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Learning Strategies and Automated Knowledge
Acquisition

An Overview

Ryszard S.Michalski'

Abstract

Fundamental learning strategies are discussed in the context of knowledge acquisition for expert
systems. These strategies reflect the type of inference performed by the learner on the input infor-
mation in order to derive the desired knowledge. They include learning from instruction, learning
by deduction, learning by analogy and learning by induction. Special attention is given to two
basic types of learning by induction: learning from examples (concept acquisition) and learning
from observation (concept formation without teacher). A specific form of learning from’observa-
tion, namely, conceptual clustering, is discussed in detail, and illustrated by an example. Concep-
tual clustering is a process of structuring given observations into a hierarchy of conceptual catego-
res.

An inductive learning system generates knowledge by drawing inductive inferences from the
given facts under the guidance of background knowledge. The background knowledge contains
previously learned concepts, goals of learning, the criteria for evaluating hypotheses from the
viewpoint of these goals, the properties of attributes and relations used to chracterize observed
events, and various inference rules for transforming concepts or expressing them at different lev-
els of abstraction.

1. Introduction

Learning ability is no doubt central to human intelligence. This ability permits us
to adapt to the changing environment, to develop a great variety of skills, and to
acquire expertise in an almost unlimited number of specific domains. The human
ability to learn is truly remarkable: people are capable of learning from informa-
tion carried by multiple physical media and expressed in an unbounded variety of
forms. This information can be stated at different levels of abstraction, with differ-
ent degrees of precision, with or without errors, and with different degrees of rele-
vancy to the knowledge ultimately acquired.

Implanting learning capabilities in machines is one of the central goals of Arti-
ficial Intelligence. It is the subject of a new field of Machine Learning. Due to the
enormous complexity of learning processes, development of general-purpose,
versatile learning systems is a long-term goal. With the development of expert sys-
tems, however, implementing some forms of machine learning has become an
urgent task, even if the forms of such implementation are very limited.

The urgency of this task stems from an explosive growth of interest and social
need to develop expert systems for many different applications, from medicine
and agriculture to law, education and computer design. Expert systems are com-
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2 Ryszard S. Michalsﬁ

. puter programs (or devices) that simulate the expertise of a human expert in solv-
ing problems in some specific domain. They are capable of conducting formal
inference on their knowledge base in the interaction with the external information
provided by a user, in order to provide a solution to a problem or an advice in
decision making. Examples of some early expert systems include:

- DENDRAL (developed at Stanford University) for determining the molecular
structure of organic compounds from mass spectrograms.

- MACSYMA (developed at MIT) which serves as a general mathematical aids
system (e.g., for symbolic integration, simplification of mathematical expres-
sions, etc.).

- R1 (developed at Camegie-Mellon University) for determining configurations
of VAX computer systems.

- INTERNIST (developed at the University of Pittsburgh) for diagnosing dis-
eases of interest in internal medicine.

- PLANT/ds and PLANT/cd (developed at the University of Illinois) - two
related agricultural expert systems, the first for diagnosing soybean diseases,
and the second for predicting black cutworm damage to corn.

The major component of an expert system is its knowledge base, i.e., formally
represented knowledge in the given domain of application. Building such a knowl-
edge base is typically done as a cooperative effort between a “knowledge
engineer” and a domain expert. The knowledge engineer conducts interviews with
an expert and codifies the expert’s knowledge in some knowledge representation
system.

Such a system often consists of production rules (condition-action rules) or a
semantic network. A semantic network is a graph whose nodes represent concepts
and whose links represent relations between the concepts. These two forms of
knowledge representation have special appeal, because of their comprehensibility
and relative ease of use for implementing inference processes. For some applica-
tions, however, these forms may not be sufficient. For example, in system
PLANT/cd, a large part of the domain knowledge is encoded as a set of proce-
dures that form a simulation model of the growth of corn and the growth of black
cutworms (Boulanger, 1983).

Encoding expert knowledge into a system is a time-consuming, difficult pro-
cess that is prone to error. For this reason, knowledge acquisition is a “bottleneck”
in the development of expert systems. The process of knowledge acquisition can
be simplified by applying interactive programming aids for developing and debug-
ging rule bases. Such an aid is provided, for example, by the system TEIRESIAS,
developed by Davis (1978). A long term solution, however, is seen in the develop-
ment of machine learning. The importance of the field of machine learning to fur-
ther progress in the development of expert systems has been indicated by many
authors (e.g., Waltz et al., 1983).

