Machine Learning from Structured Objects

Machine Learning from Structured Objects

ROBERT E. STEPP (STEPP@QUICSL.CSL.UIUC.EDU)

Coordinated Science Laboratory, University of Illinois at Urbana-Champuign,
Urbana, IL 61801 U.S.A.

Abstract

Machine learning techniques applied to structured objects frequently use a predicate calculus
representation o model the world. Unless careful attention is given to the semantics of this
model, the results of inductive inference over descriptions of structured objects have
unanticipated interpretations. In this paper, a motivation is given for the importance of careful
attention to the semantics that underly descriptions of structured examples and categories of
such examples. Particular attention is given to the use of must not clauses and the ability to
determine relevant attributes. An example from INDUCLE/NE is used to illustrate must not
clauses with the-INDUCE algorithm. An example from CLUSTER/CA is used to illustrate the
use of knowledge about relevant attributes in learning.

1. Introduction

The domain of structured entities is naturally of interest to beings that
live in a 3-D (rather than a 1-D) world. Even though the early machine
learning systems used structured objects (e.g., Winston, 1975), relatively few
subsequent projects have worked with structured examples. A problem is the
complexity of dealing with structured representations. A natural
representation scheme is first order logic, but there are frequently difficulties
with handling quantification in a way that provides a good model of the real
world semantics of structured objects and that holds up under our notions of
closed world assumptions.

The INDUCE system (Larson, 1977; Hoff, Michalski, & Stepp, 1983) is
able to learn disjunctive rules describing classes of structured objects using
variable-valued logic (Michalski, 1983). The CLUSTER/CA system
(Mogensen, 1987) is able to discover concepts describing structured objects
through knowledge based conceptual clustering. Both approaches represent
departures from Winston’s learning system that formulates conjunctive

concepts by adding links to a semantic network representation (Winston,
1975).

1.1. A problem of representation

Structured objects are described by semantic networks or equivalent first
order logic statements involving attribute relationships for

(1) attributes ol the entire structure (c.g., total mass),
(2) attributes of some identifyable part (e.g., color of partl), or
(3) attributes of interrelationships between parts (e.g., partl is ontop of
part2).
Here the use of predicates, semantic nets, and Michalski sclectors are
considered cquivalent.

Consider structured object x in Fig. 1. One would say that it has three
parts, two of which arc upright supports and one of which is a horizontal
triangular picce that is on top of both supports. 1t is possible that physical
dimensions ol parts, their mass, their composition, their surface exture, their
color, ete. could be specified as well, An overlooked subliminal issuc is "how 10
specil'y the abstract idea of a part?”

Let us assume that any real object can have multiple alternative structural
deseriptions, with dillerent ways to decompose the entity into parts. For
example, it is a matter of problem requirements whether a screwdriver s
viewed as.one single part or decomposed into handle and blade. Given a
particular view of the decomposition of the object into parts, those parts can be
represented cither as constants or as variables. For example, the deseription of
object x in Fig. 1 could be

contains(x,p100,p110,p133) . upright(p100) . upright(p110)
horizontal(p133) . ontop(p133,p100) « ontop(p133,p110)

in which pl100, p110, and p133 represent unique entities within the entire
universe. People generally reserve this type of representation for those cases
where an arbitrary concept of identification is to be used. For example, as in a
recognition rule such as

is(body,body542) — id(body,R2D2).

A droid may look like R2D2, but it is not R2D2 unless it is precisely that
particular robol. Such a concept would cover at most one object at a time.

pl33 [

plo0 pl10

Fig. 1. Some structured objects.

Machine Learning from Structured Objects

Rules of this type do not generalize.

In cases for which generalization based learning can be applied, onc may
assume that parts with exactly the same attributes are equivalent and need not
be distinguished. Structured objects described using such parts would have
descriptions such as this description for x:

3 pl,p2,p3 contains(x,P1 P2,P3) . upright(P1) . upright(P2)
horizontal(P3) . ontop(P3,P2) . ontop(P3,P1)

P1, P2, P3 arc existentially quantified variables that take on only mutually
distinct values. Note that Pl and P2 are distinct but completely equivalent
parts (equivalent here except for left-right role reversal). This method of
representing structured objects includes a buricd gencralization step for
changing constants into variables.

