QUALITATIVE PREDICTION: THE SPARC/G
METHODOLOGY FOR INDUCTIVELY DESCRIBING
AND PREDICTING DISCRETE PROCESSES

R. S Michalski
H Ko
K. Chen

Current Issues in Expert Systems, pp. 125-158, London: Academic Press Inc., 1987,

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

5. Qualitative prediction:

The SPARC/G methodology for inductively
describing and predicting discrete processes

RYSZARD MICHALSKI, HEEDONG KO
and KAIHU CHEN

Abstract. Qualitative prediction is concerned with problems of building symbaolic
descriptions of processes, and using these descriptions for predicting a plausible
continuation of these processes. It stresses the qualitative form of prediction, as it
does not seek precise characterization of future events, but rather a specification of
plausible properties and constraints on the future events. An important aspect of
qualitative prediction is that only a partial knowledge of the process is available;
therefore the construction of a description must necessarily involve tnductive
inference. It also involves deductive inference to relate the observed process to the
concepts contained or derivable from the sysiem’s background knowledge.

This chapter describes a domain-independent methodology, SPARC/G, for a
simple form of qualitative prediction, where processes are sequences of discrete
events or objects that are characterized by finite-valued attributes. Building a
description of a process employs general and domain specific knowledge, and
involves a new type of inductive learning called parr-to-whole generalization. The
key idea behind the methodology is the use of multiple description models, and
model-oriented transformations of the input sequence. Each description model
constrains the syntactic form of candidate descriptions, and in this way greatly
reduces the total search space. A model is instantiated to a specific description by
defining various parameters. A description is considered plausible if it fits a trans-
formed input sequence well, according to the requirements of the model.

The methodology is illustrated by several example problems, such as discovering
a secret code for a passage through a sequence of channels, determining precondi-
tions for actions in a blocks world. learning a robot action sequence, predicting the
motion of an oscillating spring. and discovering rules in the card game ELEUSIS that
models the process of scientific discovery.

1 INTRODUCTION

1.1 What is Qualitative Prediction?
Events in our world tend to be highly interdependent. This interdependence

CURRENT ISSUES IN EXPERT SYSTEMS Copyright © 1987 by Academic Press Limiied
ISBN 0-12-714030-1 Al rights of reproduction in any form reserved!

125

126 R. MICHALSKI er al,

makes it possible to make predictions about the future on the basis of our
knowledge of the past. In fact, the whole purpose of building and maintain-
ing knowledge is to be able to predict and/or influence the future. If our
world were a sequence of completely unrelated random scenes, and there-
fore our knowledge of the past were of no use to interpret or predict future
events, there would be little reason for storing any knowledge. As the
construction and usage of knowledge is a primary function of intelligence,
the need for intelligence would cease also. The above agrees with the
observation by Rivest (at a seminar at the Artificial Intelligence Laboratory,
MIT, Fall 1985) that “the purpose of intelligence is to predict the future.”
The relationship between future and past is usually imprecise and uncer-
tain. Also, it is typically very compiex and muitifactored. Animportant way
to capture this relationship 1s to build descriptions or models that are
qualitative, i.e. that characterize processes in terms of causal relationships,
trends and dependencies. In qualitative prediction the main stress is on
building descriptions from partial knowledge of a process. Therefore the
major type of inference involved here is inductive. This is different from the
approaches in De Kleer and Brown (1984) and Forbus (1984), which are
deductive in nature. Inductively derived descriptions may range from
statements of “surface” properties (e.g. observable physical properties) to
causal explanations and abstract relationships characterizing the process.
The most widely researched type of inductive learning has been concerned
with discovering a general description of a class of objects, given selected
instances of the class. For example, given instances of cancerous and
noncancerous cells, the task is to determine a general rule for discriminating
between these two types of cells (Michalski, 1983). This type of inductive
learning is called instance-to-class generalization. |
The inductive learning involved in qualitative prediction is different from
such instance-to-class generalization. It involves a form of the part-to-whole
generalization. To explain the latter type of induction, let us consider a few
examples. Suppose that a palaeontologist has excavated bones of a pre-
historic animal, and from his information he then hypothesizes the entire
skeleton of the animal. As another case, consider an archaeologist who is
given an incomplete set of pieces of a broken ancient sculpture, and has to
reconstruct the original. In such cases we do not have independent examples
of some class of objects, but rather interdependent parts of one structured
object. The task is to hypothesize a description of the whole object.
Clearly, the above problems fit the general notion of inductive generaliza-
tion, but are not the instance-to-class generalization problems. In instance-
to-class we are given instances that are independent members of a class; any
possible relations among training instances are considered irrelevant. In
part-to-whole generalization, the inputs are descriptions of parts of a
structured object, and relations among the parts are of primary importance.

5. QUALITATIVE PREDICTION: SPARC/G 127

A very simple form of the part-to-whole generalization problem occurs in
IQ tests where the task is to predict a plausible continuation of a sequence of
numbers or letters. The given sequence can be viewed as a part of an
unknown complete sequence. The task is to hypothesize the remaining part
of the complete sequence on the basis of the known parts of the sequence.

Suppose that instead of letters or numbers, we have snapshots of some
process occurring in time. Assume also that our background knowledge
contains sufficient information for characterizing the relationships between
these snapshots. The task is to determine a description of the process that not
only accounts for snapshots seen so far but also suggests a plausible
continuation of this process. Suppose further that the description sought is
not quantitative but rather qualitative. Instead of precise prediction of the
future process, which may not be possible, one desires only a general
characterization of the properties that the future events are expected to
satisfy. In this exploratory paper we assume that a process is represented by
a sequence of events, called an episode:

E= {31,62,1‘33, Y .,E'k}.

It is also assumed that each event can be satisfactorily characterized bya
vector of values of certain attributes:

11(‘3;)» xg(e;-), x;(e}-), Ly In(t‘-’;)1
or briefly, | '
Xiv X300 X3, .., X,
We shall also assume that attributes x,, . . ., x, have domains that are known
a priori (value sets):
D(x\), D(xz), D(xs}, ..., Dix,).

Each D(x;} is the set of all values an attribute can possibly take for any event
in the given or future episodes. These value sets, their structure (which
defines the type of an attribute), the constraints on the relationships among
attributes, and knowledge of the application domain, constitute the back-
ground knowledge of a qualitative prediction system.

Given an episode E and the background knowledge, the task is to induce
a description that characterizes the given episode, and predicts plausible
future events; i.e. €.y, €442, - . . Such a description is called a gualitative
prediction rule (QPR). It is not required that a QPR specify precisely what
event will follow, but merely that it constrain the type of events that may
follow. When constraints are sufficiently strong that only one event may
satisty them at each place then the QPR is a deterministic prediction rule;
otherwise, it is a nondeterministic prediction rule. Discovering such qualita-
tive prediction rules is called a nondeterministic prediction problem (NDP),

128 R. MICHALSKI et al.

An example of an NDP problem is to discover the secret rule in the card
game ELEUSIS. The rule, known only to the dealer, describes a sequence
of cards that are legal. Players attempt to play one or more cards that -
correctly extend the sequence. To do so, they have to infer the secretrule or
its approximation from the cards observed so far, Dietterich (1980) describes
a method and a program for discovering such rules which in some instances
outperformed human players. Another paper (Michalski et al., 1985);
describes the SPARC/E program that discovers rules. and plays the Eleusis
game as an autonomous piayer using the rules discovered. The methodology
underlying the SPARC/E program was subsequently generalized and
described by Dietterich and Michalski (1985). This paper further expands
and extends the method. and presents results of various experiments with an
implemented program, SPARC/G (which stands for “Sequential Pattern
Recognition/General). These results demonstrate the performance and
generality of the method.

