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A METHODOLOGY FOR REPRESENTING
NATURAL LANGUAGE EXPRESSIONS
IN VARIABLE-VALUED LOGIC

ABSTRACT

As Artificial Intelligence systems and in particular expert systems become more common, the
number of diverse users increases. The design of interfaces for these systems must take this
into account. An interface is required for any system, for without the interface, the system
would have no means of communication with its users. As these systems become more readily
available for a wide range of tasks, more are being used by casual users, those who do not use
the system day in and day out, and naive users, those who may be regular users but may not
have a complete understanding of the system and do not profess to know or even care. These
users wish to simple answer, Users usually want to communicate in a language that they
already know. This becomes even more critical when the casual user is considered, they are
more likely to reject or forget a specialized input language.

A system is described, the PARALINC system, which implements a natural language interface
designed to interact with expert and learning systems developed by the Intelligent Systems
Group at the University of Illinois, Urbana. Systems of particular interest include the
EXPLORER project, an integrated learning and inference system, the INDUCE system, a
machine leaming program, and the ADVISE system, a meta-expert system., The expert and
learning systems to which this interface will serve are systems based on an information
representation in a variant of predicate calculus called variable-valued logic. This calculus isa
typed, first-order logic which additional features not found in a standard predicate calculus.
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L. INTRODUCTION

s Artificial Intelligence (AI) systems and in particular expert systems become more common, the
numbes of diverse users increases. The design of interfaces for these systems must take this into account.
An interface is required for any system, for without the interface, the system would have no means of
communication with its users. As these systems become more readily available for a wide range of tasks,
more are being used by casual users, those who do not use the system day in and day out, and naive users.
those who may be regular users but may not have a complete understanding of the system and do not
profess to know of even care. These users wish to simply entar the appropriate information and obtain a
useful answer. Use_rs- usually waant to communicate in a language that they already know. This becomes

even mor-e critical when- the casual user is considered, they are more likely to reject or forget a spectalized
input language.

A system is described, the PARALINC (PARAphrasing natural Language IN predicate Calenlus)
system, which implements a natural language' interface designed to i':li_.erac't with expert and learning
systems developed by the Intelligent Systems Group at the University of IHinois, Urbana. Systems of
particular interest include the EXPLORER project Becker, 1985b|, an integrated learning and inferencs
system, the INDUCE system {Hoff, Michalski, and Stepp, 1983', a machine learning program, and the
ADVISE system 'Michalski, 1983], a2 meta—expert system. The expert and learning systems to which this
interface will serve are systems based on an information tepresentation in a variant of predicate caleulys
called variable—valued logic (VL). This calculus is a typed, first-order logic with additional features not

found in a standard predicate caleulus.

Figure | depicts the structure of a typical system. The component of particular interest in this thesis
is the interface between the user and the host system, moze specifically, the input side of the system.
There may or may not be an analogous cemponent for output. This interface is the component which

handies the often difficult problem of translating the user ortented language into a host oriented lenguage.

“Although matural language can refer tomany languages, natural language within the scape of this thesia refers strictly to the
Englizh language, and more pracisely, asubsel of the English language.
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Figure 1. Top Level View of a Typical System

The user orierited language accepted by PARALINC is natural language, the standard meéthed of
exthanging information between people. The host languages are the variable-valued languages VL,
{variable-valued logic one), VL, (variable-valued logic two), and Annotated Predicate Calculus (APC),

each beirig 4 representation language used by a family of logic-based expert and learning systems. Both of

these languages contain features which make them attractive for this svstem,

1.1. Why Use Natural Language for an Interface?

One's first response to "Why use natural language?” may be "why qoh?". As flippant as that may
sound, it dris-- home the point "Use what ¥ou know best.” There are a number af reasons [or choosing
natural language for an interface language. The primary reasons are based on familiarity and experience.
Even though 1 user of a system may not be [amiiiar with all of its details, he must be familiar with the
language used for information exchange. Therefore, there must be a simple yet expressive means for any

user and the system to inveract. No matter how good the system. il an average user cannot interact with



it efficiently, the system is not being used to its potential,

Familiarity and experience with a language convey a sense of friendliness. A friendly system in one
which makes the interchanges simple and anderstandable. [t is a known fact that people are olten fearful
of computers, and in some cases rightly so. The system should not place a burden on the user, especially
the intermittent user, for this slows down the user and often requires him to learn a new “language” lor
which to exchange information with the system. People have a tendency to reject learning something new
if they have something that will already “make do”, A goal of any user interface is to reduce the learning
time of training involved with the system. This points to 2 need for a means of interaction that is
common to all including the naive user. For example, expert systems by design are meant to assist and in
some cases replace the need for a human expert in some domain. This would imply that the users of such
a system may not be as well versed as an expert and would thus have less detaited knowledge about the
domain or the system. [n most cases, the expert system’s formalism, reasoning algorithms, and system
language are hidden to the end user making a system language seem foreign. Natural language is 2

tanguage which is already familiar to all users. making it an cobvious choice lor a means of interaction.

‘Another goal of any interface system is 1o assist the user and make the man /machine interaction 2o
as smoothly as possible. [f the system language is used for the exchange, the simplicity of the interaction
may be impacted, A tvpicat system language is primarily designed with the system in mind and not the
user. As an example, a detalled interaction which may require a number of individual requests in a host
language may be contained in a single natural language input. [n many cases, a single sentence or
exptession in natural language will transform into more than one eguivalent logical heost expression.
Although the system language may have the ability to represent a mote complicated request concisely. one
must remember that a natural language interface is for the general user. ‘A ju_s_ses_'r who may not known ail of

the details of the system or its language.

It is often argued that the use of natural language introduces uncertainty. [n many cases it makes
the system appear mors friendly to the user, but in some cases, it may frustrate the user if the input is

misunderstood, Although there is inherent ambiguity in natural language input, there are a number



factors which reduce a potentially open-ended problem into a tractable one. First, the domains of host
systems are typically constrained. This in turn constrains the user vocabulary. In most cases, only a
subset of natural language is needed due the limited domain or fixed representation language of the
system. Secondly, due to the nature of the exchange and the type of user involved in the interaction, the
input is agained constrained. When input consists of short interchanges, the user has a tendency to adhere
to rules of good English when formulating queries or generating imperatives. When the user does vialate
grammatical rules, the violation is often easily detected and the missing information can be filled in as
appropriate. An example of this is the common use of ellipsis when expanding on the subject or object of

the previous sentence.

-Hav'-ing described natural language as the interface language of choice, one may ask. "why isn't
natural language used for all of the current systems?” One answer is that the design and development of a
natural language processing system takes time, and in many cases, such a system is never fully completed.
A refinement process occurs throughout the lifetime of the system. Also, many systems are being used by
people who appreciate the capabilities and the conciseness of an aiternate language. A well designed
interface should atccommodate more sophisticated users. "An interface should not make these users suffer
with a more verbose and potentially ambiguous language;, after all, the system language is tailored to the
system. Despite this, the end users of many systéms, particularly expert systems, are the naive, those who

desire for an easy program to use and understand. Expert systems. intelligent tutoring systems. and

database retrieval systems are example systems for which this type of interface technology best applies.

1.2. Why Variable-Valued Logic?

Natural language may be a good choice as an interface language, however. the language chosen for
representing the information must also be considered. There is a need to find a language both expressive
and concise enough to represent the full intent of the user but should tend towards the comprehensible.
Any language chosen as the host oriented language must be capable of representing the details specified in
the user orientéd language in an understandable way. In Michalski, 1983!, he presents the

comprehensibility postulate. It states that



The resuits of computer induction should be symbolic descriptions of given entities, semantically and struc-
turally similar to those a human expert might produce cbserviag the same entities Components of these
descriptions should be comprehensible as single "chunks” of \oformation. dirsctly interpretable 1o aatural
|snguage, and should relate quantitative and gualitative concepts o an 1ntegrated fashiod

The comprehensibility postulate not only states why a variable-valued logic is a good choice for the host
system language but also indicates that natural language is the best choice for the interaction with the user
by stating that "the information should be directly interpretable in natural language.” In many systems,
the representation language is designed [or efficiency rather than comprehensibility. Although such a
representation is efficient for program processing, it is not efficient or convenient for the average user. The

representation language chosen for PARALING exhibits both comprehensibility and conciseness.

The issue of comprehensibility is also important when one considers a man/machine interaction.
Verification of the user’s input is important {or reducing the number of errors and to instill a feeling of
confidence in the user that the system has understood the request. If the resultant structure is too
complicated, the user cannot verify that the input was understood. Variable-vaiued logics serves both as

inputs to the host systems and an efficient means of representing natural language inputs that are

uynderstandable and verifiable to the user.