1.2. A problem of semantics

It is interesting to look at the semantics behind the representation.
Arbitrary symbols (like p100) used to identify parts are themselves without
any semantic interpretation. The semantics are captured by the other forms:
the quantification, predicates over part symbols, and relations on values
returned by functions on part symbols. Thus, we expect concepts for
structured objects to have scmantic interpretation not by referring to just
certain part constants, but by revealing the patiern of attributes that any
cquivalent part must fulfill. The concept of an arch as "something that
contains p100, p110, and p133" is not interesting. The concept of “something
that contains two support-like parts with a lentil-like part on top" is more
useful, with "support-like" and "lentil-like" being lower level concepts of part
categories.

The reason for pointing out the obvious semantic utility for variables is
that this approach immediately leads to problems. Consider again example x of
Fig. 1. described using existentially quantified variables as above. The
description of the arch is a maximally specilic concept that describes this one
cxample in the representation space of attributes sufficient for expressing the
relevant characteristics of this kind of arch. Since the concept used to describe
this one example uses cxistential quantification, it actually describes infinitely
many variations ol structures that have the requisite parts.

Supposc a tiny "arch” is placed atop a huge building. Is this new object an
arch? The problem is that it matches with the "maximally specific" concept of
the arch example from Fig. 1 but we would hardly call the building an arch
just because it has nearly irrelevant arch-like parts. Somehow an arch must
not have parts that are forbidden or that make the canonical arch-like parts
irrclevant. For an arch, having a huge building attached makes the whole
cxample not an arch. Having a speck of dust attached however does not

355

356

Stepp

matter.

Concepts learned from structured objects can have two very different uses.
Given a sct of structured examples, one can build a concept that makes a
statement about what the example is (e.g., it is an arch with all the appropriate
deductive entailments that stem from this finding), or one can build a concept
that makes a statement about what the example contains (c.g., il contains one
or more instances of "arch" with all appropriate deductive entailments). This
distinction is often overlooked. For example the INDUCE program works in a
way permitting it to infer statements about what examples contain, but the
interpretation usually given to the rules it produced is a statement about what
the example is.

Structured training and testing examples are always collections of parts
extracted from some larger whole. Obviously any real arch rests on the ground
or is in some other context. Having a structured object is therefore the result
of some object detachment process that purposefully breaks the attachments
between the borders of the structured object and its environment. This
detached object is what we mean by the word "object." It is described under a
given representation scheme and used either to learn structural descriptions, or
1o test them. Rules that deduce what the object is work with the whole of the
detached structure. Rules that deduce what the object contains work with just
sclected parts.

1.3. IS versus CONTAINS

For "contains” semantics, the normal existential quantification approach is
appropriate: any example that has the characteristic parts is covered by the
description, rcgardless of what other parts there are. Using "is" semantics
things need to work differently: any example that has the characteristic parts
and only allowable auxiliary parts should be covered by the description. The
auxiliary parts can be checked in at least four different ways:

(1) allowable auxiliary part atiributes can be learned from inductive
inference—any allowable auxiliary part must be covered by some
maximally specific generalization from positive events. For example, an
arch is two supports with a lentil on top and an optional vine or an
optional spider or an optional street sign, etc. As more positive events are
seen, the concepts used to describe optional parts would become more and
more general.

(2) allowable parts must be plausible according to some problem specific
theory—some process of plausible inference must decide that the auxiliary
parts are reasonable extensions of the object. For example, any optional
part that is less than 1% the size of the arch or any part that could be used
to build an arch is permitted as a part of an arch.

(3) a part that is irrelevant to the intended use of the concept is allowable.
For example, the attachment of ornaments is irrelevant to an arch

Machine Learning from Structured Objects

considered for its load-bearing design.

(4) there must not be any auxiliary part that is forbidden. For example, an
arch must not have a bridge across a river attached to it (the object then
would be considered a bridge with an arch part).

Systems that try to generate class identification rules (is rules) but which
actually build superclass membership rules (contains rules) suffer from a
common problem: examples from different classes can be glued together to
build a new example that is guaranteed to be recognized by rules for both
classes. Thus, rules produced by such systems are inherently non-disjoint and
always intersect at some virtual event. To properly apply semantics for
learning is rules, learning algorithms need to be able to infer must not
conditions and goal-oriented atiribute and part relevancy. Some recent work
on thesc two topics is presented below.

