <New Systemr> for creating a new system. Next one moves right, and selects an operation one
wishes to perform. Finally, one chooses an item from the right most column. A line below the columns indicates
which particular combination of three items is currently being chosen. One activates the given choice by pressing
RETURN. One may also type ESC at anytime to get options for changing the menu. An explanation of the possible
choice one can make from this menu are detailed below.

One creates a new entry in the first column by accessing the system description of the <New Systeme> (this
is the only operation one can perform). When created, the newly created system name will appear in the list of sys-
tems, and one can then begin creating its components. Each expert system consists of a set of items in the rightmost
column. The Interaction Texts entry is not yet implemented; it will contain information relevant to the advisory
session. Likewise, the Inference Parameters column is not implemented; eventually, this will allow the user w0
select the control strategy and other control related information for the advisory session. The Whole System can only

AgAssistant: An Experimental Expert System Builder

Developing New or Improving Old Expert System Came from: Main Menu
Select Expert System Select Operation Select [tem
<New Sysem> Access Rules
Creats Examples
Domasin: Turfgrass Mmagement Copy Variables
Galf Deless System Description
Lawn Print Interaction Texts
Inference Parameters
Domain: Weed Identificas Whols System
Weader
Weederl
Domain:Object R s
Trains
<<Selection: Accessing System Description of <New Sysiem> >>
Options:
Remurn — Get Selection
ESC-— Other Options

Figure 23. Developing an Expert System

be copied or deleted. Throughout this section, a small sample expert system called "Trains” will be used for illustra-
tion.

6.3.1 Accessing Rules

Figure 24 displays the screen for accessing rules in a system. One has two choices, besides returning to the
Develop Menu and quitting, from this menu.

1) Edit Rules Directly

This option takes one to the editor named in the file “Ageditor.nme” with the appropriate rules file passed
to the editor (currently not implemented). This file is a concatenation of the expert system name and the extension
“ rle”, One can modify rules in any fashion while in the editor. The modified rules must be compiled before they
can be used in an advisory system.

AgAssistant: An Experimental Expert System Builder

Accessing Rules in Weed Came from: Developing an Expert System

Choose an operation:
Edit Rules Directly
Compile Rules

Developing Expert System Menu

Figure 24. Accessing Rules

2) Compile Rules

Invoking this option calls the system compiler. Rules are parsed for syntactic correctness and convertad
into a compressed form for advising. Figure 25. shows a screen which results from the sucessful compilation of the
three rules in Train. Various errors may be found in the rules during compilation; a full list of them appears in
section 6.5. In this case, a non-fatal warning was issued because the variable Cargo was not declared in the variable
table, The system makes the default assumption that variables are nominal if they are not declared otherwise. The
exact syntax of the rules is presented in section 3.3; chapter 7 shows the rules for the exemplary system WEEDER.
Options for moving to other menus are available upon completion of the compilation.

6.3.2 Creating Rules

Creating rules invokes the leaming module of AgAssistant. As shown in Figure 26, this menu allows one
to create rules in three ways: by learning them from examples, by improving them with examples, and by optimiza-
tion. One also has the option of editing the parameters that affect the leamning process. These options, in more
detail are:

AgAssistant: An Experimental Expert System Builder

Compiling Rules in Trains Came from: Accessing Rules

PARSING RULE: Direction is Northbound
Cargo not declared Assuming nominal type
Northbound successfully parsed.

Rule Access Memn Main Menun
Developing ES Mem Quiz

Figure 25. Rule Compilation

Cresting Rules in Trains Came from: Developing an Expert System

Choose an operation:

Leamn Rules from Examples
Improve Rules with Examples
Optimize Rules According to Parameter Settings
Edit Learning Parameters

Options:

Developing Expert System Mem
Quit

'Emmc:umm

AgAssistant: An Experimental Expert System Builder

1) Learn rules from examples

Onesehcumisnpﬁnno:ﬂyﬁnmhumplumﬂdfurdusyﬂmudmn‘bedinmﬁmﬁjﬁ. The
screen in figure 27. will be displayed. One has four items to enter before starting the leaming program. They are
puumdmdmmmxmmmnymmmmwmhmmm(m.m
this case), and cutput the rules to the system of the same name. One can optionally alter the name of the system
mminh:;msmpuﬂumofmncmnhm{mhmm).udﬂumumﬂum
to. mmmumnymmmMmmmummﬂmmm One
starts the leamning procedure by typing ESC and then choosing the option to Start Learning. The parameters used
will be those set in the parameter table (the fourth option from the menu in figure 26.).

Lesrning Rules from Examples in Trains Came from: Creating Rules

Example ES: trains
(Enter ES containing examples or type T 1o select from event files)

Rule ES: none
{Carmot improve rules here)

Concepts 1o learmn: all
(Enter single concept o leamn or type ‘T’ w select from concepts)

to ES: trains
(Enter ES o send rule to)

Start Leaming Renmmn w Developing ES
Return to Creating Rules _ Quit

Figure 27. Learning Rules from Examples

AgAssistant: An Experimental Expert System Builder

Tbulelminimndulewillrmmmmwlmu.ﬁdﬂmﬁspmamnsimﬂarmmmshnmin
figure 28. Inﬂl'lmﬂ.ﬁesymhud:wmﬂmdam]efmﬂmﬂmhbomdahuﬂhinﬂwmnfmﬁng
the Eastbound rule. The Northbound rule has four selectors, each associated with three figures in the columns 1o the
right. unmwmmmmmﬁmmwmmmuamdummmmm
mumwntpnﬁmmmmmmmmmmmmmnf
negative events covered by that selector. The Total column shows the number of positive events covered by the
complex, in this case 2.

Lasrning Train Rules

if|
i
i

Creating Eastbound Rule

Direction is Nerthbound if:
1. Color is blue or green,
2 Car shape is box,
3. Size is small to medium,
4. Fuel is oil or gas.