Three main topics are discussed in this chapter. First, various models for
expressing descriptions are defined. and algorithms for constructing descrip-
tions based on these methods are detailed. Secondly, a program that
implements the methodology is described. Finally. several example prob-
lems are used to demonstrate the strengths and weaknesses of the
methodology.

1.2 Relationship to Time-Series Analysis

There are parallels between this approach and the regression and spectral
methods in time-series analysis (Box and Jenkins, 1976). Regression
methods attempt to explain the behaviour of a particular variable in terms of
the behaviour of aset of independent variables using a polynomial regression
function. Spectral analysis attempts to describe the behaviour of a particular
variable by analysing its frequency spectrum. In our approach, we use three
description models. Our decomposition model corresponds to the regression
polynomial. Qur periodic model is a symbolic counterpart of the spectral
method. However, our third model, the disjunctive model, seems to have no
counterpart in classical time-series analysis. The major differences between
the proposed approach and time-series approach can be characterized as
follows.

(i) In the proposed methodology. each event in the process can be
characterized by a large number of attributes. The attributes may
have different types: numerical, nominal, cyclic or structured (where
the value set is a hierarchy).

5. QUALITATIVE PREDICTION: SPARC/G 129

(ii) The prediction for the next events is qualitative and nondeterminis-
tic; the system constructs a symbolic description that characterizes
the set of plausible next events.

(iii) The background knowledge of the program contains constructive
induction rules that generate new attributes not present in the initial
data.

We assume that the input information about a given process, and the

information derivable from the program’s background knowledge, are
sufficient for predicting a plausible continuation of the process.

2 INDUCING GENERAL DESCRIPTIONS FROM EPISODES

This section presents the theoretical background and basic algorithms
underlying the SPARC/G methodology.

2.1 Events and Episodes

The goal of the SPARC/G methodology is to construct a description of an
observed process that permits one to predict qualitatively plausible future
events. The desired description should be conceptually simple, and consis-
tent with the information known about the process and the system’s back-
ground knowledge. To develop such a description, “snapshots™ of the
process are taken. In each snapshot, we measure the state of the process in
terms of various attributes believed to be relevant (“attribute” and “vari-
able™ are used interchangeably throughout).

A collection of measurements of the process in one snapshot is called an
event. A sequence of events in chronological order is called an episode.

2.2 Representation of Events

A simple representation of an event is just a list of values of some attributes.
A more elaborate representation would be in the form of graphs or predicate
logic expressions. Here, we use a representation based on VL, (the Variable-
Valued Logic 1: Michalski, 1974). Each event is represented by a conjunc-
tion of relational statements called selectors. Each selector describes some
measurements taken from the original process. Conjunctions of selectors
are called VL, complexes, or simply complexes. Formally, a selector consists
of an attribute name, a set of values called a reference, and a relation
between the attribute name and the set of values. It is written as

[attribute relation reference]

130 R. MICHALSKI er al.

For example, the relation
[suit = clubs v diamonds]

states that the attribute suit may take on the value clubs or diamonds.

Each attribute is assigned an explicit set of values called its domain. All
legal values in the reference of a selector must be taken from the domain.
Four types of attributes are distinguished: linear, nominal, cyclic and
structured. Both linear and cyclic attributes have integer values. Nominal
attributes have nonordinal values. For example, the domain of the nominal
attribute suit is {clubs, diamonds, hearts, spades}. A complex (a conjunction
of selectors) is written by placing selectors adjacent to each other. For
example, the complex [suit = clubs v diamonds][value < 3] describes the
set of cards {AC, 2C, AD, 2D}. A structured attribute represents a value
hierarchy that is built on top of existing attributes, and can be either linear
or nominal. For example. the structured attribute color {of cards) can be
defined using attribute suit, such that [color = red] is defined as [suit =
hearts vdiamonds], and [color = black]is defined as [suit = clubsvspades].

2.3 Representation of Episodes

Subscripts are used to indicate the relative ordering between events. Atiri-
butes with subscript 0.refer to the current event of interest. A subscript 1
refers to the event immediately preceding the current event of interest; a
subscript 2, to the event before that, and so on. For example, the complex
[colorl = red][value > 6] states that the color in the preceding event was
red and the value in the current event is greater than 6. We also introduce
difference and sum attributes. The attribute dvalue0l is defined as
valueQ — valuel. The attribute svalue01 takes on value0 + valuel.

2.4 Lookback and Periodic Descriptions

Statistical prediction methods specify possible next values of some attributes
along with a probability of each value. The method described here differs
from such methods in that it specifies a symbolic description characterizing
all possible next events. There are two basic types of descriptions used 1o
characterize a sequence and predict its future course: lookback descriptions
and periodic descriptions. A lookback description is a function F of the b
most recent events, where /b is the lookback parameter. This function
predicts the next event, or a set of plausible next events (the nondeterminis-
tic prediction) in terms of the properties of the /b past events. Thus, givenan
episode

5. QUALITATIVE PREDICTION: SPARC/G 131

E={e,e;,€,...,€,,
we have
Fle, . €iyp-1) - - - Ci-z> 8i=1) = {&;},
where {e;} is the set of plausible next events.
An example of a lookback description with {b = 4 is the function
X; = Xy Xiny ™ Xiny Xiogs where xp, X, = 1,x, = 2, x; = 3,

that describes the sequence
{0, 1,2, 3,6, 16,90, . .).

A periodic description characterizes a sequence by observing a regularity
that binds the events at some fixed distance from each other (the period
length) throughout the whole sequence. The relative position of an event
within the same period is called a phase. For example, the sequence

(a,b,c, b.e.d, ¢.d,e, de,f,..)

1s characterized by a periodic description of period length 3, in which letters
of the same phase grow alphabetically.

2.5 Description Models

Inductive learning 1s the process of generating hypotheses that are plausible
in explaining the observed events and useful in predicting the unobserved.
One approach to induction is to identify one or more description models that
constrain the form of hypothesized descriptions. Inductive learning then
becomes a two-step process of first instantiating the model to generate a
specific description, and then evaluating the plausibility and utility of the
resulting description. Simple forms of such techniques have long been used
in traditional regression analysis, where a typical model is a regression
polynomial, and statistical tests are used to test the fit between the data and
the instantiated model. ‘

Examples of symbolic description models are the decision tree used by
Hunt (1966), and the disjunctive normal form used by Michalski (1969,
1971, 1974). Such models carry a good deal of implicit problem-specific
knowledge. It is important that a general inductive tool permit dynamic
specification, modification and manipulation of the models.

Our method uses three description models.

132 R. MICHALSKI ¢/ af.

(1) Periodic conjunctive model. This model specifies that the description
must be a periodic description in which each phase is described by a
single complex. For example, the rule

Period ({color0 = red], [color0 = black])

describes an alternating sequence of red and black cards. Further-
more, we can imagine a pertodicity within the phase, in which case we
have an embedded periodic rule. For example, suppose that the first
phase of the above rule is another periodic sequence of face and
nonface cards. This is represented as

Period ([colorQ = red][Period ([face0 = true}, [face0 = false])],
[color0 = black])

(2) Lookback decompaosition model. This model specifies that the
description must be a lookback description in the form of a set of
if-then rules:

[colorl = red] — [value0 <5]
[colorl = black] — [value0 = 5]

The left-hand sides, or condition parts of the rules refer to no more
than /b (the lookback parameter) events prior to the event to be
predicted (subscripts 1, 2, etc.). The right-hand sides provide predic-
tions for the next events in the sequence given that the condition part
is true. The decomposition model requires that the left-hand sides be
disjoint so that only one if-then rule be applicable at one time.

(3) Disjunctive normal form (DNF). This model requires only that the
description of the sequence must be a disjunction of VL, compiexes.
For example, the DNF expression

[dsuit0l = 0] v [dvalue0l = 0]

states that either the suit of the current card must be the same as the
suit of the previous card, or the value of the current card must be the
same as the value of the previous card.