In this paper we review basic strategies of learning and discuss them in the
context of automated knowledge acquisition. We specifically concentrate on
knowledge acquisition through inductive learning. The latter encompasses two
strategies: learning from examples, and learning by observation and discovery.



Learning Strategies and Automated Knowledge Acquisition 3

2. Fundamental Learning Strategies

The knowledge acquisition process can be greatly simplified if an expert system
can learn decision rules from examples of decisions made by human experts, or
from its own errors. This type of learning strategy is called learning from examples
(or concept acquisition). It has been studied widely in the last ten years or so, and
many important results have been obtained (e.g., Winston, 1970; Michalski, 1972;
Lenat, 1976; Mitchell, 1978; Buchanan et al. 1979; Pao and Hu, 1982, Hu and
Pao, 1982; Dietterich and Michalski, 1983; Langley, Bradshaw and Simon, 1983;
Michalski, 1983; Reinke, 1984; Quinlan, 1986; Winston, 1986).

Learning from examples is one of several fundamental learning strategies.
These strategies are identified by viewing a learning system as an inference system.
Namely, they are distinguished by the major type of inference the learning system
(human or machine) performs on the information provided, in order to derive the
desired kowledge. At one extreme, the system performs no inference, but directly
accepts and uses the information given to it (or built into it). At the other extreme,
the system performs a complex, search-based inductive inference that on occasion
leads to discovery of new knowledge. The following learning strategies are impor-
tant points along the above spectrum:

A. Direct Implanting of Knowledge

This strategy requires little or no inference on the part of the learner. It includes
rote learning, learning by imitation, learning by being constructed or by being pro-
grammed. This strategy is a widely used method for providing knowledge to a
computer system: we incorporate knowledge into its hardware, we program it, and
we build databases for all kinds of applications. Although building databases is
not typically considered as machine learning, it can be considered as a special case
of such a process. Some databases go beyond this learning strategy, if they can
perform some amount of inference, usually mathematical or statistical.

B. Learning from Instruction

In this form of leaming, also called learning by being told, a learner selects and
transforms the knowledge from the input language to an internally-usable repre-
sentation and integrates it with prior knowledge for effective retrieval and use.
This is the most widely used strategy of human learning: it includes learning from
teachers, books, publications, exhibits, displays, and similar sources. A machine
ve;sion of this strategy is a system capable of accepting instruction or advice and
applying the learned knowledge effectively to different tasks. Simple versions of
this strategy constitute the basic method for providing knowledge to expert sys-
tems today (e.g., Davis, 1978, Hass and Hendrix, 1983).
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C. Leamning by Deduction

A learning system that uses this strategy conducts deductive (truth-preserving)
inference on the knowledge it possesses and knowledge supplied to it. This is done
in order to restructure given knowledge into more useful or more effective forms,
or to determine important consequences of the knowledge. For example, given a
set of numbers: 1, 2, 6, 24, 120, 720, a learning system might represent them in an
equivalent, but shorter form as nl, n=1... 6. To do so, the system must, of course,
know the concept of a factorial.

A form of deductive learning, called analytical or explanation-based learning,
has recently become an active research area. In analytical learning, the system is
already equipped with a description of the target concept, but the description is
expressed at the level of abstraction too high to be directly usable (operational).
The system uses the domain knowledge to determine or explain why a given fact is
an example of the concept. This process takes a form of formal proof, and pro-
duces a new concept description that is operational. This typically means that the
concept is reexpressed in terms of properties used in the concept example.

As an illustration, consider a system that already knows that a cup is a stable,
open, liftable vessel. Suppose that it is now presented a specific instance of a cup,
described in terms such as an upward concavity, flat bottom, the presence of a
handle, color, size, and other features. By using the domain knowledge that links
the known high level concept description of the cup with the features used in the
instance, the system constructs an operational description stating that a cup is an
upward concave object with a flat bottom and a handle (Mitchell, Keller and
Kedar-Cabelli, 1986; DeJong and Mooney, 1986). :

The explanation-based learning is a useful technique, applicable to many
problems. In order to be used, however, the system has to be equipped with a suf-
ficient amount of relevant domain knowledge. This domain knowledge has to be
inputed to the system somehow - either by handcrafting it to the system, or by
analogical or inductive learning.