-

3§38
MoK R
W e e

<<Type ESC to abort leaming program>>

Figure 28. Screen displayed while leaming rules

One can abort the leaming procedure at any time by typing ESC. Upon aborting, or upon the completion of
the learning procedure, the following options are given:

a) View a Rule

Ome can view any of the newly created rules.

page 41

AgAssistant: An Experimental Expert System Builder

b) Save and Return to Developing ES Menu

Save the new rules and retum to the menu in figure 23.

c) Save and Compile
Save the new rules and compile them into an expert system.

d) Learning Rules Menu

Return o the menu in figure 26 without saving the rules. This option is useful if wants w repeat learning
rules after adjusting the parameters.

e) Quit

Quit the program.

2) Improve Rules with Examples

One often wishes to take advantage of new examples to improve an existing rule base. The rule base may
have been generated by any of the methods in the program. This option, however, will typically be selected when
you want 1o add a few examples to the set of examples that were used to initially generate the rule base. The
learning performed in such a manner will be much quicker than if one were to leam from the total st of examples

from scratch.

The menu of figure 29 appears when this option is selected. It is identical to that of figure 27, except that
one is also given the option of entering the name of a rule base 1o improve (the default is the same as the working
system). After starting learning, the same screen as in figure 26 will appear. Options after learning is complete are
identical to those in leamning from examples.

3) Optimize Rules according to Parameter Settings

One often wishes to take a set of rules that characterize a set of classes and convert those to rules that have
the minimum information necessary to discriminate between those classes. One can perform this by first changing
the parameters to indicate that discriminant rules are to be produced, and then selecting this option. Although this is
the typical way in which one optimizes rules, one may adjust the parameters 1o any setting, and then relearn the rule
base. One may think of this procedure as improving rules with examples, but without using any input examples. In
effect, the rules are being reformulated into a more useful form.

Upon selecting this option, the program goes directly to the screen in figure 28. Options after leaming is
complete are identical to those above,

AgAssistant: An Experimental Expert System Builder

Improving Rules with Examples in Trains Came from: Creating Rules

Exsmple ES: trains
(Enter ES containing examples or type 7 to select from event files)

Rules ES: trains
m-mmmuumqw?nmmmbu}

Output 1 ES: trains
(Enter ES w0 send rules o)
Opdons:
Start Learning Retum to Developing ES
Retumn 10 Creating Rules Quit

Figure 29. Improving Rules with Examples

4) Edit Learning Parameters

There are four main parameters that affect the type of rules the leaming module will produce. They are
shown in figure 30 and described in greater detail below. One changes the setting of a parameter with the right and
left directional keys, while moving from one parameter wo the next with the up and down directional keys.

The learning parameters are:
a) Mode for nominal owtput variable (default: intersecting covers)

This parameter controls whether rules with intersecting covers or rules with disjoint covers will be pro-
duced. If intersacting covers mode is selected, then rules can overlap in the space where there are no
learning events. With disjoint covers, no two rules will cover any possible event.

L

AgAssistant: An Experimental Expert System Builder

Editing parameters for leaming Came from: Creating rules
Mode for nominal output varishle: intersecting covers disjoint covers
Scope of search: 3 (1-30)
Produce weights: ys mo
Minimal cost User defined
User Defined Criteria Rank Tolerance
(1-5) (0-100 %)
Maximize coverage of positive events not 1 30
previously covered
Minimize the number of references 2 10
Minimize the number of selectors 3 0
Minimize the cost of the varisbles
Maximize the number of selectors
Options:
T - previous parameter ¢ - previous item ESC - Other options
1 - next parameter = - mext item 7 - Help with parameter

Figure 30, Editing lesming parameters

b) Scope of Search (default: 3)

This parameter controls the width of the beam search that the Aq algorithm uses in its search for rules.
Raising the value of this parameter may increase the quality of the generated rules; however, it will also

increase the time needed by the program.

¢) Produce weights (default: yes)

This parameter specifies whether the user wishes to produce weights to be associated with each selector in
the created rules. If it set to no, weights will be displayed during the learning process, but will not be

permanently stored with the rules base.

AgAssistant: An Experimental Expert System Builder

d) Rule type (default: characteristic)

'l‘hispammmispu-hapslh:muﬂhnpurwnhldmmhﬂngMnaumufﬂwpmdmednu&sandcanshr
some explanation. There are four basic types of rules. These types are shorthand for the level of generality
of the rules, and the user defined criteria. When one moves from one type t0 another, these other parame-
ters will change accordingly. Aﬂﬁmﬂr.imwﬂuud&ﬁmm'smmhmmmm
User defined.

Characteristic rules are those that describe every known feature of a class of objects. They are the most
apedﬁcmhﬂummmprudmemdmnhmhﬂumﬁmmnmwdmdmhmm
between the given classes. Discriminant rules, on the other hand, contain only those features necessary to
discriminate one class from another. Thus they are the most general descriptions of the leamning events.
Minimal complexity rules are somewhere in-between the two former rule types. They are neither the most
general nor the most specific rules that could be produced. Minimal cost rules are those rules which favor
variables that are associated with the lowest cost. (Setting the cost of a variable is described in section
63.4). The criteria Minimize the cost of the variables is ranked the highest when working with this type.

If one selects User Defined as a rule type, one can then define a new level of generality and set of criteria.
The level of generality may range from most specific to most general. Further more, there are five criteria
that one can rank. These criteria are used in evaluating competing hypotheses prior to reducing the
numbers to the beamn width. One does this by assigning a number from one to five with each of the criteria.
Finally, one may optionally specify a wlerance for each criterion. This is a number between 0 and 100
percent which represents an unceruminty one has in applying this criterion. Thus, specifying a high toler-
ance for will soften the distinction between complexes of roughly similar value as evaluated by the given
criterion.