From a logical standpoint, any decomposition rule or periodic rules can be
written in disjunctive normal form. The periodic and decomposition models
are useful not because of their theoretical expressiveness or power, but
because of their assistance in locating plausible descriptions gquickly.
Depending on the number of descriptive attributes used, the space of all
DNF descriptions could be immense and thus difficult to search. Therefore,
this is a “catch-all” model, used after the other models have failed.

5. QUALITATIVE PREDICTION: SPARC/G 133

2.6 Descriptions Based on Segmentation

Cften sequences of events are best described in a hierarchical fashion as
series of subsequences. For example,

§=(3,4,4,5,5,5,6.6,6,6,7,7,7,7, 7

is best described as a sequence of subsequences. Each subsequence is a string
of identical digits. The length of each subsequence is one longer than its
predecessor. The digit used in the subsequence is one larger than the digit
used in the previous subsequence. In our method, this is indicated by a
two-part description in which one part defines the segmentation condition,
and the second part defines the relations among segments:

Segmentation condition:

String : {dvalue01 = 0]
Intersegment relation.

[dvalueQl = +1][dlength01 = +1]

The segmentation condition defines subsequences of events with constant
value (dvaluell = 0). The intersegment relation defines relations among
the segments in the new sequence. For example, dvalue01 and dlength01
refer to the values and lengths of the segments. In our example the sequence
is segmented into strings of maximal length satisfying this segmentation
condition. This yields a new sequence

§' = {(3,1).(4.2), (5,3), (6.4), (7.5)).

In the original episode S each event of the episode is an entity with only one
attribute, the value. In §* each event is related to a subsequence of events in
§. Some of the attributes of § may also be used in §', while some others are
newly created for 5. Forexample, the second event in §’ has value 4 because
all the corresponding events in S have value 4. Events in S’ have a new
attribute, length, indicating the number of events corresponding to this
eventin S.

Any description model listed in Section 3.3 can be applied to a sequence
after it has been segmented. The discovery of such segmented descriptions
requires both the discovery of the segmentation condition and the formula-
tion of the description of the segmented sequence. In the current implemen-
tation, the system is equipped with a repertoire of segmentation conditions.
A segmentation condition is chosen if its application produces a sufficient
(according to a user defined criterion) number of elements in the trans-
formed sequence.

134 R. MICHALSKTI e al.

3 THE ALGORITHMS UNDERLYING THE SPARC/G PROGRAM

3.1 Input Representation

The input episode is represented as a list of events. Each event in the list is
represented by a set of attributes which are defined by the user. In addition,
each event is marked as a positive or negative event of the episode. Let us
use a very simple example (Figure 1) to dllustrate the workings of SPARC/G.
Each event in the episode is characterized by its texture, orientation (in
degrees) and size. The representation (what is actually used by the program)
is shown in Table 1.

S0 RODWD R

Figure I Sequence of geometric shapes.

Table 1 Input VL, events.

Event txtr0 orientd sized

| blank 45 small
2 striped 90 big
3 blank 135 small
4 solid 180 big
5 blank 225 small
6 striped 270 big
7 blank 315 small
-8 solid 0 big
.9 blank 45 small
10 striped 90 big
11 blank 135 small
12 solid 180 big

3.2 Data Transformations

The first step is to use constructive induction rules to derive additional
attributes that may be useful for creating descriptions of the episode. Such
rules are a part of the program’s background knowiedge, supplied by the
user. New attributes are defined in terms of existing attributes, which in turn
may be derived from previously defined atiributes. The new attributes

5. QUALITATIVE PREDICTION: SPARC/G 135

Table 2 Augmented VL., events,

Event txtri) orient0 size0 shaded(

1 blank 45 smatl false
2 striped 90 big true
3 blank 135 small false
4 solid 180 big true
5 blank 225 small false
6 striped 270 big true
7 blank 3i5 small false
3 solid 0 big true
9 blank 45 small false
10 striped %0 big true
11 blank 133 small false
12 solid 180 big true

augment the current event descriptions. Here, a new attribute shaded is
added that has two values: true and false. The value false characterizes a
blank texture and the value true characterizes any other texture. If the
generated attributes pass a preliminary relevance test, they are used to
augment episode representation. Such an augmented representation is
shown in Table 2.

The second step involves segmenting the episode. As discussed in Section
2, a segmentation condition is a relation that must hold between adjacent
events of the segment. SPARC/G segments the episode into strings of
maximal length that satisfy the segmentation condition, and then evaluates
the potential usefulness of the segmentation. For example, the segmentation
is not considered potentially useful if the segmented episode has nearly the
same number of events as the original episode, or if the whole episode
satisfies the segmentation condition.

The next transformation step involves making the order of the events
explicit in the events. If the lookback parameter is one or more, the episode
is transformed by augmenting each event with previous events falling within
the lookback parameter window. Table 3 is the result of such a transforma-
tion derived with nuil segmentation condition and a lookback of one, then
augmented with difference attributes. Now, the episode goes through model
specific transformations explained in the next section.

3.3 Model-Dependent Rule Generation

This section explains how each description model is used in searching for a
qualitative prediction rule.

Table 3 Trdnsformed VL, events.

Event txtrl orientl sizel shadedl! txtr(orientl) sizel) shaded) dixtr01 dorientOl dsizeGl] dshaded01

] blank 45 small false striped 04 big true i 45 1 1
2 striped 90 big true blank 135 small false 1 45 i 1
3 blank 135 smatl false solid 180 big true | 45 I 1
4 solid 180 big true blank 225 smiall false] 43 | 1
5 blank 225 small false striped 270 big true I 43 1 |
i) striped 270 big true blank 315 small false 1 45 l 1
7 blunk 315 smatl false solid { big truc § 45 i |
8 sohd 0 big true blank 45 smak false 1 45 | 1
9 blank 45 small false striped 9% big true | 45 1 I
10 striped %0 big true blunk 135 small false 1 45 1 |
11 blank 135 small falsc solid 180 big truc 1 45 I i

5. QUALITATIVE PREDICTION: SPARC/G 137

3.3.1 Rule generation of the decomposition model

The decomposition model describes an episode by a sequence of production
rules. It accepts as input a set of positive events with, optionally, a set of
negative events. Some attributes are designated as “left-hand-side™ attri-
butes. A decomposition seeks to explain current events in terms of the
values of “left-hand-side” attributes. A decomposition-model-based
description for the events in Table 3 wouid be

[shadedl = true} — [txtr0 = blank][shaded0 = false]
[shadedl = false] — [txtr0 = solid v striped][shaded0 = true]

This description decomposes events on attribute shadedl. It breaks the
description of the episode into two if-then rules. The — can be interpreted
as an implication. The decomposition algorithm assumes that both the
left-hand and right-hand parts of the if-then rules must be single VL,
complexes, and that the left-hand sides must be logically disjoint.

The decomposition algorithm starts by performing a trial decomposition
on each possible left-hand-side attribute. A trial decomposition for a
left-hand-side attribute is formed by creating a complex for each value of the
attribute occurring in the episode. The compiex is formed by merging {set
union) the references of corresponding selectors of all events following the
left-hand-side attribute. For example, using the events of Table 3, trial
decompositions could be performed on txtrl, orientl, sizel and shadedi,
but for simplicity Figure 2 represents a decomposition in terms of txtrl and
shadedl. The general idea is to form trial decompositions, choose the best
decomposition, and break the problem into subproblems, one for each.
if-then rule in the selected decomposition. The algorithm can then be
applied recursively until a consistent description has been developed.

Figure 2 shows the raw trial decompositions. These are very-low-general-
ity descriptions. They must be processed further before a decision can be
made as to which decomposition is best and should be further investigated.
Three processing steps are applied to the trial decompositions.