D. Learning by Analogy

This strategy involves transforming or extending existing knowledge (or skill)
applicable in one domain to perform a similar task in another domain. For exam-
ple, the learning-by-analogy strategy might be applied to learn water skiing when a
person already knows snow skiing. Learning by analogy requires a greater amount
of inference on the part of the learner than does learning from instruction. Rele-
vant knowledge or skill must be retrieved from the memory and appropriately
transformed to be applicable in a new situation or to a new problem. Examples of
systems capable of learning by analogy are described by Carbonell (1983), Win-
ston (1984) and Burstein (1984).
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E. Learning from Examples

Given a set of examples and (optionally) counter-examples of a concept, the
Jearner induces a general concept description. The amount of inference performed
by the learner is greater than in learning by deduction or analogy, because the
learner does not have prior knowledge of the concept to be learned, or knowledge
of a similar concept. Thus, it cannot create the desired knowledge by deduction, or
by analogy to what it already knows. The desired knowledge must be created
anew by drawing inductive inference from available examples or facts, i.e., by
inductive learning. Learning from examples, also called concept acquisition, can be
a one-step (batch) process or a multi-step (incremental) process. In the batch case,
all examples are presented at once. In incremental learning, examples (positive or
negative) are introduced one-by-one or in small groups; the learner forms one or
more tentative hypotheses consistent with the data at a given step, and subse-
quently refines the hypotheses after considering new examples. The latter strategy
is commonly used in human learning.

Adaptive control systems can be viewed as a special case of systems learning
from examples. A distincitve feature of them is that they improve their perfor-
mance by adjusting internal parametets rather then by structural changes.

Examples of a concept may be provided by a human teacher, by the environ-
ment in which the system operates. They can be generated by a deliberate effort of
a teacher, or by a random, heuristic or exhaustive search through a space of opera-
tors acting upon given situations. If an operator produces a desired result, then we
have an positive example, otherwise a negative example. The inductive learning
system then generalizes these examples to form general decision rules or control
heuristics.

When a system determines examples by a search or other active effort, we have
a form of learning called learning by experimentation. Such a method was used, for
example, in the LEX symbolic intergration learning system (Mitchell, Utgoff and
and Banerji, 1983).

Learning from examples is one form of inductive learning. Another form is
learning by observation and discovery.

F. Learning by Observation and Discovery

This “learning without teacher” strategy includes a variety of processes, such as
creating classifications of given observations, discovering relationships and laws
governing a given system, or forming a theory to explain a given phenomenon, or
The learner is not provided with a set of instances exemplifying a concept, nor is
.given access to an oracle (or teacher) who can classify internally-generated
lnstances as positive or negative. Also, rather than concentrating attention on a
single concept at a time, the learner may have to deal with observations that repre-
sent several concepts. This adds a new difficulty, namely solving the focus-of-
g.t}cntion problem, which involved deciding how to manage the available time and
Tesources in acquiring several concepts at once.

* Learning from observation can be subclassified according to the degree of
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interaction between the learner and the external environment. Two basic cases can

be distinguished:

() passive observation, where the learner builds a description of a given set of
observations. For example, such a description may be a taxonomy of the
observations (e.g., Michalski and Stepp, 1983), or an empirical law character-
izing the observations, as in the BACON system (Langley, Simon & Bradshaw,
1983). » :

(®) active experimentation, where the learner makes changes in the given environ-
ment and observes the results of those changes. The changes may be random
or dynamically controlled by some heuristic criteria. The choice of tasks and
directions in the experimentation can be controlled by criteria such as interest-
ingness (e.g., Lenat, 1976) or utility (e.g., Rendell, 1983 a).

The learning strategies, (a) to (f), were presented above in order of increasing
amounts of effort required from the learner and decreasing amounts effort
required from the teacher. This order thus reflects the increasing difficulty of con-
structing a learning system capable of given learning strategy.

In human learning, the above order of strategies often reflects also an increas-
ing confidence in the acquired knowledge. We all know that when we are given a
general rule (a directive, a theory) without any explanation and examples support-
ing it, our confidence in it will not be very high; it will directly depend on the trust
we have in the giver. Our confidence in a rule will be greater if we can try the rule
on examples, and still greater, if we develop the rule through our own experience.

On the other hand, it is much more difficult to determine correct or highly use-
ful knowledge by induction than to acquire it by instruction. This holds, of course,
only if the teacher’s knowledge is correct and/or highly useful, i.e., if we have a
“perfect” teacher. Because this assumption may not hold in reality, the learning by
instruction strategy is also associated with a risk of acquiring incorrect or low-
grade kowledge. This explains the emphasis educators place on providing students
with best teachers.

