L LS mapp

THE ABACUS.2 SYSTEM FOR
QUANTITATIVE DISCOVERY:
Using Dependencies to Discover Non-Linear Terms

Gregory H. Greene

MLI 88-/7
TR-11-88

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

A publication of Machine Learning & Inference Laboratory
Artificial Intelligence Center

George Mason University

Fairfax, VA 22030 USA

(703) 764-6259

Editor: R. 5. Michalski
Assistant Editor: J. Zhang

ML! Reports rteplaces ISG Reports published until
December, 1987 by the Anificial Intelligence Laboratory
Department of Computer Science, University of Illinois
Urbana, IL 61801,

THE ABACUS.2 SYSTEM FOR QUANTITATIVE DISCOVERY:

Using Dependencies to Discover Non-linear Terms

Gregory H. Greene

Martin Marietta Corp.
Denver, CO 80222

MLI 88-17
TR-11-88

June 1988

This report is based on the author's Master Thesis completed in the I1SG group of the Department of Computer
Science of the University of Illinois at Urbanz-Champaign. The thesis is done under the guidance of Professor
R. S. Michalski.

THE ABACUS.2 SYSTEM FOR QUANTITATIVE DISCOVERY:

Using Dependencies to Discover Non-linear Terms

ABSTRACT

Research on inductive learning addresses the problem of formulating general concepts from
specific training events. The result is a system of concepts that can be used by the leamner to
handle new events. In most cases, the new knowledge is more compact and concise. There are
many different methods for generalizing a set of examples. Most of these methods can be
viewed as a heuristically-guided search through a space of possible concepts. Examples of
such heuristics include the closing interval rule, the climbing generalization tree rule, and the
dropping condition rule. These rules work well as long as the domain for the learning is
primarily symbolic. That is, as long as the description space for the examples consists
primarity of attributes whose values are either nominal or structure. But if the domain contains
much numerical data, as is the case in physics and chemistry, then these rules are not
applicable. Inductive learning within a quantitative domain can still be viewed as a heuristic
search, but the heuristics and the operators must be different than those in symbolic domains.
"1;16 resulting concepts are equations or empirical laws. Such leaming is called quantitative
scovery.

This report presents a methodology for quantitative discovery and describes an implementation
called ABACUS.2, which is an extension of the program ABACUS. The main results of this
research are the exiension of the power of ABUCUS to allow the discovery of non-linear
equations, the addition of curve fitting techniques, and a clustering algorithm.

ACKNOWLEDGEMENTS

I wish to thank Professor R. S. Michalski for his guidance and support. His suggestions
throughout the research were most helpful. I would also like to thank Heedong Ko for his
friendship, discussions in all areas of Al, proof reading, and contributing good ideas to this
report. I would also like to thank Bob Stepp for helping us maintain the equipment.

This research was supported in part by the Defence Advanced Research Projects Agency under
grant, administered by the Office of Naval Research, No. N00014-87-K-0874, in part by the
Office of Naval Research under grant No. N0O0014-88-K-0226, and in part by the Office of
Naval Research under grant No. N0O0014-88-K-0397.

1. INTRODUOTION

Machine learning is a field in Artificial Intelligence which attempts to develop
computational models of learning. There are many definitions of learning, Minsky states that
learning is making wsefsl changes in owr minds [Minsky, 1985), while Simon relates learning to
efficacy: learning denotes changes in the system that are adaphive in the senss that they enable the
system to do the same task or tasks drawn from the same population more effectively the nest time
[Simon, 1983]. While Simon’s definition is fairly functional, it does not seem to capture all of the
aspects of learning, particularly those cases where knowledge is acquired that does not improve
perforn.nnu. Mipsky's definition is not very useful from a computational standpoint - it's bard
to characterise useful changes. A definition that is more functional yet still general is: lurm‘ug-

is constructing or modifying representotions of what is being experienced [Michalski, 1088),

Given this definition, the task for scientists in machine learning is to develop models and
theories which can be used to build le_&ning systems. Nobody knows what & "complete” lwnir@
system will look like but it will probably be composed of many learning procedures, each one
employing a different strategy depending on the type of knowledge to be learned, the information
available, the representation of this information, the task, and so on. For example, if the
learning system knows that all men are mortal and that Socrates is a man, and if the task is to
decide if Socrates is mortal, then a deduetive procedure is sufficient to earry out the task. If, on
the other hand, the system knows only that Socrates is a man and that Tom, Sam and Bill are
all men and are mortal, then a procetinre for induction is needed, Other possible strategies
include rote learning, learning from instruction, and learning vis analogy [Michalski, 1986]. This

paper addresses one aspect of learning via induetion.

Research on inductive learning addresses the problem of formulating general concepts from

specific training events. The result is a mystem of concepts that can be used by the learner to

bandle new events. In moet cases, the new knowledge is more compact and concise. There are

many different methods for generalizing a set of examples, Most of these methods can be viewed

as s heuristically-guided search through a space of possible concepta’. Examples of such
heuristics inelude the closing interval rule, the climbing generalization tree rule, and the dropping
condition rale. These rules work well as long as the domain for the learning system is primarily
symbolic. That is, as long aa the description space for the examplea consists primarily of
attributes whose values are either nominal or structured. But if the domain contsins much
numerical data, as is the case in physics and chemistry, then these rules are not applicable.
Inductive learning within a quantitative domain can still be viewed aa a heuristic search, but the
heuristics and the operators must be different than those in symbolic domains. The resulting

concepts are equations or empirical laws, Such learning is called guantitative discovery.

To see the usefulness of quantitative discovery, consider the data in figure 1. The task for

the learner is to derive equations which fit? the data. In this case, the equation which fits the

2
dats i= !=P“g"coa(ﬁ]. This formula describes the centrifugal force parallel to the road resulting

r

from a vehicle traveling around & curve, an important factor in the design of highways. This
example shows many of the difficulties which can arise in quantitative discovery, ineluding noisy
data and irrelevant variables: e.g., length was excluded from the final equation. Finding such
unimportant variables i a key issue. Additionally, integrating symbolic information and finding
multiple equations need to be addressed. These will be discussed in more detail in following

chapters.

Exceptions to this are those method which use Ezplanation-based Generalization or Ezplanation-
based Learning [Mitchell, TM. et al,, 1086; DeJong, G. and Mooney, R., 1988]

3The term "ft", In 2 strict sense, means that the equation evaluates to = constant for all given events.
However, this definition is relaxed later to allow for uncertainty.

f z m v ¢ length
3221.6787 30 50 75 1.22 3.42
8121.7944 30 50 75 0.523 4.53
—4909.809 30 50 75 2.122 3.53
-3086.427 30 50 75 2.01 5.9
-2885.0676 20 48 b2 4.23 4,51
1883.0650 20 48 62 6.02 2.97
65649.0776 23 81 50 6.44 5.6
3927.5881 23 61 b0 7.22 3.12
27742074 20 30 44 0.3 4,20
3699.0632 20 40 44 0.3 5.33
-345.31102 27 48 53 1.684 427
300 20 3.956 40 0.324 . 6.1
500 493.6 50 9% 05 T 8908

Figure 1. Table of Data for Centrifugal Force Equation.

This paper presents a methodology for quantitative discovery and describes an
implementation called ABACUS.2, which is an extension of the program ABACUS [Falkenhainer,
1685; Falkenhainer and Michalski, 1986]). The main results of this research are the extension of
the power of ABACUS to sllow the discovery of non-linear equstions, the addition of curve
fitting techniques, and a clustering elgorithm. The mexi chapter discusses the important issues
that arise in quantitstive discovery. Chapter 3 describes related work, chapter 4 outlines the
methodology used by ABACUS.2, and chapters 5, 8, and 7 describe the specific implementation.
Chapter 8 presents some experimental results and chapter 9 concludes the paper and discusses

potential future work.

. ISSUES AND GOALS

There are many issues that affect the overall design of quantitative discovery systems. The
assumptions made regarding them can affect the performanee in real-world applications. This

chapter discusses these issues and briefly describes how ABACUS.2 deals with them.

3.1. Method of Discovery

An important consideration is the method used to construct the equations. There are »
variety of methods which have been explored, including curve fitting, dimensional analysis, and
regression analysis. Both curve §tting and dimensional analysis require extensive domain
knowledge which is not always available, especially in new domasins. Another method, called the
"two—dimensional” approach, has gained some support, particularly in AL This technique forms
pew terms from two previous terms by looking st the projection of events onto » plane. It can be
used in a heﬁristic pesreh to find the equation. This is the basis for ABACUS.2's heuristic search

algorithm.

2.2. Irrelevant Variables

Any learning system must be sble to disregard some information while focusing on the more
important information. In many applications of quantitative discovery, it is not yet known
which variables are important for the final equation and which ones are not. For systems to be

of any use in the real world, they must be able to make such distinctions,

2.3. Noisy Data
Data eannot be expected to be 100% accurate. There may be events which, for some reason
or other, may have incorrect values for certain variables, This is especially true with data drawn

from real experiments. This inaccuracy can be due to human error, intermittently faulty

equipment, or coarse measuremente. Although poisy data is a problem for all types of lesrning,

it is particulsrly bad in numerical domains.

2.4. Muliiple Equations

Aceording to Lagrange’s theorem, there exists a (single) polynomial of arbitrary precision
that fite the ;lata- However, there are some cases in which it is better to use two or more simple
equations, esch of which fit a unique subset of the data, than to use one complex equation. For
example, consider figure 2. The polynomial that fits the data is quite complex. A better solution
is to split- the data into two parts, one for those events with values of = in the range [0..5.0] and
one for those with values in the range {5.1..30.0], and to fit each subset. In this case, the equation

y = 5z fits the firat subset of events and the equation s + y = 30 fits the second subset.

15

10—+ [%

Figure 2.

To find multiple equations, ABACUS.2 uses an approsch which divides the original set of
events into subsets and attempts to find one equation for each subset, It uses information about
the behavior of the values of a variable, relative to the values of all other varisbles, to

hypothesise & clustering of the events.

2.5. Integrating Information From Symbolic Data

Systems for quantitative discovery should be able to use information from symbolic as well
as numerical data. Moet of the previous discovery systems, including those employing traditional
ltatiltiul' methods, ignored symbolic dats (or did ot allow it) (see chapter 3). An exception to
this ia ABACUS which used the symbolic data to form preconditions for each of the equations it
generated. ABACUS.2 uses this same approach. After generating the set of equations,
ABACUS.2 calls the inductive learning lilgorithm A" [Becker, 1985] to generate a disjunctive
cover for each equation. These covers indicate the conditions necessary for the corresponding
equation to be applied. In addition to using symbolic information o build preconditions,

ABACUS.2 uses it to help cluster the events,

2.8. Efficiency

Efficiency is a function of the background knowledge, the heuristics, and the discovery
algorithm. The purpose of the heuristica is to increase the efficiency of the slgorithm. An
uniformed search will eventually ind an equation that fits (unless it is a depth-first search) if one
exista but is of no help for non-trivial equations. ABACUS.2 uses a set of heuristies which look
at how values of one variable change with respect to other variables, Sinece heuristica are not
guaranteed to work, ABACUS,.2 employs a -nser—deﬁne.d depth limit to constrain the maximum

amount of search,

3.7. Bac.k;rou:.:ld Knowledge

Another lssue is just how much information is to be supplied by the user prior to
discovering equations. For example, techniques using linear regreasion can “discover” general
equations but they require extensive background knowledge — the general form of the equation
must be given a priori. Algorithms using an uninformed search require no background
knowledge at all but such algorithma sre too inefficient for serious eonsideration. Discovery
systems should become more efficient as more relevant information is provided’. ABACUS.2
allows the user to include certain optional information as background knowledge, such as the
units of esch varisble, candidate equation forms, and possible terms for the final equation.
Fut;ure work on ABAC-US.Q could allow the use of other optional information such as "possibly”

important and unimportant variables.

3Since efficiency is not & monotonically increasing function of the background knowledge, this will not
slways be the case.

3. RELATED WORK

Some of the first approaches to the problem of constructing equations was that of linear
regression, regression analysis, and dimensional analysis [Edwards, 1976; Daniel and Wood, 1980;
Chatterjee snd Price, 1977; Langhsar, 1951; Huntley, 1052]. The basic approach of linear
regression is to find values for the coefiicients of an equation form that "best” matches observed
values. A popular spproach to determine the values is the least-squares method. Regression
analysis uses linear regression to form the equation and then analyses the fit. It can suggest the
sddition of pew variables or the removal of irrelevant ones Dimensional analysis uses
information regarding the dimensions of physical quantities to derive equations, All of these
approaches require a fairly we_ll—uﬁdeutood domain to work, but if little is known about the
domain, they may produce erroneous results or simply not work very well. This is especially true
in dimensional analysis if variables are omitted that influence the phenomenon. Irrelevant
variablea may appear in the final equation in some cases. Also, these methods assume that one
equation fits the dats which can result in an overly complex equation. Noisy data can also

present problems a3 well.

The BACON series [Langley, Bradshaw, and Simon, 1985; Langley, Zytkow, Simon, and
Bradshaw, 1986], with the exception of BACON.8, builds equations incrementally by using a
heuristic search to form new terms. By looking for trends between two variables or terms,
BACON can postulate new terms. This allows it to build and test the equation incrementally.
BACON.4 was able to state conditions on symbolic variables and BACON.5 was able to learn
from symmetry. BACON.§ differs from the spproaches in the earlier versions in that the

equation form must be known a priori.

One of the main problems with BACON is that it is limited in the type of equations it can

discover (with the exception of BACON.S but its power comes from the fact that it is given the

form s priori) It canpot discover non-linear terms. Additionally, it cannot find multiple

equations which fit different subsets of the data.

Two approaches similar to dimensional analysis and linear regression are those used by
Kokar and El-Shafel. El-Shafei's system HOTEP [El-Shafei, 1988] uses regression analysis to
form the desired equation. He also uses dimensional analysis to help ensure dimensional
homogeneity. Kokar's work on COPER [Koksr, 1086] attempted to address some of the
problems with dimensional snalysis, His system can detect missing variables by checking a
condition of complete rekt-mucc and if it is violated, then new descriptions are generated. It can

also find and discard irrelevant variables.

Neither of these approaches allow for multiple equations. They will derive one equstion, no
matter how complex it is. Also, they do not use information from symbolic data which can be

important in many expenments.