The first processing step involves linear and cyclic interval attributes.
These attributes often have many values, and raw trial decompositions
based on them may be uninteresting and implausible. An attempt is made to
apply the “close interval” inductive inference rule on the left-hand side of
the trial decomposition (Michalski, 1983). The algorithm operates by com-
puting distances between adjacent if-then rules, and looking for sudden
jumps in the distance measure. Where a jump occurs (a local maximum), the
algorithm tries to split the domain into cases.

The distance computation is a weighted multiple-valued Hamming dis-
tance. The weights are determined by taking user-specified plausibilities for

Decompaosition on txtri:

[txtrl=solid] —= [ixtrO=Dblonk]{orient0=45 v 226 sizeQ = small |{ shadedO = false]
[dixtrO1 = 11 dorientO1=45][dsize01= 1} dshadedO1=1]

[txtri = blank] —* [1xtrO=solid v stripedllorient0=0 v SO v 180 v 2701[s1ze 0= bigl shadedO= true]
[dixtrO1= 1)[dorient01==45][dsize01=1][dshaded O1=1]

{txtr1=striped] — [txtrO=blank)] onient =45 v 135 v 315)[size0=small}|shaded0= false]

[dtxtrO1 = t][dorient01=45)[dsize = 1]{ dshadedO} = 11

Dacomposition on shadedi:

[shaded}=true] —~ [IxtrO=Dbtonk][orientf0=45 v 135 v 225 v 315)] sizeO=smalll{shadedO=false]
{dixteO1 = 1)l dorient =45lidsize01= 1][dshoded01=1]
[shaded 1= false] — [1xtrO=striped v sohd]lorientO0=0 v S0 v I80 v 270 s1ze0=big][shadedO=truel

[dtxtr O1 = 1}[donentO1 = 45]{dsize Oi=1][dshadedO1=1 1

Figure 2 Trial decompositions.

Decomposition on txirl:

[txtri=sokd} — (1x4rO = blank } [orientO=45. 225 [size0=smal][shaded O=faise]
[dixirOt = 1]{dorientO1=45](dsizeO1=][dshadedO1=1}

lixtri =blonk] — [ixtrO= solid v striped][orientO=0.270}[size0 = mglishadedO = true]
[dixirQt = 1}{dorientOl = 45]{dsize01 = 1}[dshaded01= 1]

[txtr1 =striped] —= [txtrO = blonk J{orient =45. 315](size0= smalt][shadedO= false}

[dtxtrO1 =1}{ dorient Ot== 45](dsize =1][dshadedO1=1]

Decomposition on shadedt:

[shaded1=true] —= [1xtrO = blank][orientO = 45 315][s1ze 0= small]| shaded O =false}
(dixtrO1=1][dorient == 45)[dsize01==1]{dshadedO1=1]
[shadedi=false] —= [ixtrO==striped v solid)[orient0= 0. 270 sizeO=bigllshadedO = true]

[dtxirO1 ==1][dorientOl =45][dsize0i= 1){dshadedD1=1]

Figure 3 Generalized trial decompositions.

S, QUALITATIVE PREDICTION: SPARC/G 139

each attribute and relaxing these weights according to the discriminating
power of each attribute (taken singly). For instance, if right-hand-side
attribute is irrelevant in some if-then rules, i.e., its reference contains all
possible values, then its weight is reduced to Z€r0. The distances between
adjacent if~then rules are computed and local maxima are located. If there
is one maximum then the interval is split there, and two if-then rules are
created. If there are two maxima then there are three intervals, and each
creates one if—then rule. If there are more than two maxima then the smaller
maxima are suppressed. Similar techniques are used for cyclic interval
domains.

Once the cases have been determined, each trial decomposition is proces-
sed by applying the domain type specific rules of generalization to the
selectors on the right-hand sides of the if-then rules. The “ciose interval”
inference rule is applied to linear and cyclic attributes. Special domain types
are defined for difference attributes (attributes derived by subtracting two
other attributes). The rules of generalization for difference attributes
attempt to find intervals about the zero point of the domain. Thus
[dvalue0l = =3 v 1 v 2] would be generalized to [dvalue0l = =3.. + 3].
One-sided intervals away from zero are also created: [dvalue0l = 3 v 4 v 6]
would be generalized to [dvalueOl > 0]. These generalizations are only

‘performed if the reference contains more than one value. Corresponding to
the trial decompositions of Figure 2 we get the generalized trial decomposi-
tions shown in Figure 3. The notation [size0 = =] is used when an attribute
can take on any value from its domain.

The third processing step examines the different if-then rules and attempts
to make the right-hand sides of the rules disjoint by removing selectors
whose references are overlapping among them. Figure 4 shows the results of
this step.

Decomposition on txirl:

[txtr1=solid] —= Any Event

[txtri=blank] -— Any Event
(txtri =striped] —= Any Event

Decomposition on shaded?:

[shaded1=true] — [txtrQ =btank][shadedQ =false]
[shaded 1="false] — {txtrO=3s0lid v striped]shadedO=true]

Figure 4 Trial decompositions with overlapping selectors removed.

140 R. MICHALSKI et al.

The selection of the best decomposition uses a set of cost functions that
measure characteristics of each trial decomposition. The cost functions are
as follows.

(1) Count the number of negative examples that are incorrectly covered
by this decomposition.

(2) Count the number of cases (if-then rules) in this decomposition.

(3) Return the user-specified plausibility for the attribute being decom.
posed on.

(4) Count the number of null cases for this decomposition

(5) Count the number of “simple” selectors in this decomposition. A
simple selector can be written with a single value or interval in the
reference (e.g. [value01 > 4] is a simple selector). After applying the
generalization rules (as in Figure 3) all selectors except those with
nominal attributes are simple.

The cost functions are applied in an ordered fashion using the lexico-
graphic sort algorithm developed by Michalski (1980). The trial decomposi-
tion with the lowest cost is selected. The lowest cost solution is the
decomposition on shadedl shown in Figure 4. It states that if the figure is
shaded then the texture of the next figure is blank and its shade is not shaded.
And if the figure is not shaded then the texture of the next figure is solid or
striped and is shaded. |

Once the best trial decomposition has been selected, it is checked to see if
it is consistent with the events (covers no negative events). If so, the
decomposition algorithm terminates. If it is not then the probiem is decom-
posed into separate subproblems, one for each if-then rule in the selected
decomposition. Then the algorithm is repeated to solve these subprobiems.
(The subproblems are solved simultaneously, not independently.)

The strengths of the decomposition algorithm are as follows.

(1) Speed—good decompositions are located quickly.
(2) Transparency-—decomposition descriptions are €asy to interpret.

(3) Generality—the algorithm can discover a large class of symbolic

relations between the current event and past events within a given
lookback.

3.3.2 Rule generation using the periodic model

The periodic model is used to test if events in the episode display a periodic
behaviour. [tis assumed that the parameter defining the number of phases is

5. QUALITATIVE PREDICTION: SPARC/G 141

provided to the algorithm. In searching for a periodic description, the system
may try different values of this parameter. Each phase is treated in a manner
similar to the treatment of the different if-then cases in the trial decomposi-
tion algorithm described earlier. First, the eventsin each phase are combined
to form a single complex (by forming the union of references of corre-
sponding selectors). For the gpisode in Figure 1, using a phase of two, the
resuits are

Phasel: [txtr0) = blank]{orient0 = 45 v 135 v 225 v 315]
[size0 = smal!][shaded(= false]

Phase2: [txtr0 = solid v striped][orient0 = 0 v 90 v 180 v 270]
[size0 = big]{shaded(= true]

Note that in order to simplify descriptions, no difference attributes or
attributes describing previous events are included in these derived events.
First, overlapping complexes are dropped. Complexes that do not cover
examples of other phases or negative examples are then generalized further:

Phasel: [txtr0 = blank}[orient0 = 45..315]
[size0 = small][shaded0 = false]

Phase2: [txtr} = soiid v striped]{orient0 = 0..270]
[size0 = bigj[shaded0 = true]

If these generalized complexes still do not cover negative examples, selectors
with overlapping references (overlapping with selectors in other phases) are
removed:

Phasel: [txtr0 = blank][size0 = small][shaded0 = faise].
Phase2: [txtr0 = solid v striped][size0 = big][shaded0 = true}

If these complexes are still consistent, they are returned as the final
description.