The higher the learning strategy, the more complex inference has to be per-
formed by the learner, and thus the more cost and effort is involved in deriving the
desired knowledge. It is much easier for the student to learn how to solve a prob-
lem by just being told the solution than by having to discover it on his/her own.
Learning by instruction requires, however, a teacher who knows the algorithm or
the concepts to be learned, and is capable of articulating them in the language of
the learner. But when such a teacher is not available, another strategy must be
used. For example, it is difficult to define the concept of a chair, or the shape of
the characters of the alphabet. Therefore, such concepts are taught by showing
examples rather than by instruction.

In many situations, the best way to explain a concept is to relate it to a similar
concept and describe the differences. This is learning by analogy. In order to learn
this way, however, the learner must know the referenced concepts. The more
knowledgeable a learner is, the more potentially effective learning by analogy is.
One can expect therefore that learning by analogy should tend to be in general
more effective with acults than with children.

There are lessons for machine knowledge acquisition to be drawn from the
above considerations. One is that if we know precisely how to solve a problem, we
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should tell the computer the solution directly (i.e., program it). Teaching by
instruction will be simpler and more productive than using a deductive or induc-
tive learning strategy. Such teaching will be facilitated by having an appropriate
knowledge representation language and debugging tools. As there are many areas
in which precise solutions are known and relevant concepts can be defined, this
strategy has wide applications. Therefore, the development of appropriate knowl-
edge representation languages and support tools (both general and specific to a
given domain) constitutes a major research area.

When a learner already possesses a relevant knowledge, but the knowledge is
not directly applicable to the given task, a deductive learning strategy may be
applied, e.g., explanation-based learning. This strategy will produce operational,
useful knowledge from an abstract, unusable knowledge. Equipping expert sys-
tems with such deductive inference capabilities, that is, with mechanisms for
deductively transforming knowledge bases from one form to another, logically
equivalent or more specific, is thus an important direction of research.

There are many application areas where precise concept definitions or algo-
rithms are unknown or difficult to construct even in an abstract, non-operational
form. Examples of such areas are technical, medical or agricultural diagnosis,
visual pattern recognition, speech recognition, machine design, robot ass€inbly,
and many others. Also, people often have difficulties in articulating their exper-
tise, even when they know well how to perform a given task or are able to recog-
nize a given concept without any difficulty. In such cases, applying an analogical
or inductive machine learning strategy seems quite desirable.

As mentioned earlier, a prerequisite for analogical learning in that the system -
possesses a knowledge base of concepts and solutions to problems that are similar
to the ones the system will be solving. Moreover, the system must be able to recog-
nize the similarity between any new problem and a problem for which it already
knows a solution, and must be able to modify the known solution appropriately.
These are difficult and complex operations. For that reason it is often easier for
the system to start from scratch than to modify a known solution. This phenome-
non is well known to programmers, who sometimes prefer to write a program
anew rather than to modify an existing program that performs a task similar to the
desired one. An interesting problem arising here is how to decide which way is
better in any given situation. The decision requires estimates of costs involved in
applying both methods in a particular situation.

Analogical inference can be viewed as a combination of inductive and deduc-
tive learning. The inductive part determines the existence of analogy between
problems (or concepts) and formulates appropriate knowledge transformations
that unify the base and the target problems or concepts. The deductive part per-
forms these transformations on the known solution or concepts to derive the de-
sired solution. An interesting variant of learning by analogy is derivational analogy
(Carbonell, 1986) in which the experience transfer involves recreating lines of reason-
ing and their justifications in solving problems similar to the one encountered.

The remainder of the paper will discuss in greater detail the inductive learning
strategy. Through this strategy a fundamentally new knowledge can be created,
and thus this strategy is of special importance to machine learning. We will start
by giving a more precise meaning to this type of learning.
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. 3. Inductive Learning: General Description

Inductive learning is a process of acquiring knowledge by drawing inductive infer-
ences from teacher- or environment-provided facts. This process involves opera-
tions of generalizing, transforming, correcting and refining knowledge representa-
tions in order to accomodate given facts and satisfy various additional criteria. An
important property of inductive learning is that knowledge acquired through it
cannot, in principle, except for special cases, be completely validated. This is so
because inductive inference produces hypotheses with a potentially infinite num-
ber of consequences, while only a finite number of confirming tests can be per-
formed. This is a well-known predicament of induction, already observed by
Hume in the 18th century.