ABACUS uses an approach for discovering equations similar to the one used by BACON. In
addition, it is able to discovery multiple equations and use symbolic data to derive preconditions
for each of the equations. Many of the problems that ABACUS faces are the same ones faced by
BACON. The type of equations it can discover are those of the form f(z)=constant, where f(z) is
composed of varisbles combined using the operations multiplication, division, addition, gd
subtraction. The only way it can discover non-linear terms is in those cases where it can find 8
trend between two variables. For example, to generate y=z", most of the values for z must be
either >0 or <0, but not both. Also, in order to discover multiple equations, ABACUS relies on
symbolic dats. Each time it generates s new term, it tests the term to see if it fits events which
belong to the same nominal subgroup. A nominal subgroup is a set of eventa which have identical
values for all nominal (symbolic) attributes. If so, the events, associated with the corresponding

equation, were removed from further consideration. The problem with this approach is that it

relies on symbolic data which is not always available. Additionally, it divides the evente during

the search. If this was done before the search, curve fitting techniques could be used to help find

multiple equations.

10

4. ABAOUS.3 METHODOLOGY

There are two techniques used by ABACUS.2 to comstruct the equations, If the user
ineludes in the data a set of equation forms, then it uses tiu least~-squares method to determine
the coefBcient values for each form and then measures the resulting equations, If one exceeds a
user—defined parameter, then the process stops. If there are no equation forms, or if the curve
fitting approach fails, then ABACUS.2 uses an approach similar to that used by ABACUS and
BACON with the exception that it has more powerful heuristics. This approach is to repeatedly
create new terms based on trends between paits of variables or terms generated from previous
iterations until one of the new terms evaluates to a constant for s user—defined percentage of the
events. Co;:'si'der-the simple graph in figure 8. Given data -eorrespo'nding to the graph, ABACUS.2

would find that since the values of = tend to incresse as the values of y decrease, the term

Figure 3.

11

gy=constant OF R+ym=eonstont might be important in the final equation. In this case, s-+y

evalustes to a constant for most of the events so this equation would be outputted. More

complex equations are built up over many iterations. Given data for the equation '."l=couiml,
¥

ABACUS.2 might first create the term — after noticing that the values of = tend to increase as
' .

the values of y increase. The next iteration, it would find that the values of = tend to decrease
y

as the values for = increase and assert the term L. Since this term evaluates to a constant, the
d y

algorithm halts.

This technique of searching for trends between p;in of vniablés. works well as long as such
trends actually exist. But in cases where there are pon-linear terms, it is not possible (in most
cases) to check to see whether one variable's values increase or decrease whenever another
variable’s values increase (or decrease). For example, in the equation y=z", the values for y tend
to decrease 8s the values for s increase when z<0 but the y values increase when 2>0. In this
case, nothing can be concluded regarding the overall trend. ABACUS.2 solvea this problem by
approximating the derivative of the trend. In the example y=2, it would see that there are two
different trends, one when z<0 and one when z>0. It uses this observation along with other
information to hypothesise the existence of the term z* in the final desired equation. Chapter 6

discusses this new approach in more detail.

4.1. Monotonic Dependencies

The power of ABACUS.2’s ability to discover equations comes from the use of monotonic
dependencies, & term which describes the behavior of the values of one variable relative to the
behavior of the values of another variable. Consider the examples in figure 4. The first example

shows that the values of z increase as the valucs of y increase for most of the events. In this

12

N
N

(w) (b)

Figure 4. Examples of different monotonic dependencies.

case, we say that z is approzimalely positively monotonic to y. In the second example, the values
of z tend decrease as the values of y incresse implying that =z is approzimately negatively
monotonic to y. More formally, z is approximately positively monotonie to y if, for a certain
percentage of the events (determined by the user), the values of = increase (decrease) when the
values of y increase (decrease). Similarly, = is spproximately negatively monotonic to y if the
values of z decrease (increase) when the values of y increase (decrease) for a certain percentage of
the events, This paper uses the terms amon ' (z,9) and amon(z,y) to refer to approximately
positively and negstively monotonic, respectively. Note that nmou*(z,,) ~ amon'(y,3) and
amon (z,y) ~ omon (y,z),

Referring to the example in figure 4¢, since it appears that for about the first half of the
events the dependency is amon(z,y) and the second half it is amon(z,5), what can be said about
the dependency for all of the events? Note that there seems to be two types of dependencies: the
locol dependency and the overall or global dependency, As the terms suggest, the global

dependency refers to the dependency for all of the events while the local dependency applies to &

13

subset of the events. Looking at figure 4¢, it is easy to see that in terms of the loeal
dependencies, for & = (0..7] we have amon'(s,y) and for £>7 we have emon”(s,y). The global
dependency is neither positive or negative. The term -amon(s,_')‘ is used to refer to this

situation. The distinction between global and local dependencies becomes important later on.

When there ate more than 2 variables involved, the task of finding the dependencies is
slightly more dificult due to the fact that one variable can be affected by more than one other
varisble. Suppose that there are 3 variables involved, s, 5, and 5. To caleulate the dependency
between = and y, the influence of » must be taken into sccount. ABACUS.2 solves this
interdependence problem by considering only groups of eventa in which the values of s are
constant for each group. For example, consider the following data for variables 2, y, and 5:

event =z ¥y f

1 34 09 123 ,

2 48 1.2 123 -

3 1.2 8.0 2.9

4 0.8 8.5 1.7

5 01 213 187

6 120 28.7 167
I we want to find the dependency between z and y, we would place the events in groups in which
s is constant. There sre two such groups: (eventl, event2) and (event5, eventB). The events 3
and 4 cannot be placed in any group since s is not constant. From these two groups, we can see

that the dependency is amon*(z,y). If no group exists, then amon' (z,y) is asserted indicating that

nothing can be said about the dependency.

In the general case, ABACUS.2 must hold all varisbles constant except for those in the
ezelusion sct when caleulating the dependency for any two variables, The exclusion set consiste
of the two variables whose dependency is being calculated and the subcomponents of these two

variables. The subcomponents ‘of- a variable are the user—defined variables which compose it. It

14

would not make sense to require that the subcomponents be held constant. Additionally, the
user can specify a set of varisbles which must be held constant, There are cases where holding
some user-defined variables constant will prevent ABACUS.2 from finding the desired equation.
This set is added to the exclusion set. As evident in the above example, ABACUS.2 must sort the
events before it can calculate the dependency. To do this, it sorts using a multiple key defined as
follows: let z and y be the pair of variables whose dependency we desire, EXSET be the exclusion
set, and TVARS be the set of all variables. Then the key = {TVARS—EXSET, s, y}. Sorting
the events by this key places those events which have constant values for all variables except

those in the exclusion set next to each other.

4.2, System Overview

There are 3 main components of ABACUS.2: clustering, equation discovery, and the
covering algorithma, The first one is the clustering algorithm and its job ia to divide the events
into subsets depending on the dependencies and the symbolic data, As stated before, the goal of

the clustering algorithm is to group the events into subsets such that each subset corresponds to

N
CLUSTERING| | PQUATION ACCEPT _Y .| DERIVE |EQUATIONS.
—7| ALcoRITRM| | DR EQUATION! COVERS | oovERS

Figure 5, System Overview,

15

one equation and that the set of equations resulting are more comprehensive than the equation
formed if no clustering was performed. A mutually exclusive and exhaustive grouping of the
events in called s cluster. Esch subset is passed on to the second component: the equation
discovery algorithm. This algorithm outputs s list of equations, possibly empty, which fit the
events in each subset (at most one equation per subset). If the list is of ﬁle 2 or more, the
inductive learning algorithm A" is eslled to develop the covers for the equations and the
equstions alo'i:,g with their preconditions are returned. However, if the list of equations is empty,
then the process is repeated using a new cluster. Figure 6 shows the overview of the system. The
user has several options which affect the flow of control, including "turning off” the clustering
component and c;.l]i.ng the dia_c-overy algorithm on each ofl the remaining clust;er'i. These options

are discussed in a later section.

16

5. OLUSTERING ALGORITHM

The clustering algorithm is used to split the original event set into subsets in such a way
that there exists one "comprehensible” equation for each subset. It generates a set of possible
clusterings and tests each ome. To illustrate the approach used by the clustering algorithm,
consider the graph in figure 2 again. In this example, the local dependency for the points =<5 is
amon*(z,y) but for the points 5<s<30, it in amon (s,y). This seems to indicate that it might be
better to attempt to fit one equation for the events in which §<2<30 and another equation for
the other events. ABACUS.2 looks for changes in the dependency to help it decide how to split

the events.

The main approach of the clustering algorithm is to form subsets of e'l;enta for ea;eh- pair of
variables (s,y) such that the events in each subset have the same dependency between z and y.
Besides using these elusterings as candidate subsets, the algorithm also generates another
clustering which uses Mormatibn from the previous ones. The result is a list ;f candidate

clusterings. The clustering algorithm is described in figure 6.

5.1. Forming the Initial Clusters

ABACUS.2 builds a list of capdidnte clusters by firat splitting the events into groups for
each pair of variables based on changes in the local dependencies. For each pair of variables
(z.y), ABACUS.2 sorts the events according to the multiple key sort described previously
("projecting” the events) and then it splita the eventa into groups in such a way that the events in
each group have the same values for all variables not in the exclusion set. Splitting the events in
this manner results in a set of groups in which the only changes sre those of z and y, thus
removing any effect of the other variables. Then it finda the dependency for each group, stores it

with the group, and builds a structure called a projection which contains all the groups

17

1. For each pair of variables (x,y), do:
1.1 "Project” the eventa onto & 9 _dimensional plane with x

and y axes.

1.2 Split the events into groups, where sach group contains
events which have the same values for all variables not
in the exclusion set. Calculate the dependency of each
group and store the groups in a structure called a
projection.

2. For each projection, do:
2.1 Merge aa many groups together as possible.
2.2 Call A" to find a cover for each group. _
2.3 Add to each group any "unclaimed” event which satisfies

its cover.
3. Build the group support graph.

4. Use a form of the greedy algorithm to choose the best groups
based on the group support graph. Add these groups to a new
projection.

5. Return an ordered list of the projections.

Figure 8. Clustering Algorithm.

corresponding to (z,y). Thus, a projection might look like;

(PROJECTION :NAME (X Y)
:GROUPS {(GROUFP :NAME G2
:AMON emon"(z,¢)
:EVENTS (E1 ES ...))
)

Each group is stored in a structure which includes the pame, the dependency, and the events.

The projection pame is simply the list of the two variables involved in the projection. Because it

is not always possible to place all the events into a group such that all the appropriate variables

18

are held constant, there is usually a fair number of events which are not included in any group

for a given projection. This problem is addressed later.

5.2. Merging the Groups

After building projections for all pairs of varisbles, ABACUS.2 merges the groups in each
projection. The purpose of the merging is to avoid the situation where there are two adjacent
groups which have the same dependency, Two types of merge algorithms were tested:
conservative merge and liberal merge. Conservative merge merges two groups if and only they
have the same dependency and there are no "unclaimed” events in between them (by "unclaimed”
we mean an event which has not been placed in a group). Liberal merge requires only that the
two groups have the same dependency. As its name suggests, liberal merge will combine more
groups than the conservative merge and empirical results indicate that the former is the better of
the two. It may result in incorrect merges due to the lack of information about the df.'pendancy
of the events in befween the two groups which have been merged, but this is an’ scceptable

inductive leap — adding more events ean remedy this.

At this point, each projection can be interpreted as a cluster of events, where each cluster
indicates a change in the global dependency. However, the projections were formed atrictly c;n the
basis of numerical information. Many times it is helpful to complement this spproach with
information gained from the symbolic data as well. ABACUS.2 uses information from the
symbolic data to help add more events to the groups by passing each projection to A' which
forms covers for each group in the given projection. Each cover is formed by considering one
group as the positive events and all other groups as the negative events, ABACUS.2 uses these
covers to determine which group the "unused” events belong to. Chapter 7 discusses the A"

algorithm and its use in more detail.

18

E.3. Oreating the Global Projection

ABACUS.2 could simply use the current list of projections as the possible clusterings.
However, each projection uses information only from the bekavior of the dependency between 2
variables. To use information from all of the varisbles, ABACUS.2 forma & group support graph
which allows it to use a form of the greedy algorithm to create a "global” projection. A group
support graph shows the "support” that a particular group from & projection has from the other
projections. The nodes are the groups and the links indicate the amount of support one group
has from another group. For each group G," in the kih projection, ABACUS.2 finds the "best”
group G in each of the other projections and creates a directed link from G,* to 0. The "best”
group contains the greatest number of events in common with G,‘. Each link is labeled with a
number indicating the percentage of intersection. A high percentage implies positive support.
There ie also s flter which prevents any links from being created if they are under a certain
user—defined percentage. Therefore, if the percentage of intersection between the current group
and the corresponding "best” group in another projection is below a threshold, then no link is
created. This filter has s large influence on the resulting global projection as will be shown.
Figure 7 gives an example of & group support graph for 3 projections.

At this point, each group has <p-—1 links, where p is the number of projections. The
average of all the percentages of the links from a group is an indication of the global support.
That is, the average indicates how much support exists from the otber projections for the
hypothesis that the group should be included in the final clustering. Therefore, the next step is
to sort all of the groups in the support graph in decreasing order of support, that is, average link
percentage. Since there will probably be several groups which have events in common with each
other, ABACUS.2 starts st the beginning of the List and removes all groups which have any

events in common With one of the groups in the list before it. This assures a set of mutuslly

FROJECTION ...

sestEpANSRERESRANAN N
-

PROJECTION 3

- .
R L AR R R LR SETAARENFERRRRRARSsRRSASERLR RSN NSRS

PROJECTION 2

Figure 7. Example of a Support Graph.

exclusive groups of eventa,

Referring back to figure 7, we can see that there seem to be strong links between groups
G4/G10 and G2/G5 and weak links between all others. Intuitively, this implies that the global
projection should have 2 groups, either (G4 G2), (G4 G5), (G10 G3), or (G10 G2). However, this
depends on the strength of the filter. Consider the support for eack group when the filter
strength is 0% (no filtering) and compare that to a strength of 30% (links whoee percent

intersection is < 30% are not allowed):

filter=0% filter=30%

SUPPORT(G1): 295 295
SUPPORT{(G2): 840 840
SUPPORT(G4): 460 800
SUPPORT(GS): 550 550

31

SUPPORT(GT): 510 510

SUPPORT(G10): 500 860
SUPPORT{(G) is » function indicating the sverage of all links leaving vode G. The main
difference between the two filter levels is that the support for G4 and G10 increase drastically
when the filter is changed from 0% to 30%. The order of decreasing support for the nodes in the
first case in G2, G5, G7, G10, G4, and G1. However, with the higher filter, the order for the
nodes would be G10, G4, G2, G5, G7, and G1. This illustrates the necessity for the filter and
shows how different levels can alter the final "global” projection. Currently, the filter level is set

to 50%, which appears to be sufficient based on empirical results,

ABACUS.2 now has s list of projections of le;;sth P41 one from each pair of variables and
one from the support group graph. One important point needs to be brought out. The
clustering algorithm builds clusters by looking for changes in the dependencies. However, the
beuristics for generating non-linear terms look at these changes to decide if such terms do exist.
If the events are split up such that the dependencies do not change, then these heuristics will not
work. ABACUS.Z creates one more projection which contains ol of the events and includes that
in the list which is passed to the equation discovery component. This allows for the discovery of
pon-linear terms. Future research should address this problem. One possible solution is
discussed in chapter 9. The final step is to order them. This ordering depends on the values of
some of the user-definable parameters but the default order is the global projection first, then
the projection which contains all of the events, followed by all vther projections, in the order that
they were created. Once they are ordered, the projection list is passed on to the equation

discovery component.