6.3.3 Accessing or Creating Examples

All of the learning options in AgAssistant, with the exception of rule optimization, require examples that
characterize the decision classes of the given domain. A special editor, pictured in figure 31, aids one in creating
these examples.

One moves from cell to cell in this screen in the usual manner with the directional keys. Typically, one
will first enter the relevant variables for the example set at the top of the screen. One then defines the type of the
variable, and if it is not nominal, the system will take one to the variable definition table (described in section 6.3.4)
to define the domain. One then enters the decision variable and its values on the leftmost column of the screen. For
example, in figure 31, the variables are size, color, fuel and car shape. Size isa linear variable, car shape is struc-

AgAssistant: An Experimental Expert System Builder

ture, and the other are nominal. The decision variable is Direction, and its values are Northbound, Eastbound, and
Southbound. Thus we are trying to find rules that describe the direction a train is moving on the basis of the values
of the given variables. Once having learned those rules, it is possible to add new examples (e.g., Westbound
examples) to the tble, and then select the leaming option of Improving rules with examples.

Editing Examples in train Came from: Developing Expert System.
DECISION EXAMPLE
VAR.| Direction 1. Sizs 2 Color 3. Fuel 4. Car shape
Northbound mediom bl oil box
2 Neorthbound small green g box
3 Essthound madium red electric cylinder
4 | Eastbound large purple of} sphere
5 Southbound small brown oil pyramid
6 Southbound medium brown = box
7
8
9
10
Options:
PgUp-Page up Fl.Insert row F5-Grab column F9-Edit domain
PgDn-Pagedown F2-Insert Column F6-Type/Cost F10-See values
CTRL+Pageleft F3-Grab word F7-Tump o decision ESC-More options
CTRL—Pageright F4-Grab row F8-Jump to variable

Figure 31. Editing examples

Options for this screen are:

F1} Insert row

Inserts a blank row between the cwrent and next rows

F2) Insert column

Inserts a column between the current and next columns.

AgAssistant: An Experimental Expert System Builder

F3) Grab word

Hilights current word and gives the options of copying the word to the cell below, copying it throughout the
row, or delesing it.

F4) Grab row

WMMMﬁmmmdm:lmdﬁnmhmmm.mmmw
10 another row, moving the row to another row, switching a row with another row, or deleting the row.

F5) Grab column

Hilights current column mﬁmmupdmufm;nmdumnhmcmtmlm,
copying the column to another column, moving the column to another column, switching a column with
another column, or deleting the column.

F6) Type/Cost

TmmmmmWNMMM Variable costs are in the range of -
100. Thmof:mhbhhﬁmﬂshmlﬂwdfﬂcﬂthuinmmﬁ:giuvﬂm The learning
pnnmemmbemmfworlwmtmhighmm

F7) Jump to decision

Go 1o the left most column from anywhere in the table.

F8) Jump to variable

Go the topmost row from anywhere in the wble.

F9) Edit domain

Go to the variable definition table described in section 6.3.4.
F10) See values

See the allowed values for the given column.
ESC) More options:

mmmmfumgmmwmwmmmmnmm

AgAssistant: An Experimental Expert System Builder

a) Save and Resume Edit

Save examples and resume editing them.

b) Save and Learn

Save the examples and go to leaming rules.

¢) Save and Developing ES

Save and to to Developing an Expert System Menn.

d) Resume Edit
Resume editing the examples.

¢) Learning Menu

Go to learning rules without saving the examples.

f) Developing ES menu
Go the the Developing ES menu without saving examples.

g) Append file
Append an example set from another expert system to the current example set

h) Import file

Import a file created with another editor. This file must be an ASCII file and conform to the structure of
the example editor. That is, the first line of the file must be the variables, the second line the variable type,
the third line the cost of the variables, and the following lines the examples. Spacing between cells can be
arbitrary,

6.3.4 Accessing or Creating Variables

The variable table shown in figure 32 contains the definitions of the variable types and their respective
domains. One will typically fill out this table first in the course of building an expert system. The table works
similar to the example editor in that one moves from cell to cell with the direction keys. One difference is that one

AgAssistant: An Experimental Expert System Builder

may indent a cell if the column corresponds to a structured variable. In this example, the variable Car_shape is
structured such that a cylinder and a sphere are considered round, while the box and pyramid are not-round. A full
dma*ip&onufaﬂnfduvaﬁahlaqwmdlhcimmbafmndinmim&.t

1 Editing Varisbles in train Cama from: Developing Expert System l

Variable Domains
VAR 1. Size 2 Color 3. Fuel 4, Car shape
a S green g= cylinder
4 purple not-round
5 brown pyramid
6 box
~
8
9
10
Options:
PgUp - Page up TAB - Ident value F3 - Grab value ESC - More options
PgDn - Page down BTAB - Deindent value F4 - Grab column
CTRL4— Page left F1 - Insent column F5 - Type/Coat
CTRL—Pageright F2 - Insert value F6 - Jump to variable
Figure 32 Editing variables
Options for this screen are:
TAB) Indent value

If the variable is structured, then one can indicate that a value is an instance of a value representing a super
class by indenting it below that value, E.g., in the menu above, cylinders and spheres are both round.

BTAB) Unindent value
Move a cell back to its former pogition before indenting it

AgAssistant: An Experimental Expert System Builder

F1) Insert column

Insert a blank column to the right of the current column.
F2) Insert value

Insert a blank value immediately below the current value.
F3) Grab value

Grabs value in current cell and gives the option of deleting the value, or switching it with another value in
the same column.

F4) Grab column

Grabs current column and gives the options of deleting it, switching it with another column, copying it to
another column, or moving it to another column.

F5) Type/Cost

Toggles the second row between entering the variable cost and the variable type.
F6) Jump to variable

Jump to the first row from anywhere in the tble,

ESC) More options:

The options that appear upon ryping ESC depend on whether one went to the current screen via the
example editor or the developing system menu. Options are:

a) Return to Editing Exampies

Return to the example editor. The modifications made here will be saved only if one saves the
examples.