L.3. Related Waork

The topie of this thesis has its roats in a number of areas of interest of the Artificial Intelligence and
Compurational Linguistics commuprities. Relevant areas of interest for this work include Natural
Language Processing (NLP) and Natural Language Understanding (NLU}, interface systems in natural

language, and systems that use a variable-vajued logic formalism.

Natural Language Processing and Natural Language Understanding have been active research areas
within the Beld of Al from the very begins vg, Much of these eforts grew out ¢f the view that in order to
exhibit intelligence, a machine should b czapable of conversing with the user im the user’s language.
Research within these fields is concernrd with the more theoretical aspects of understanding natural
language exprassions by capturing the correct meaning of the expression and to hopefully leacn about the

nature of language and information ex-" inge. In many cases, information is exchanged and intent is



understood using only a subset of a grammatically correct expression. [ssues addressed in these felds
inciude the handling of incomplete sentences, prenoun references, ellipsis. gapping forms, and the various
issues of semantic and syntactic processing. Researchers such as Chomsky, Marcus, Woods, Winegrad.
Schank. and many others have addressed many of these issues. Much of their work serves as a good
reference for those interested in more theoretical issues of natural language processing. In addition.
researchers in the field of [ntelligent Man Machine Interfaces (IMMI) are dedicated to improving all
interface technologies for computer-based systems, including natural language and graphics-based

interactions.

Expert systems and data retrieval systems are prime examples of systems which have effectively used
natural language interfaces. These systems are currently making there way into the general user
community. Althongh many expert systems are quite useful on their own, users found it easier to converse
with systems when the systems anderstood natural language, Natural language systems like XCALIBUR
Carbonell, et.al., 1983!. the natural language interface for the R1 {(XCON) computer configuration expert
svstem, became almost required when Lh'e_-sy_st.em made it out into the user community. In fact, systems

«uch as Bobrow's STUDENT 'Bobrow, 1968] or Novak's ISAAC Novak, 1978| problem =olvers had a

natural language interface as part of their initial desjgn.

Some of the more known natural language intetface systems iaclude the LIFER system Hendrix,
1977'. an applications oriented system for creating natural language interfaces lor computer programs.
The LUNAR system Woods, 1972}, a natural language database retrieval system for the analysis of the
Apollo moon rocks, and the PLANES system [Waltz, 1977, a large relational datahase retriey al system for
aircraft flight and maintenance information. Many of these and additional examples can be found in
Waltz, 1977 , where a suryey of over 50 natural language interface research efforts is preserii~1. |t is clear

from this list that natural language understanding is a popular area of research and will cantinis to be,

In addition to the many ceferences on natural langnage understanding research, much «rfort has gone
into the theory and design of parsers for computer languages and compilers Aho and ° .maa, 19725

Many issues concerning grammars and parsing are addressed in these areas.



Of obvious importance to this research is the use of variable-valued logics as a means of representing
the internai knowledge. There are a number of sysiems that make ise of these languages. The systems
currently using a variable-valued language include INDUCE, GEM [Reinke, 1884|, CLUSTER Stepp,
1984], and ADVISE [Michalski and Baskin, 1983 . The eventual goal for PARALINC is to provide a
uniform interface to all of these systems. The difficulty of this is that each system exhibits enough

differences in their interaction that it is difficult to retrofit a generic interface approach to them.

Other translation systems and inference systems have been designed for variable-valued logics. The
PARA 'PARA. 1983] system perfé?rmed a VL to natural language translation. When performing this
translation. PARA transformed a more structured language into a more Hexible by the use of s:imple
pattern matches. A system was also developed which translated APC into PROLOG ';Pu-a, 19843]. In

addition, experiments were performed on an inference system developed for APC Pua, 1984b .

The work described in this thesis: addresses Lhe use of variable-valued languages as a means of
representing natural language expressions. The merging of these two areas will help in defining both the

interfaces required by V0i-based systems and the meaning of a VL expressions in natural language.

1.4. Thesis Overview

Section 2 of this thesis contains a detailed deseription of one of the variable-valued logics, the
Annotated Pradicate Calculas (APC) language, as presented in Michalski, 1983 . The reader unfamiliar
with the APC language is encouraged to read Section 2 prior to subsequent sections. An uuder‘s‘ta._nding,.'of
the language and its representation will help to better understand the process of transforming natural
language input into VL expressions. Section 3 introduces the overall architecture of the PARALINC
system and describes the theory and operation of each of its major components, Examples are cited which
are drawn directly from a working version of PARALINC. A summary and conclusion of this research is

presented in Section 4.



2. THE REPRESENTATION LANGUAGE

The formalism chosen to represent the natural language inputs is a variant of predicate caiculus
described as Varighle - Valued (VL) logic. The VL languages used by various systems developed by the
[ntelligent Systems Group have evolved over the years. The frst. VL formalism is VL, (variable-vaiued
logic one) [Michalski, 1974]. VL, has been successfully used in jearning and expert systems including
PLANT/ds [Reinke, 1983|, and Excel. :Becker, 1985¢!.

The successor of VL, is the language VL,. VL, has all the features of VL, plus some additional
capabilities allowing for a more complex selector form. The VL, language has been successfully used in
programs like INDUCE 'Hoff, Michalski and Stepp 1983}, and CLUSTER [Stepp, 1984,

The newest and most extensive VL language is APC {Annotated Predicate Calculys). [t was first
presented in Michalski ‘Michalski, 1983] and is the building block of a current project to integrate an
interactive learning and expert system, the EXPLORER system Becker, 1985b".

The APC language is a typed predicate calcuius with additional expressive power, Being the
predecessor of VL " and VLz, APC has the ability to represent any description that can he expressed in
either language but contains additional ¢apabilities not found in VL or 'VLE. These additional features
2dd both a functional and expressive power that lends itself to representing expressions, particularly

English sentences, as well as being 5eneral enough to be used by a [amily of inductive learning and expert

systems. Because APC subsumes boath VLl:and V'LE, only a description of the APC formalism is presented.

2.1. The APC Language

The APC language is an extension of predicate calculus that contains a number of novel forms along
with an attached annotafion for each predicate, variable, and function. The annotation stores information
such as the type of the function and attributes. Example annotations may include the domains ol the

values, or the range of the value sets for functions.



2.1.1. APC Form

Terms in the APC language can be both elementary and compound. An elementary term (e-term) is
the same as a term in predicate calculus. E-terms may be constants, variables, or function symbolis
followsd by a list of arguments that are themselves e—terms. Some example e-terms are:

BOX, Population(US)

A compound term (c-term) is a composite of e-terms or a functien symbol.in which ane or more atguments
are compound terms. Composition of e-terms is described as the internal disjunction (V] or the internal
conjunction (&) of e-terms. The following are examples of compound terms:
BALL, v BOX, Population(US & CANADA)

Compound terms do not have a truth status as traditional predicates do but rather are used only as
arguments in predicates. Within APC, the logical operators v and & can also be applied to e-terms as
well as predicates. Arguments of functional terms that are composites can be transformed into a
composite of elementary terms. Lf fis a functional symbol having n arguments, A representing n-1 of

them, and the n'th being the conjunction or disjunction. of two elementary terms ¢ and £, then the

compuosite term can be expanded by the application of the following tersa-rewrife rules:

ﬂ'r'-| W t’z? A) - ﬂtiv A) v ﬂrzv A‘)
Mo, &ty A) o~ fit, A) & fit, A)

A sample application of the rewrite rules is:

Population{US & CANADA) <==> Population(US) & Population{CANADA)
When A is a composite and contains both internal conjunctions and internal disjunctions. the rewrite rules
are applied in such a manper as to expand the Internal disjunction first. A conjunctive form is more
bisding than the disjunctive,

- edicates in APC. like terms, can be either elementary or compound. An elementary predicate {e-
predicate} is a predicate form in which the arguments of the predicate are e-terms. Compound predicates
(¢-predicates) are predicates whose arguments are c-terms. ‘An example e-predicate is

Went(FRED, STORE)

An example c-predicate would be:
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Went(FRED & BARNEY, POOL HALL v BOWLING _ALLEY})
Thete also exists a set of rules to transform a compound predicate into one or more elementary predicates.
The equivalence preserving reformulation rules for predicates are:
Plt, vty A) = P, A) v Pli, A)
P(t, &, A) = Plt, A) & Fit, A)
where P represents an arbitrary predicate and A, t, and ¢, having similar meanings as in the term-
rewriting rules, As an example, the reformulation rules as applied to:
Went(FRED & BARNEY, POOL _HALL v BOWLING_ALLEY)
would generate the elementary predicates:

Went(FRED, POOL HALL) & Went{BARNEY, POOL _HALL) v
\Went(FRED, BOWLING_ALLEY) & Went(BARNEY, BOWLING ALLEY)

The application order of the reformulation rules is of importance. The application of the disjunctive
rule is performed prior to the rule that transforms a conjunctive form, much like the application order for
the rewrite rules for terms. This follows our intuitive notion of the meaning of expressions that have both
& and V logical connectives, The & is considered more binding than the \' cofinéctive, therefore, the
application of the rules in the above order produces the more desirable result. In the example, the
otdering suggests that FRED and BARNEY went to either the POOL HALL or the BOWLING ALLEY

together.