Both the periodic and the decomposition algorithms go through the above
postprocessing steps until the description becomes inconsistent, at which
time the algorithm backs up and returns the version of the description before
it was overgeneralized to become inconsistent. In some cases, the star
generation process of the Aq algorithm is invoked to attempt to extend the
description against negative examples and examples of other phases.

For each phase from the above, a new episode is assembled. This episode
is considered a full-fledged episode so that the periodic algorithm is invoked
recursively until either the newly assembled episode is trivial, such as having
length of one, or the description returned from the next cali to the model is
implausible. For the example, the episode for the second phase is again
periodic:

Phase2l: [txtr0 = striped]
Phase22; [txtr) = solid]

142 R. MICHALSKI e a!.

Here the second phase of the top level is described by an embedded Period;
rule of two phases, Phase2]l and Phase22. The full recursive Period::
description is

Period([txtr0 = blank][size0 = small]{shaded0 = false],
[sizeQ = big|[shaded0 = true]
[Period([txtr0 = solid}, [txtr0 = striped])])

This rule states that the episode has two phases: the events in the Arst
phase have “blank” texture, “small” size and shaded; the events ip the
second phase have “solid” or "striped” texture, “big” size and not-shadeq.
also the textures alternate from striped to solid.

3.3.3 Rule generation using the DNF mode!

The DNF (disjunctive normal form) model employs the Aq algorithm
(Michalski, 1969, 1971), which was originally developed in the context of
switching theory and subsequently used for inductive inference (Michalsk;,
1972, 1973). The algorithm accepts as input a set of positive events and a set
of negative events, and produces an optimized cover of the positive evepts
against the negative events. Such a cover is a description that is satisfied by
all of the positive events, but by none of the negative events. The process of
developing a cover involves partially computing the complement of the set
of negative events and intelligently selecting complexes which cover positive
events. The final cover may be a single complex or a disjunction of
complexes. Aq seeks to develop covers that satisfy predefined criteria, such
as minimizing the number of complexes in the cover, the total cost of
attributes, etc.

The algorithm proceeds in best-first fashion by the method of disjoint
stars. A positive event el is determined, and a star is built aboutel. A staris
the set of all maximally general compiexes that cover el and do not cover any
negative event. The best complex in the star, lq, is chosen and included in the
goal description. All events covered by lg are removed from further
consideration. The above process is then repeated. However, the newly
selected el must not be covered by any element of any previous star. In this
manner the algorithm builds disjoint, well-separated stars. It has been
shown that the number of such stars is a lower bound on the minimum
number of complexes in any cover (Michalski, 1969). The process repeats
until all events are covered by at least one lq complex. Disjunctions of the
selected complexes forms the goal discription. Some clean-up operations are
required in the case where some positive events were covered by some star,
but by no lq.

A simplified description of the process of building a star about an event el
is given as follows: each negative event is complemented, and then multi-

5. QUALITATIVE PREDICTION: SPARC/G 143

plied out, with the proviso that each resulting complex must cover el. After
each event is multiplied out, the set of intermediate products (so-called
partial stars) is trimmed according to a user-specified preference criterion,
and only the MAXSTAR best elements are retained. The final star has at
most MAXSTAR elementsin it.

Note that all of the steps mentioned (complementation, multiplication,
etc.) are performed on attributes which can take on a set of values, Thisisa

multiple-valued covering process. |
The strengths of the algorithm include the following,

(1) Quasi-optimality—the algorithm efficiently generates covers that are
optimal or near-optimal.

(2) Flexibility of cover optimality and type—the user can specify the
cover optimality criterion that reflects the specific aspects of the
problem. The criterion determines which lq is chosen from each star
and which partial stars are retained during the star-building process.
The algorithm can also be told the type of the cover sought. The cover
can be disjoint (complexes are disjoint), intersecting (complexes are
overlapping) or ordered (complexes are linearly ordered).

(3) Optimality estimate—if no trimming is performed, the algorithm
provides an estimate of the maximum difference between the number
of complexes in the solution and in the minimum solution.

The DNF model is used to discover properties that describe the collection
of all positive/negative events. Sequential information, if any, exists in the
form of attributes that characterize the relationship between events. The Aq
algorithm is given the set of ail positive events and negative events
augmented with the derived attributes. The algorithm then attempts to find
descriptions that describe all positive events, but none of the negative
events. With orientation defined as a cyclic attribute so that zero degree is
considered to be 45 degrees “larger” than 315 degrees, a difference attribute
dorient01 can be defined. Given appropriated negative events (not shown in
Figure 1), a description

[dorient01 = 45]

is discovered as the description that perfectly characterizes the positive
events.

3.4 Description Evaluation and Selection

This phase examines rules developed by the above induction algorithms in
order to filter out redundant information in the generated rules. For
example, the following are the rules given in Figure 4:

i4d R. MICHALSKI er af.

[shadedl = dark] — [txtr0 = blank][shaded0 = false]
[shadedl = clear] — [txtr) = solid v striped][shaded(= true]

Note that [txtr0 = blank] is equivalent to [shaded0 = false], and {ixtr) =
solid v striped] is to [shaded0 = true]. This redundancy was caused because
the induction algorithms were not aware of the structural relationships
between attributes. This redundancy is remaved by the foliowing procedure:

for each rule in the rulebase do
for each complex in the rule do
for selectors A and B in the complex, and both A and B are based
on some attribute do
if they are equivalent then keep the syntactically simpler one
else if A C B then drop A
else if B C A then drop B

If A and B are based on two different attributes then A and B cannot be
redundant. For example, shaded0 and dshaded01 cannot be redundant,
since shaded0 is based on txtr0 while dshaded01 is based on both shaded(
and shadedl.

When an episode is segmented, some additional operations may be
required. For example, given the episode

S = 1.<3r 4# 4:'5?5?5! 61 6?6! 69 7? 7>’

one would not want to create a segment for the sevens. Such a segment
would indicate that there is a string of sevens of length 2. If the induction
algorithms received such an event, they would not be able to discover that
the length of a string always increases by 1. Sothe segmentation process must
leave the end of the episode unsegmented. Each description produced by the
induction algorithm must be checked to verify that it is consistent with the
tail end of the episode.

Finally the plausibility of the descriptions is assessed. First of all, the rule
must be consistent; that is, it should not predict incorrectly events within the
episode. Another criterion for plausibility is that the rule should be concep-
tually simple. This is approximated in the program by measuring syntactic
complexity of the rule, such as the number of values in a reference, the
number of selectors in each complex, the number of complexes in the rule
and so on.

4 APPLICATIONS

This section presents results from applying the SPARC/G program (written
in Berkeley PASCAL, running under Unix 4.2 BSD ona Sun-2/120 work-
station) to a few exampie problems. Possible improvements and extensions
to the program are also suggested.

5. QUALITATIVE PREDICTION: SPARC/G 145

Example 1: Discover Safe Passage through Channels

Suppose that two oceans Ocean, and Ocean; are connected by a network of

channels, and the passageways are full of mines. The mines are regularly
activated or deactivated by the enemy through remote control. The enemy
signals the safe passageway to its ships Dy left and right beacons located
before and after the junctions. The colour and frequency of the beacon are
governed by a secret code indicating the safe passage. The ally observes the
enemy ships passing from Ocean, to Ocean,, and would like to discover the
code so that its ships can also pass through the channels safely. SPARC/G

was given the following descriptors:
(1) LeftColor {colour of the left beacon): {green, red, blue};

(2) RightColor (colour of the right beacon): {green, red, blue};

(3) LeftFrequency (frequency of the left beacon): {low, medium, high};

(4) RightFrequency (frequency of the right beacon): {low, medium,
high}.