2. Inferring Concepts Based on MUST and MUST NOT

Most people would think that an arch with a vine growing on it would
still be an arch unless it were given as a negative example. If given such a
negative example, Winston’s algorithm would identify a MUST NOT condition
(an arch must not have a vine growing on it) while the INDUCE algorithm
would simply fail (it would report inconsistent data) being unable to specialize
the description of the arch in any way to exclude the arch with a vine on it. In
this situation, the INDUCE program nceds a way to use attributes from
negative events in building concepts.

Winston’s system for learning the concept of "arch”" accepts a sequence of
positive and negative structured cxamples in semantic net form, marking
certain links in the semantic nct as MUST or MUST NOT links. Positive
events trigger the gencralization of the concept within the constraints ol the
MUST and MUST NOT links. The effcctiveness of the learning algorithm is
greatly influenced by the order in which negative and positive events are
presented: this system practices a form of incremental rather than batch
learning.

Consider the examples found in Fig. 1 and the learning that takes place
[rom observing the first object. It would scem that learning first from a
negative example (such as z) would lead to disjunctive concepts such as “an
arch MUST NOT have supports that touch" or "an arch MUST NOT have a
leaning lentil", and that learning first from a positive example (such as x)
would lead to the simpler concept "an arch can be a horizontal lentil on top of
two supports." Of course there is a fallacy here. Just as one never knows in
which of the various ways example z truly fails to be an arch, one is equally
uninformed about in which ways example X truly is an arch. The whole point
of learning about structured examples is trying to find what is relevant and
what is irrelevant, while generalizing the concept for the sake of conciseness.

357

358

Stepp

Consider a learning algorithm that only finds "MUST" constraints. Such an
algorithm operating on positive example x and ncgative example y could note
that example y fails to have the supports that are apart and therefore they
MUST be apart. Some part of the structured representation for x would have
to include the statement apart(support-1,support-2). Were this fact o be
omitted from the description for x but with y having the cxtra fact
touching! support-1,support-2), the problem would be insurmountable. There is
nothing x MUST have that y doesn’t have and thus therc is nothing to be
learned. This is the approach taken by previous versions of the INDUCE
algorithm. For some problems, MUST constraints alone appear to be suflicient,
and the success of INDUCE would seem to support this view.

The problem outlined in the preceding paragraph is remedied by
introducing MUST NOT constraints in the concept language, or through the
application of closed world assumptions that could, for example, support the
assumption apart for example x becausce its description does not specifically
state that the supports are touching. Note that the choice ol which closed
world assumption to make depends on what negative example is being
considered: secing example y for which zouching holds, and sceing no
information about touching in x, onc then concludes the opposite for x. This is
not very appealing: the semantics for determining whether a concept covers an
example shift from showing that the example possesses the necessary attribute
relations to showing that it possesses no contradictory relations, i.c., a thing is
an arch unless it has some kind of part that arches cannot have.

The more usclul approach is the one Winston took: to have both MUST
and MUST NOT conditions for a concept. Using the representation vehicle of
predicate logic, the MUST conditions map to existentially quantified statements
and the MUST NOT conditions map to ncgated existentially quantified
statements. :

Fig. 2 shows somc blocks world examples given to INDUCE/NE

-

a b c d e {
C+ C+ C- C- C+ C-

Fig. 2. Blocks-world examples for INDUCE/NE.

Machine Learning from Structured Objects

(Whitehall, 1987). After being shown examples a to d belonging to classes C+
or C- as indicated in Fig. 3, the program produced the descriptions

3 P1 [shape(P1)=curved] — C-
3P1,-P2 [shape(P1)=polygon] [shape(P2)=curved] — C+

where -P2 denotes a negative existentially quantified variable that acts as a
censor if bound. That is, the expression is satisfied if P1 can be bound so that
all selectors involving only P1 are satisfied and P2 either cannot be bound or all
selectors involving P2 fail to be satisfied. Thus the last rule reads: "infer C+ if
there exists a polygon shaped part and no curved part." The rule for C- that
was learned from the first four examples also covers example €. When example
e is presented as an example in class C+, the system realizes that e is
incorrectly covered and specializes the must not part of the description for C+
and the must part in the description for C-. The result produced by
INDUCE/NE is