The APC language contains all forms available in frst order predicate logic but also has a special
form know as the selector. Selectors are predicates that express relations using an infix notation. This is
often a3 more comprehensible representation than a standard predicate. The form of a selector is a
relational statement defined as:

Term REL Tr--
where Term| (the reference) and Term, (the referee) are terms. REL represents ane of the relational
symbols: =, =, >, <, %, =2 The equivalent predicars =alculus representation would take the form

REL{Term,, Term,). If Term, is a non—constant e-term and Term, is a constant with REL being one of



(21

— or =, the selector is an elementary selector. An example elementary selectar is:
‘Population(L'S) = 1.000;
Selectors that have a non-constant referee and a conjunction or disjunction ol constants from the domain
of the referee’s e-term are referential selectars. Referential selectors can have any of the possible relational
symbols. An example referential selector is:
_[Color-[BALLl] = RED v BLUE|
Note that predicates can be formally described as a selector of the form:
| Term = TRUE| where Term is a predicate
Compound selectors have ceferees and references of any term form. The relation symbol can be any of the
possible relational symbols. Some example compound selectors are:

{height{FRED v BARNEY) > 3|
{Population(US & CANADA) > Population(FRANCE & BRITAIN)|

Campound selectors are often transformed using the term-rewriting rules and the predicate transformation

cules before being used by the learning system of expert sysiem,

Expressions in the APC language are composed of s_eiec-;_ors and logical connectives. The basis of an
APC expression is the selector and in fact a selector is itself an APC expression. APC expressions have the
standard logical expression connectives negatian, conjunction, disjunction, implication, and equivalence (=,
&, 'y, =>. < =2), along with s new operation called the ezceplion. The exception operator {-) is defined
as the symmetric difference of the two APC expressions:
FAF, = (=F, = F)&(F, = -F ).
and reads F ezcept when F,. In the case that the expression F is negated (~F) and it is an elementary

setector having a relation symbol of =, the relation is redefined as =.

Often in inductive learning, the APC expression is of 2 special form. The form consists of a
conjunction of selectors and is denoted a complez. A complex is often referred to as an event in the event
space and represents one input example. Complexes can be combined to form decision rules., A decision
rules consists of the disjunction of one or more complexes and an implication and takes the form:

C,vCNV ..V C = D
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where Ci are complexes and D is a decision. A deeiston is a single elementary selector having a value in the
decision domain.

The APC language has all of the quantifications that are available in a standard predicate calculus,
but also has an additional form known as numerical guantification. Numerical quantification of an APC
ex-preé_sion is expressed as:

3 (1) v, Flvf
whers Tis the indez set denoting a set of integers, and F/vf is an arbitrary APC expression having v as a
free variable. An example of numerical quantification is:

3 (5..10) v, Fly/

and is read, "there exists five vo ten” values of v for which Ffu/ holds. The index set can also take the form
2 (v ave ) v Ffyf
and is read as "there exists n, or n, of ... n"" values of v for which F/u/ holds. Note that the existential
quantification is subsumed by numerical quantification as defined by:
3y Fhi = 3 (Y w, Fivl
Univarsal quantification can also be represented with numerical quantification as:
v oy, Flvi = Zfk)u Ful

where & is the number of possible values that v can take on.

2.1.2. APC Anpotation

The annotation of a predicate, variable, or function (collectively called deseriplor) contains
information relevant to a particular problem. The annotation may describe the concept represented by the
descriptor, or its relavionship to other concepts and by describing the relevance of the descriptor given
other descriptor definitions. The annotation may include problem-oriented information such as those
presented in ‘Michalski, 1983, Some of the relevant annotations and their functionality in PARALINC

include:



2]

= A specification of the domain and the type of the descriptor. (eids in the parameter selection).

- A specification of the canstraints and the relationships between the descriptor and other descriptors.

{Used to vertfy relationships and ezislence with respect to other deseriptions formed).

- A characterization of the objects to which the deseriptor is applicable (i.e., a characterization of the

-possible arguments). (aids in the parameter selection).

= A specification of the descripter class containing the given descriptor that is the parent node in a
generalization hierarchy of descriptors (e.g,, descriptors “length’, ‘width’, and ‘*height', ¢an have a
parent node denoting ‘dimension’). (eids in the parameter selection and selector identification and

selection) .

2.1.3. APC Types

If the problem domain is well specified, a set describing the potential values achievable by the
descriptor can be described. This value sef is called the domain of the descriptor. The domain type
description can describe the domain of the value that the selector can tzke on and the domain of the
arguments of any predicate. Domains of the variables and arguments can be in ane of the nominal, linear,
eyelic. or structure domain. In the case of inductive learning, the domain is called upon to limit the extent

to which a2 descriptor ¢an he generalized,

- The nominal domain consists of a set of unordered symboelic values. For example, the attribute cofor

can take on the values red, blue, green,....

~ Linear domains consist of an order set of values, sither numeric or symbolic which can' be realized by
a term or variable. For example, the attribute length may have values 10,100 meters, or the
attribute size may have values minute..- g2, The “.." is the range operator and represents the set of

values found between the two given values.

- The eycite domain is much like the lirnzar except that the first element can follow the last. For

example, the attribute day can take on *1jv values equal to the days of the week,
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= The structured domain consists of a hierarchy of unordered values much like a tree structure. For

example, parrot. cockatiel. and parakeet are siblings of the node erolic birds Tor attribute birds,

2.2. APC as 8 Means of Representing Natural Language

From the deseription of the language, it can be seen that APC exhibits a high degree of
expressiveness yet remains concise and comprehensible. A comparison of expressive power between APC.
first—order predicate logic, and clausal form are discussed in |Goldfain, 1985!, A few simple examples wiil
suffice to demonstrate the expressive powet of the APC language and how it can be represented in natural

language.

The expressiveness of symbolic and nominal domains can be seen in the example APC representa't:ion
for “the color of ball| is red or blue or green”,
iColor(BALL,) = RED v BLUE v GREEN].
The equivalent predicate logic representation would be:

Color(BALL ,RED) v Color(BALL  BLUE) v Color(BALL ,GREEN)

When expressions have values in a linear domain, the conciseness of an APC expression is even
greater, The APC expression:
Height(Tower) = 100 .. 300!
would be expressed equivalently in predicate logic as:
Height(Tower, 100) V' Height{Tower. 100-+step size)v.. v Height{Tower, 300)
But would be expressed in natural language as simplyt

The height of the tower is 100 to 800

The number of disjunctively combined predicates would be equal to the number of indivii-al steps
required to get from the lower bound to the upper. In APC, the step value is specified in the dsmain of
the associated APC expression and is pars of the annotation of the expression. The alteration ! the step
size has no effect on the physical description of the APC expression (only on the inference azn:i l=arning

algorithms which have access to the annotation of the deseriptor) but would directly alter the description
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for a predicate logic equivalent.

Considering some of the features of the APC language. natural language can be more easily
tepresented in APC than other logic lorms. Details of how VL expressions of natural language input can

be constructed will be presented in Section 3.
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3. THE PARALINC SYSTEM

The PARALINC system is a system which accepts input from the user in a natural language format,
translates it into a host system command or VL expressions, and makes it available to the host sysiem.
The system serves as an interface to a clags of systems using the variable-valued logic formalism described
in Section 2. The two major components of the system are the PARSER and the VL Generator. It isin

these components where the majority of the processing occurs,

3.1. Systemn Dverview

Figure 2 depicts the overall architecture and emphasizes the major components and their
interactions. The modular design of PARALING was adopted in order to maintain the highest degree of
system fexibility. The major ¢components of the system consist of both data files and processing

components,

Individual dara fGles exist for the CRAMMAR, the host system PRAGMATICS, and the
DICTIONARY. The GRAMMAR Ele contains the definisions of the structure of the input language.
Grammars used in this program can be either simple conteri-free grammars or context sensitive
grammars. Even though a grammar may be simple, it is often broad encugh to describe the majority of
any input form for this system. The PRAGMATICS fle contains the detailed knowledge about the host
system including its command language and input grammer. Typical inputs to a system consist of both
input data and the host commands. The PRAGMATICS file is used by the Command Processor to
distinguish between these types. The final input file is the DICTIONARY, The DICTIONARY contains
the descriptions of all words and domains that are processed by the system. A detailed description of these

files will be discussed in the nexi section.