A map of the channel is given in Figure 5. The routes not taken by the
enemy are considered unsafe, and are marked as an arrow with a bar across
it. To discover the rule that characterizes the safe passage, it is hypothesized
that alf relevant information for the secret code is provided by the attributes
of the beacons before and after each junction. The input episode is given in

Table 4.

Table 4 Input events for Example 1.

Event LeftColor RightColor LeftFrequency RightFrequency Route

1 red green medium medium taken

2 green blue high low not-taken

3 green blue low high taken

4 red green high high not-taken

3 blue red medium medium taken

6 red biue medium high not-taken

7 red green medium low not-taken

8 green red low medium taken

9 blue red medium high not-taken
10 red red high low taken
11 green biue medium low not-taken
12 green blue high low not-taken
13 biue green low medium taken
14 blue green fow high not-taken
15 blue red low medium taken

OCEAN 1

!

i
}
:

[|
:

» Low-frequency beccon = Medium ~frequency beacon
= High-frequency beacon /\ Blue coiour beacon

] Green colour beacon () Red colour beacon

® Junctions === Path taken by enemy ship
-+ Safe path —» [ncorrect path

Figure 5 Mined channels.

5. QUALITATIVE PREDICTION: SPARC/G 147

The program discovered the following safe-passage rule using the decom-
position rule model:

Rule 1: decomposition model, lookback: 1, nphases: 0
{LeftColor-before = red] — [RightFrequency-after > RightFrequency-

before]
[LeftColor-before = green] — [RightFrequency-after < RightFrequency-
before]
[LeftColor-before = blue] — [RightFrequency-after = RightFrequency-
before}

The computation time was approximately one second on a Sun-2/120. The
rules can be paraphrased as follows. The passage is safe if

® the colour of the left beacon before a junction is red, and the frequency of
the next beacon on the right is lower than that of previous beacon on the

right; or

® the colour of the left beacon before a junction is green, and the frequency
of the next beacon on the right is higher than that of previous beacon on

the right; or

e the colour of the left beacon before the junction is blue, and the frequency
of the next beacon on the right is the same as that of previous beacon cn

the right.

In the paraphrase, the “implication” is interpreted.as “and”. This is
allowed because the left-hand sides of the implication in decomposition rules
are disjoint and complete with respect to the domain of the attribute. The
program discovered the rules that are exactly the ones used to generate the
example of safe passage. This is a very satisfactory result.

Example 2: Learning Preconditions in a Blocks World

In many planning systems, operations are often expressed as precondition—
postcondition pairs. Preconditions specify the conditions that must be
satisfied before an operation, while postconditions generally state the
changes caused by the operation. For example, the operation put-on(blockl,
block2), which puts blockl on top of block2 in blocks world, has the
following preconditions and postconditions:

Preconditions: there must be no other object on top of block2, and the top
of block2 must be flat;

Postconditions: blockl is on-top-of block2; blockl is “deleted” from its
previous position.

148

This example shows how a system can acquire the rules by learning from
examples. In this example. the world consists of four objects: two cupes. 5
cylinder and a pyramid. The following variables are defined for SPARC/G.

(1) top-of-cubel:its valueisthe name of the object thatisontop of cube -
(2) top-of-cubel: its valueis the name of the object thatisontopofcube?.

(3) top-of-cylinder: its value is the name of the object that is on top of the

cylinder;

(4) top-of-pyramid: its value is the name of the object thatis on top of the

pyramid;

(5) put: the action of putting an object on top of another; for example
[put = cylinder-on-cubel]. specifies the action of putting the cylinder

on top of cubel;

(6) put-on-cubel: a binary variable that states the legitimacy of putting an

R. MICHALSKI er al,

arbitrary object on top of cubel.

The positive events given to SPARC/G are arbitrary legitimate actions
and statuses permitted by the blocks world. The negative events are, on the
other hand, illegitimate actions and status, Here is one example given to the

prograrm:

[top-of-cubel = cube2][top-of-cube2 = clear]
[top-of-cylinder = clear][put = cylinder-on-cube2][put-on-cubel = noj

This example states that if cube2 is on top of cubel, and the tops of the
cube? and cylinder are clear, then one may put the cylinder on top of cube2
(put = cylinder-on-cube2) but may not put anything on cubel (put-on-

cubel = no). The input episode is shown in Table 5.

Table 3 Input events for Example 2.

Event top-of-cubel

top-of-cube2

top-of-cylinder

put

put-on-cube-1

clear
clear
clear
clear
clear
cube2
cube?
pyramid
cylinder

WO oo ~3 OnoWn e e B e

clear
clear
clear
clear
clear
clear
clear
clear
clear

clear
clear
clear
clear
clear
clear
clear
ciear
clear

cube2-on-cubel
cylinder-on-cubel
pyramid-on-cubel
cubeZ-on-pyramid
cubel-on-cylinder
cylinder-on-cubel

cubeZ-on-cubel
cylinder-on-cubel
pyramid-on-cubel

yes
yes
yes
no
yes
no
no
no
no

5. QUALITATIVE PREDICTION: SPARC/G 149

SPARC/G discqvered the following rule using the DNF model with a
lookback of 0 in 2.2 seconds:

[top-of-cubel = clear] v [put-on-cubel = noj

which can be reexpressed as
[put-on-cubel = yes] — [top-of-cubel = clear]

which in effect says that if you want to put something on top of cubel then
the top of it must be clear. This is obviously correct. On the other hand. this
example shows one of the limitations of SPARC/G: the currently used
description language allows only one-argument functions or predicates. A
desirable extension of the program would be to allow in its description
language predicates and functions of two or more arguments.

Example 3: Learning a Symbolic Description of Motton

Motion is one of the most basic notions that governs our understanding of
the physical world. How does motion of an object affect the state of the
world and what type of motions are possible given the state of the world? The
answer depends on discovering relations governing motion. We need not
know Newtonian mechanics to understand the physical interactions of
motion, The first step toward such discovery is to hypothesize causal
connections between descriptions of the world. Since motion occurs
in time, a sequential pattern recognition program like SPARC/G can play
an important role. This example illustrates how the program can discover
the causal relationships between the state of a spring and motion of an
object. The program was given the following descriptors as perceptual
vocabulary:

(1) Spring (state of the spring): {compressed, relaxed, stretched};

(2) Pos (the position of the block with respect to the position of the spring
at rest): {left, center, right};

(3) Move (direction of the movement of the block): {left, still, right};

(4) Accel (the block slows down, accelerates, or moves with constant
speed): {—1, +1, 0}.

Initially, the spring is stretched and the spring oscillates back and forth

as shown in Figure 6. The corresponding input episode is shown in
Table 6.

150 , R. MICHALSKI er af.

Spring
/\/\/\/\/ Block Relaxed
Spring
/W Block Compressed
Spring
/\/\/\/\/ Block Relaxed
Spring

/\/\/\/\/\/\/ Block Stratched

Figure 6 The oscillating block.

SPARC/G discovered the following decomposition rule with lookback of
11n 1.1 seconds:
Rule 1: decomposition model, lookback: 1, nphases: 0
{Springl = stretched] — [Move0 = left]
[Springl = relaxed] —» [Move0 = still]
[Springl = compressed] — [MoveQ = right]

The rule can be paraphrased as follows:
(1) if the spring is stretched then the block is going to move to the left;
(2) if the spring is relaxed then the block is coming to a hait;
(3) if the spring is compressed then the block is going to move to the right;

SPARC/G was able to predict the movement of the block from the state
of the spring. Even though this rule may fail (for example, if the spring is
stretched too much then it may break), it seems to be a good first approxima-
tion of our intuitive notion of spring motion.