~ 3P1,P2 [shape(P1)=curved]lontop(P1,P2)] = C-
3 P1,-P2 [shape(P1)=polygon][shape(P2)=curved]lontop(P1,P2)] — C+

Finally, after processing cxample f the rules become

3 P1,-P2 [shape(P1)=curved[ontop(P1,P2)][shape(P2)=square,diamond] — C-
3 P1 [shape(P1)=square,diamond] — C+

The current version of INDUCE/NE does not do plausible inference and cannot
gencrate clauses that mean "no other parts permitted." These features are the
target of future rescarch. Without them, maximally general must not parts of
rules are often the same as the must part of other rules. With ncgative
cxistential quantification INDUCE/NE is ablc to handle incremental and batch
learning for example sets that regular INDUCE cannot handle. The extended
algorithm of INDUCE/NE is important for most structured object learning
situations.

3. - Inferring Attribute Relevancy

Another problem with learning algorithms for structured objects is not
knowing whether to generalize over the structure, over values of attributes of
subparts, or some combination of the two. The size of the space of potential
descriptions is immense. This can be managed by heuristic preferences
provided by background knowledge and/or structural simplification including
substructure decomposition into derived structural macros.

The task of clustering structured objects is one for which the relevance of
attributes has a great effect. An algorithm for performing conceptual
clustering in a knowledge directed way using background knowledge consisting

359

360

Stepp

of deductive inference rules and a goal dependency network for determining
estimated attribute relevancy has been described by Stepp & Michalski (1986).
This algorithm has been implemented in a program CLUSTER/CA developed
by Mogensen (1987) that is derived from approaches and algorithms used by
INDUCE (Larson, 1977; Hofl, Michalski & Stepp, 1983), CLUSTER/S (Stepp,
1984), and an algorithm described by Stepp & Michalski (1986). This rescarch
provides additional steps towards knowledge guided inference and the
formulation of concepts that are generated based on the a goal oriented
determination of which atiributes and parts are relevant and which are
irrelevant.

The CLUSTER/CA algorithm performs conceptual clustering given a set of
structured examples, a goal for clustering (problem specific or general), and
background knowledge for deriving new attributes and inferring attribute
relevancy from the goal. The relevancy of attributes is determined by the use
of a Goal Dependency Network that links goals to subgoals and subgoals 1o
rclevant attributes. This knowledge is used to determine which of the given
attributes are relevant and to trigger the application of additional knowledge to
derive attribute values when they can be inferred from the given data.

As an illustration of this algorithm, consider the set of figures shown in
Fig. 3. Let there be a goal dependency network that contains a high level goal
of "do simple shape recognition” that indicates that the more relevant attributes
include number of parts, shapes, sizes, and textures; the shape, size, and texture
of object parts; and particular focus on the top and bottom parts.

The system is provided with background knowledge for inferring part
counts and the count of parts with specific attributes, such as the number of
curved parts; and also whether a shape is polygon or curved. The objects in
Fig. 3 are described by low-level attributes such as size, shape, texture, mass,
cte. of cach part; and ontop, inside, and next-to relations. The CLUSTER/CA
system takes the goal "do simple shape recognition” and infers subgoals (none
are needed for this simplified example) and then relevancy scores for attributes
found in the goal dependency network. Several clusterings based on conceptual
descriptions built from combinations of attributes with high relevancy scores
arc considered and the best n (a parameter) clusterings are reported. For the
demonstration problem presented in Fig. 3, there are four alternative results, as
shown in the figure.

A study of this approach (Mogensen, 1987) shows that CLUSTER/CA is
much less computationally expensive .than the non-goal-directed method used
in CLUSTER/S. The penalty of CLUSTER/CA is the need to acquire and
maintain a possibly large amount of background knowledge. Relevancy of
attributes and application heuristics for inference rules used to derive new
attributes constitute problem meta-knowledge. Such meta-knowledge needs to
be incorporated into learning algorithms that are to handle structured objects in
meaningful ways. When category identification rules (is rules) are generated,

Machine Learning from Structured Objects

5] &6 &

' e, E % a

Best clusterings produced by CA:

Number of objects is “Two" | “Three" | *Four"
Number of circles is "Zero® | "One” | "Two"]

Shape of the top object is *Polygon” | 'Curved'

Number of different shapes is “Two" | “Three

Fig. 3. CLUSTER/CA applicd to structured objects.

meta-knowledge about atiribute and part relevancy needs to be bound to the
rule for use in deciding i auxiliary parts of object instances are allowable
under the learned concept. CLUSTER/CA is but a beginning in following this
lead.