Inductive inference is an underconstrained problem. Given any set of facts or
input premises, one can potentially generate an infinite number of hypotheses
explaining these facts. In order to perform inductive inference one thus needs
some additional knowledge (background knowledge) to constrain the possibilities
and guide the inference process toward one or a few most plausible hypotheses. In
general, this background knowledge includes the goals of learning, previously
learned concepts, criteria for deciding the preference among candidate hypothe-
ses, the methods for interpreting the observations, and the knowledge representa-
tion language with corresponding inference rules for manipulating representations
in this language, as well as the knowledge of the domain of inquiry.

There are two aspects of inductive inference: the generation of plausible
hypotheses, and their confirmation. Only the first is of significance to machine
inductive learning. The second one (impossible in principle except for special
cases) is considered of lesser importance, because it is assumed that the generated
hypotheses will be judged by human experts and tested by known methods of
deductive inference and statistical confirmation.

Bearing in mind these considerations, let us formulate a general paradigm of
inductive inference:

Given:

(a) premise statements (facts), F, that represent initial knowledge about some
objects, situations or processes,

(b) a tentative inductive asertion (which may be null),

(c) background knowledge (BK) that defines the goal of inference, the preference
criterion for ranking plausible hypotheses, assumptions and constraints
imposed on the premise statements and the candidate inductive assertions,
and any other relevant general or domain specific knowledge.

Find:
an inductive assertion (hypothesis), H, that, together with background knowl-
edge BK, tautologically implies the premise statements.

An hypothesis together with background knowledge tautologically implies a set of
facts, if the facts are a logical consequence of the hypothesis and background
knowledge, that is the implication H & BK = F holds under all interpretations.
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Since for a given BK an infinite number of assertions H can satisfy such an impli-
cation, a preference criterion (also called bias) is used to reduce the choice to one
hypothesis or a few most preferable ones. Such a criterion may require, for
instance, that the hypothesis be the shortest or the most economical description of
all given facts, among all candidate descriptions.

Inductive learning programs already play an important role in the acquisition
of knowledge for some expert systems. In some relatively simple domains they can
determine decision rules by induction from examples of decisions made by
experts. This form of knowledge acquisition relieves the expert from the tedious
task of defining rules himself. Moreover, it requires the expert to do only what he
can do best: make decisions. Experts are typically not trained to analyze and
explain to others their decision making processes, expecially if they must express
them in a formal way; therefore, such tasks are usually difficult for them to per-
form. Once rules are acquired from examples, expert can usually do a good job in
evaluating them.

A less direct yet important application of inductive learning is to the refine-
ment of knowledge bases initially developed by human experts. Here, inductive
learning programs together with other supporting software can be used to detect
and rectify inconsistencies, to remove undesirable redundancies, to cover gaps or
to re-express the given rules in a simpler way (e.g., Reinke, 1984). Also, starting
with initial human expert-based rules, an inductive learning program can improve
these rules through feedback representing an evaluation of expert system’s deci-
sions.

Another use for inductive learning is to generate meaningful classifications of
given sets of data, or to organize the sets of data (e.g., collections of rules) into a
structure of conceptually simple components (Michalski and Stepp, 1983). We will
illustrate this application by an example in section 5.

Most of the above applications have already been tried successfully on some
relatively simple problems (e. g., Michalski, 1980; Quinlan, 1983). Current research
tries to extend current machine learning techniques in a number of directions,
such as: empolying richer knowledge representation languages (e.g., Michalski,
1983), exploring constraints of a domain to control generalization (e.g., Mitchell
1986, Mooney and Bennett, 1986), constructing causal explanations and models
(e-8., Doyle, 1986), automating the process of generating new attributes and opera-
tors by utilizing the domain knowledge (i.¢., the constructive induction, or the new
term problem; e.g., Michalski, 1983), coping with the uncertainty and noise in the
data (e.g., Quinlan, 1986; Michalski et al, 1986), integrating different learning
strategies (e.g., Lebowitz, 1986), constructing conceptual classifications of struc-
tured objects (e. ., Stepp and Michalski, 1986; Norhausen, 1986), infering compo-
nents of structures (e.g., Rose and Langley, 1986).

As mentioned above, we can distinguish between two types of inductive learn-
ing: learning from examples and learning by observation and discovery. Let us
discuss these two strategies of learning in greater detail.
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.4. Learning from Examples

Within the category of learning from examples we can distinguish two major
types: instance-to-class generalization and part-to-whole generalization. In the
instance-to-class generalization, given are independent instances (examples) of
some class of objects, and the task is to induce a general description of the class.
The instances can be representations of physical objects, sounds, images, actions,
processes, abstract concepts, etc. Most research on learning from examples is con-
cerned with this type of problem.-For example, such research includes learning
descriptions of block structures (e.g., Winston, 1977) or automatically inducing
diagnostic rules for soybean diseases (Michalski and Chilausky, 1980). For a
review of methods of such generalization see (Dietterich and Michalski, 1983).