22

8. EQUATION DISCOVERY

ABACUS.2 relies on two methods to discover equations: curve fitting and heuristic search.
The curve fitting method employs the least—aquares algorithm and is used whenever the user
inputs a list of candidate equation forms. The heuristic search is used if o such forms are

provided or if the eurve fitting algorithm fails.

ABACUS.2 takes the first clustering (projection) created by the clustering algorithm and
attempts to ﬁt‘one equation for each group (subset) of events. If the user includes in the data a
list of equation forms, ABACUS.2 uses the least-squares method on each form with the current
group. It then calculates the constancy, the percentage of events in whick the eql_utiqn evaluates
to & constant. If this value exceeds the user-defined amount CONSTANCY, then the equation is
"linked” to the group and the next group ia tried in the same fashion. If none of equations result
in & constancy which exceeds this amount, then ABACUS,2 stores the equation with the highest
constancy and uses the heuristic search algorithm on the current group. If this method generates
an equation whose constancy ia greater than CONSTANCY, then the next group is processed

using the procedure above. Otherwise, the equation with the highest constancy is outputted.

Note that since ABACUS.2 assumes that ome equation is supposed to fit each subset,
recognising the goal is trivial. This assumption allows the use of curve fitting techniques -
something which ABACUS was not able to allow. Both the curve fitting and the search method

are discussed in more detail in following sections.

8.1. Domain Independent Constraints '

ABACUS.2 employs 3 domain independent constraints to increase the efficiency of the
search (the same three used by ABACUS): unite compatibility, formula redundancy, and

numerical tautologies. These provide simple constraints which drastically reduce the search

space yet are implemented in such a way that they cost very little in terms of time.

6.1.1. Unite Compatibility

This constraint requires that two variables’ unita be "compatible” before they are used in
the creation of a new variable. For example, & seconds can not be subtracted from y meters. In
geveral, when two variables are involved in addition or subtraction, their units must be equal.
ABACUS.2 can sometimes coerce the units of two variables to be equal. For example, one of its
heuristics generates the term =™ + 5. Given two variables < and &', ixj, if there exists values
for m and n such that im = jn, then the term ™ +o'" can be saserted (see the section of

"Search” for more details on the heuristics).

8.1.3. Formula Redundancy

Another constraint is that a term must be unique before it can be generated. There are

situations where & newly generatéd-term can be syntactically unique but semantically identical to

snother term. For example, = is semantically identical to [i] [i} To avoid this problem, &
¥y

canonical representation is used such that semantically identical terms are also syntactically
equal. Since ABACUS.2 stores each term in a hash table, checking for redundancy is » one-step
operation involving an sccess operation. The eanonical form is given by the grammar in figure 8
and a term represented by the grammar is called 2 form. Generic forms are used to represent
user—defined variables. Regular forms are used to represent multiplicative or additive relations.
I toh;. type of & regular form is "/", then all of the variables in each side are multiplied together.
If the type is "-", then each side is added together. Trig forma represent trigonometric forms and

only 1 side is used. Here are a few examples illustrating the interpretation of forms:

a4

FORM ::= REGULAR-FORM | GENERIC-FORM | TRIG-FORM

GENERIC-FORM ::= (NIL (ID) NIL) _

REGULAR-FORM ::= (REGULAR-TYPE LEF T-FORM-SIDE RIGHT-FORM-SIDE)
TRIG-FORM ::= (TRIG-TYPE LEFT-FORM-SIDE NIL)

REGULAR-TYPE u="/"| "-"

TRIG-TYPE == "SIN" | "CO8"

LEFT-FORM-SIDE ::= (FORM-LIST) | NIL

RIGHT-FORM-SIDE ::= (FORM-LIST) | NIL

FORM-LIST ::= ID FORM-LIST | ID

ID ::= varisble name | form name

Figure 8. Form Grammar.

ey) (o d) = 2
(-(z93)(a b)) = (z+y+35)—(a+8)
(sin (NIL (=) NIL) NIL) +» sin(z)

(sin {~ (zy) NIL) NIL) & sin{zy)

To insure the detection of redundancy, ABACUS.2 requires all forms to be in the sums—of-

products format.

8.1.8. Numerieal Cancellations

When combining terms to create new terms, there is the possibility of creating a new term

which either is a tautology or contains a partial cancellstion. ¥For example, multiplying R by
¥

L results in - which is, of course, equal to 1. Such a result does not contribute much to the

zy xys

discovery ¢.:rf scientific laws. Also, multiplying x by £ results in & partial cancellation and causes

yE

inefliciencies in the search.

26

forml * form2:
1) TYPE(forml) € {/, NIL} & TYPE{form2) € {/, NIL} &
[LEFT(form1) N RIGET(form2) V RIGHT(form1) N LEFT(form?2)|
2.) [TYPE(form1) = "-" v TYPE(form2) = "-"] & TYPE(form1) # TYPE(form?) &
[(V item € sum-form (LEFT(product-form) N RIGHT(iterm))) V
(V item € sum-form (LEFT{item) N RIGHT(product—form) V
item € RIGHT(product-form)))|

forml /form?2:
1) TYPE(form1) € {/, NIL} & TYPE(form2) € {/, NIL} &
[LEFT{form1) N LEF T(form?) v RIGHT(ferm1) N RIGHT(form2)]
2.) [TYPE(form1) = "-" V TYPE(form2) = "-"] & TYPE(form1) # TYPE(form2) &
[(V item € sum—form (RIGHT(product-form) N RIGHT(iterm))) vV
(V item € sum—form (LEFT(item) N LEF T(product~form) V
item € LEFT(product-form)))] -

forml + form?2: _
1.) TYPE(form}) € {~, NIL} & TYPE(form2) € {-, NIL} &
[LEF T(form1) N RIGHT(form2) v RIGHT(form1) N LEF T(form2)|
2.) [TYPE(form1) = "/" vV TYPE(form2) = "/"| & TYPE(form1) # TYPE(form2) &
product-form € RIGHT(sum-form) '

form1 — form?2:
1.) TYPE(form1) € {-, NIL} & TYPE(form2) € {~, NIL} &
[LEF T(form1) N LEFT{form2) v RIGHT(form1) N RIGHT(form2)]
2.) [TYPE(form1) = "/" v TYPE(form2) = /"] & TYPE(form1) # TYPE(form2) &
product—form € LEF T(sum-form)

where sum—forin = form whose TYPE = “-" and product—form = form whose TYPE = A

Figure 9. Tests for Cancellations.

ABACUS.2, like its predecessor, does not allow the creation of terms which result in one of
more cancellations, Since all forms are represented in sums—of-producta format using the form

grammar described previously, checking for such situations involve a simple logiczl check,

depending on the type of operation performed. Figure 9 shows the tests. If any are true, then

the operation is not allowed. Note that trig forms do not require special checks for cancellation,

8.3. Heuristic Search Method

This method is basically a search for constaney. The algorithm simply creates new terms

based on a set of heuristics until the resulting constancy exceeds CONSTANCY. There are

sctually two different types of search algorithms, the dependency groph scarch! and the

suspension search. These are described in more detail later.

8.2.1. Heuristics

ABACUS.2 uses the following 4 heuristies. The first two are the same ones used by
ABACUS and the last two form the heart of the creation of non-linear terms during the search

process:

If the global dependency is omon*(z,y), then
create a variable consisting of the quotient of z and (8.1)
create variables consisting of the difference of z and y

If the global dependency is smon (z,y), then
create a variable consisting of the product of = and y (6.2)
ereate variables consisting of the sum of = and y

If #AMON,,,.,(:,,;- 2, then
if amon¥(s",g) or smon (5 y), create g (6.3)
if amon*(y’,2) or amon"(y',2), create y

if amon *(cos(2),y) or amon(cos(z),y), create cos(z) . (6.4)
if amon (cos(y),z) or mon:(eol(y),sj, create cos(y)
if amon *(sin(x),y) or emon(sin(z),y), ereate sin(z)
il amon*(sin(y),z) or amon ~(sin(y),s), create vin(y)

“This algorithm is also ealled proporifonality graph search in [Falkenhainer, 1985). The reason for the
change is that Falkenhainer used the tarm proportionality instead of dependency. We feel that dependency
i & more appropriate term. Similarly, we use the term dependency graph instead of proportionality

graph.

ar

The frst two rules create terms such as g + ¢, 5 + ¢, and 2" — y", for a,m<d. In rules (8.3)
and (8.4), #AMON, .(x,y) is the number of different local dependencies (after merging) for the
(s,9) projection. This is & mesasure of how many times the local dependency changed. The
interpretation of (8.3) is that if the number of different local dependencies is 2, then the terme 2
and y* might be important terms in the final equation However, ABACUS.2 makes one more test
before asserting these terms. It checks to see if it can establish a positive dependency between
¢ither =* and y or y' and s. I so, it asserts the corresponding term. A similar interpretation
exists for (8.4).

To get a better ides of how these rules work, consider the graph in figure 10. ABACUS.2

has found that the dependency changes 3 times. Acéording to (8.4), it then checks fo pee if there

negative

p_ocitiﬂ\-\ N /

Figure 10. Checking for the Term sin(z).

is a positive dependency between y and sin(s), which there is. This allows it to assert sin(s).

The last two heuristics take the two-dimensional analysis of ABACUS and BACON one
step further: instead of looking only st the global dependency which provides a very coarse view
of the real behavior between two variables, look at the changes of the local dependencies which
provides & more fine measurement of this behavior. An analogy can be made between the use of
local dependencies and the graphical analysis used by mathematicians to assist in the discovery of
equations. In graphical analysis, a graph is created (usually two-dimensional) which allows one
to note the potential existence of certain terms. Rules (8.3) and (8.4) are approximations to this

method. Chapter 9 discusses poasible extensions to this method.

8.2.2, Dependency Graph Search

The first search method that ABACUS.2 uses ia the dependency graph search. This method
is useful when the desired equation is composed solely of multiplication and division. As the
Dame it_upli'es, it uses a graph called a dependeﬁcy graph to direct the search. A dependency
graph G is an ordered pair (V,E), where V is the set of variables and E is the set of edges. The
pair {z,y) is in E if and only if the global dependency is amon’*{z2,y) or smon (s,y). The ma.'ﬁ:l
purpose of creating such a graph is to find & list of maximal cycles. A maximal cycle is a cycle
which is not a subset of some other cycle. Each cycle represents a set of varisbles which are

probably strongly interrelated. Thus, irrelevant variables tend to be excluded from the cycles.

For example, consider the equation i;- constant Holding any two of the variables
3 :

constant and varying the third causes the fourth varisble to change in a systematic way. This is
true regardless of which variables are held constant. One of the cycles in the graph would be
{s.y,5,0,0}. If there were irrelevant variables, they would form other cycles as well. Consider

one possible dependency graph when the irrelevant variables ¢ and d are included, shown in

figure 11. The set of maximal cycles sorted in decreasing order of size is { {z.,9,5,8,0}, {e,b},

{y,d})}, This example shows how irrelevant variables tend to not be included in the large eycles.

The dependency graph search uses the graph to extract the maximal cycles, Once these
cycles are obtained, it sorts them in decreasing order of sise since the larger cycles are the most
promising, For each cycle, ABACUS.2 performs a depth-first search with backtracking. If po
equation can be found after trying all of the cycles, then a new dependency graph is constructed
where V consists of all the current variables, including user—defined variables and those genersted
by the program, and the new maximal cyclull are extracted again and the process repeats (up to a
maximum of four times). Since this search is depth first, in the example above, one possible

order of creation is 2y, 3'1, ﬂ, and %. Note that the maximum depth of the search ia the size

of the cycle.

If, when ABACUS.2 is building the dependency graph, It finds that one of the rules (6.3) or

(6.4) are applicable, it will add any new terms created by these rules to the graph. For example,

Figure 11. Example Dependency Graph.

?
T cos(f), It found that rule (6.4)

r

when it was given the data corresponding to the equation f=

generated the term cos(f) and (6.3) created the term o*. It then added cos(?) and o to the graph,

1 1
After building the graph, the equation was formed by first generating me’, then -) = cos(#);

r r

3
me

and finally —cos(#).

¢

As poted above, the dependency graph search takes advantage of the assumption that the
desired equation is composed only of multiplication and dﬂhion since these typea of equations
nat,u-ra!ly fit into the concept of the dependency graph. However, if this assumption does not
hold, then this search is not well-suited to distovering equations. The main problem stems from
the fact that as new graphs are formed from the current varisbles, the resulting cycles tend to be
large since there are many terms which differ only by ome or two variables. This causes

increasingly larger interactions and thus larger cycles (that is why there is a limit of four graphs).

8.2.3. Suspension Search

Due to the problems described above, s new search is used if the dependency graph search
fails to generate the desired equation. This search is a modification to the suspension search
algorithm used in ABACUS. The suspension search algorithm is basically & beam search with
backtracking. At each level of the search, the nodes are divided into two groups, one consisting
of active nodes and one of suspended nodes. The active nodes are those whose constancy exceeds
s threshold. When entering the next level, the suspension search includes only those podes which
are active (which includes the active nodes from all the previous levels). ‘The suspended nodes are
stored in an environment for backtracking later, if necessary. If no equation has been found in
which the constancy exceeds CONSTANCY by the time the depth limit has been reached, then

the search backtracks to the previous level and ineludes the suspended nodes for that level, along

31

with all the current nodes, in the search. If the search fails again, then it backtracks again to the
pext previous level, and so0 on. A filter is used which prevents the use of suspended nodes after a

user—defined level. The flter depth must be less than the depth limit.