5. QUALITATIVE PREDICTION: SPARC/G 151

Table 6 [nput events for Exampie 3.

Event number Spring Pos. Move Accel.

L stretiched right still =

2 relaxed center left 0

3 compressed left still *l

4 relaxed center right 0

5 stretched right still -1

6 relaxed center left 0

7 compressed left still +1

8 ~ relaxed center right 0

9 stretched right still =1
10 ~ relaxed center left 0
11 compressed left still +1
12 relaxed center right 0
13 stretched tight still -1
14 relaxed center left 0
15 compressed left still +1
16 relaxed center right 0
17 stretched right still (]
18 relaxed center left 0
19 compressed left still +1
20 relaxed center right 0
21 stretched right still -1
22 relaxed center left 0
23 compressed left stiil +1
24 relaxed center right 0
25 stretched right stiil -1
26 relaxed center left 0
27 compressed left still +1
28 relaxed center right 0
29 stretched right still -1
30 relaxed center left d
31 compressed left still + 1
32 relaxed center right 0
33 stretched right still -1
34 relaxed center left 0
35 compressed left still +1
36 relaxed center right 0

Physicists can explain the episode from first principles, but most human
beings are not physicists. It seems that we typically derive qualitative
relations existing in the world by doing inductive inferences from our
observations, such as those performed by SPARC/G. Thus it appears that
the program can be used to capture some important aspects underlying our
processes of acquiring models of the physical world.

152 R. MICHALSKI er al.

Example 4: Learning a Sequence of Actjons

The operation of most planning or problem-solving systems is usually based
upen a predefined set of rules. These rules represent the direct injection of
knowledge from human users to the system. In this example, we show how
SPARC/G can be used to acquire these rules by learning from training
episodes.

Suppose we wish to teach a robot to operate a simplified cassette recorder
by giving examples. Several legitimate actions are defined for the robot, sych
as to put a cassette into the recorder, eject the cassette, play. stop, etc. The
robot is allowed to play with the cassette recorder, and a tutor labels each of
the robot's actions as being either correct or incorrect. Whenever the robot
effects an incorrect action, it is assumed that the robot will retract the
incorrect action before making any further attempt. The robot must figure
out the right sequence of actions all by itself. It is assumed that the rules to
be learned are in the form

ACTION{ — ACTIONj or ACTIONK

Such a rule states that after ACTIONI is executed, the next legitimate action
can only be either ACTTONj or ACTIONK.
In this example, four legitimate actions on the recorder are defined:

(1) Put: putting the cassette into the recorder;
(2) Play: begin playing the cassette;

(3) Stop: stop playing the cassette;

(4) Eject: taking the cassette out of the recorder.
The legitimate sequence of actions is as follows:

(1) after putting the cassette into the recorder (Put), one may either eject
the cassette (Eject) or start playing (Play);

(2) after begin playing the cassette (Play), the only legitimate action is
Stop;

(3) after Stop, one may either Eject or Play;

(4) after Eject, the only legitimate action is Put.

A variable Action, among some other irrelevant variables, is defined in
this example. The variable Action can take on either one of the four values:
put, play, stop or ¢ject.

Part of the episode given to SPARC/G is shown in Table 7.

5. QUALITATIVE PREDICTION; SPARC/G 153

Table7 Inputepisode for Example 4.

Eventnumber Action Legal?

1 put yes
2 put no
3 stop no
4 play yes
5 put no
6 stop yes
7 eject yes
8 play no
9 put yes
10 eject yes
11 put yes
12 gject yes

SPARC/G discovered the legal sequences of actions using the decompo-
sitional model with a lookback of 1in 2.5 seconds. The rules produced take

the form of implications:

Rule 1: decomposition model, lookback: 1, nphases: 0
[action]l = eject] — [action0 = put]

[actionl = stop] — [action0 = play v eject]

[action] = play] — [action{ = stop]

[action] = put] — [action0 = play v ¢ject]

The rules can be paraphrased as follows:
Following Eject, the next action must be a Put;
Following Stop, the next action must be either a Play or an Eject;
Following Play, the next action must be a Stop;

Following Put, the next action must be either a Play or an Eject.

Thus these rules exactly characterize the legal actions.

Example 5: ELEUSIS: A Game of Scientific Discovery

This example shows the program’s capability to discover rules in the card
game Eleusis that models the process of scientific discovery (Gardner,
1977).1 The game is played between a dealer and several players. Given a

+ The New Eleusis is available from Robert Abbott at Box 1175, General Post Office, New
York, NY 10001, USA.

154 R. MICHALSKI et qf.

sequence of cards that represent an instantiation of a qualitative prediction
rule invented by the dealer (e.g. alternating colour of cards). the players are
supposed to guess the secret rule invented by the dealer. In order to make
the game more interesting, the dealer is penalized for inventing rules 1oq
difficult for any one to discover, or rules so simple that everyone can discover
them. For the purpose of this example. it is assumed that SPARC/G poses ¢
a player trying to figure out the rule governing the card sequence. The
following is a simple Eleusis example designed to show the versatility of
SPARC/G. A specialized version of the program. SPARC/E. has showp
expert level performance tn plaving the game. and has beaten its humap
gounterparts on many 0ccasions. |

The card sequence is given as a main line and a side line. The cards (reag
from left to right) in the main line represent positive instances that conform
to the dealer’s secret rule, and the cards in the sidelines represent negative
instances that defy the rule:

Main line JC AD QH 108 QD 9H QC 7H
Side line KC 358§ 48 10D

The above layout of cards shows a card sequence of alternating faces, with
Jack, Queen and King as face cards. The layout indicates that it is legitimate -
to play an Ace of diamonds (AD) following a Jack of clubs (JC), but not a
King of ctubs (KC), etc.

When given the above sequence, SPARC/G discovered the dealer’s secret
rule in three ways:

Rule 1: decompasition model, lookback: 1, nphases: 0
[face(cardl) = false] — [face(card0) = true] v
[face(cardl) = true] — [face{card0) = false]

Rule 2: periodic model, lookback: 1, nphases: 1
period([face(card0) <> face(cardl)])

Rule 3: periodic model, lookback: 1, nphases:2
period([face(card0} = true], {face(card0) = false})

The rules can be paraphrased as follows.

Rule 1 If the previous card is a face card, then the next card must be a
non-face card. If the previous card is a non-face card, then the next
card must be a face card. This rule was discovered using the
decomposition model with a lookback of one. (4 seconds)

Rule 2 Adjacent cards in the card sequence have different face values.
This rule was discovered using the periodic model with a phase of
one. (1 second)

Table 8 Results from other ELEUSIS game sessions.

Execution Sourceofthe
Secret rule Rule discovered time (s) rule
Il previouscardis red Rule 1: lookback: 1 nphases: O Decomposition
then play a faced card; [color(cardl) = red] — |face{cardl)) = true] v 29 Tom Channic
If previous card is black [color(cardl) = black] — [face(card)) = false]
then play a nonfaced card.
® If previouscardisodd Rule : lookback: I nphases: 0 Decomposition
then play a card of different colour; [parity(cardl) = odd] - [color(card0) <> color(cardl}] v 1.6 Donald Michie
If previous cardiseven [parity(cardl) = even] — |[color(card0) <> color(card1)]
then play a card of same colour.
Rule 1: lookback: 0 nphases: 0 DNF |
¢ Play anycard thatiseither {color(card0) = red|[parity(card0) = odd] v 1.2 Patrick Winston

red and odd, or black and even.

If previous card is odd
then play a black card;
If previous card 15 even
then play ared card.

[color(cardD) = black }[parity(card0) = even]

rule 1: lookback: 1 nphases: 0 Decomposition
[parity(cardl) = odd] — [color(card0) <> color(cardi}| v
|parity(cardl) = even] - |color(card)) <> color(card!)]