'b) Resume Editing Variables
Ag stated.
¢) Save and Resume Edit

Save the current table and resume editing it

AgAssistant: An Experimental Expert System Builder

d) Developing ES Menu

Retum to developing an Expert System without saving the most recent modifications.

6.3.5 Accessing or Creating System Description

One chooses this option when one wants (0 create a new system or change the description of an existing
system. As can be seen in figure 33, the system description consists of four items. They are:

Editing Description of trains Came from: Developing an Expert System

Expert Systern Domain: Ohbject Recognition
{Enter 1-18 chars. or type "7 to select among existing domains)

Expert System Name: trains
(Enter 1-8 chars.)

Short System Description: Distinguishing trains by direction
(Enter 1-50 chars.)

Filename of Long Description: train.txt
(Enter 1-12 chars.)

Options:

Create New system and Return o Developing ES Menu Resumse entering items
Reoazm to ES Memm without Creating Quit

Figure 33, Editing System Description

1) Expert System Domain

This indicates the general category in which the system falls. Typically, systems in the same domain share
variable definitions and possibly other information.

AgAssistant: An Experimental Expert System Builder

2) Expert System Name

The name of the expert system. This slot is blank if one is creating a description of <New System.>. One
cannot build a new expert system until it is given a name in this menu.

3) Short System Description
This description will appear on the menu for Getting Advice from an Expert System.
4) File name of Long Description

This item indicates & text file containing an in-depth description of the system. This text can be viewed by
typing “?” in the menu for Getting Advice from an Expert System.

Options for this menu are:
a) Create New System and Return to Developing ES Menu

Create a new system according to the modifications made. If the name of an existing system was
changed, the entire system will be copied to the new name. Returns w “Developing an Expert
System™ when complete.

b) Return to Es Menu with Creating

Ignore all changes made, and return to “Developing an Expert System”.
6.3.6 Copying

Copy will copy the item selected from the current system to one indicated. For example, the system
displays the following when copy is selected to operate on the rules in trains.

Copy rules from trains to:

(Enter an Expert Systpmmautypel:‘-.sc to ream to Developing ES)

AgAssistant: An Experimental Expert System Builder

6.3.7 Deleting
Deleting will erase the specified item in the expert system. For example, the system displays:
Are you sure you want 10 delete the variables in trains (y/n)? _

When delete is selected t0 operate on variables in tains.

6.3.8 Printing

Prints the selected item for the indicated rle base.

6.4 Variable Types

Variables in the AgAsistant system fall into five categories: nominal, linear, integer, numeric, and
stroctured. Thntypeofmavuiahhmdiudmﬁnmdeﬁmdwimmvmabhhble(mmﬁﬂﬂumm
details on this mble). Below each variable type is described in more detail.

6.4.1 Nominal variables

Nominal variables have values which do not have any explicit strocture. Examples of this type include
boolean variables which may take the values of true or false, a variable such as color, which may take the values red,
green, blue, etc., and all variables the values for which cannot be ordered in any reasonable fashion.

6.4.2 Linear variables

Linear variables are those with values that can be ordered in some fashion. Examples of this type are
varizbles such as size, taking on the values of small, medium, and large, and age, which could consist of the ordered
domain infant, child, adolescent, young-adult, middle-age, and old-age. Linear variables can appear in rules with
the “to™ separator. For example, a condition in a rule might be that “Age is child to young-adult”. The system
understands this to include the value “adolescent™

6.4.3 Integer variables

Integer variables, pre-defined as a convenience to the user, are linear variables with a range that extends

page 53

AgAssistant: An Experimental Expert System Builder

from the integer O to the integer 50. Thus, a valid condition involving an integer variable might be, “No of flowers
is 29 1o 33",

6.4.4 Numeric variables

Numeric varisbles are defined as a range between two real numbers. Thus valid numeric variable would be
pH, with a range from 0.0 to 14.0. pH could then take any real value within this range, for example, 5.6128.
Numeric variables, and only numeric variables, can appear in arithmetic expressioas in rules. An example of a valid
arithmetic expression involving numeric variables is “(pH * solvability) > (5.8 * density)”. Refer to section 3.3 for a
description of the syntax of arithmetic expressions. For the purposes of induction, a numeric range is split into 8
categories of equal length. Thus, pH would be split into 0.0-1.75, 1.75-3.5, etc.

6.4.5 Structured variables

Structured variables have values that be ordered in a hierarchical manner. An example of the structure of
the variable shape appears below.

round polygon
- TR it M

o

ok

Figure 34. Structure for the variable shape

The rule leaming module will agempt to "climb the tree” in producing descriptive rules. For example, in
the above figure, if two examples for one decision class have the values for shape of square and rectangle, then the
condition produced will not be “Shape is square or rectangle”, but “Shape is four-sided”™. Additionally, the advisory
system makes use of the variable structure in its attempt to satisfy rule conditions. For example, if one answers the
question “What shape does the object have” with the value “ellipse”, then the system understands that “Shape is
round”is also satisfied,

AgAssistant: An Experimental Expert System Builder

6.5 Rule Compiler Error Messages

Rule compiler error messages are divided into those that are fatal, and do not result in a working advisory
sym.mdmp.whthmmmsmofmﬁupmhlmdmiq the parse, but will result in a new system.
Themﬂmmmwitm:&ﬂm.muMwhmnwﬁmmibh
problems with the rules. If possible, the system gives the line where the error occurred.

Fatal Errors
1) Action not found. Skipping to next rule.
MMEMMMWW@WWWMMNMW&M&
2) Number not found in above selector. Skipping to next selector.
A number was not found before the selector. Selector is ignored.
3) “." not found after number. Skipping to nex: selector.
A period was not found after the number of the selector.
4) Variable not found in above selector. Skipping to next selector.
A variable was not found after the number.
5) Relation not found in above selector. Skipping to next selector.
A relation was not found following the variable.
6) Value not found in above selector. Skipping to next selector.
A value was not found following the relation.
7) “or” or “to” not found between values. Skipping to next selector.
All values must be in a disjunctive set or in a linear range.
8) Final Value missing. Skipping to next selector.