ABACUS.2 uses a modified suspension search algorithm. If a non-linear term is created on
an arbitrary level, it calls the dependency graph search algorithm on the new non-linear term
along with the original user—defined variables. Any new nodes are added into the current level's
nodes and the suspension search continues. The reason for this modification is that non-
linearity can make it hard to find trends between some of the user-defined variables. So,
whenever a new non-linear term is created, it helps to check the trends between the user-defined
variables and the new non-linear variables. This was the case when running the data i'or.the_
“instantaneous current” example (see chapter 8). Figure 12 shows the basic algorithm for the

suspencion search.

6.3, Curve Fitting

ABACUS.2 uses the method of least-squares whenever the user inputs a set of equation
forms. It tries each form on the current set of events until one i= found which meeta the criteris.
The specific algorithm is based on Sedgewick’s [Sedgewick, 1983 algorithrn. In this method,

given an equation form f(s)=¢,f (2)+eafa{2)+ * * - +2. S (5); the goal is to find the "best” choice

N
for the coefficients ¢, ...¢, by using the least-squares eriterion. Let E= E(f(z)-y,;)", where N is
Jwil

the total number of events and y, is the observable value. E is the sum of the squared errors and

the goa! is to choose the parameter values that minimize E. In the case where M=2 and N=8,
E=(eyf \(z,H¢4f 5(2,)~ l:)’

+eyf (23)4esf s(’s)"'l‘s)
+{eyfy(zg)lreyf z(“l}-h)

o If the search limit has been reached, then if the best constancy exceeds the user-defined
parameter CONSTANCY, return true else return false.

o Cenerate new sctive or suspended nodes. If one of the new nodes is & non-linear term, then
call the dependency graph search and combine the nodes generated from it with the new ac-
tive and suspended nodes. If the constancy of the new nodes exceeds CONSTANCY, return
true else return true if a call to the suspeasion search returna true.

e If the filter limit has been reached, then save the environment, and return false.

o, Generate new active or suspended nodes from the current list of suspended nodes. H one of
the new nodes is a non-linear term, then call the dependency graph search and combine the
nodes generated from it with the new active and suspended nodes. If the constancy of the
new nodes exceeds CONSTANCY, return true else return true if a call to the suspension
search returns true. :

e return false.

Figure 12. Suspension Search Algorithm,

In the general case, the first step is to calculate the function component vectors

Fo=(f y(x 0] s(2eonsd 1(2x))s
Fy=(/4(2:}]) § alzn))

_ F ;’Uu(ﬁ]’f selg)reennd ae(x)):
Then Gaussian eliminstion is used on an M-by-M linear system of equations Ac=b, with
a,;=F, °F; and b;=F,°Y, Y=(3, 7, _¥y) Referto [Sedgewick, 1983] for more details.
The geperal procedure for processing equation forms is to try each form on the current
subset until one i& found in which the constancy exceeds the threshold, _lf one such form exists,
then the next subset is tried in a similar fashion. If, on the other hand, no "acceptable” equation

exists, then the equation with the highest constancy is saved and the heuristic search algorithm is

called. If it produces an equstion whoee constancy exceeds the threshold, then the search for the
current subset is finished. Otherwise, the equation with the highest constancy is returned. This
process allows a smooth integration of standard linear regression techniques and the heuristic

search method.

a4

7. DERIVING THE PRECONDITIONS

As mentioned earlier, ABACUS.2 uses A for two purposes, One is to help build the
clusters and the other in to generate a set of preconditions, one for each equation, when multiple
equations exist. These preconditions specify the spplicability of the equations, The objective for
both cases is to generate a set of class deacriptions called covers. The problem of generating a set
of covers is called the sef covering problem [Michalski, 1975]. The general problem can be stated

n:.
e Given a set of eventa which have been divided into classes,

¢ Find a description for esch class such that the description includes the eveats for the

corresponding class and distinguishes it from all other classes.

The set of such descriptions is ealled a discriminafing descriplion since each cover

discriminates its elass from all other classes.

7.1. A" Algorithm

There sre two main algorithms in A", The first one, called Cover, generates a cover given &
set of positive instances and pegative instances. The second, called Star, generstes s list of
maximally general complezes which do not cover any negative events. A complex is 2
conjunetion of attribute values such as color=red & size=big & shape=round. The function Cover
works by selecting an event called the seed and calling Star with the seed and the negative events
to generate the list of complexes. Then it picks the complex from this list which has the highest
preference, according to the preference eriterion LEF. It removes from consideration all positive
events w;ered by this complex and repeats the process again until there are no more positive
events remaining. The result of Cover is a disjunction of complexes which cover all the positive

events and none of the negative eventa.

The Star algorithm is the heart of A'. Given s seed event and the negative events, it
generates & star G(s|NEG,m). ¢ is the seed, NEG is the set of negative events, and m is an
upper bound on the number of complexes allowed during the search. To generate the star, it
performs a beam search through the space of alternative generdi.utiom. A generalisation
operator, called ExtendAgainst, is used to help create the complexes. ExtendAgsinst(p,n) works
by comparing an attsibute value p from s positive event with the corresponding attribute value n
from the negative event and generalising p as much as possible without covering n. The actual
generalisation depends on the type of attribute. For nominal attributes, ExtendAgainst(p,n)
extends p by adding all values except those in n. For linear and structured attributes, the
process is more complicated but it is based on the same idea as that used for mominals (see

[Becker, 1985] for more details).

Using the ExtendAgainst operator, Star first randomly selects a negative instance and
extends the seed agsinst the negative instance. This returns a list of candidate complexes. This
list is appended to (multiplied) t@e complexes in the current star to prevent any of them from
covering the current negative event. The ExtendAgainst operator is called for each negative
event. During this phase, if G(¢| NEG,m) ever exceeds m, then the complexes are ordered (using
LEF) and the best m are kept. When all of the negative events have been processed,

G{e| NEG,m) is returned.

7.2. Using A to Build Preconditions

ABACUS.2 uses A" to generate preconditions by creating a set of classes where each class
consists of the events for a particular equation. For example, one of the experimente used in
ABACUS.2 involved Stoke’s law which deseribes the velocity of objects falling through different
media (see chapter 8). Three equations were generated: v=9.8f, rv=.9m, and ro=7m, The

events for each equation were placed into individual classes and passed to A'. The resulting

1

covers or preconditions were:
o If [substance = vacuum] then v=9.8¢
o If [substance = glycerol] then ro=9m
o If [substance = casteroil] then rv=.Tm

Although this is & simple example, it does illustrate how symbolic information can be
integrated into the discovery process. In addition to symbolic information, A" can also include

numerical information in the covers.

37

8. EXPERIMENTS

One important aspect with any work in machine learning is the experimental results. This
chapter describes the experiments used and relates them to the various abilities of ABACUS.2.

The experiments performed are:
» Centrifugal force resulting from curves
e Snell's law of reflection and refraction
e Instantaneous current
e Angular conservation of energy

e Stoke’s law of falling bodies

8.1. Centrifugal Force

When a vehicle encounters a curve in the road, it experiences centrifugal force which tends
to push the vehicle away from the direction of the curve. Friction between the tires and the road
is generally sufficient to keep the vehicle on the road but as the velocity incresses, it becomes

necessary to bank the curve a certain mumber of degrees. In designing highways, several

equations come into consideration. One of these, f—m” cos(f), describes the component of

centrifugal force which is parallel to the road. Ome reason for banking the road is to control this
parameter. ¢ is the degree of banking, m is the mass, » is the velocity, snd » is the radius of the
curve (this equation makes the assumption that the curve is & circle). Figure 13 shows the
various components.

ABACUS.2 was able to discover this equation by using the dependency graph only. As it
built the graph, it found that 2 non-linear terms (+* and cos(f)) existed and added them to the

graph as well.

Figure 13. Centrifugal Force Parallel to the Road.

B8.2. Snell’s Lew of Reflection and Refraction

Light waves have the ability to travel through certain materials,. When it is traveling
through free space, it travels at the speed of 2.0082z10°m /e. Whenever light travels in a
transparent medium such as air or glass, the velocity is always lower. The refraciive indez is
used to eharscterise this difference. The refractive index n is defined as the velocity of light in
free space over the velocity of light in & medium. Values of n include 1.0003 for air at STP and
9 49 for diamond®. This index plays an importsnt role in characterizing light rays travelling
from one medium into ancther. Consider figure 14. Here, the light is travelling from medium
#1 to medium #2. The incident ray hits medium #2 at an angle #,. It is broken into 2 parts,

the reflected ray and the refracted ray. The refracted ray enters the medium #2 st the angle #,.

*according to [0 Dwyer, 1081]

MEDIUM #1

Incident ray Reflected ray

i ———

Plane boundary

MEDIUM #2
Refracted ray

Figure 14. Reflection and Refraction of s Light Ray.

The law of refraction states that #,=#,. Medium #1 has 2 refractive index s, and medium #2
has the corresponding index n,. Snell’s law states that n sind=ngsinf,. Thus, given the refractive
indexes of the 2 medians along with the angle of the incident ray, the angle of the refracted ray
can be found.

This experiment also demonstrates the power of dependencies in discovering equations
containing non-linear terms. This equation is harder for ABACUS.2 to discover than the
centrifugal force equation since there are two sin terms. It had to firet discover these terms

before it could find trends between the other terms.

40

8.3. Instantaneous Current

R 4
Ohm's law states that I-;. However, this is based on sverage values of J, V, and R, To

test ABACUS.2's ability to discover non-linesr terms consisting of 3 combination of user—defined

variables, we gave it data corresponding to the instantaneous values of current and voltage.

V, coa(wt)
These are related by the equation i=—R'—', where ¢ is the instantaneous current, V, is the

pesk voltage value, w is the angular frequency, and ¢ is the time.

Althc;ugh this relation is not used very often, it does help show snother aspect of
ABACUS.2. In this case, the term wt had to be generated before the non-linear term cos could be
detected. In the actual test rum, cos(wt) was not diseovered until the second level of the
suspension search algorithm. Once it was found, ABACUS.2 called the dependency graph search
on the original user—defined variables and cos(wt). It was then able to discover the desired
equation. This experiment demonstrates the need for the medification to. the original suspension

search.

8.4. Angular Conservation of Energy

The angular momentum conservation principle states that the angular momentum of a
system of bodies is conserved provided that the external net torque on the system is lefo. An
application of this principle can be shown by imagining a ¢hild of mass m running at v, m/e in &
direction which is tangent to the edge of a merry-go-round at rest which has a radius r. The
conservation pr’i_nciple allows us to calculate the amount of energy dissipated when the child
“collides” with the merry—go-round. This energy, denoted Ey,, is equal to the initial kinetic

energy of the child and the merry-go-round minus the final kinetic energy:

41

The data for this equation was given to ABACUS.2 along with several equation forms. It
used the least-squares method to find the coefficients for each form. The best one bad a
constancy of 100% snd the resulting equation was .4anm,'-=.so1.m'+.4n_2fu’+3,,,. If ABACUS.2
failed to find the equation using linear regression, it would have then tried to find one {or more)

equations using the heuristic search.

8.5. Stoke's Law of Falling Bodies

In this experiment, data from Stoke’s law was given to ABACUS.2. This is the same data
used by ABACUS and the purpose of this experiment was to demonstrate the clustering
algorithm. Stoke's law describes the velocity of falling objects when travelling through different
mediums such as a vacuum (see [Falkenhainer, 1985]). This experiment was run twice, once
without any informstion regarding the general form of the equations, and once with the form for
one of the equations. The main difference in the way ABACUS.2 discovered the equations in the
first experiment .and the way ABACUS did lies in the way each handles multiple equations,
ABACUS.2 dividt;d the events up before calling the equation discovery algorithm which is in
contrast to ABACUS's approach which searches for the subsets during the search. The resulting

equations and preconditions are the same as those generate by ABACUS:
o If [substance = vacuum] then v=9.5¢
e If [substance = glycerol] then ro=Sm
s If [substance = casteroil] then rv=.7m

In the second run, ABACUS.2 was given the general equation form for the equation v=9.8¢.
This allowed it to discover it using linear regression. However, since the resulting equation fit
only one of the subsets, it had to use the heuristic search method to find the other equation. This

demonstrates the ability of ABACUS.2 to combine both methods whenever necessary.

42

$. OONCLUSIONS AND FUTURE WORK

A methodology for quantitative discovery has been presented. ABACUS.2 is an extension to
the algorithm ABACUS which allows the discovery of equations which include non-linear terms.
It presents a method which allows future implementationa to essily extend the types of equations
which can be discovered. It also uses a clustering algorithm to separate the events into groups
based on the dependencies and the symbolic data such that one equation fits each subset. This
allows the addition of curve fitting techniques to extend the power of the equation discovery

algorithm even more.

9.1. Limitations

ABACUS.2 is still limited in some respects. First, the only non-linear terms it currently
can discover are sin, cos, and £’. Future implementations should develop more heuristica based
on the local dependencies which would allow more nop-linear terms to be included in the search
space. Another problem is that it cannot discover multiple equations wh-en non-linear terms
exist, This is a fundsmentally hard problem and the next section discusses a possible solution.
Additionally, it does not sllow the user to supply some additional information which might be
helpful such as a list of variables which are "probably important” and "probably unimportant”.

Knowledge about the dependent and independent variables could also be helpful.

9.2. Future Work

One of the main contributions of this research is the use of local dependencies to allow &
more "fine” measure of the behavior of two varisbles with respect to each other. This knowledge
might be able to be used to help discover other non-linear terms such as log, In, tan, ete.
Additionally, this method can be taken one step further by measuring the rale of change of the

dependencies. Such information might allow might allow the discovery of terms such as

43

sin{ks+5).

Another area of future research is the integration of knowledge—intensive approaches such
as that used in the HOTEP system. ABACUS.2 requires very little background knowledge to
generate equations but the cost is an incressed search space. If a particular domain is well-
known, then it would benefit quantitative discovery to make use of this knowledge. Additionally,
ABACUS.2 does not make full use of the information from the units for the variables.
Dimensional Analysis can be integrated into this methodology as well. Kokar’s work [Kokar,

1085] might be helpful for this.

The search algorithms used by ABACUS.2 are based on empirical observations and are
designed to be as efficient ss possible. However, there probably is room for improvement,
particularly when non-linear terms are present. Future research could focus on integrating the

current search algorithms with some posaibly more efficient ones (or replacing them altogether).

The proble;:n of clustering when npon-linearity is present might be partially solved by
looking at the symbolic data. When detecting changes in the dependencies, it might be useful to
check to see if a nominal! subgroup exists for the events corresponding to the "simplest” non—
linear term and if one does, then remove the events which correspond to the non-linear term.
For example, if the local dependency changed more than two times, check to see if the events
corresponding to the first two changes form a nominal subgroup. If so, and if 2" evaluates to a
constant for these events, then assert z* as one of the final equations, remove the events whichlit
fits, and continue the search. Using derivatives of the dependencies may also help with this

problem.