4. Conclusion

When moving from learning about zeroth order phenomenon ("flat”
examples that can be represented in propositional logic) to learning about lirst
~order phenomenon (structured examples that can be represented in first order
logic) important semantic issues arisc. The higher order brings a choice of two

361

362

Stepp

kinds of rules over structured examples, identifying classes of structured
entities (what the object is) versus identifying superclasses of parts (what the
object corzains). Rules about what objects contain can be expressed by
existentially quantified statements such as those produced by INDUCE. Rules
about what an object is require a different semantic interpretation using exact
quantification in which each part of a candidate object is accounted for, by
inclusion, by non-exclusion, or by plausible inference.

The INDUCE algorithm is a robust mechanism for conducting inductive
inference over structured examples. The system INDUCE/NE demonstrates
one dimension of added capability for providing a mechanism to handle
inductive inferences over negatively existentially quantified statements that
provide must not semantics. The system CLUSTER/CA demonstrates another
capability needed to handle structured ecxamples by guiding the lcarning
through the use of strong preferences based on constructed attributes and
inferred attribute relevancy. Portions of a more complete solution that remain
to be developed include a rule mechanism for plausible inference of part
relevancy and a way 1o bind meta-knowledge from the learning into rules for
usc in-checking for allowable auxiliary object parts.

Acknowledgements

The author wishes to thank Bradley Whitehall and Robert Reinke for their
assistance and suggestions concerning the ideas in this paper. The program
INDUCE/NE was developed by Bradley Whitehall. The program
CLUSTER/CA was developed by Brian Mogensen. Partial support for this
rescarch was provided by the National Scicnce Foundation under grants NFS
IST 85-11170 and NFS DCR 84-06801, and the Department of Defense
Advanced Rescarch Projects Agency under grant NOOO14-85-K-0078.

References

Dietterich, T.G., & Michalski, R.S. (1981). Inductive learning of structural
descriptions: Evaluation criteria and comparative review of selected
methods. Artificial Intelligence, 16, July, (pp. 257-294).

Hoff, W., Michalski, R.S., & Stepp, R.E. (1983). INDUCE 2: A program for
learning structural descriptions from examples. (Technical Report No.
UIUCDCS-F-83-904). Urbana, IL: University of Illinois, Department of
Computer Science.

Machine Learning from Structured Objects

Larson, J.B. (1977). Inductive inference in the variable-valued predicate logic
system VL, Methodology and computer implementation (Technical
Report 869). Doctoral dissertation, Department of Computer Science,
University of 1llinois, Urbana, IL.

Michalski, R.S. (1983). A theory and methodology of inductive learning. In
R.S. Michalski, J.G. Carbonell & T. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. Palo Alto, CA: Tioga,

Michalski, R.S., & Stepp, R.E. (1983). Learning from observation: Conceptual
clustering. In R.S. Michalski, J.G. Carbonell & T. Mitchell (Eds.), Machine
learning: An artificial intelligence approach. Palo Alto, CA: Tioga.

Mogensen, B. (1987). Goal-oriented conceptual clustering: The classifying
attribute approach. Master’s thesis, Department of Electrical and
Computer Engineering, University of Illinois, Urbana, IL.

Stepp, R.E., & Michalski, R.S. (1986). Conceptual clustering: Inventing goal-
oriented classifications of structured objects. In R.S. Michalski, J.G.
Carbonell & T. Mitchell (Eds.), Machine learning: An artificial intelligence
approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Whitehall, B.L. (1987). Incremental learning with INDUCE/NE (Working
Paper 84). Urbana, IL: Al Research Group, University of Illinois
Coordinated Science Laboratory.

Winston, P.H. (1975). Lecarning structural descriptions from examples. In
P.H. Winston (Ed.), The psychology of computer vision. New York: McGraw
Hill.

363