In part-to-whole generalization, given are only selected parts of an object (a
scene, a situation, a procress) and the task is to hypothesize a description of the
whole object. A simple example of this type of problem is to determine a rule
characterizing a sequence of objects (or a process) from seeing only a part of the
sequence (or process). A specific case of such a problem occurs in the card game
Eleusis, where players are supposed to discover a “secret” rule governing a
sequence of cards. A computer program capable of discovering such rules has
been described by Dietterich and Michalski (1983). A more advanced version of
the program has been described by Michalski, Ko and Chen (1985).

The problem of discovering Eleusis rules is an instance of a more general
problem of qualitative prediction, that is concerned with predicting behavior of any
discrete processes in a qualitative way (Michalski, Ko and Chen, 1987).

In instance-do-class generalization, facts can be viewed as implications of the
form

Event ::> Class

where event, is a description of some object or situation, and class represents a
decision class or concept to be assigned to this object or situation. (We denote the
implication between a fact or pattern, and the class associated with it by the sym-

bol “::>", in order to distinguish it from the general implication symbol “=".
The result of learning is a rule:

Pattern ::> Class

where Pattern is an expression in some formal language describing events that
belong to the given Class, and no events that do not belong to this class. When an
unknown event satisfies the Pattern then it is assigned to Class.

The pattern description can be expressed in a many forms, e.g., 2 propositional
or predicate logic expression, a decision tree, a formal grammar, a sematic net-
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work, a frame, a script, a computer program. The complexity of the process of
inducing a pattern description from examples depends on two factors: 1) the com-
plexity of the description language used (e.g., the number and the type of opera-
tors the system understands), and 2) the intricacy of the pattern description itself.
If the pattern description involves no intermediate concepts then the above rule
describes one-level class descriptions. In multi-level class descriptions there are
intermediate rules between the lowest level concepts involving only measurable
properties of objects, and a top level description involving higher level concepts
directly related to the given class or concept.

Another important classification of learning techniques is based on the degree
to which descriptors (attributes, relations, predicates, operators) used in the obser-
vational statements are relevant to the decision classes. The degree measures the
relationship between initially given descriptors and the descriptors used in the
final class description. At the lowest level, the descriptors used in the observa-
tional statements are the same as the ones used in the class descriptions. That
means that the given descriptors are directly relevant to class descriptions. Such a
case is assumed in many methods. At the next level, the initial descriptors contain
the relevant ones, but not all of them are relevant. In this case, the system must
have the ability to determine the relevant descriptors among many given descrip-
tors. At the highest level, initial descriptors may be completely different from the
ones used in the final concept description. We illustrate this case in Sect. 5, where
given descriptors are simple physical properties of some objects (in this case
trains), and the final descriptors are not directly observable, abstract concepts
(such as “trains with toxic or non-toxic loads”).

Let us illustrate learning from examples (concept acquisition), and differentiate it
from learning from observation, by an example problem known as “East-bound
and West-bound trains” [Michalski & Larson, 1977] shown in Fig.1. In the original

a Lo @ HEHgog - Ty
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Fig.1. The Unclassified TRAINS Problem
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problem, given are two collections of trains, those that are “East-bound” (A to E)
and those that are “West-bound” (F to J). The task is to determine a simple
descriptive rule distinguishing between the East-bound and West-bound trains
using examples of the trains.

These trains are highly structured objects. Each train consists of a sequence of
cars of different shapes and sizes. The trains have different number of cars, and
cars have different lengths. Thus, an adequate description of trains involves both
qualitative and quantitative descriptors, e.g., numerical attributes such as number
of trains, the length of a car, or the number of loads in a car, categorical attributes
such as shape of a car, and relations such as contains, in-front-of. To illustrate one
possible solution, let us present the discriminant descriptions of East-bound and
West-bound trains found by the program INDUCE/2 [Hoff, Michalski, Stepp,
1983). These discriminant descriptions, i.e., rules for distinguishing between the
two classes of trains are expressed in the Annotated Predicate Calculus (APC).
APC is a typed predicate calculus with additional operators (Michalski, 1983). The
descriptions are:

East-bound (train) <:: 3 (car) [contains(train, car)] & [length(car) =short]
[shape(car) = closed]
(“A train is East-bound if it contains a short, closed car.”)
West-bound (train) <:: [num-cars(train)=2] V
3 (car) [contains(train, car)] [shape(car)=jagged top]
(“A train is West-bound if there are two cars in the train or if there is a car with a
jagged top.”)