A value was expected after “10” in a range description.

AgAssistant: An Experimental Expert System Builder

9) “." or “." not found. Skipping to next selector.

Each selector must be followed by a comma or a period. A period tells the parser that it is the last selector
in the rule.

10) Weight no in 0-100 range.

Weight was not an integer, or not in the proper range.

11) “10” construction used with non-linear variable. Please declare <variable> as a linear variable.
The varisble was not declared as linear. Thus it cannot be associated with a range.

12) Linear value <value> was not found in domain.

All linear values must be predeclared in order that the compiler can construct the correct range.

13) Variable <variable> used in arithmetic expression but not declared as numeric.

All variables appearing in arithmetic expressions must be numeric.

14) Unbalanced parentheses in arithmetic expression.

The number of left parentheses must match the number of left parentheses in an arithmetic expression.

Warnings

1) Variable oo long. Truncating to 12 characters.

In the current system, all variables are limited to 12 characters. It is runcated if it is too long.
2) Relation too long. Truncating io 12 characters.

Relation must be 12 or less characters.

3) Value too long. Truncating lo 12 characters.

Value must be 12 or less characters.

4) <variable> not declared. Assuming nominal type.

The variable was not found in the variable table. It is assumed that it is nominal.

Weed is Smutgrass if:

1. Florets is 1,

2. Flower is panicle,

3. Ligule is ciliate,

4. Habit is bunch,

5. Disarticu is above,
6. Glumes are shorter,
7. Awns are ahsent.

KRBLRB3R o

e

shais33s

7. Rules for WEEDER

Weed is Fall_panicum if:

1. Florets is 1,

2. Flower is panicle,

3. Ligule is ciliate,

4, Habit is bunch,

5. Glumes are shorter,
6. Disarticu is below.

‘Weed is Torpedograss if:

1. Habit is rhizome,

2. Ligule is ciliate,

3. Flower is panicle,

4, Florets is 1,

5. Sheath is compressed,
6. Blade_width is coarse,
7. Glumes are shorter,
8, Disarticu is below.

Weed is Anl_dropseed if:

1. Ligule is round,

2. Sheath is round,
3,Floresis 1,

4, Flower is panicle,

5. Blade_width is medium,
6. Habit is bunch,

7. Glumes are shorter,

8. Disarticu is above.

‘Weed is Frif_Paspalum if:

1. Flower is raceme,

2. Ligule is round,

3. Flores is 1,

4. Blade_width is medium,
5. Sheath is compressed,
6. Habit is bunch,

7. Glumes are shorter,

8. Disarticu is below.

AgAssistant: An Experimental Expert System Builder

GREBSLNIAE o BEKRIBE o

g GBRB3UBES =

DnE8338R

Weed is Cogongrass if:

1. Ligule is runcate,

2. Sheath is round,

3. Habit is rhizome,

4, Flower is spike,

5, Blade_width is coarse,
6. Florets is 1,

7. Glumes are shorter,
8. Disarticu is below.

Weed is Anl_Bluegras if:

1. Ligule is acute,

2. Floretsis 30 6,

3. Collar is narrow,

4, Flower is panicle,

5. Blade_width is fine to medium,
6. Vemnation is folded,

7. Habit is bunch or stolon,

8. Sheath is compressed,

9, Glumes are shorter,

10, Disarticu is abave.

Weed is Kikuyugrass if:

1. Habit is rhiz_stolon,

2. Flower is panicle,

3. Vernation is folded,

4. Collar is narrow,

5. Florets is 2,

6. Blade_width is medium,
7. Ligule is ciliate,

8. Disarticu is below,

9. Glumes are shorter.

Weed is Bermudagrass if:

1. Habit is rhiz_stolon,

2. Vernation is folded,

3. Ligule is ciliate,

4, Disarticu is above,

5. Flower is spike,

6. Blade_width is fine or medium,
7. Sheath is compressed,

8. Collar is nammow,

9. Florets is 1,

10. Glumes are shorter.

CoRUaNg3BE o BBSG

X

aRREEERBS

SRRREBRI3E =

AgAssistant: An Experimental Expert System Builder

Weed is Orchardgrass if:

1. Ligule is toothed,

2. Florets is 4,

3. Sheath is closed,

4, Vernation is folded,
5. Blade width is coarss,
6. Habit is bunch,

7. Collar is broad,

. Disarticu is above,

9, Flower is panicle,

10. Glumes are shorter.

Weed is Goosegrass if:

1. Ligule is wothed,

2. Vernation is folded,

3. Flower is mceme,

4, Blade_width is medium,
5. Flores is 6,

6. Habit is bunch,

7. Collar is broad,

8. Sheath is compressed,
9, Disarticu is above,

10. Glumes are shorter.

Weed is Per_ryegrass if:

1. Ligule is round,

2. Auricle is short,

3. Florets is 6 to 10,

4, Flower is spike,

5. Vernation is folded,

&. Habit is bunch,

7. Collar is broad or divided,
8. Sheath is compressed,

9. Blade_width is fine to medium,
10. Disarticu is above,

11. Glumes are shorter.

Weed is Dallisgrass if:

1. Ligule is acuminate,

2. Flower is raceme,

3, Habit is bunch or rhizome,
4. Blade_width is coarse,

5. Sheath is compressed,

6. Collar is broad,

7. Vernation is rolled,

8. Florets is 1,

9. Disarticu is below,

10. Glumes are shorter.

Weed is Yellw_Fxtail if:

a B

RRESBBAE

g o

BEG

15
75
55
45
30

30

1. Florets is 2,

2. Ligule is ciliate,

3, Flower is spike,

4, Blade_width is coarse,
5. Collar is broad,

6. Sheath is compressed,
7. Habit is bunch,

8. Vemation is roiled,

9, Glumes are shorter,
10. Disarticu is above.