APPENDIX 1- USER'S GUIDE

ABACUS.2 is written in Common Lisp and has been tested on a Symbolics and Sun-3. It
consists of the following filea:

abacus.lisp - main ABACUS.2 routine

aq.lisp - A" algorithm which uses the VI, repressntation
aq2.lisp - second A" algorithm which uses a bit—vector representation
aq2-iface.lisp — interface for aq2.lisp

cluster lisp - clustering algorithm

form.lisp -~ form handling routines

globals.lisp — global variables and structures

graph.lisp ~ dependency graph handling routines

hash, lisp — hash functions

jo lisp - input and output routines

least-squares.lisp — curve fitting routines

search.lisp ~ suspension search routines

minor.lisp — minor functions used by several routines
system.lisp — system information for Symbolics

A.1 Data Bet

Input to ABACUS.2 consists of a single list called a dsta set which has 5 main sections.
The data set must be in & form readable by LISP and it has the following format:

((DECLARATIONS
< variable declarations>)

(PARAMETERS
<user~definable parameter settings, rewrite and sugmentation rules>)

(EQUATIONS
<list of equation forma used by curve fitting algorithm>)

(VARIABLES
<ordered list of all user—defined varisbles>)

(EVENTS
<list of event tuples>)
)

The "PARAMETERS" and "EQUATIONS" section is optional but all other are required, If the

former is left out, then the default values will be used. Figure Al gives an example data set.

45

(declarations
{f L ((meters 2) (seconds -2) {radians 1)))
(r L ({meters 1)})
(m L ((meters 1)) |
(v L {{meters 1) (seconds -1)))
(theta L ((radians 1))
)

(parameters
(*constancy® .87)
(*uncertainty* .01)

)

(variables
(fr m v thets)
)

(eventa

(3221.6787 30 50 76 1.22)
(81217944 30 50 75 0.523)
(4908809 30 B0 76 2122)
(-2885.0676 20 46 52 4.23)
(1883.0858 20 46 52 5.02)
(4994303 20 46 52 3.78)
(s521.2207 23 61 50 6.87)
(4954888 23 61 50 7.01)
(6549.0776 28 61 50 8.44)
(-3080.7163 30 50 60 2.1l)
(-1848.4208 50 50 80 2.11)
(-6161.4326 15 50 60 2.11)
(36990832 20 40 4 .3)
(4623820 20 50 44 .3)
(-691.4844 27 48 78 1.64)

(340 30 2197 75 .6)
(340 30 6103 45 .6)
)
)

Figure Al. Example Data Set.

48

A.l.l Declarations

Each declaration iz s list consisting of the variable name, its type, and the units. The type
is either "L" or "N" indicating linear or nominal variable. A linear variable is one whose values
are totally ordered and a nominal varisble is one whose values consist of independent symbols or
names (no structure is assumed). Each unit consists of a List of universal units along with the
corresponding exponent. Universal units are units which are considered the base units and thus
sre not composed of other units; An example unit declaration is (A L (METERS 1) (SECONDS
—2))) which describes the units for secleration. The varisble name is "A", the "L" indicates that
it ia a linear variable, the the dimensions are meters per seconds squared. The general form for a
declaration is given below: ’

{DECLARATIONS
(voriable—name, type, ((wnit—name, exp,)(unit—name, exps)...))

(variable —namey type, ((wnit—nome, exp,)(unit—name, expg)ent))

*

)

A.1.2 Parameters

There are many user-definable parameters which allow for greater flexibility. In addition to
these parameters, the user can input rewrite rules and augmentation rules. The general form for

the parameters is

(PARAMETERS

(parameter, value,)
(rewrite—rule,)

(augment—rule)

47

The sequence for the parameters, rewrite rules, and augmentation rules is unimportant.

Rewtite rules are used to change the values of 2 current variable, for éample, if we wanted
to change z to sin(s). In this case, the values of z would be replaced with sin(z). The general
form for & rewrite rule is (<=2>> variable-name formula units). The variable name must be one
of those declared in the "VARIABLES" section of the data set. The formuls consists of any

Common Lisp arithmetic function. In the example above, the rule would be (<=2 x sin(x) nil),

Augmentation rules are used to add new variables to the data set which can be defined in
terms of the declared variables, The form for these rules is (<= new-variable-name formula
units). As with rewrite rules, the formula must be 3 Common Lisp arithmetic form. For
exsmple, (<= v (/ m s) ((meters 1) (seconds ~1))) can be used to create s new variable ¢ for

velocity based on the variables m and s.

The following are the user—definable parameter descriptions. The default values are shown

in the parentheses immediately following each parameter name.

*starLEF® ((Max-Covered 0.5) (Min~Weight 0.0) (Min-Selectors 0.0))
This provides the lexographic evaluation functions used by A' to evaluate the current
hypotheses and constrain the gearch space. Each function is sssociated with a folerance
which indicates the percentage of the complexes to retain based on the evaluation of the
functions. The tolerance must be in [0..1). The predefined functions for LEF are:

Max-Promise — select best ratio of % positive events covered to % negative events covers
Min-Covered — select those complexes which cover the fewest events

Max-Covered — select those complexes which cover the most eventa

Min-Selectors — select those complexes which have the fewest selectors

Max-Selectors — select those complexes which have the most selectors

Min-Weight - select those complexes of minimum total selector weight

Max-Weight — select those complexes of maximum total selector weight

*maxstar® (10)
This indicates the maximum number of complexes allowed in the star for A*. This is used
to implement the beam search by restricting the number of complexes at each level of the
gearch. LEF is used to evaluate each complex. The beat m complexes, where m is from the
star G(c|NEG,m), are retained.

48

*covermode® (ic) .
Covers generated by A* can be disjoint (dc) or intersect in certain areas (ic).

*univignore® (nil)
This indicates a list of variables which should not be required to be held constant when the
dependency is being calculated. Sometimes holding certain varisbles constant prevents
ABACUS.2 from finding the dependency. The value for this parameter consists of list of
numbers which indicate the column for the corresponding variable. The first column starts
at "0",

*uncertainty® (.02)
This indicates the uncertainty. It is used to account for slight errors in the data {noise) and
round—off error. Any number falling within the range of uncertainty is regarded as
constant. When ABACUS.2 caleulates the constancy, auny event which evaluates to a
constant within this range is considered to be part of the events in which the equation fite.

“constancy® (.95)
Specifies the number of total events which must evaluate to a constant for an equation to
considered acceptable. A value of .95 indicates that 95% of the events must evaluate to »
constant (*uncertainty®),

" ®max-nodes® (1000)
This specifies the maximum number of nodes allowed for the search tree. Exceeding this
value causes the algorithm to stop and output the best equation up to that point.

*Blter—level® (2)
This shows the maximum level in the suspension search in which suspended nodes are
allowed. Beyond this point, the algorithm considers only the active nodes.

¢gearch-limit® (3)
Indicates the maximum search depth for the suspension search.

*direct-sw® (70)
Indicates the percentage of events in which the dependency must be positively monotonic
before amon *{s,y) can be asserted. For example, a value of 100 implies that the values for y
must always increase when the values of z increase in order for amon”(z,y) to be asserted.

*inverse—aw® (30)
Indicates the percentage of events in which the dependency must be negatively monotonic
before amon (z,y) can be asserted. A value of 0 means that the values for y must always
decrease when the values of z incresse in order for amon(z,y) to be asserted. Note that
*direct—aw®=100—*inverac —ew?,

print-fiags ((7)
This specifies the amount of information printed out after running ABACUS.2. There are
two optional tables. The parameters table shows the parameter values which were used.
The events table shows the events and the clasaes each was assigned to. A value of *(p e)
specifies that both tables be outputted while NIL indicates that only the resulting equations
be printed out.

*debug® (nil)
Debugging fiag which, if T, will provide information during the execution of the program.
Currently, only NIL and T are allowed but future revisions should change this to allow for
degrees of debugging information.

49

* minimum-link-value® (50)
This parameter indicates the minimum value for the links in the group support graph. Any
link below this value is ignored. This is used to "weed out” low-valued linka whick may
adversely effect the global projection.

*cluster—on® (t)
This is a switch which allows the user to turn off the clustering component. If this is NIL,
then the events will not be clustered and ABACUS.2 will attempt to fit one equation to the
events,

*cluster—order® (gec nc re)
This allows the user to indicate the order of the clusters. gc indicates the global projection
(the projection crested by using the greedy algorithm), in » single eet, and 're stands for all
other projections.

A.1.3 Eguations

The equations consist of a list of equation forms. ABACUS.2 will use the least-aquares
method on each form to find the coeficients, If one of the forms exceeds the constancy tMold,
then the discovery algorithm stops. The only requirements for the coefficients is that they
consist of unique symbols. Each funetion, must be a LISP form which can be APPLY’d. The list
must be of the following form:

(EQUATIONS

(= dependent—var, (+ (* eoeff Wi unction,’) * * < (* coeff e, uneﬁam'h‘m
1

(= dependent—vary (+ (* coefS 5 funetion,) +* (* eoelfy” [uncﬁon,'-lm

)

This section consists of simply list of the user—defined variables in the order that they are
presented in the "EVENTS" section. This informs the prz;gram which location in the event tuple

corresponds to which variable.

A.1.5 Events

The events consist of a list of n~tuples in the following form:

(EVENTS 1

{attribute — ulur atiribute —value, ...atiribute —odur')

(attribute—value; otiribute —uduc;...aﬂriiute—vdue:-l)

)
A.2 Compiling and Running ABACUS.2

To compile the files on the Symbolics, the "make-system” utilities are used. Before they
- can be used, the location of the sources must be known to the system. To do this, imlude-in the
lispm—init.lisp file the lime: (siiset—system-source-file “abacus” full-path-
name>SYSTEM). For example, if the files are in "MACHINE-A: >smith>ABACUS.2", then
the line should be (li:le_t—cyltem—mnrne-ﬂle “abacus” “MACHINE-
A:>smith>ABACUS.2>system”). Alternatively, this line could just be typed at the
prompt level each time you logged onto the machine. Now, to compile the files, type (make-
system ‘sbacus :compile :noconfirm). To eompile them on the Sun, simply load “compile-
files.lisp".

Loading the files on & Symb_oiies is done with the command (make-system ’a.bm:uls).
This sssumes that the lispm-init.lisp file hes the correcct line as described above. Loading the

"load-files.lisp” is all that is required to Joad the system on & Sun.

To run, type "(run)" and a menu of commands is displayed which, amoung other options,

allows the user to specify s data file and run the program.

b1

APPENDIX II - EXPERIMENTAL DATA

B.1 Centrifugal Force

The data for the centrifugal force experiment consisted of & variables with one of them (the

Jength) not included in the final equation. The uncertainty was set for 2%.

(
(declarations
(f L ((meters 2) (seconds ~2) (radisns 1))
(¢ L ((meters 1))
(m L ((kilograms 1}))
(v L ({(meters 1) (seconds ~1)))
(theta L ((radians 1))
(length L ((meters 1))

)

(parameters

)

(variablea
{f r m v theta length)

)

(events
(3221.6787 30 50 75 1.22 3212.3)
(8121.79044 30 50 75 0.523 3212.3)
(4900.800 30 50 76 222 32123)
(—3986.427 30 50 75 2.01 3212.3)
(~2885.0876 20 46 52 423 1755.3)
(1883.0659 20 46 52 502 17853)
(1584.4714 20 46 52 497 1765.3)
(4994303 20 46 52 378 17553)
(5521.2207 23 61 50 8.87 2112.4)
(6189.342 23 61 50 6.65 21124)
(4954.888 23 61 50 7.01 2112.4)
(65490.0778 23 61 50 B.44 2112.4)
(3927.5881 23 61 50 7.22 2112.4)
(1372.5167 30 50 60 134 3546.7)
(1020.3876 40 50 60 1.34 3546.7)
(8235101 50 50 60 134 3548.7)

(2745.0334
(2774.2074
(8699.0632
(4623829
(5548.5047
(8020.9575
(5133.413
(4005.488
(9588.074
(387.744
(2051.167
(5308.219
(9693.608
(340

(340

(340

(340
(612.413.1
(612.413.1
(612.413.1
(450

(450

{460

(450

15 50
20 20
20 40
20 BO
20 80
27 48
27 48
27 48
27 48
10 41
10 41
10 41
10 41

60
44
44
44
44
75
80
53
82
-10
-23
-3
-50

30 2.1970859 76
30 4,9434433 50
30 13.731788 30
30 8,103017 45

27.725 -22.0
7.027 -43.7
5.001 -561.8
40 7.2548094

50 9.068512

60 10.882214
70 12.6059018

(500 493.6402 50
(500 210.39563 50
(500 140.41321 50
(500 78.98243 50

(210
(210
(210
(300
(300
(300
(300
(540
(540
(540
(540
(540

737 345
B7.52 345
141.38 34.5

93
93
03
50
50
50
50
75
50
40
30
-9
=31
~39.4

20 -7.0886507 40

20 8.980002
20 3.7785466
20 3.9558227

40
40
40

25 50 18.51858
25 50 34.35560
25 50 17.540335

25 50 18.788666
25 50 27.296886

134 3546.7)

8 4231)
3 4231)
3 4231)
3 4231)
84 32118)
64 32118)
84 3211L8)
84 3211.8)

331 1998.7)
331 1098.7)
331 1908.7)
331 1008.7)

8 4538)
8 4538)
.8 4538)
8 4538)
1967.5)
1987.5)
1987.5)

0.123 1455.8)
0.123 1455.8)
0.123 1455.6)

0.123 1455.8)
5 2365.4)
5 2365.4)
5 2365.4)
5 2365.4)
5.3 3425)
53 3425)
53 3425)
2,13 4368)
1.14 4368)
0,128 4368)
0.324 4368)
0.145 2436)
1.34 2436)
0.5 2438)
0.7 2436)
1.2 2436)

(440 2635019 60 75 122 354d)
(440 —463.71012 60 76 222 3544)
(440 -305.1012 80 75 108 3544)
(440 660.64606 60 75 0.533 3544)