I.5

Gardner (1977)

156 R. MICHALSKI er af,

Rule 3 The sequence is composed of two inte rleaving sequences of ¢
where one sequence are all face cards, and the other s€quence g|]
non-face cards. This rule was discovered using the periodic mode]
with a phase of two. (1 second) .

ards,

Table 8 shows the result of several other game sessions.

§ SUMMARY AND RESEARCH DIRECTIONS

The methodology presented is applicable to a wide range of qualitative
prediction problems. The major strengths of the methodology lie in it
generality and the use of several description models and corresponding
sequence transformations. These models and transformations guide the
search through an immense space of plausible qualitative prediction rules.
The representation space of DNF and Decomp Model is 2A*{P+1xvxD
2Ax{lo+11xvxp® for periodic model, where A is the number of attributes, Ib is
the lookback parameter, v is the size of the domain of an attribute, D is the
maximum number of disjunctive terms, p is the number of phases in periodic
model, and R is depth of recursion in periodic model.

The methodology assumes that the information contained in the events,
plus the information that can be inferred from the events using the program’s
background knowiedge, is sufficient to predict a plausible continuation of a
process. One way to improve the capability of the system is to enhance the
background knowledge and the program’s ability to utilize this knowledge.
The current implementation utilizes mainly the information contained in the
events, and to a lesser extent those contained in the background knowledge.

Background knowledge consists primarily of description models and
associated sequence transformations, domains and types of variables, and
various domain-specific constructive induction rules that generate new
variables from the old ones. It does not, however, have capabilities for
testing the consistency of generalized selectors in the complexes for utilizing
various interdomain constraints, or for performing a chain of deductions to
see If the episode is explained by the rules of inference in the background
knowledge (Dejong, 1986).

The search strategy invokes two processes simultaneously:

(1) aspecialization of description models by instantiating the models with
the given parameters to generate restricted rule forms;

(2) a transformation of the original episode into a new form, more
amenable for rule discovery.

5. QUALITATIVE PREDICTION: SPARC/G 157

The algorithms presented here work best when negative events are
availabie, but satisfactory performance can be obtained without negative
events. Processes that contain noise or error are currently not handled by the
program. |

The generality of the program has been demonstrated by a series of
examples from different domains. Among desirable paths for future
research are improving the efficiency of the search process, extending the
representation to more powerful description language such as the annotated

predicate calculus (Michalski, 1983) so that multipie-argument descriptions
are allowed, and developing the capability for incrementai learning.

ACKNOWLEDGEMENTS

The authors are grateful to Peter Haddawy, Carl Kadie, Igor Mozetic, Gail
Thornburg and Carl Uhrik for their comments on the earlier draft of this
paper. This research was supported in part by the National Science Founda-
tion under grant NSF DCR 84-06801, the Office of Naval Research under
grant N00014-82-K-0186 and the Defense Advanced Research Projects
Agency under grant NG0(14-K-85-0878.

REFERENCES

Box, G. E. P. and Jenkins, G. M. (1976). Time-Series Analysis: Forecasting and
Control, Revised edn. San Francisco: Holden-Day.

Chilausky, R., Jacobsen, B. and Michalski, R. §. (1976). An application of variable
valued logic to inductive learning of plant disease diagnostic rules. Proc. 6th Ann.
Symp. on Multiple Valued Logic, Logan, Utah, 1976.

DeJong, G. (1986). An approach to learning from observations. Machine Learning:
An Artficial Intelligence Approach, Vol. . (ed. R. §. Michalski, J. G. Carbonell
and T. Mitchell). Los Altos, California: Morgan Kaufmann.

De Kleer, J. and Brown, JI. S. (1984}. A gualitative physics based on confluences.
Artificial Intelligence 24, 7-83.

Dietterich, T. G. (1980). The methodology of knowledge layers for inducing
description of sequentiaily ordered events. M.S. thesis, Department of Computer
Science, University of Illinois, Urbana.

Dietterich, T. G. and Michaiski, R. §. (1979). Learning and generalization of
characteristic descriptions: evaluation criteria and comparative review of selected
methods. Proc. 6th Int. Joint Conf. on Artificial Intelligence, Tokyo, August 1979,

- pp. 223-231. o |

Dietterich, T. G. and Michalski, R. §. {1985). Discovering patterns in sequences of
events. Artificial Intelligence 25, 187-232.

Forbus, K. (1984). Qualitative process theory. Ph.D. thesis, MIT.

158 R. MICHALSKI erf af.

Gardner, M. (1977). On playing the New Eleusis, the game that simulates the search
for truth. Scientific American 237 (October), 18-25.

Hedrick, C. L. (1974). A computer program to learn production systems using 3
semantic net. Ph.D. thesis, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh.

Hunt, E. B. (1966). Experiments in Induction. New York: Academic Press.

Larson, J. (1976). A multi-step formation of variable logic hypotheses. Proc. 61h [n;,
Symp. on Multiple-Valued Logic, Logan, Utah, 1976.

Larson. J. (1977). Inductive inference in the variable valued predicate logic system
VL21: Methodology and computer implementation. Rep. 869, Dept Computer
Sci. Univ. Illinois, Urbana.

Larson. J. and Michalski, R. S. (1977). Inductive inference of VL decision rules.
SIGART Newsletter (June), 3844,

Michalski. R. 8. (1969). Algorithm Aq for the quasi-minimal solution of the covering
problem. Archiwum Automatyki i Telemechaniki, No. 4, Polish Academy of
Sciences. {In Polish.)

Michalski, R. S. (1972). A variable-valued logic system as applied to picture
description and recognition. Proc. [FIP Working Conf. on Graphic Languages,
Vancouver.

Michalski, R. S. (1973). Discovering classification rules using variable-valued logic
system VL1. Advance Papers of 3rd Int. Joint Conf. on Artificial Inielligence,
Stanford University, pp. 162-172,

Michalski, R. S. (1974). Variable-valued logic: System VL1. 1974 Int. Symp. on
Multiple-Valued Logic, West Virginia University, Morgantown, West Virginia,
29-31 May.

Michalski, R. S. {1977). Variable-valued logic and its application to pattern recogni-
tion and machine learning, Compuier Science and Multiple-Valued Logic (ed.
D. C. Rine), pp. 506-534. Amsterdam: North-Holland.

Michalski, R. S. (1980). Pattern recognition as knowledge-guided inductive infer-
ence, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. 4, pp. 349-61, July 1980,

Michalski, R. §. {(1983). A theory and methodology of inductive learning. Machine
Learning: An Artificial Intelligence Approach (ed. R. S. Michalski, J. Carbonell
and T. Mitchell), pp. 83-134. Palo Alto, California: TICGA Publishing Co.

Michalski, R. S., Chen, K. and Ko, H. (1985). SPARC/E(V.2): A Eleusis rule
generator and player. Rep. Dept Computer Sci., Univ. Illinois, Urbana.

Mitchell, T. M., Richard, M. K. and Kedar-Cabelli, S. T. (1985). Explanation-
based generalization: A unifying view. Rutgers Computer Sct. Dept Tech. Rep.
ML-TR-2.

Schwenzer, G. M. and Mitchell, T. M. (1977). Computer-assisted structure elucida-
tion using automatically acquired carbon-13 NMR rules. ACS Symp. Ser. 54:
Computer-Assisted Structure Elucidation (ed. D. H. Smith),

Soloway, E. and Riseman, E. M. (1977). Knowledge-directed learning, Proc.
Workshop on Pattern Directed Inference Systems. SIGART Newsleuer (June),
49-55. :

Waterman, D. A. (1975). Serial pattern acquisition: A production system approach.
Working Paper 286, Dept Psychology, Carnegie-Mellon Univ. Pittsburgh.