Weed is Field_sandbr if:

1. Florets is bur,

2. Ligule is cil

3. Collar is broad,

4, Sheath is compressed,
5. Blade_width is medium,
6. Disarticu is below,

7. Habit is bunch,

8. Vemnation is rolled.

Weed is Witchgrass if:

1. Ligule is ciliate,

2. Flower is panicle,

3. Collar is narrow,

4. Blade_width is medium,
5. Habit is bunch,

6. Sheath is compressed,
7. Vernation is rolled,

8. Glumes are shorter,

9. Florets is 1,

10. Disarticu is below.

Weed is Stinkgrass if:

1. Florets is 10 o 12,

2. Blade_width is fine,

3. Flower i3 panicle,

4. Habit iz bunch,

5. Collar is nsrrow or broad,
6. Ligule is ciliate,

7. Disarticu is above,

8. Sheath is compressed,

9. Vernadon is rolled,

10. Glumes are shorter.

Weed is Zoysiagrass if:

f REBHYLLDIAR o BVEREBL5888 o REEBERNE o RELS8EBZRER

1. Habit is rhiz_stolon,
2. Glumes are longer,
3. Awns are present,
4. Flower is spike,

5. Sheath is round,

6. Ligule is ciliate,

7. Florets is 1,

8. Blade_width is mediam,
9. Collar is broad,

10. Disarticu is below,
11. Vernation is rolled.

Weed is Junglerice if:

1. Ligule is none,

2. Flower is raceme,

3. Sheath is compressed,
4, Blade_width is medium,
5. Habit is bunch,

. Collar is broad,

7. Disarticu is below,

8. Vernation is rolled,

9. Florets is 1,

10. Glumes are shorter.

Weed is Barnyardgrass if:

1. Ligule is none,

2, Flower is panicle,

3. Blade_width is coarse,
4. YVernation is roiled,
5. Sheath is compressed,
6. Habit is bunch,

7. Collar is broad,

8. Flores is 1,

9. Glumes are shorter,
10. Disarticu is below.

Weed is Nimblewill if:

1. Habit is stolon,

2. Awns are present,
3. Blade_width is fine,
4. Ligule is round,

5. Flower is panicle,
6. Sheath is compressed,
7. Vemnation is rolled,
8. Collar is broad,
9.Florets is 1,

10. Glumes are shorter,
11. Disarticu is above,

Weed is Com_Velvigrs if:

page 59

AgAssistant: An Experimental Expert System Builder

8

1. Ligule is round,

2. Glumes are longer,
3. Awns are present,
4, Florets is 2,

5. Blade_width is fine,
6. Collar is nammow,
7. Flower is panicle,
8. Disarticu is below,
9. Habit is bunch,

10. Sheath is compressed,
11. Vernation is rolled.

Weed is Johnsongrass if:

1. Ligule is round,

2, Blade_width is coarse,
3. Habit is rhizome,

4, Awns are absent or present,
5. Sheath is round,

6. Flower is panicle,

7. Collar is broad,

8. Disarticu is below,

9. Vernation is rolled,
10. Florets is 1,

11. Glumes are shorter.

Weed is Bentgrass if:

1. Ligule is round,

2. Sheath is round,

3. Glumes are longer,
4, Habit is stolon,

5. Disarticu is above,
6. Collar is narrow,

7. Florets is 1,

8. Flower is panicle,
9. Blade_width is fine,
10. Vernation is rolled.

Weed is Ken_Bluegras if:

1. Vemnation is folded,
2. Habit is rthizome,

3. Ligule is truncate,
4. Floretsis 3 to 5,

5. Flower is panicle,
6. Collar is divided,

7. Disarticu is above,

8. Blade_width is fine to medium,

9. Glumes are shorter.
Weed is Lg_Crabgrass if:

GRuELE

ARBRELRNER o BRESZUZAZZ o BE8BB8L88B8RE =

AgAssistant: An Experimental Expert System Builder

1. Ligule is toothed or acute,
2. Blade_width is coarse,
3. Flower is spike,

4, Sheath is compressed,

5. Habit is bunch,

6., Disarticu is below,

7. Collar is broad,

8. Flaressis 1,

9, Vernation is rolled,

10. Glumes are shorter.

Weed is Redtop if:

1. Habit is rhizome,

2. Ligule is toothed or acute,
3. Glumes are longer,

4. Florets is 1,

5. Flower is panicle,

6. Sheath is round,

7. Disarticu is above,

8. Blade_width is medium or coarse,

9. Collar is broad,
10. Vernation is rolled.

Weed is Rescuegrass if:

1. Sheath is closed,

2. Ligule is toothed,

3. Floretsis6 1o 12,

4. Habit is bunch,

5. Collar is broad,

6. Blade_width is coarse,
7. Vemation is rolled,

8. Disarticu is above,

9. Flower is panicle,

10. Awns are absent or present,

11, Glumes are shorter.
Weed is Fxtail_Barly if:

1. Ligule is toothed,
2. Awns are present,

" 3. Flower is spike,
4. Blade_width is medium,
5. Habit is bunch,
6. Collar is narrow,
7. Vernation is rolled,
8. Sheath is compressed,
9. Florets is 1,
10. Disarticu is above,
11. Glumes are shorter.

Weed is Wild_Oats if:

p BanrRsssssd

aunsszsaan

s8s86880a33 o BR

13

1. Awnas are bifid,

2. Ligule is toothed,
3, Sheath is round,

4. Florets is 2 or 3,

5. Glumes are longer,
6. Habit is bunch,

7. Flower is panicle,
8. Collar is broad,

9. Blade_width is coarse,
10. Vernation is rolled,
11. Disarticu is above.

Weed is Downy_Brome if:

1. Awns are bifid,

1. Ligule is toothed,
2. Sheath is closed,
4, Habit is bunch,

2. Floretsis 310 6,

3. Flower is panicle,
5. Collar is narmow,
3. Blade_width is medium,
6. Vernation i3 rolled,
4, Disarticu is above,
5. Glumes are shorter.