== Parameterg ~——==

MAXSTAR = 10
COVERMODE? = IC
$UNCERTAINTY* = 0.02
CONSTANCY = 0.95
INVERSE-SW = 30
DIRECT-SW = 70
UNIVIGNORE = NIL

DEBUG = NIL
*PRINT-FLAGS® = (P E)
“FILTER-LEVEL® = 2
SEARCH-LIMIT = 3
MAX-NODES = 1000
CLUSTER-ON = T
*CLUSTER-ORDER® = (GC NC RC)
MINIMUM-LINK-VALUE = 50.0

sstarLEF® = ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))

e (Olgas Events ~——=—

CLASSA

(P R M V THETA LENGTH)
(210.0 7.37 34.5 -9.0 5.3 3425.0)
(210.0 87.52 34.5 -31.0 5.3 3425.0)
(210.0 141.38 34.5 -39.4 5.3 3425.0)
(612.4 13.1 7.027 —43.7 0.93 1967.5)

54

{887.744 10.0 41.0 -10.0 0.331 1098.7)
(2051.167 10.0 41,0 ~23.0 0.331 1998.7)
(5308.219 10.0 41.0 -37.0 0.331 1998.7)
{6549.0776 23.0 61.0 50.0 8.44 2112.4) -
(3927.5881 23.0 61.0 50.0 7.22 2112.4)
(~4900.809 30.0 50.0 75.0 2.122 3212.3)
(4954.888 23.0 61.0 50.0 7.01 2112.4)
(500.0 210.39563 50.0 50.0 0.5 2365.4)
(540.0 25.0 50.0 18.51858 0.145 2436.0)
(9588.074 27.0 48.0 82.0 0.64 3211.8)
(5548.5947 20.0 60.0 44.0 0.3 4231.0)
(2774.2974 20.0 30.0 44.0 0.3 4231.0)
(340.0 30.0 6.103017 45.0 0.6 4538.0)
(1372.5167 30.0 50.0 80.0 1.34 3546.7)
(2745.0334 15.0 50.0 80.0 1.34 3546.7)
(~4994.303 20.0 46.0 52,0 3.78 1755.3)
(1584.4714 20,0 46.0 52.0 4.97 1765.3)
(9693.608 10.0 41,0 ~50.0 0.331 1998.7)
(5521.2207 23.0 61.0 50.0 8.87 2112.4)
(6189,342 23.0 61.0 50.0 6.65 2112.4)
(500.0 493.8402 50.0 75.0 0.5 2365.4)
(500.0 140.41321 50,0 40.0 0.5 2365.4)
(500.0 78.98243 50.0 30.0 0.5 2365.4)
(540.0 25.0 50.0 34.35569 1.34 2436.0)
(8020.9575 27.0 48.0 75.0 0.64 3211.8)
(~3986.427 30.0 50.0 75,0 2.01 3212.3)
(3221.6787 30.0 50.0 75.0 1.22 3212.3)
(8121.7944 30.0 50.0 75.0 0.523 3212.3)
(440.0 —463.71912 60.0 75.0 2.22 3544.0)
(440.0 263,5910 80.0 75.0 1.22 3544.0)
(440.0 860.84606 80.0 75.0 0.533 3644.0)
(823.5101 50.0 50.0 60.0 1.34 3546.7)
(1029.3876 40.0 50.0 80,0 1.34 3548.7)
(4623.829 20,0 50.0 44.0 0.3 4231.0)
(3699.0632 20.0 40.0 44.0 0.3 4231.0)
(300.0 20.0 -7.0686507 40.0 2.13 4368.0)
(300.0 20.0 8.980002 40.0 1.14 4368.0)
(300,0 20.0 3.7785466 40.0 0.123 4368.0)
(340.0 30.0 4.9434433 50.0 0.8 4538.0)
(340.0 30.0 13.731788 30.0 0.6 4538.0)
(2885.0676 20.0 46.0 52.0 4.23 1765.3)
(440.0 -305.1912 60.0 75.0 1.98 3544.0)
(1883.0659 20.0 46.0 52.0 6.02 1755.3)
(540.0 25.0 50.0 27.206886 1.2 2438.0)
(450.0 70.0 12.695916 50.0 0.123 1455.6)
(450.0 60.0 10,882214 50.0 0.123 1455.6)
(450.0 50.0 9,068512 50.0 0.123 1455.6)

" (450.0 40.0 7.2548094 50.0 0.123 1455.8)

56

(5133.413 27.0 48.0 60.0 0,64 3211.8)
(4005.488 27.0 48,0 53.0 0.64 3211.8)
(300.0 20.0 3.9558227 40.0 0,324 4368.0)
(340.0 30.0 2.1970859 75.0 0.6 4538.0)
(540.0 25.0 50.0 18.788668 0.7 2436.0)
(540.0 25.0 50.0 17.540335 0.5 2436.0)
(612.4 13.1 27.725 -22.0 0,93 1967.5)
(612,4 13,1 5.001 -51.8 0.93 1967.5)

CLASSA
Cover: Relation:
F*R=COS(THETA)*M* V*2

B.2 Snell’s Law

Data for Snell's law consisted of 4 variables but the complex relationships made this

experiment hard.

(

(declarations
(N1 L ({refractions 1)))
(N2 L ((refractions 1)))
(THETA1 L ((radians 1})})
(THETAZ2 L ((radians 1)})
)

(parameters

)

(variables' _
(N1 N2 THETA2 THETA1)

)

(events
(1.01 1.01 05 0.5)

(0.08
(2.02
(1.77
(1.18
(1.48
(1009
(~1.18 1.24
(0.20
(-0.51 1.24
(-7.26 1.8
(0.42
(5.58
(-5.34 1.8
(3.74
(2.44
(0.55
(0.33
(0.39

(.03

{.05

(21

(.09

(.12

(4.25

(.85

(-62

(.52

(1.52
(1.50
(0.93
(1.18
(235
(2.35
(2.35

1.01
1.01
1.0t
1.01
1.24
1.24
4.0

1.24
3.5

5.0

1.8

1.8

b.b

18

1.51
1.51
1.51
1.51
1.51
1.51
1.51
1.51
1.51
1.68
1.68
1.68
1.68
2.01

1.98

1.23
L5
8.77
2.93
2.24
4.17
37
.39
A%
2.61
7.67
1.54
1.12
99
0.62
1.85
2.91
2.24
1.21

0.0
1.3
1.0
0.6
1.7
2.3
1.0)
3.0
1.0)
0.24)

7 113
0.24)

0.2

0.3
0.3
0.3
0.2
0.76
11
0.5
1.7
1.9
2.3
3.0
6.4
8.9
7.2
74
0.98
0.98
0.98
0.98
0.98

0.5)
0.5)
0.5)
0.5)
1.0)
1.0)

1.0)

0.24)
0.24)

0.24)
0.123)
0.567)
1.1)
0.85)
2.01)
2.5)
3.0)
2.8)
2.9)
5.4)
6.9)
7.2)
1.5)
0.4)
0.4)
0.4)
0.4)
1.02)
1.02)
1.02)
1.02)
48)
48)
A4B)
48)
87)
87)
67)
87)
0.2)
0.834)
1.2)
0.8)
4)

57

(2.6 1.63 098 .55)

(1.08 131 019 2.81)
(1.08 0690 0.9 3.02)
(1.08 469 010 4.1)
(1.08 -2.00 019 3.5)

(1.788 -2.13 093 B)

(1788 0.90 0.93 6.7)
(1.788 1.89 093 7.3)
(1.783 1.46 093 7.0)

(2.5 28 012 0.134)
(2.5 28 032 0.359)
(2.6 28 039 0.45)
(25 28 058 0.67)
{7 11 .68 174)
(7 1.1 .61 2.03)
(7 1.1 21 28)
(.7 L1 07 3.03)
(B L1 05 8.4)
(.6 1.1 .4 68)
(.6 11 33 71
(.5 11 A4 1.5)

)

=-—— Parameters ———=

MAXSTAR® = 10
COVERMODE = IC
UNCERTAINTY = 0.02
¢CONSTANCY* = 0.95
SINVERSE-SW* = 30
DIRECT-SW =T0
UNIVIGNORE = NIL
DEBUG = NIL
PRINT-FLAGS = (P E)
FILTER-LEVEL® =2
SEARCH-LIMIT = 3

MAX-NODES = 1000
CLUSTER-ON = T
*CLUSTER-ORDER® = (GC NC RO)
MINIMUM-LINK-VALUE = 50.0

starLEF = ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))
=—x=— Class Events ~——=

CLASSA

(N1 N2 THETA2 THETAL)
(2.5 2.8 0.587704 0.67)
(0.8 2.6177955 3.0 0.48)
(2.5 2.8 0.11956984 0.134)
(0.62554383 1.68 0,3 7.2)
(~7.2614417 1.8 5.0 0.24)
(1.08 —4.6793623 0.10 4.1)
(1.788 -2.1388648 0.93 5.0)
(1.08 —2.0059733 0.19 3.5)
(0.8 0.37252843 1.7 0.48)
(0.8 0.39038712 1.9 0.48)
(0.8 0.49540132 2.3 0.48)
(2.8 0.62196493 0.98 0.2)
(1.08 0.69362235 0.19 3.02)
(1.788 0.9030106 0.93 6.7)
(1.44 0.99500585 7.4 0.67)
(1.7727160 1.01 1.0 0.5)
(1.1865255 1.01 0.6 0.5)
(1.01 1.01 0.5 0.5)
(0.06319116 1.01 0,03 0.5)
(0.7 1.1 0.8070415 2.03)
(0.5 1.1 0.33773357 7.1)
(0.5 1.1 0.14208728 6.8)
(0.7 1.1 0.070025675 3.03)
(0.5 1.1 0.05300177 8.4)
(1.44 1.126693 7.2 0.67)
(2.6 1.2191341 0.98 0.4)
(0.9334174 1.23 0.3 0.4)
(-1.1152318 1.24 4.0 1.0)
(-0.51691765 1.24 3.5 1.0)
{0.20795585 1.24 3.0 1.0)
(1.0988786 1.24 2.3 1.0)
(1.4613272 1.24 1.7 1.0)
(1.08 1.3125678 0.19 2.91)
(1.788 1.4653977 0.93 7.0)
(1.1383139 1.5 0.3 0.4)

(2.4461091 1.51 0.2 0.123)
(0.5585338 1.51 0.2 0.567)
(0.39930588 1.51 0.2 0.85)
(0.33661154 1.51 0.2 1.1)
(0.21398798 1.51 0.02 3.0)
(0.12621978 1,51 0.02 2.9)
(0.09014642 1.51 0.02 2.8)
(0.050458485 1.51 0.02 2.5)
0,033364605 1.51 0.02 2.01)
1.44 1.5459187 6.9 0.67)
2.6 1.636353 0,98 0.55)
(4.2597756 1.68 0.3 8.4)
(0.85820824 1.68 0.2 6.9)
(5.587028 1.8 7.113 0.24)
(3.7416677 1.8 6.8 0.24)
(0.42990822 1.8 8.34 0.24)
(2.6 1.8545122 0.08 0.634)
(1.788 1.8068848 0.93 7.3)
(1.5025743 1.98 0.3 0.4)
(1.56253408 2.01 0.3 0.4)
(2.8 2.2457938 0.98 0.8)
(2.35 2.2468998 1.1 1.02)
(2.6 2.917892 0.98 1.2)
(2.35 2.9377053 0.75 1.02)
(2.35 4.176778 0.5 1.02)
(2.35 6.77603 0,3 1.02)
(1.44 7.6724596 6.4 0.87)
(2.0299163 1.01 1.3 0.5)
(0.7 1.1 0.8780504 1.74)
(0.5 1.1 0.44046804 7.5)
(0.7 1.1 0.2148228 2.8)
{0.52028984 1.68 0.3 7.5)
(-5.3426943 1.8 5.5 0.24)
(2.5 2.8 0.39885348 0.45)
(2.5 2.8 0.31908178 0.359)

==-==-— Hypotheses ~——-=

CLASSA
Cover: Relstion:
N2 = ((SIN (THETA1) ¥ N1) / SIN (THETAZ2))

B.3 Instantaneous Current

The experiment with the instantaneous current demonstrates the ability to find non-linear
terms composed of more than one variable. In this example, the term wt had to be generated

before cos{wi) could be found.

(deelarations
(1L ((smperes 1))
(R L ((volts 1) (amperes -1)))
(Vo L ((volts 1))
(omega L {(radians 1) (seconds -1)))
(time L ((seconds 1))
)

(parameters
(*inverse—sw® 20)
(*direct—ew* 80)
(*debug* t)

)
(variables
(i R Vo omega time)
{events
(3.20 65.8 220 337 0.13)
(1.72 125.8 220 337 0.13)
(2.852 75.98 220 337 0.13)
(0.403 110 198 - 412 0.5)
(0.366 121 198 412 0.5)
(0.248 178 198 412 05)
(1.024 35.4 110 451 0.6018)
(2.049 35.4 220 451 0.6018)
(0.707 35.4 759 451 0.8018)
(0.011 167 312 857.3 0.273)
(-1.450 187 312 857.3 0.8473)
(~0.215 408 110 483.2 0.9284)
{0.038 408 110 483.2 0.172)
(0-229 408 110 483.2 0.584)
(0.9 -130.741 121 B75 0.1034)

81

(0.9

(0.9

(2.87

(2.87

(2.87

(2.87

(0.821 143
(0.355 143
(0.674 143
(~0.267
(0.403 523.4
(-0.117
.(0.006 1200
(0.008 1200
(0.046 1200
(14.3

(14.3

(14.3

(7.5

(7.6

(1.5

(7.5

(5.16

(5.18

(5.16

(0.987 102.3
(0.987 102.3
(0.987 102.3
(0.41

(0.41

(0.41

(0.132 98
(0.132 98
(0.132 98
(2.00

(2.00

(2,00

(4.53

(4.53

(4.53

(4.53

10.2
%10.2
(10.2
7.1
(7.1
(7.1
(0.98

-123.1563 121 B75 0.5744)

120.874 121 576 0.382)
-85.083 289 4428 0.832)
~77.890 280 4428 0.7072)
-91.089 280 4428 0.344)
-93.951 280 4428 0.54)

273.3 3048.3 0,8453)
273.3 4837.3 0.8453)
273.3 938 0.8453)

523.4 214.4 38243 0.712)
214.4 873.4 0.712)
523.4 214.4 8363.2 0.712)

56.50 38 0.745)
5656 20 0.745)
5658 92 0.745)

454 13580.7 382 0.743)

4454 ~11384.0 2483.3 0.743)
445.4 6490.25 338 0.743)

323 20376.26 3289 413)

323 6500.31 3289 0.413)

323 5997.85 2018.2 0.413)
323 -3920.03 238 0.413) |
318 ~1654.29 2872.3 0.1323)

318 ~2484.70 2872.3 0.4383)