The major processing components ate the Parser, the Interactive Dictionary Editor, the Command
Processor, and the two output Zenerators, the Host System Generator, and the VL Generator. A logical
Gow through the system begins when the user supplies a natural language input to the Parser. Together
with the grammar and the dic:, .nary entries, a parse of the input s performed. The parsed input is then

made available to the Command Processor. The Command Processor determines whether the input is a
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USER )
GRAMMAR PARSER ¢—{ DICTIONARY _ Interactive
Dictionary Editor
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Host Command VL
Generator Generator
HOST SYSTEM

Figure 2. The PARALINC Architecture

host system command or input data in VL form. Having made this decision. w2 appropriate module
accepts the parse and generates the input to the host system. More detail on the process of each of these

components will be presented in subsequent sections.
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3.2. The Dictionary and the Interactive Dictionary Editor

The dictionary maintains the definitions of each word of the input form. The definition of each word
¢ontains a set of information required by different components of PARALINC. The knowledge required by
the parser is of course dependent upon the parsing technique and may actually dictate the number and
type of slots within each dictionary element. Figure 3(a) presents the skeleton form for a definition used in
the PARALING system. Figure 3(b) contains an example definition for a sample word. The root and
variantis slots appear in all dietionary entries. The variant to a word may be the root in past tense, plural
form, etc. When a syntaetic parser is used. the lexical category or categories (the lez slot) of the word is

required.

Another slot within the dictionary entry is the type or domain slot. This contains information about
the word and how it maps into a typed hierarchy or set membership relation. The type slot of the word is
used during the construction of the VL forms and performs much the same function as the domain
description assaciated with an APC sélector annotation (described in Section 2.1.2). As an example, the
words SQUARE, ROUND, and RECTILINEAR may be in the domain SHAPE. The ul-form slot within
¢ach definition contains a template of the VL expression that has z root in this word. Arguments [selector

references and referees) within this template are handled in a similar manner.

An additional slot of a word structure. the typo, contains common misspeliings for the word. This
provides for a simple error correction process for any known misspellings. One of the features which many
feal is essential for a friendly, robust interface is to accept slight variants to a correct form (Waltz, 1983,
The correct form may he vioclated in two ways. A simple violation may occur if one or more words are
misspelled. This violation can be overcome if the offending words are replaced with words that are known
to the system. The other violation may occur because of missing sentence components. One example of an
improper structure form involves the use of ellipsis. Ellipsis is a technique in which the user draps parts of
a sentence assuming a substitution of a like form from a previous sentence. This problem has intra-
sentence impact and is best handled by the combination of the syntactic parser component, a semantic

analyzer, and a history of the input. Although simple, the approach used for misspellings can resolve a
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DICTIONARY ELEMENT STRUCTURE DEFINITION for USHAPE
root - root word of definition root ¢ ushape
variant . - variants of word (e.g. pase tense, eic.) variant : (ushaped)
synonym - synonym for root word synonym.  : ()
typo - typical misspellings typo :0
lex - lexical category(s) fo word lex : adj
domain - domain description of word domain : SHAPE
type - data type (e.g. linear, nominal, &tc.) type ' nominal
vi-forn - VL form word takes on vi-form : [Shape{ob)) = ushape]
(@) ®)

Figure 3. Dictionary Data Structure and Example

large number of errors that would otherwise lead t6 a nonrecognizable expression, The syronym slot of the

structure serves much the same purpoese as the typo slot differing only in relative prierities,

Dictionary and domain objects are defined as structures in the PARALINC implementation. The
domains are maintained on a list, the dictionary elements are maintained in a hashtable. The use of a
hashtable is well suited for the saving and retrieval of dictionary elements. When 2 new word is created,
an element is added to the hashtable keyed off of the root of the word. In addition, redundant defnitions
are added for sach of the entries in the synonym, variants, and typo slats. In these cases, an entry is
created only if ancther definition having a root as that ward does not already exist, I a variant was added
and a roet word is later added, the new word would overwrite the variant of the previous word. This
approach ensures that variants are of lower priority than othér root words. A hashcable implementation

also enables a consistent tetrieval time for all dictionary elements during parsing or IDE interactions,
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The lnteractive Dictionaty Editor (IDE) component is a [acility which allows the user to create,
inspect, alter, save, and retrieve dictionary and domain elements. In order to emphasize fexibility and
user friendliness, this component takes advantage of various interactive techniques such as pop~up meaus
and multiple window presentations. Figure 4 presents two menus accessible from the IDE. Figure 4(a)
shows the variable-value window used to edit and create domain descriptions. Figure 4(b) is a variable-
value menu used for creating and editing dictionary entries. An added feature of the dictionary editor

component is the ability to store and retrieve dictionarys and domains from disk files. In this way,

G ]
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Borain type @ NOMINAL LIBEAR OYCLIC STRUCTURED
Donain values : (FIRSY SECOND THIRD FOURTH FIFTH)
Domsin unite | MIL
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| I xie L] |

()

Reot of thy word < BECOND

Lexical category of cthe word ¢ (ADU AOV)
Domain attribute of the word : PRSITION
Uertants of the word | HIL

Synonyme of the wvord : (CADR)

Fopular typos of the vord : NIL

1 Exizt 1
= =~
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Figure 4. Domain and Dictionery Specification Menus
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individual information can exist for zither different problem domains or different host systems.

3.3, The PARSER

Nearly all natural language systems must process their input with a parser. The natural language
parser is the first major component in the process of transforming natural language into VL expressions.
the parsing process of the system was chosen carefully because it is one of the key components of the
PARALINC systemn. The parser for PARALINC was selected after examining issues of natural language

parsing such as the recognition of incomplete sentences and the efficiency of various parsing strategies.

3.3.1. Some [ssues of Natural Language Parsing

When any natural language processing system Is discussed, one can never escape the issues of syntaz
and semantics as well as bottom-up versus top-down parsing. A syntactic parser recognizes a sentence by
giving the form a structure. The parser operates using the structure or grammar of the language, A
grammar is a set of rules which specify legal combinations of words of canstituents into other constituents,
S.yntécticall_y, words are defined as belonging to oné or more lexical categories or as described in English
textboaks, parts of speech, Semantic parsing iz described as giving a sentence meening. The focus is not

placed as much on the legal structure but rather the meaning behind the sentence.

Although reliable, camplete systems have been developed using only one of either technique, it has
been found that the combination of syntax and semantics overcomes many deficiencies associated ;-vith
each individually. One of the reasons to use a combination of both syntactic and semantic components
centers around the efficiency of the parser. The LUNAR system |Woods, Kapian, and Nash-Webber, 1972
employed a semantic post-processor to validate the syntactic structure. The SHRDLU system ;Winograd,
1972! also processed the input by examining it syntactically, however, a semantic component was called
upon to examine the intermediate structures for stmt_mii'c validity, This interleaved approach was used
both for validation and efficiency. These systems like many others used the combined approach for
efficiency. Marcus ‘Marcus, 1980] takes this one step Turther by stating that the combination is essential

for deterministic parsing of English.
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It a syntactic parser is preferred, a choice must be made between a purely top-down, a purely
bottom-up. or a combination of both bottom-up and top-down parsing. A top-down parser begins the
process by examin'in_g the structure to determine if a top level constituent has already been recognized. [f
the highest level constituent does not currently exist, the components required to construct the higher level
are determined. The process recurs on each of these components until ground elements or facls are
recognized. In the case of natural language, facts within this process are assigned at the single word level.
Intermediate levels contain deseriptions of constituents such as noun phrases, verb phrases, ete., and the
top level constituent is most often the sentence. Upon returning, the lower level constituents are
assimilated into successively higher leveis, eventually achieving the highest level constituent. A
comparison can be drawn to the .préduction system control structure within expert systems. The top—

down process is similar to backuward chaining.

Even in simple grammars it can be seen that a number of alternate rules exist for each constituent.
[n a pure tap-down approach, altermatives are exploreld depth firse. If a rule is unsuccessful at the ground
level, a process of backtracking must occur before alternate rules are explored. Backtracking effectively
forgets any work that has already been performed. An additional drawback to the top-dc_wn parse is that
incomplete forms, those not returning to the highest level, would never be found by this process. The

parser would eventually halt without finding any parse even though a complete parse may be as little as

one word away.