These solutions are not easy to find without an aid of a computer program, but
once found, they seem to be obvious.

An early practical application of the learning from examples strategy to build-
ing the knowledge base of an expert system is described in the paper by Michalski
and Chilausky (1976). In the follow-up paper (Michalski and Chilausky, 1980), the
learning from examples strategy was compared with the strategy of learning by
being told in the context of building the afore-mentioned expert system
PLANT/ds. This experiment resulted in inductively derived diagnostic rules (i.e.,
those obtained by machine learning from examples) that outperformed the rules
determined by interviewing an expert (i.e., those acquired by the learning from
instruction strategy). Reinke (1984) described a system for testing the consistency
and completeness of a rule base using techniques of inductive inference. A recent
example of an application of learning from examples to diagnostic problems in
medicine is described in [Michalski et al, 1986].
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5. Learning from Observation

The learning form observation strategy is applied when a collection of facts
(observations) is given and one wants to develop a general description (a theory)
explaining the facts. It is assumed that there is no teacher who can explain the
facts or identify important or relevant concepts applicable to them.

The first step in developing a theory about a collection of facts is usually the
creation of a classification (taxonomy). Such a classification can be considered a
general description of these facts. Creating simple yet useful classifications is a
challenging intellectual process of great importance.

So far, the problem of automatically creating classifications has been studied
mainly in the areas of numerical taxonomy and cluster analysis. In these areas, the
basic principle for creating a classification is to form classes of objects using some
mathematical measure of similarity between the objects. This measure is defined
over a finite, an a priori defined set of attributes characterizing the objects. Objects
are put to the same class if they have a high degree of similarity, and to different
classes if they have a low degree of similarity.

One difficulty with this approach is that classes (concepts) formed solely on
the basis of a predefined measure of similarity can be difficult to interpret con-
ceptually. In fact, the interpretation of obtained classifications is assumed in this
approach to be the task of a data analyst. This approach does not take into consid-
eration possible varying goals for classification, nor does it use general concepts or
linguistic constructs that characterize a collection of observations as a whole (i.e.,
concepts that capture Gestalt properties). For example, if a collection of points
forms a “T-joint”, then in order to describe it this way, the system must contain in
its background knowledge a method for recognizing such a concept. Without it,
even if the computation of similarities (here, reciprocal of distances) puts all the
points forming a “T-joint” into the same class, the system still would not “know”
that the collection can be described this way.

An alternative approach to creating classifications is based on conceptual clus-
tering (Michalski, 1980; Michalski and Stepp, 1983). In this approach, observa-
tions are partitioned into classes that represent some conceptual entities. Instead
of similarity, the approach uses the measure of conceptual cohesiveness between
objects. While the similarity of objects A and B is a function only of properties of
these objects, i.e., is a two-argument function f(A, B), the conceptual cohesiveness
is a function of the properties of objects A and B, of the surrounding objects, E
(the environment), and of a set of concepts, C, available in the given description
language for describing these two objects together. Thus, the conceptual cohesive-
ness is a four-argument function f(A, B, E,Q).

In conjunctive conceptual clustering objects are assembled into classes that rep-
resent conjunctive concepts closely circumscribing or “fitting” the objects in the
class, and satisfying some additional criteria measuring clustering quality
(Michalski and Stepp, 1983). These criteria take into consideration the relation of
the classes to a set of possible goals of classification, the complexity of generated
class descriptions, their “disjointness”, and other factors (Michalski and Stepp,
1983). The conjunctive concepts are descriptions in the form of conjunctions of
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statements specifying properties (attribute values) of objects representing the given
concept, the relations among the object parts and the properties of the parts.

For illustration, let us consider an example (borrowed from Stepp and
Michalski, 1986). Suppose that trains in Fig.1 are not assigned to any classes, and
the task is to create a meaningful classification(s) of these trains. What criteria
would people use to create such a classification?

To answer this question, experiments were performed with 31 subjects, who
where asked to solve this problem (Medin, Wattenmaker and Michalski, 1986).
The subjects devised a total of 93 classifications of the trains. The most popular
criterion for classification (used in 17 classifications) was simply the number of
cars in the train. Thus, trains were classified into 3 groups: 2-car, 3-car and 4-car
trains respectively. The second most popular classification (7 cases) was based on
the color of engine wheels. Trains were classified to two groups: a group in which
all engine wheels are white, and the group in which engine wheels have varied
colors.