Weed is Timothy if:

1. Ligule is toothed,
2. Collar is narrow,
3. Awns are present,
4, Sheath is round,

5. Flower is spike,

6. Habit is bunch,

7. Disarticu is above,
8. Blade_width is coarse,
9. Vernation is rolled,
10. Florets is 1,

11. Glumes are shorter.

Weed is Sm_Crabgrass if:

1. Ligule is truncate,

2. Habit is bunch,

3. Flower is spike,

4, Disarticu is below,

§. Collar is broad,

6. Sheath is compressed,
7. Blade_width is coarse,
8. Vernation is rolled,
9.Floretsis 1,

10, Glumes are shorter,

Weed is Tall_Fescue if:

SEEEBRBRARB o BBREBESS338

[x)
-

o RBRR&EBZRRS33S

o RBEELURE33A

1. Ligule is truncate,

2. Sheath is round,

3. Florets is 6 to 8,

4, Habit is bunch,

5. Collar is broad,

6, Blade width is coarse,
7. Vemnation is rolled,

8. Flower is panicle,

9, Disarticu is above,
10. Glumes are shorter.

Weed is Fine_Fescue if:

1. Blade_width is fine,
2. Awns are present,
3. Florets is 4 to 6,

4, Vernation is folded,

5. Ligule is truncate or round,

6. Sheath is round,

7. Habit is bunch or rhizome,

8. Flower is panicle,
9. Disarticu is above,
10. Glumes are shorter.

‘Weed is Smooth_Brome if:

1. Sheath is closed,

2. Habit is rhizome,

3. Ligule is oruncate,

4. Florets is 8,

5. Blade_width is coarse,
6. Collar is broad,

7. Vemation is rolled,
8. Flower is panicle,

9. Disarticu is above,
10. Glumes are shorter.

Weed is Itin_Ryegrss if:

1. Florets is 10 to 20,
2. Aaricle is claw_like,
3. Awms are present,
4, Flower is spike,

5. Ligule is round,

6. Sheath is round,

7. Collar is broad,

8. Blade_width is coarse,
9. Habit is bunch,

10. Vernation is rolled,
11. Disarticu is above,
12. Glumes are shorter.

Weed is Quackgrass if:

————

AgAssistant: An Experimental Expert System Builder

65
65

50

35
35

1. Auricle is claw_like,
2. Ligule is truncate,
3, Habit is rhizome,
4, Awns are present,
5. Flower is spike,

6. Florets is 4 to 6,

7. Sheath is round,

8. Blade_width is coarse,
9, Collar is broad,

10. Vemnation is rofled,
11. Disarticu is above,
12, Glumes are shorter.

7.1 Modifided WEEDER rules
modifications shown in BOLD

Weed is Per_ryegrass if:

1. Ligule is round or truncate,
2. Auricle is short,

3. Florets is 6 to 10,

4. Flower is spike,

5. Vernation is folded,

6. Habit is bunch,

7. Collar is broad or divided,
8, Sheath is compressed,

9, Blade_width is fine to medium,
10. Disarticu is above,

11. Glumes are shorter.

Weed is Zoysiagrass if:

1, Habit is rhiz_stolon or rhizome,
2. Glumes are longer,

3. Awns are present,

4, Flower is spike,

5. Sheath is round,

6. Ligule is ciliate,

7. Florets is 1,

8. Blade_width is fine to medium,
9. Collar is broad,

10. Disarticu is below,

11. Vemnation is rolled,

SEREERNBBREE

2 RUI3IREBREBER =

RH3BRB33REE

AgAssistant: An Experimental Expert System Builder

;de is Bentgrass ift

1. Ligule is round or toothed,
2. Sheath is round,

3. Glumes are longer,

4, Habit is stolon,

5, Disarticu is above,

6. Collar is narrow,
7.Flores is 1,

8. Flower is panicle,

9, Blade_width is fine,

10. Vernation is rolled.

Weed is Lg_Crabgrass if:

1. Ligule is toothed or acute,
2. Blade_width is medium,

3. Flower is spike,

4, Sheath is compressed,

5. Habit is bunch,

6. Disarticu is below,

7. Coilar is broad or divided,
8. Floes is 1,

9. Vernation is rofled,

10. Glumes are shorter,

o

an
EARA

BRoeussul28 o 335&530ER

AgAssistant: An Experimental Expert System Builder
8. References

1. Dietterich, T. and R. §. Michalski. 1983. A Comparative Review of Selected Methods for Leamning from
Examples. Chapter in the book, MACHINE LEARNING :An Artificial Intelligence Approach, TIOGA
Publishing Company, Palo Alto, R. S. Michalski, J. Carbonell and T. Mitchell (Eds.). 1983, pp. 41-81.

2. Michalski, R. §. 1973. AQVAL/1 Cmmhﬂmnﬁmdu?ﬁﬁk?ﬂndmﬁmﬂlmd
Examples of its Application 1o Pattern Recognition. Proceedings of the First International Joint Confer-
ence on Pattern Recognition., Washington, D. C. pp. 317.

3. Michalski, R. 5. 1975. vmuvmmmmwnmwmmmmm
in Computer Science and MultipleValued Logic: Theory and Applications, D. C. Rine (ed.), NorthHol-
land. pp. 506534,

4. Michaiski, R S. 1983. A Theory and Methodology of Inductive Leaming, Chapter in the book, MACHINE
LEARNING: An Artificial Intelligence Approach, TIOGA Publishing Company, Palo Alto, R. S. Michal-
ski, J. Carbonell and T. Mitchell (Eds.), 1983, pp. 83-134.