The bottom-up parser starts at the lowest level or ground elements and constructs more
encompassing constituents. This approach is analogous to 2 forwerd efaining rule system which exhibits a
data-driven behavior. This combining process continues until no new grammar rules apply to the current

set of constituents,

As with the top-down parse, the bottom-up parser exhibits some drawbacks. In the case of the
bottam-up parser, mucn processing time may be expended building constituents that may never contribure
10 a successful parse. But unlike the top-down approach, intermediate constituents are available in the

event that the parse aves not complete successfully. This makes it possible for a semantic post-process to
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fill in the gaps.

The distinction between top-down, bottom—up and the saving of intermediate results is nos as clean
as described. [n many cases the saving of intermediate results is a by-product of the representation

scheme as must as the process. Here is where the advantages of a chart-based parser is cealized.

Issues such as these have been a matter of contention for as long as natural language processing
research has been performed. These issues have been iterated by many over the years, but there has never
been an agreement on the preferred approach. A number of systems have been designed and developed
using any combination of approaches. Winograd [Winograd, 1983 has a volume dedicated to the syntactic

nature of language. The second volume will address the semantic component of language,

3.2.2. The PARALINC Parser

Having reviewed many of these issues, it appears that the choice of parsing strategies depends on
factors such as the intended user, the rules of interaction for the system, and the extent of the vocabuiary.
In this thesis, [ describe one approach for the PARSER component. This approach makes use of bottom-—

up a chart parser.

The chart parser was chosen for the initial implementation ¢f PARALINC for a number of reasons.
First. the usual inputs to the systems of interest are terse, single sentences. rather than a sequence of
sentences or patagraphs. References made to previous sentences are minimal. The syntactic approach is
both simpler and efective for this type of interchange. Secondly, a logic like 'Q.’{-IPI'ESSEOI‘I presented in
natural langnage has a tendency to be rath;r constrained and syntactically corrert. The semantic
processing of the input form is introduced at¢ the time of VL generation. Although vne approach was
chosen, the modularity of the design creates a high degree of flexibility over rh= -hoice of parsing

strategies, Various parsing systems such as chart parsers, ATNs "Woods, 1970, shif* --duce parsers, and

MARCUS parsers [Marcus; 1980 can all be "plugged” into the ¢current architecture.

The PARSER is composed of two submodules, the first is the pre—parser. This component utilizes

the dictionary and the user input to ereate the internal structure. The second compi:i-:.t operates on this
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structure with the aid of a grammar as it builds a parse of the input. An example grammar appears in
Figure 3. Figure 8 expands upon the detail of the PARSER component. The primary output of the
PARSER iz the chart and its annotated parse trees. [n addition to these inputs and cutputs, the parser is
also coupled to the Interactive Dictionary Editor. When an unknown ward is encountered in the input, the
user has three options in which to proceed. The first is to call upon the IDE to allow the user to define the
new word. Following this process, the parse continues. The second aliernative prompts the user for an
alternate word. This option may be used in the case that the word was an unknown misspelling for a

known word. The last option is to abort the parsing process and return to the top level of PARALINC.

The chart parser makes use of a chart for storing intermediate parses. This approach enables the

parser to make use of constituents that have already been derived. The storage eliminates the time

$S <- s

SS <- 8§ conmn SS

S <- NP VP

NP <o det NP1

NP < NP1

NPl <= noun

NP1 <- ADV-ADJ NP1

NP1 <~ ADV-AD] conn ADV-ADJ NP1
NP1 <- NPl PP

ADV-AD] <- af
ADV-ADI <- adv ADV-ADI

PP <- prep NP
vP < werb

VP <- verh adv
VP <- verd NP
YP <= VP PP

Figure b, A Sample Grammar for PARALINC
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Figure 8, The PARSER Functional Components and Files

consuming and wasteful process of redoing work that has previously been performed. Consider how
wasteful it may be to almost fully construct a higher level constituent only to fail and have to potentially
rediscover a majority of the constituent again when approaching the problem using a slight variant of the
failed grammar rule. A chart parser has an obvious advantazs ver classic backtracking systems which

may repeatedly rederive a constitwent. With the use of a chart. constituents may already be available

during alternate parses.

Because natural language is inherently ambiguous, many parsers must judge the goodness of the

partial parse in order to determine what next to explare. This iuterpretation process is interleaved with
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the parsing process, potentially judging gooedness with incomplete information. An approach to
disambiguation is the delay or wail end see parsers such as ATNs [Woods, 1970] or Marcus style parsers
Marcus, 1980). These parsers maintain intermediate constituents Internzlly until no ambiguity remains.
The constituent is then added to the result. The chart parser offers an alternative to this approach,
Rather than judging goodness during parsing, all legal parses are found and stored within the chart data
structure. The judgement of goodness is deferred to a post-parse semantic review. This approach is
particularly suited for the PARALINC system because the semantic interpretation of the parses is inherent

in the constzuction of the VL expressions.

3.3.3. The Chart Parser Chart Structure

The chart parser is based on the data structure used during the parsing process. The chart is a
graph with a set of vertices and edges or arcs. The vertices represent points in the sentence with unique
points at the start and e.“d as well as points between each word. The edges of the chart represent the
constituents of the sentence, As ni_e'w constituents are found, additional edges a.r'e_a.dded to the chart. The
initial chart contains only vertices and the edges corresponding to the lexical categories for individual

words. Figure 7{z) depicts an initial chart for a sentence.

3.3.4. The Chart Parser Process

The initial chart is the starting point for the the parsing process. The chart parser executes .hy
examining the grammar and the chart in order to determine if any constituents can be combined into
higher level constituents, If a higher level description is found, the 2dge is created for that constituent and
attached to the chart at the appropriate vertices. Figure 7(b) shows the same chart with some
intermediate constituent edges added (note that the grammer presented in Figure 3 is the grammar used in
this example). Figure 7{c) contains the complete chart a1 the conclusion of the process. The final chart is
displayed graphically on the interface screen of the PARALINC system. The detailed algorithm of the

chart parser is presented in Figure 3,
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The small boy hit the red bati
(der) (ad]) (noun) (verb) (det) (ad (noun)

Partial chart
®)
NP NP
The small boy
(verb) (dex)

(des) (adj) (noun)

S5/58

Complete chart
©

Figure 7. The Active Chart at Stages of the Parser Operation
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PARSE ( active_chart , grammar )
begin
match = match_grammar ( grammar , active_chart )

ilf match then
new_edge = create_edge ( match )
update_constitsents_in_edge ( new_edge , match )
active_chart ::= add_edge ( new_edge , active_chart)
PARSE ( active_chan , grammar )

else

RETURN
end

Figure 8. The Chart Parser Algorithm

The actual parsing process operates much like a production system where the grammar functions as
the rule set and the application of 2 rule creates a new constituent and attaches it into the chart. In this
implementation, the parse is performed bottom-up and terminates when no grammar rules are found to
apply to the current chart. The grammar rules are maintained in a discrimination net. During ‘the
parsing process, a pointer follows the branches of the net until terminal or value nodes are encountered. A
value node contains the constituent formed when that node of the network is reached. Figure ¥ contains
both the LISP form of the network and the graphical form. Note that the outlined nodes of the nes
represent value nodes in the grammar. Additional descriptions of ehart parsers can be found in a number
of texts including [Varile, 1983] and {Winograd, 19831, Both of these rexts describe the chart as a storage

of intermediate results, however, the parsing strategy is most often presented as top-down.
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Figure 9. The Grammar and Diserimination Network

3.4. The COMMAND PROCESSOR

The Command Processor (CP) is the first component of the system which wperates with the
knowledge of the host system. The parse trees, which are maintained as-an anpotation of the chart edges,
are the input to this component. The output of the Command Processor becomes input to either the Host
Command Cenerator aor the VI Generator, the choice is made as part of the internal process of the CP.
The sole function of the Command Processor is to determine if the user supplied input Is a host system

command or input data for the host system,



30

The recognition of a paraphrase of a host system command often proves to be a difficult task. The
difficulvy of this process lies in the fact that the PARALINC system has been developed for differsnt host
systems. [n addition, the development of PARALINC occurred after the development of most of the host
systems, therefore, each of the host systems has s potentizlly different command language, each with its
own quirk and nuances. Being more of a engineering issue rather than a research issue, the requirement
to interface to a number of different systems was best handled by utilizing a simple pattern match between

the specification of host system commands and the input.