These results suggest that even in the absence of clear goals for a classification,
people have tendency to use similar criteria for creating a classification. This simi-
larity pattern was not very strong in the experiment, however, as indicated by a
large number (40 out of 93) different classifications proposed. The same “Unclas-
sified Trains™ problem was given to the recently developed program CLUSTER/S
(Stepp, 1984). The program generated several classifications. Two of them are
shown in Fig.2. The first classification A, uses as classification criterion the num-
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Fig.2. Two classifications of TRAINS created by program CLUSTER/S
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ber of different car shapes in the train. In the second classification B, the criterion
used is whether the wheels on all cars in a train are the same or not. Although
these classifications are different from the most frequent classifications made by
people, they seem to be reasonable, and even appealing.

It should be mentioned that the initial descriptions of the trains (the observa-
tional statements) did not include statements about the number of different car
shapes or whether the car wheels have the same color. How did the program gen-
erate such statements and use them in creating classifications?

The background knowledge of the program contained inference rules that,
when applied to the original descriptions of the trains, can generate new possibly
relevant descriptions (attributes and relations) characterizing given objects (here,
trains) or their parts. Using various heuristics, the program selectively generates
new descriptors and attempts to apply them in the process of determining candi-
date classifications. The program evaluates these classification according to the
classification quality criterion LEF (lexicographic evaluation functional). The LEF
criterion takes into consideration various properties of a classification, such as the
degree to which it satisfies a set of goals (defined in the program’s background
knowledge), the degree of fir between 2 classification and the observed events
(objects), and the importance of descriptors occurring in the class descriptions
(see, Michalski, 1980; Medin, 1982; Michalski and Stepp, 1983 a,b; Stepp and
Michalski, 1986).

To illustrate the concept of importance of a descriptor, let us assume that back-
ground knowledge of the system includes a rule which defines cars in the train
that carry toxic chemicals. Suppose that such a rule is:

[contains(train, car)] & [car-shape(car) = opentop)] & [cargo-shape(car) = circle]
[items-carried(car) =1] = [toxic-chemicals(train)]

In this rule, the equivalence operator is used to state that the negation of the con-
dition part is sufficient to assert the negative of the consequence. After applying
this rule to each train description, the right-hand side of the rule will be appended
to the description (as an additional predicate) to indicate the presence or absence
of toxic-chemicals on the given train. This predicate will in turn trigger other infer-
ence rules that are part of the program’s background knowledge:

- toxic chemicals are dangerous,

- dangerous things are important, .

- important things should have high selection value (high preference score).

As a result of this inference the program will propose a candidate classification
of trains into those containing toxic chemicals and those not containing such
chemicals.

The descriptor generation process outlined above constructs new attributes
from combinations of existing attributes. This process is guided by various heuris-
tics. For example, two or more numerical attributes can be combined into a single
attribute using arithmetic operators. To suggest appropriate arithmetic operators, a
trend analysis can be used, as in BACON 4 (Langley, Bradshaw, Simon, 1983).
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Predicates or whole rules can be combined by logical operators to form new
attributes. For example, the rule

[cold-blooded(a1)] & [offspring birth(a1)=egg] > [animal-type(al)= reptile]

yields a new attribute “animal-type™ with a specified value “reptile”. Using this
rule and similar ones, one might classify some animals into groups of reptiles,
mammals, and birds (even though the type of each animal is not stated in the orig-
inal data about animals). '

Such classification construction problems occur when one wants to organize
and classify observations that require structural descriptions. Problems of this type
include classifying physical or chemical structures, analyzing genetic sequences,
building taxonomies of plants or animals, structuring visual scenes, and splitting a
sequence of temporal events into episodes with simple meanings. In an expert sys-
tem, a classification construction program could be used, for example, to structure
a large knowledge base of decision rules, or to structure the database of facts
about a given problem.

6. Summary

Fundamental learning strategies have been discussed including direct implantation
of knowledge, learning by instruction, learning by deductive inference, learning by
analogy, learning from examples and, finally, learning by observation and discovery.
The order of these strategies reflects the increasing complexity of the inference
performed on the information given to a learning system in order to derive the
desired knowledge.

Learning from examples and learning from observation are two basic forms of
inductive learning. The paper discussed and illustrated the importance of using
background knowledge in applying these learning strategies. The capability to
incorporate background knowledge in inductive learning is an important prerequi-
site for-the successful application of this form of learning.
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