318 -8932.97 2872.3 0.2828)

2877.35 382.3 0.1439)
183.19 382.3 0.1289)

-24831,43 382.3 0.415)
220 103 162 0.31)
220 103 354 0.1422)
220 103 745 0.0678)

217 273 0.554)
217 3.57 0.4233)
217 1698 0.089)

31.04 75 8488 0.3621)
49.667 120 8488 0.3621)
72.430 175 8488 0.3621)
39.961 313 7733 0.83)

7.393 313 7733 0.8)

§4.87 813 7733 0.277)
45.118 313 7733 0.708)
19.921 266 998.1 1.82)

~19.182 266 9981 0.783)
-17.272 266 998.1 0.388)
543 -3858.92 416.3 0.098)
543 4160.03 416.3 0.709)
543 18707.39 416.3 0.691)
612 §91.686 568 0.823)

63

(0.96 612 3503.028 688 0.382)
(0.98 612 838,604 588 0.384)

)
)

== Parameters ——=

*MAXSTAR® = 10
COVERMOF = 1C
UNCERTAINTY = 0.02
OONSTANCY = 0.95
INVERSE-SW = 20
DIRECT-SW = 80
UNIVIGNORE = NIL

DEBUG =T

PRINT-FLAGS = (P E)
FILTER-LEVEL® = 2
SEARCH-LIMIT = 3
MAX-NODES = 1000
CLUSTER-ON =T
CLUSTER-ORDER = (NC GC RC)
REAM-VALUE® = 0.5
MINIMUM-LINK-VALUE = 50.0

starLEF = ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))

e=—=—=— Class Events —-=

CLASSA

(IR VO OMEGA TIME)

(14.3 445.4 13580.729 382.0 0.743)
(5.16 318.0 -8932.971 2872.3 0.2828)
(2.87 93.95117 280.0 4428.0 0.54)
(10.2 ~17.272183 266.0 998.1 0.388)
(7.1 543.0 18707.385 416.3 0.691)
(7.1 543.0 4160,0203 416.3 0.799)

(7.1 543.0 —3858.9182 416.3 0.008)
(2.8520256 76,08 220.0 337.0 0.13)
(2.00 72.43078 176.0 848.8 0.3621)
(0.987 102.3 —24831.43 382.3 0.415)
(0.9 ~123.15287 121.0 575.0 0.5744)
(0.9 129.87405 121.0 575.0 0.382)
(0.0107615795 167.0 312.0 857.3 0.273)
(-0.11722043 523.4 214.4 8363.2 0.712)
(-0.21546386 408.0 110.0 483.2 0.9284)
(~1.4499393 187.0 312.0 857.3 0.8473)
(~1.5206991 187.0 312.0 857.3 0.472)
(14.3 445.4 8490.2524 338.0 0.743)
(14.3 445.4 -11384.084 2483.3 0.743)
(10.2 19.9217 266.0 008.1 1.82)

(7.5 323.0 20376.268 3289.0 413.0)

(7.5 323.0 6500.317 3289.0 0.413)

(7.5 323.0 5997.8525 2918.2 0.413)

(7.5 323.0 -3920.034 238.0 0.413)

(5.16 318.0 -1654.2872 2872.3 0.1323)
(5.18 318.0 —2484.7036 2872.3 0.4383)
(4.53 7.392655 313.0 773.3 0.9)

(4.53 39.961258 313.0 773.3 0.83)

(4.53 54.87472 313.0 773.3 0.2771)
(3.293959 65.8 220.0 337.0 0.13)

(2.87 -77.89037 289.0 4428.0 0.7072)
(2.87 -55.08361 289.0 4428.0 0.832)
(2.00 40.666813 120.0 848.8 0.3821)
(2.08 3104178 75.0 848.8 0.3621)
(2.0488336 35.4 220.0 451.0 0.6018)
(1.0244168 35.4 110.0 451.0 0.8018)
(0.96 612.0 3503.0276 588.0 0.3823)
(0.96 612.0 838.5044 588.0 0.384)

(0.9 -130.74095 121.0 575.0 0.1034)
(0.8212155 143.0 273.3 3948.3 0.8453)
(0.674562 143.0 273.3 938.0 0,8453)
(0.41 220.0 103.0 1,6253369 0,31)

(0.41 220.0 103.0 35432804 0.1422)
(0.41 220,0 103.0 7.453469 0.0676)
(0.40340808 523.4 214.4 873.4 0.712)
(0.4027866 110.0 198.0 412.0 0.5}
(0.36616963 121.0 198.0 412.0 0.5)
(0.3551025 143.0 273.3 4837.3 0.8453)
(0.24891308 178.0 198.0 412.0 0.5)
(0,22020708 408.0 110.0 483.2 0.584)
(0.048101775 1200.0 56.56 928.0 0.745)
(0.0381025 408.0 110.0 483.2 0.172)
(0.0056263898 1200.0 56.56 3827.0 0.745)
(0.002560051 1200.0 56.56 2937.0 0.745)

(-0.26749908 523.4 214.4 3824.3 0.712)
(10.2 -19.182206 266.0 998.1 0.783)
(4.53 45.117954 313.0 778.3 0.708)
(2.87 —91.08931 289.0 4428.0 0.344)
(1.7229134 125.8 220.0 337.0 0.13)
(0.987 102.3 2877.3518 382.8 0.1439)
(0.987 102.3 183.18755 382.3 0.1289)
(0.96 612.0 5¢1.88634 588.0 0.823)
(0.70884767 35.4 75.9 451.0 0.6018)
(0.132 98.0 217.0 2.727704 0.554)
(0.132 98.0 217.0 3.5699222 0.4233)
(0.132 98.0 217.0 18.979193 0.089)

—m Hypothueg ———nm=

CLASSA
Cover: Relation:
1*R = COS ((OMEGA * TIME)) * YO

B.4 Stoke's Law
Stoke's law helps demonstrate the need for clustering. Notice that in the firet experiment
using this data, the *CLUSTER-ORDER* is set so that the first ¢luster tried is the global

cluster.

(declarations

(v L ((meter 1) (sec -1)})
(¢ L ((meter 1)

(m L ((kg 1))

(6 L ((sec 1)

(b L ((meter 1)))
(substance N nil)
(location N nil)

)

(parameters
(*univignore® (3 4))
(*uncertainty® 0.02)
(*cluster—order® (ge ne re))

)

(variablea
{v r.m t b substance location)

)

(eventa
(11.9425 0.05 0.6231 0.0837 1.0 Glycerol DeathValley)
(26.8705 0.075 2.102¢ 0.0372 1.0 Glycerol DeathValley)
(47.7698 0.1 4.9847 0.0209 1.0 Glycerol DeathValley)
(18.0842 0.05 0.9426 0.0554 1.0 Glycerol DeathValley)
(40.6445 0.075 8.1809 0.0246 1.0 Glycerol DeathValley)
(72.2569 0.1 7.5398 0.0138 1.0 Glycerol DeathValley)
(9.1671 0.05 0.6231 0.1091 1.0 CaatorOil DeathValley)
(20.6260 0.075 2.1020 0.0485 1.0 CastorOil DeathValley)
(36.6684 0.1 4.9847 0.0273 1.0 CastorOil DeathValley)
(13,8662 0.05 0.9425 0.0721 L0 CastorQil DeathValley)
(31,1980 0.075 3.1809 0.0321 1.0 CastorOil DeathValley)

. (55.4648 0.1 7.5398 0,0180 1.0 CastorOil DeathValley)
(11.8757 0.05 0.6231 0.0842 1.0 Glycerol Denver)
(26.7204 0.075 2.1029 0.0374 1.0 Glycerol Denver)
(47.5030 0.1 4.9847 0.0211 1.0 Glycerol Denver)
(17.9633 0.05 0.9425 0.0557 1.0 Glycerol Denver)
(40.4174 0.075 3.1809 0.0247 1.0 Glyeerol Denver)
(71.8532 0.1 7.5398 0.0139 1.0 Glycerol Denver)
(9.1159 0.05 0.6231 0.1097 1.0 CastorOil Denver)
(20.5107 0.075 2.1029 0.0488 1.0 CastorOil Denver)
(36.4635 0.1 4.9847 0.0274 1.0 CastorOil Denver)
(13.7887 0.05 0.9425 0.0725 1.0 CastorOil Denver)
(31.0246 0.075 3.1809 0.0322 1.0 CastorOil Denver)
(55.1548 0.1 7.5308 0.0181 1.0 CastorOil Denver)
(11.9425 0.05 0.6231 0.1875 2.0 Glycerol DeathValley)
(26.8705 0.075 2.1029 0.0744 2.0 Glycerol DeathValley)
(47.7608 0.1 4.9847 0.0410 2.0 Glycerol DesthValley) -
(18.0642 0.05 0.9425 0.1107 2.0 Glycerol DeathValley)
(40.6445 0,075 3.1809 0.0492 2.0 Glycerol DeathValley)
(72,2569 0.1 7.5398 0.0277 2.0 Glycerol DeathValley)
(9.1671 0.05 0.6231 0.2182 2.0 CastorOil DeathValley)
(20,6260 0.075 2.1029 0.0970 2.0 CastorOil DeathValley)
(36.6684 0.1 4.9847 0.0545 2.0 CastorOil DeathValley)
(13.8662 0.05 0.9425 0.1442 2.0 CastorGil DeathValley)
(31.1989 0.075 3.1809 0.0641 2.0 CastorOil DeathValley)

(55.4648 0.1 7.5398 0.0361 2.0 CastorOil DeathValley)
(11.8757 0.05 0.6231 0.1684 2.0 Glycerol Denver)
(26.7204 0.075 2.1029 0.0748 2.0 Glycerol Denver)
(47.5030 0.1 4.0847 0.0421 2.0 Glycerol Denver)
(17.9633 0.05 0.9425 0.1113 2.0 Glycerol Denver)
(40.4174 0.0756 3.1809 0.0485 2.0 Glycerol Denver)
(71.8532 0.1 7.5398 0.0278 2.0 Glycerol Denver)
(9.1159 0.05 0.6231 0.2194 2.0 CastorOil Denver)
(20.5107 0.075 2.1020 0.0076 2.0 CastorQil Denver)
(36.4835 0.1 4.9847 0,0548 2.0 CastorOil Denver)
(13.7887 0.05 0.9425 0.1450 2,0 CaatorOil Denver)
(81.0248 0.0756 3.1809 0.0845 2.0 CastorQil Denver)
(55.1549 0.1 7.5398 0.0363 2.0 CastorOil Denver)

(4.4373
(4.4373
(4.4373
(4.4373
(4.4378
- (4.4373
(4.4240
(4.4249
(4.4249
(4.4249
(4.4249
(4.4249
(6.2753
(6.2753
(6.2753
(6.2753
(6.2753
(6.2753
(8.2578
(6.2578
(6.2578
(8.2578
(6.2578
(6.2578

)

0.05 0.6231 0.4507 1.0 Vacuum
0.075 2.1029 0.4507 1.0 Vacuum
0.1 4.9847 0.4507 1.0 Vacuum
0.08 0.9425 0.4507 1.0 Vacuum
0075 3.1809 0.4507 1.0 Vacuum
0.1 7.5308 0.4507 1.0 YVacuum
0.06 0.8231 0.4520 1.0 Vacuum
0.076 2.1029 0.4520 1.0 Vacuum
0.1 4.0847 0.4520 1.0 Vacuum
0.06 0.9425 0.4520 1.0 Vacuum
0.075 3.1809 0.4520 1.0 Vacuum
0.1 7.5398 0.4520 1.0 Vacuum
0.05 0.8231 0.8374 2.0 Vacuum

0.075 2.1029 0.8374 2.0 Vascuum

0.1 4.9847 0.8374 2.0 Vacuum
0.05 0.9425 0.6374 2.0 Vacuum
0.075 3.1802 0.6374 2.0 Vacuum
0.1 7.5308 0.6374 2.0 Vacuum
0.05 0.6231 0.6392 2.0 Vacuum
0.075 2.1029 0.6392 2.0 Vacuum
0.1 4.9847 0.6392 2.0 Vacuum
0.05 0.9425 0.6392 2.0 Vacuum
0.075 3.1809 0.8392 2.0 Vacuum
0.1 7.5308 0.6392 2.9 Vacuum

DeathValley)
DeathValley)
DeathValley)
DeathValley)
DeathValley)
DeathValley)
Denver)
Denver)
Denver)
Denver)
Denver)
Denver)

" DeathValley)

DeathValley)
DeathValley)
DeathValley)
DeathValley)
DeathValley)
Denver)
Denver)
Denver)
Denver)
Denver)
Denver)

87

== Parameters —=-=

*MAXSTAR® = 10
*COVERMODE® = IC
UNCERTAINTY® = 0.02
CONSTANCY = 0.99
INVERSE-SW = 30
DIRECT-SW = 70
UNIVIGNORE = (3 4)

DEBUG = NIL
PRINT-FLAGS = (P §)
FILTER-LEVEL® = 2
SEARCH-LIMIT = 3
MAX-NODES = 1000
CLUSTER-ON =T
CLUSTER-ORDER® = (GC NC RC)
"BEAM-VALUE* = 0.5
MINIMUM-LINK-VALUE = 50.0

starLEF — ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))
=—=—_ Claas Events ~——=—=

CLASSC |

(VR M T H SUBSTANCE LOCATION)

(9.1159 0.05 0,6231 0.1097 1.0 CASTOROIL DENVER)
(9.1150 0.05 06231 0.2194 2.0 CASTOROIL DENVER)
(13.7887 0.05 0.9425 0.0725 1.0 CASTOROIL DENVER)
(13.7887 0.05 0.9425 0.145 2.0 CASTOROIL DENVER)
(31,0246 0.075 3.1809 0.0322 1.0 CASTOROIL DENVER)
(31.0246 0.075 3.1809 0.0645 2.0 CASTOROIL DENVER)
(38.4635 0,1 4.9847 0.0274 1.0 CASTOROIL DENVER)
(36,4635 0.1 4.9847 00548 2.0 CASTOROIL DENVER)
(20.5107 0.075 2.1029 0.0488 1.0 CASTOROIL DENVER)
(20.5107 0.075 2.1029 0.0975 2.0 CASTOROIL DENVER)
(55.1549 0.1 7.5398 0.0181 1.0 CASTOROIL DENVER)
(55,1549 0.1 7.5398 0.0363 2.0 CASTOROIL DENVER)
(9.1671 0.05 0.6231 0.1091 1,0 CASTOROIL DEATHVALLEY)
(9.1671 0.05 0.6231 0.2182 2.0 CASTOROIL DEATHVALLEY)
(13,8662 0.05 0.9425 0.0721 1.0 CASTOROIL DEATHVALLEY]