In order to determine whether the input is a host system command, the CP must have knowledge
about all host commands which may be supptied to the system. This is the information that is maintained
in the PRAGMATICS fls, The pragmatics file contains information about what the system should
recognize and what the system should generate. Figure 10 contains examples of some of the relevant
pragmatics associated with the INDUCE system [Hoff, Michalski and Stepp, 1983] and a description of
their function. The descriptions accompanying the pragmatics are useful because they supply semantic
information abouttthe host system co_rlnmands' much like the vi-farm of 2 word d;.linil.ion supplies semantic

information about the words of a paraphrased VL sxpression. These descriptions may be of use when the

CP mus: decide on the type of input,

If the input is recognized as a paraphrase ol a VL expression, the input ig gated to the VL Geperator.
If the input is recognized as being a host system command, the input and the appropriate pragmatics are

supplied to the Host Command Generator.

3.5. The HOST COMMAND GENERATOR

The style and type of the commands generated for each host system differ and as such require a
different :redefined model of the commands. The Host Command Generator is the module which

generates these commands for the host system,

The :ommands to the system are typically shart, abbreviated imperatives such as “set parameter to
value', “run ', “quit’, ete., or interrogatives that either elicit help from the host system or retrieve valuss of

particular parameters, The Command Processor performed z simple matching process in order to
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Descripti

Get HELP

Modify rule base

Enter logically derived descriptor

Enter domain generalization siructures

Enter an arithmetic derived descriplor

Add arithmetic derived descriptor 1o rule base

Enter a logical derived descriptor into rule base
Cover a set of formulas

Enter VL mode .

Enter parameier examination and modification mode

T<OXZPpm&T X
3

Figure 10. Example High Level Commands for the INDUCE System

determine which of these commands was specified by the user. This matching process is driven by
keywords in the input that might suggest a system command, The Host Command Generator creates the

complete command by filling in information such as para&xeter values.

[n addition to the regular command ser, many systems require an initialization process to be run at
start—up time. The pragmatics file also contains this information. When the PARALINC system is first
initialized or when the user wishes to reinitialize the host system, the host system initialization information

defines what host system initialization process must be performes,

In addition to accepting paraphrased system commands in natural language, the PARALINC system
takes advantage of additional features available on workstations by providing a host system command
menu. Research in intelligent man/machine interfaces has soown that users may prefer menu-oriented

inputs for simple commands or for parameter selection. If this approach is adopted as the only means of
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specifying host system commands there wauld be a clear delineation between the host sysiem pragmatics
and the input data to that system., This approach wonld eliminate the CP and allow the parser output to
go directly to vhe VL generator, Any system command or parameter specification would be performed

through a user/menu interaction.

3.8. The VL GENERATOR

The generation of VL expressions from the natural language input has been the focus of the effort in

PARALINC. The VL Generator is the component of the system which implements this process.

The VL Generator is the component of the system which transforms the parsed input into an
expression or expressions ir_1 a variable-valued logic language. Together with the parse tree obtained from
the parser and the dictionary elements within that tree, the VL generator creates the expressions, In
general, generation rules exist for natural language phrases such as verb phrases, adjectives, adverbs,
prepositional phrases, and sentence forms, but the rules of generation and combination are dependent an
the grammar and word definitions. There are a set of rules associated with each grammar set which

describe this process. These sets of rules are loaded with the grammar at grammar initialization time.

The multiple parses which may exist following the chart parser operation are interpreted
semantically by the VL Cenerator as part of the translation process. Any ambiguity is resolved by
determining the VL interpretations that satisfy the vi-forms within the parse tree constituents. The result

of this process is a set of VL expressions which semantically describe the input.

3.8.1, VL Generation

The translations process is driven by the dictionary entries [or each word. Annotated within the
dictionary entey is a slot which describes the type and form of the VL expression (described in Section 3.1).
The vi-form slot contains a template of the corresponding VL expression. For exampie, the dictionary
entry for the adjective "small” contains the VLi-form:

Sizelobject) = SMALLJ.

The functor Size represents a linear domain having a value of small. In addition, type descriptors for the
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references and referees of the selector are specified in the selector form. These types are used 1o determine
legal values for each parameter. In this example. a word being modified by “small”, the parameter of size,
must be of type object in the type hierarchy. The word dafinition contains a type description which is used
to perform these tests, The VL Generator constructs the expressions by first retrieving these tempiates
and based on the requirements for each variable and value within the template, obtains the fillers from
other words or phrases. The rules accompanying the grammar describe this process. The validity of any
VL, form that is generated is determined by the template matching process. The domains and properties of

the words ensure correct values.

The lexical categories and the semantic interpretations of the words dictate what are the templates
used for each word, The lexical categories and grammatical phrases of par!.icul_a.r interest in the generation
of a VL expression are the noun phrase, the verb phrase, and the prepositional phrase, as well as adverbial
phrases and adjectives. This approach based on lexical categories is similar to the approach by McCord
‘MeCord, 1985! who addresses the role of lexical categories in the generation of LFL expressions. LFL isa

predicate logic used as a semantic representation language for natural language.

The information esmbodied within these templates and the grammar combination rules can be
compared to the conceptual dependency {(CD) Schank and Riesbeck, 1981] language that was developed to
capture the meaning of natural language exchanges. It is similar to the APC representation although
somewkhat less formal. Through the introduction of predicates such as PTRANS, MTRANS, ATRANS.
etc., 1 typed hierarchy has been introduced where the selection of the desired CD is actually the search for
the domain of the set which describes the particular word or phrase. Considér the sentence:

The man cte the cake.
This + uld translate into the CD form [INGEST ...). Likewise, the same CD form would result for the
sentence The man drank the mitk., Within the PARALINC system, a similar process acsurs. The
templazes within the words contain VL expression descriptions. [n the case of a word which represents a
predicate or function, the domain of the word is nsed as the actual functor. This is 2 mapping much like

the w rd to CD mapping. Charniak and MecDermott [Charniak and McDermort, 1985] discuss CDs in
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light of a logic formalism. They point out that CDs are actually a logic formalism wrapped in a

nonformalistic approach. They call one representation a notational variant of the other.

Subsequent subsections will discuss the role of a number of lexical categories in the construction of

V1, expressions.

3.8.2. Noun Phrase Forms

Nouns in the input sequence correspond to terms in APC, Section 2 described terms as being
elementary and compound. Elementary terms are constants, variables, or function symbols followed by a
list of e-term arguments. Compound terms are composites of e-terms where the combining operations are
either the conjunction or disjunction of terms. Nouns are at the root of many of the constituents such as

noun phrases and prepositional phrases and function as terms in the VL form.

Terms in the APC expression are typically used as arguments to predicates and values of selectors.
The ¢onnectives found in the grammar rules for noun phrases correspond to "and” and "or” combinations
of nouns, proper nouns, or noun phrases and are an indicator of a compound term. If a noun phrase
constituent contains more than one noun phrase combined with either "and” or "ar”, the list of nouns must
be reorganized to reflect the precedence of the conjunctions and disjunctions. The conjunctive operator is
defined as having a higher precedence than the disjunctive operator, thus, the list appears as a single
disjunction of one ar more conjunctions. This ordering is consistent with the description of the compound
predicate reformulation rules and compound term rewrite rules of Section 2.1 where it was noted thay b-h'is
order represents the more natural ordering exhibited by peopls. For example, the partial sentence:

... the ball and the boz or the block ot the pyramid ..."

would be grouped as:

(<ar>

(< and> "the ball" "the box |
(< and> "the block”)

(< and> "the pyramid"))

Most dictionary entries for a noun do not have APC expressions associated with them but rather assume

rales in other expressions.



2.8.3. Adjective and Adverbial Forms

The lexical categories of adjective and adverbial modification of an adjective are of impartance in
selactor construction. A noun may be modified by an adjective or adverb adjective combination. An
adjective. along with the noun being modified, creates a selector that describes the relationship. Although
the number of modifiers of 3 noun is arbitrary, the system treats each adjective and adverb individually
and generates a selector of the form:

'modifier_domein{modified_noun) = modifier_valuei.
The sequence “"red ball” would be represeated by the selector:

[Color{BALL) = RED|

A sequence of two or more modifiers of the same noun would generate a conjunetion of selectors,
each representing a distinct modifier., Consider the sequence “large blue box". The resuiting selectors
would be:

. iColor(BOX) = BLUE| & Size(BOX) = LARGE.
The only form ofhwnsiste'ncy tesking currently provided by the system is for redundant selectors. For
‘example, the sequence “red red box" would generate only one selector. However, other semantic
discrepancies may arise. Consider the sequence "red blue box”. The selectors generated would be:
'Color(BOX) = RED & Color(BOX) = BLUE..
This seems contradictory and indeed it is, but the system makes the assumption that the user input.-is
accurate. The alternative is for the sysiem to detect similar® selectors and either chooss one by some
predefined priority or prompt the user for either one or both to be included in the final expression. The
assignment of priorities may be part of the annotation of the form. The priority may describe whether
different values are legal within one expression or that some values are mutually exclusive. This solution,

although more flexible, requires user intervention or the specification of the priorities.