5. Michalski R. S. 1985. Knowledge Repair Mechanisms: Evolution vs Revolution, [5G 8514,
UTUCDCSF85946, Department of Computer Science, University of Illinois, Urbana, IL, July 1985, and
the Proceedings of the Third International Machine Learning Workshop, Skytop, Rutgers University, June
1985,

6. Michalski, R. S and A. B Baskin. 1983. Integrating Multiple Knowledge ions and Learning Capabili-
ties in an Expert System: The ADVISE System. Proceedingsof the 8 LJCAI. Karlsruhe, West Germany,
August 8-12, 1983. pp. 69-79.

7. Michalski, R. S, and J. B. Larson. INCREMENTAL GENERATION OF VL1 HYPOTHESIS: the underlying
methodology and the description of program AQ11. ISG 835, UTUCDCSF83905, Department of Com-
puter Science, University of Illinois, 1983.

8. Michalski, R. S, and R. L. Chilausky. 1980a. Knowledge Acquisition by Encoding Expert Rules versus Com-
puter Induction From Examples: A Case Study Involving Soybean Pathology. International Journal for
ManMachine Studies. No, 12, 1980, pp. 63-87.

9, Michalski, R. S, and R. L. Chilausky. 1980b. Leaming by Being Told and Leamning from Examples: An
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of Developing an
Expert System for Soybean Dissase Diagnosis. International Journal of Policy Analysis and Information
Systems, Vol. 4, No. 2, 1980,

10. Michalski R. S.,]. H. Davis, V. 5. Bisht and J. B. Sinclair. 1982. PLANT/ds: An Expert Consulting System for
the Diagnois of Soybean Diseases Accepted for publication in PLANT DISEASES and Proc. of the 1982
European Conference on Artificial Intelligence, Orsay, France, July 12-14, 1982, pp. 133-138

11. Morse,L.E. 1971. Specimen identification and key construction with time-sharing computers. Taxon,
20(1):269-82.

12. Reinks, R. E. 1984. Knowledge Acquisition and Refinement Tools for the ADVISE MetaExpert System. M.
S. Thesis ISG 844, UTUCDCSF84921, Department of Computer Science, University of [llinois, July,
1984,

AgAssistant: An Experimental Expert System Builder

13. Shurtleff, M. C., T. W. Fermanian, and R. Randell. Controlling Turfgrass Pests Prentice-Hall, Inc. Englewood
Cliffs, NJ. 462 pp.

14. Stepp, R. 1983. A Description and User’s Guide for CLUSTER/2, A Program for Conjunctive Conceptual
Clustering, Report No. UTUCDCSR831084, Deparmment of Computer Science, University of Tllinois,
Urbana, IL., November 1983.

A 1. Report No.
:I!l.lli?n”mc S UIUCDCS-F-87-978

L Recipient’s Accessioa No.

4, litle and Jubtitle

AgAssistant: An Experimental Expert System Builder for
Agricultural Applications

5 Meport Dace

&

7. Auher(s)
Bruce Katz, Thomas W. Fermanian, Ryszard 5. Michalski

& Eﬂ!’uﬂliﬂ Orgasization Repe.
9.

9. Performing Organization Name and Address
Department of Computer Science and

Department of Horticulture
University of Illinois at Urbana-Champaign

10. Project/Task/Work Uait No.

T1. Contract/Grant No.

12 Spousaring Orgasization Name and Address

International Intelligent Systems, Inc.
The University of Illinois Research Board

Bsgiest fekkPosTR32l; f bRt de5 sy FYTRhTIROFERR C

1T of Re & Period
Cavered |

Mi&&u Ly

15 Supplemencacy Notes

6. Abatracts

AgAssima i 4 comprebonrvy wcper ryres tuider for (B0 FC asd companivls compusan @ e area off
agrcuimr. The infersicmg mechatiem vid Secifically desygmed © combing irvels of msceruery commendy
fomed i ageacalternd domaies. 1w bos s enhancishant g i axibec of @ Wt expan fymee for e I8 M
PC. PLANTA. wikch was concarsed wish e disgaosis of sovbess dissts commos i (liacis, Uniiks PLANT/
de. i which ol modificasions of e ryms wis plecs on & Y AX msccenpesr, AgAssiant provides & ss of okl
fror v o fication wad devalopment direcity on des PC. The work presested hars i also based o & largs cce
om g ADVISE Mata-Expen Symem.

Aghasinn is sleo more lhes an ocpar rysies builder. [provides & set of woks for e developmee of 4
Kncreiedge base by sxamphs of axpan kmowiadge (lesmmy by cusmpls). Thess leamung wols may be spplied o
Sl agracsiiors] roblems wery e clsificanon or proapng of oon-opeeer: dam i cefel.

Amony e maary 5ovel foamres imoorporaed D AgASTiset e
[+ Miokipls s of cresting snd refining eowdedge.

AN o oee Mdes developad dimeshy S arper or soqued deeagh mdnctres Sfsreecs W e
wm formes .

* Probsbilede inference can b hancled

OF gras s m agncuiners. whe te g of sy o ke deatlicaton or dagmoims i probebiiiac
m— B

= Tha rymes ia. PC-tmd,

Thia allces wics disssminssion of e progres © Srmers md o s b ssed wisy ars lilely ©
i rger Cymama

* iam-drtves, screses.

Tha aovics mer can gacily come op o speed in buidisg cxpere rromm.

17e. COSATI Field/Group

17. EKey Words:

AgAssistant
expert system builder

PLANT/ds

expert knowledge
inductive inference
probalistic inference
PC-based

17a. Descriptioms

17b. Identifiers/Open-Ended
Terms

17c. COSATI Field/Group

18. Avsilability Seatement 19.. Security Class {Ei. 21. No.. of Pagea
Repornt) 72
1ED
sCurity s (This 11 Price
FIED

FOmN W T (10=T0)

USEOMM-DE 4031=-RT1