(13.8662 0.05 0.9425 0.1442 2.0 CASTOROIL DEATHVALLEY)
(81.1989 0.075 3.1809 0.0321 1.0 CASTOROIL DEATHVALLEY)
(31.1989 0.075 3.1809 0.0841 2.0 CASTOROIL DEATHVALLEY)
(36.6684 0.1 4.9847 0.0273 1.0 CASTOROIL DEATHVALLEY)
(36,8684 0.1 4.9847 00645 2.0 CASTOROIL DEATHVALLEY)
(20,826 0.075 2.1029 0.0485 1.0 CASTOROIL DEATHVALLEY)
(20.626 0.075 2.1020 0.097 2.0 CASTOROIL DEATHVALLEY)
(55.4648 0.1 7.5398 0,018 1.0 CASTOROIL DEATHVALLEY)
(55.4848 0.1 7.5398 0,0361 2.0 CASTOROIL DEATHVALLEY)
CLASSB

(VR M T H SUBSTANCE LOCATION)

(11.8757 0.05 0.8231 0.0842 1.0 GLYCEROL DENVER})
(11.8757 0.05 0.6231 0.1684 2.0 GLYCEROL DENVER)
(17.9633 0.05 0.9425 0.0557 1.0 GLYCEROL DENVER)
(17.9633 0.05 0.9425 0.1113 2.0 GLYCEROL DENVER)
(40.4174 0.075 3.1809 0.0247 1.0 GLYCEROL DENVER)
(40.4174 0.075 3,1800 0.0495 2.0 GLYCEROL DENVER)
(47.503 0.1 4.9847 0.0211 1.0 GLYCEROL DENVER)

(47.503 0.1 4.9847 0.0421 2.0 GLYCEROL DENVER)

(26.7204 0.075 2.1029 0.0374 1.0 GLYCEROL DENVER)
(26.7204 0,075 2.1029 0.0748 2.0 GLYCEROL DENVER)
(71.8532 0.1 7.5398 0.0139 1.0 GLYCEROL DENVER)

(71.8532 0.1 7.5398 0.0278 2.0 GLYCEROL DENVER)

(18.0642 0.05 0.9425 0.0554 1.0 GLYCEROL DEATHVALLEY)
(18.0642 0.05 0.9425 0.1107 2.0 GLYCEROL DEATHVALLEY)
(11.9425 0.05 0.6231 0.0837 1.0 GLYCEROL DEATHVALLEY)
(11.9425 0.05 0.6231 0.1675 2.0 GLYCEROL DEATHVALLEY)
(40.8445 0,075 3.1809 0.0246 1.0 GLYCEROL DEATHVALLEY)
(40.6445 0.075 3.1809 0.0492 2.0 GLYCEROL DEATHVALLEY)
(47.7698 0.1 4.9847 0.0419 2,0 GLYCEROL DEATHVALLEY)
(26.8705 0.075 2.1029 0,0372 1.0 GLYCEROL DEATHVALLEY)
(26.8705 0.075 2.1029 0.0744 2.0 GLYCEROL DEATHVALLEY)
(72.2569 0.1 7.5398 0.0138 1,0 GLYCEROL DEATHVALLEY)
(72.2569 0.1 7.5398 0.0277 2.0 GLYCEROL DEATHVALLEY)

CLASSA

(VR M T H SUBSTANCE LOCATION)

(4.4249 0.1 7.5398 0.452 1.0 VACUUM DENVER)
(4.4249 0.1 4.9847 0.452 1.0 VACUUM DENVER)
(4.4249 0.075 3.1809 0.452 1.0 VACUUM DENVER)
(4.4249 0.075 2.1029 0.452 1.0 VACUUM DENVER)
(4.4249 0.05 0.9425 0452 1.0 VACUUM DENVER)
(4.4249 0.05 0.6231 0.452 1.0 VACUUM DENVER)
(6.2578 0.1 4.9847 0.6392 2.0 VACUUM DENVER)
{6.2578 0.075 3.1809 0.6392 2.0 VACUUM DENVER)
(6.2578 0.075 2.1029 0.6392 2.0 VACUUM DENVER)
(6.2578 0.05 0.9425 0.6392 2.0 VACUUM DENVER)

(6.2578 0.05 0.6231 0.8392 2.0 VACUUM DENVER)

(8.2753 0.1 7.5398 0.6374 2.0 VACUUM DEATHVALLEY)
(6.2753 0.1 4.9847 0.6374 2.0 VACUUM DEATHVALLEY)
(6.2753 0,075 3.1809 0.8374 2.0 VACUUM DEATHVALLEY)
(6.2753 0.075 2.1029 0.6374 2.0 VACUUM DEATHVALLEY)
(6.2753 0.05 0.9425 0.6374 2.0 VACUUM DEATHVALLEY)
(6.2753 0.05 0.6231 0,6374 2.0 VACUUM DEATHVALLEY)
(4.4373 0.1 7.5398 0.4507 1.0 VACUUM DEATHVALLEY)
(4.4373 0.1 4.9847 0.4507 1.0 VACUUM DEATHVALLEY)
(4.4373 0.075 3.1809 0.4507 1.0 VACUUM DEATHVALLEY)
(4.4373 0,076 2.1029 0.4507 1.0 VACUUM DEATHVALLEY)
(4.4373 0.05 0.9425 0.4507 1.0 VACUUM DEATHVALLEY)
(4.4373 0.05 0.6231 0.4507 1.0 VACUUM DEATHVALLEY)

CLASSA

Cover:
24 [SUBSTANCE = VACUUM]
Relation:
V=98175*T

CLASSH

Cover:
24 [SUBSTANCE = GLYCEROL]
Relation:
R*V=00956*M

CLASSC

Cover:
24 [SUBSTANCE = CASTOROIL]
Relation:
R*V=07336*M

70

In the second experiment, the equation form (= v (+ (* ¢l t))) was included which fit on of the
subsets. The resulting equations were identical to the ones discovered by the heuristic search
method.

=-=—- Parameters ~——=-—=

*MAXSTAR® = 10
COVERMODE = IC
*UNCERTAINTY® = 0.02
CONSTANCY = 0.07
INVERSE-SW = 30
DIRECT-SW = 70
UNIVIGNORE® = (3 4)

DEBUG® = NIL)
PRINT-FLAGS = (P 8)
FILTER-LEVEL® = 2
SEARCH-LIMIT = 3
MAX-NODES = 1000
CLUSTER-ON =T
CLUSTER-ORDER = (GC NC RC)
SBEAM-VALUE* = 0.5
MINIMUM-LINK-VALUE = 50.0

starLEF = ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))

=-=- Hypotheses .—=—=

CLASSA
Cover: Relation:
V=981748*T

CLASSB
Cover: Relation:
R*V=0.8556*M

CLASSC
Cover:: Relation:
R*V=0.7336*M

71

B.5 Angular Conservation of Momentum

This simple experiment shows the use of linear regression in ABACUS.2 In this case,
ABACUS.2 was given 3 equation forms, but only the last one had s constaney which exceeded the
CONSTANCY threshold.

Edeclantiom

(m L ((meters 1)))

(Vo L ((meters 1) (seconds -1)))

(V L ((meters 1) (seconds -1)))

(I L ((kilogram 1) (meters 2)))
(omega L ((radians 1) (seconds -2)))
(Ediss L ((joules 1)))

{parameters

)

(variables
(m Vo V I omega Ediss)
)

(equations

(= Ediss (+(* ¢1 (* m Vo Vo)) (* 2 (- (* 1 omega omega})}))

(=Ediss (+ (* et *m VV)) (* 2 (- (*m VV)))))

§= Ediss (+ (* ¢1 (* m Vo Vo)) (* €2 (- (* m VV))) (* ¢3 (- (*] omega omega)))))

(events
(40.0 6.77 311 7200 0.687 563.05)
(55.8 596 4.89 8017 0501 222.13)

(34.65 4.86 2.3 085.8 0.473 240.86)
(69.485.21 4.5 609.0 0.801 15.26)

(34.5 409 251 5988 0542 91.93)
(43.0 6.34 44 7409 0.603 313.26)
(50.2 7.21 489 7982 066 530.75)
(28.9 3.87 198 402.0 0.320 138.01)
(47.5 432 395 5745 0.354 36.67)
(38.5 468 375 583.4 0473 B85.65)
(41.5 568 4.53 7540 0.385 222.97)
(51.0 5.84 4367 803 0574 251.10)
)

)

72

=-=- Parameters ~——=-—=

*MAXSTAR® = 10
COVERMODE =1IC
*UNCERTAINTY® = 0.02
CONSTANCY = 0.95
INVERSE-SW = 30 -
DIRECT-SW =70
UNIVIGNORE = NIL

DEBUG = NIL
‘PRINT-FLAGS®* = (P E)
FILTER-LEVEL = 2
SEARCH-LIMIT = 3
MAX-NODES = 1000
CLUSTER-ON =T
CLUSTER-ORDER® = (NC GC RC)
*BEAM-VALUE® = 0.5
MINIMUM-LINK-VALUE = 50.0

atarLEF = ((MAX-COVERED 0.5) (MIN-WEIGHT 0.0) (MIN-SELECTORS 0.0))
=—==— Clazs Events -——==

CLASSA

(M VO V 1 OMEGA EDISS)
(69.48 5,21 4.5 699.0 0.801 15.26)
(47.5 4.32 3.95 574.5 0.354 36.67)
(38.5 4.88 3.75 583.4 0.473 85.65)
(34.5 4.00 2.51 508.8 0.542 91.93)
(28.9 3.87 1.98 402.0 0.329 138.01)
(55.6 5.96 4.89 801.7 0.501 222.13)
(47.5 5.68 4,53 754.0 0.385 222.97)
(34.85 4.86 2.3 685.6 0.473 240.86)
(51.0 5.84 4,367 803.0 0.574 251.10)
(43.0 6.34 4.4 740.9 0.603 313.26)
(50.2 7.21 4.89 798.2 0.66 530.75)
(40.0 8.77 3.11 720.0 0.667 563.05)

73

CLASSA

Cover: Relation:

EDISS — 0.4099994 * (M * VO * VO) + 0.4999996 * (- (M *V* V))
+ 0.40999753 * (- (1* OMEGA * OMEGA))

74

REFERENCES

[Becker, 1985)
Becker, J. M., "AQ-PROLOG: A Prolog Implementation of an Attribute-Based Inductive
Learning System,” UIUCDCS-F-85-930, ISG 85-1, Department of Computer Science,
University of Illinois, 1985a.

[Chatterjee and Price, 1077)
Chatterjee, 8., and Price, B. Regression Analysis by Ezample. New York; John Wiley and
Sons.

[Daniel and Wood, 1080]
Daniel, C., and Wood, F. 8. Fitting Equations to Data. New York: Wiley-Interscience,
John Wiley and Sons.

[Dejong, 1986]
Dejong, G. and Mooney, R., "Explanation-Based Learning: An Alternative View,"” in
Machine Learning Journal, vol. 2, 1986.

[Edwards, 1976]
Edwards, A. L., An Introduction o Linear Regression and Correlalion, Freeman Press, San
Francisco, 1975,))

[El-Shafei, 1086]
El-Shafei, N. Quantitative Discovery and Reasoning about Failure Mechanisma in
Pavement. TR, Artificial Intelligence Laboratory, MIT, Cambridge, Mass.

[Falkenhainer, 1985]
Falkenhainer, B. C., Quanfitative Empirical Learning: An Analysiz and Methodology.
Master’s thesis (UIUCDCS-F-85-947, ISG 85-16), Department of Computer Science,
Univereity of lllinois, Champaign-Urbana, 111

[Falkenhainer and Michalski, 1086]
Falkenhainer, B. C., and Michalski, R. 8., "Integrating Quantitative and Qualitative
Discovery: The ABACUS System," in Machine Learning Journal, vol. 3, 1988.

[Huntley, 1952] .
Huntley, H, E. Dimensional Analysis, London: MacDonald and Co.

[Kokar, 1086]
Kokar, M. "Learning Arguments of Invariant Functional Deseriptions,” in Machine Learnsng
Journal, vol. 1, 1988,

[Langhaar, 1051
Langhaar, H. L. Dimensional Analysis and Theory of Models. John Wiley and Sons.

[Langley, Bradshaw, and Simon, 1985]
Langley, P., Bradshaw, G, L., and Simon, H, A. BACON.5: The Discovery of Conservation
Laws. Proceedings of the Seventh Intcrnational Joint Conference on Artificial Intelligence
(pp. 121-128),

[Langley, Zytkow, Simon, and Bradshaw, 1986]
Langley, P., Zytkow, J., Simon, H. A, and Bradshaw, G. L. The Search for Regularity:
Four Aspects of Scientific Discovery, in Machine Learning: An Artificial Intelligence
Approach, volume II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.), Tioga,
Palo Alto, Calif., 1983. '

75

[Michalski, 1975) _
Michalski, R. §., "Synthesis of Optimal and Quasi-optimal Variable-valued Logic
Formulss,” Proceedings of the 1975 International Symposium on Multiple-valued Logie,
Bloomington, Indians, pp. 78-87, May 1975.

[Michalski and Larson, 1678]
Michalski, R. 8., and Larson, J.B. Selection of Moat Representative Training Examples and
Incremental Ceneration of VLI Hypotheses: The Underlying Methodology and the
Deacription of Programs ESEL and AQ11 (TR UITUCDCS-R-78-867). Department of
Computer Science, University of Illinois, Champaign-Urbans, .

[Michalski, 1986]
Michalski, R. 8., "Understanding the Nature of Learning.” in Machine Learning: An
Artificial Intelligence Approach, volume II, R. 8. Michalski, J. G. Carbonell, and T. M.
Mitchell (Eds.), Tiogs, Palo Alto, Calif., 1983.

[Minksy, 1985]
Mineky, M. The Society of Mind, MIT Press, Cambridge, 1985,

[Mitchell, 1986]
Mitchesll, T. M., Keller T., and Kedar-Cabelli, S., "Explanation-Based Generalisation: A
Unifying View," in Machine Learning Journal, vol. 1, January 1986.

[O’Dwyer, 1981]
O'Dwyer, J., College Physics, Wadsworth Publishing Co., 1981.

[Simen, 1983]
Simon, H. A., "Why Should Machines Learn? in Machine Learning: An Artificial
Intelligence Approach, R. 8. Michalski, J. G. Carbonell, snd T. M. Mitchell (Eds.), Tiogs,
Palo Alto, Calif., 1983.

76