A selector 18 similar to another if the functor definition, the number of arguments; and the domaing of the arguments are the
same but the argument vajuels) are diferent.
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3.8.4. Prepositional Phrase Formas

Because of the many roles which a prepositional phrase can play, additional semantic interpretations
must be made in order to deternmine how the prepositional phrase is used with respect to the VL form to be
generated. Most often, prepositions describe a relationship between objects. But the relationship must be
understood before the VL form can be created. Consider the two phrases with embedded prepositional
phrases:

the ball on the boz and the size of the ball ...

In the hirst example, the preposition is describing a relationship between to objects. In the secand example,

the noun within the prepositional phrase is actually the roct object and the word being modified is an

attribute of the object with an as yet unspecified value. Forms such as these must be recognized during
VL generation. An example recognition rule is one which examines the prepositional phrase for adjective

like descriptors:

IF
prep = "of " and noun, has an attribute of noun,
THEN
VL form is [Noun (noun,) = object;.

Forms which describe relationships take the form of predicate selectors in APC. A predicate selector
is a selector tn which the value is not explicitly given but is assumed to be boolean TRUE. As can be seen
by the above example and the grammar, prepositional phrases can either be attached to the nearest noun
phrase, to the verb phrase, or can function as an adjective/prepositional phrase combination that describes
a linear domain range. The prepositional phrase to linear domain specification and the prepositional

phrase modifving the verb wiil be addressed as part of interpretation of sentence forms.

When 4 prepositional phrase modifies 2 noun phrase a relationship is described. A predicate is
constructed for this relationship which takes the form:

‘predicate_form_of prepdsition {noun . notn,) |

Like other wnrd definitions, the selector associated with the preposition is part of the vi-form slot of the

preposition and the VL predicate form describes the legal modifiers which can act as arguments to the
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predicate. For example, the prepositional phrase “on the box™ in the phrase “the bail on the box™ would
‘describe a predicate of the form:

Ontop(BALL, BOX)|.

[n the case of prepositional phrases, prepositions have different meanings depending on the word
being modified and the noun phrase that is part of the prepositional phrase. A test is generated to
determine what is the correct form based on actual words and word domains, This test is performed

before a predicate or any other selector form is constructed from the prepositional phrase.

3.8.6. Verb Phrases and Sentence Forms

The rules that correspond to the grammar for adjectives, adverbs, and prepositicnal phrases are
rather straight forward, Any of the validity checking that is performed is done during selector generation
or through a simple rule. In the case of verb phrases and sentences, the rules become more complicated
because of the nature of the VL expressicns and the varying forms which can be generated at higher levels

in the grammar.

The transformations described above show how selectors are constructed for specific lexical categories
or phrases which are components of a complete sentence. There is also potential for VL expression
construction for the senterce. The elements of interest in this process are the list of noun phrases for both
the object and the subject of the sentence, the verbs and adverbs. the prepositional phrases which medify
verbs, and the adjective preposition combinations which describes a numeric quantifier or numeric domain.
In addition, determiners, articles, and certain connectives are processed at the sentence level, The
processing of the sentence may create selectors much like the lower level phrase processing but may also

create higher level rules and complezes deseribing the sentence.

The recognition of APC quantifications occurs at the sentence irvel. Example quantifications may be
the universal quantifier or the existential quantifier, as well as the APC specific numeric quantifiers.
Universal or existential quantifiers are found in phrases such as "far all ...%, “there is ...”, or "all ...". In

order to establish numeric quantifiers phrases such as "six balls bounced” of "three to five boxes are on the
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table” must be recognized as numeric type specifiers. The recognition of these forms is similar to the
recognition of object/attribute pairs in prepositional phrases. The only difference being the object of
modification. The parse must be examined for words in the numeric domain and sequences such as "a to
b Seetion 2.1.1 described the numeric quantifiers as well as presenting examples of each in natural
languags. An example of a sentence which has a linear domain component ist

“The waves are siz to ten feet high",

As with other representations such as CDs, the construction of many expressions are verbal-based,
The relationship keys off of the verb and draws from the additional information provided by the other
sentence elements. Action verbs, like adjectives or prepositional phrases, have a domain assaciated with
them. The processing of input forms which contain verbs is similar to the process of VL generation for
adjectives or prepositional phrases, A predicate or selector results from this process. For example, the
sentence "The boy hit the large ball” would transiate into the two selectors:

Size(BALL) = LARGE! & [Struck(BOY, BALL)|

verbs of the form be often play the role of assignment or a specification of a value for an attribute.
Consider the sentence "The ball is red”. The verb "is" indicates that this an assignment. The: domain of
“rod” and the noun “ball” indicate that this form should be treated exactly like the sequence “the red ball”

and produce the identical selector,

Connectives such as "and" and "ot" were discussed as part of the noun phrase descriptions. .In
addition to this, "and™ and "or" are also part of a set of connectives which modify sentences and have a
direct relationship with APC rule and complex specifications. Additional connectives that fall into this
category include "but", "however’, "although’, and "in addition”. The VL generation process recognizes

these forms and creates the ¢correct VL forms in each case,

Determiners such as “what' in the input suggest that the form may be a host system command.
Determiners such as "If" or "when” may be either 2 host command or the start of a rule description. The
VL generator examines the parse to intercept these keywords and to process them accordingly using

semantic review of the remainder of the parse.
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3.7. The PARALINC Implementation

The PARALINGC system is a Common Lisp implementation of the theory of transforming natural
language input into VL expressions. The system was initially prototyped in Franz Lisp on a Sun
Microsystems workstation, The current system runson a Symbolics Lisp Machine and takes advantage of
the many interface utilities offered by that system. The interactions with the system are performed
through = mix of menu and keyboard input. The interface provides a means for the user to create, delete,
and inspect the contents of the DICTIONARY and the DOMAINS databases as well as pa-rsing_ and
generating VL expressions. In addition, graphical output of the parsing process is provided to the user
through a visualization of the active chart, Additional windows provide a trace of the system operation.
Figure 11_ presents the interface to the system. Various menus which wer-e presented in Section 3.2 are

accessed through the global pull-down menu across the top of the screen.

3.7.1, Examples

The previous sections discussed the theory of transforming natural language input into Vi
expressions, In this section, an example interaction of the PARALINC system is given in order to
demonstrate the process. The PARALINC system currently maintains data files for both the struetured
objects example and the TRAINS example found in ‘Stepp, 1984|. These examaples describe objects which
have attributes and interelationships. The example cited is a subsets of a popular test case for inductive

learning systems like INDUCE or the conceptual clustering system CLUSTER.

3.7.2. The Structured Objects

The structured objects example contains a data set which describes the interelationships of objects
cush as next—to and on-top-of. Attributes of the examples include the shape of the objects, the texture,
and size. The assumed host system for this example is the INDUCE Hof, Michalski, and Stepp, 1983’
inductive learning program. Figure 10 presented a short deseription of the high level command that
INDLCE aceepts, Figure 12 presents a subset of an interaction with INDUCE during the initial data

description process, The italicized comments in the right column give the original INDUCE ecommands
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Figure 11. The PARALINC Interface Screen

which are paraphrased by the natural language input in the [eft column,

3.8. Results

Experimentation with the PARALINC system has :hown varying results. The complexity of the
generation process and thus the natural language understanuing can be attributed to a number of factors
in the PARALINC system. The transformation process bezins with the parser, This is the basic and first

level of understanding. The semantic component of generation operates within the scope of the resalts of
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PARALINC INTERACTION
Enter domain generalization rule,
If the shape is a circle or an ellipse then then shape is curved.

If the shape is a triangle or a square or a diamond or a
rectangle then the shape is a polygon

Add rule to rle base.

If the size of P1 is small o medium and the size of P2 is
large then D is 1.

Delete rule.
Add rule.
If a medium diamond P1 is on P2 and P1 is clear and

a medium shaded P2 is a circle and P2 is on P3 and P3
is clear and large and ushaped and P2 isin P3 then Dis I,

Set parameter meta Lo 0.
Print paramelers.

HOST SYSTEM EQUIVALENT
E<or>
[shape=circlesllipse] => [shape=cumdr

{shape=triangle square digmond reciangle] =>
[shape=polygon|

M<or> A<cr>

[size(pl)=small .. medium][size(p2)=largej =>
[D=1]

M<o> D<o>
M<er> A<cr>

[5ize(pl)=medium]{shape(pl)=diamond]
foreop(pl p2)]ftexure(pl )=clear)
[size(p2)=mediym][texture(pl }=shaded]
{shape(p2)=circle]fontop(p2 p3)]
[texture(p2)=clear]|size(p2)=large]
[shape(p2 j=ushape](inside(p2 p3)}
=>[D=1]

P metaQ <cr> Q<cr>
P para <cr> Q <cr>

Figure 12. Example Interaction for the Structured Objects Example

the syntactic parse. The semantic interpretation ritles are defined such that they recognize structures and

word types within a2 known syniactic structure.
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Forms which are considered relatively easy for the system to transform adhere very well ta the
definition of the grammar and the VL forms within the dictionary elements. The generation of VL
expressions using the lower level rules such as the adverb/adjective modifications and prepositional phrases
are forms which have direct, unambiguous translations. As indicated in Section 3.6, there are no specific
sernantic analysis rules associated with these constructs but rather all validation and interpretation resides
within the construction of the VL forms. An example of a simple input successfully transformed is:

The open car, in front of car, ig long,
With the resulting VL form of:

Infront(CAR , CAR,}| & [Length(CAR ) = LONG|

A sentence may be considered complex by a user because of ambiguity or simply because of size. The
recognition of a form using a syntactic parser is not effected by the length of the input. In some cases a
human may find a sentence long-winded, hut the system would be unimpeded by its length. For example,

a sentence composed of a number of connected forms and numerous modifiers such as:

The big red shaded cirele is on the small smooth blue boz and the tall shiny tri-
angle 15 nezt to the boz and the large open rectangle is on the cirele.

would be successfully translated as:

Siz2e(CIRCLE) = BIG| & Texture(CIRCLE) = SHADED! & |Color(circle) = RED! &
Size(BOX) = SMALL| & [Texture(BOX) = SMOOTH| & |Color(BCX) = BLUE &
‘Height(TRIANGLE) = TALL| & [Texture{TRIANGLE) = SHINY| &

‘Nextto{ TRIANGLE, BOX)) &

Size{RECTANGLE) = LARGE| & [Shape(RECTANGLE) = OPEN &
‘Ontop(RECTANGLE, CIRCLE)]

Figure 12 ¢ontained an example of a long expression for the TRAINS example.

The rtransformation process may break down when some component of the system fails to succeed.
Failures of the system may oceut in two different ways. First, the sentence may fail to successfully parse,
In this situation, no generation of VL expressions may be possible or the generation may be limited to
subsets of -f& original form which represents the lower level generation capabilities, Another failure may

oceur if the sentence is successfully parse but the VL expression which results may not accurately reflect
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Lhe users intentions, This most often occurs when the sentence is ambiguous or semantic interpretation of

the form is incorrect.

An example of 2 sentence which may be ambiguous to many natural language processing systems is
demonstrated with the use of the preposition "on”, Consider the sentence:
The boy hit the hall an the hill.

This sentence is an often cited example of a sentence which can be interpreted in two ways. [t is unique il
the sentence read either "the boy on the hill kit the ball” or "the boy hit the ball onto the hill". The
ambiguity not only occurs here but also is associated with the act of hitting the ball. [n the second
interpretation, the balls Gnal resting place is on the hill, but the sentence may aiso be.interpreted such that
the ball's initial position was on the hill but the fnal position is unknown. Varlous interpretations of this
sentence may be expressed as

Location(BOY) = HILL' & Struck(BOY, BALL))

‘Btruck(BOY, BALL)| & Tliocatian(BALL) = HILL,
but neither b any reference to the temporally related locations of the ball before or after the hit.
Temporal relations must be derived based not only on the content of the input but an understanding of

that eontent.

Anocther example of a sentence which is not fully translated Is:
The red car has three wheels,
The form is difficult because of the cardinai moedifier of wheels, The system would correctly create the
selector for "red” but would have difficulty generating a selectar of the form:
[Number Of Wheels{CAR) = 3.
Such an interpretation requires the VL generator to create sewctors based on multiple words within a
phrase. [n this example, the generation process must recognize that the combination of "three” and
“wheels" describe a single selector. In general; this error will vocur for all selectors which are based on a
¢combination of descriptions, and in most cases, such as cardinalz, there may be unique functors for sach

combination of descriptions. Each combination must be enumerated unless 2 more general selector is used,
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such as:

Cardinality{object}) = nj

[t-appears that the failures of the system can be atiribited to either the parsing process, where a user
would have control by means of augmenting the grammar, or by the VL generation process. Additional
semantic processing may be necessary to overcame these generation lailures through the introduction of
additional VL generation rules. Input forms which have a clear VL interpretation because of grammar or

dictionary semantics are the most easily recognized.
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4. CONCLUSIONS

The work described here has focused on the process of creating the common language tather than
providing an inverface tool. The theory presented in Section 3 has been implemeénted and tested on a
number of examples. Logic languages and in particular variable-valued logics seem well suited for
representing input expressed in natural language. However, the Hexibility of such a system is directly
related to the capabilities and requirements of the host system. When a host system accepts a very broad
range of inputs. the interface system grows in complexity, A reliable process of translating natural
language to variable-valued logics has been demonstrated for systems which have a well defined command

set and vocabulary.

Features of natural language and variable-valued togics were brought together in the PARALINC
system because of different advantages due to each. An obvious advantage of any natural language
interface is that it introduces a sense of familiarity to users who may have otherwise rejected a system.

VL languages have an advantage because of comprehensibility and conciseness,

4.1. Limitations

Although there are many advantages to having a natural language interfaced coupled to a host
svstem. there are also limitations introduced. One of the limitations which occurs with all natural
language systems is the robustness of the natural language interprefation process. Limitations may be
introduced because of the form ot content of the expression. A form violation will occur if the user
supplies either a form which Is valid English but not part of the grammar definition or by using inwvalid
grammatical forms. A solution adopted by many natural language systems is to introduce a level of
semantis processing on top of the parsing process. PARALINC encades this process with rules embedded

within the grammar rule set or higher lsvel translation rules such as those in Section 3.5.4.

The content of the form may be limited because of the finite dictionary. Simply expanding the
dicticuary may not be a solution to a limitation of content. Often, the dictionary has to be very specific
about “he host system command set and the accepted vocabulary. It is often the case that the dictionary is:

not only specific to each host system but must also reflect individual domains within each system. In



16

practice, each dictionary may have to be highly tuned to each example and system. The goal of making a
general interface system for a sumber of systems was partially met through the use of a commeon
grammar. The PARALINC system as a whole remains in tact regardless of the host system. but the price

is paid by the DICTIONARY and the PRAGMATICS files.

Natural language does not solve all of the interaction problems of an interface. Consider the expert
system that has is decision rules generated using machine learning techniques. If the rules are to be
considered an aceurate representation for the decision class, the number of examples may be guite large.
When the examples are many and the rules have a large number of parameters, the na.-tui-a.l language

paraphrasing of all of the examples may be as tedious as creating the rules in the host system language.

Systems for database retrieval or interactive expert systems that tend to be highly interactive with a short
exchange of information at any one time are the best candidates for a natural language interface.
Examples have shown that the natural language interface did not dramatically reduce the amount. of input

but the input is in a form that is more {amiliar to a larger class of system users,

4.2. Future Directions

A logical extension to this system is to incorporate a natural language generation system. The
PARA system PARA, 1983/ was an initial attempt at this but a much more robust generation capability
can be created if generation works in harmony with the natural language recognition system. This
approach would allow both the recognition and generation systems to access the dictionary and the

associated annotations.

The addition of 2 word learning mechanism would add to the system’s robustness and friendliness.
The current approach escapes to the IDE component whensver a word is not known. An alternate
approach would be to mark unrécognized words at chart erzation time, but to allow the parse to proceed
in the hopes that the context, both syntactic ard semantic. can provide some information fer the

dictionary entry. As the dictionary grows, one would hope that more slots are automatically filled in.

Through various experiments with earlier versions of PARALING, it has been discovered that the

best interface for many systems should take advantage of both natural language and menu oriented inputs.
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The best separation appears to be at the system command and the input data levels, Future systems

should accommodate both forms of interaction.

n any natural language processing system there is always room [or improvement. The grammars
used by these systems can always be expanded and the ability to recognize incomplete forms can be made
more reliable. PARALINC is no different in this respect. Such additions would increase the reliability of
this system and make it an sven more attractive interface tool. Through the use of a common interface
and data representation approach, systems like PARALING may be the basis for future VL based systems.

A logical extension of a shared representation is a shared interface.
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