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ABSTRACT

The ability to make decisions in situations not encountered before charac-
terizes human reasoning. This paper discusses a pilot implementation of the
computational model of human plausible reasoning based on a core theory by
Collins and Michalski, The theory assumes that human knowledge can be rep-
resented as objects or concepts that are related by similarity, generalization,
and specialization relations, and that are arranged into hierarchies. Facts about
the world are represented as traces linking nodes of different hierarchies, The
building of the hierarchies and construction of the links is an integral part of the
learning process undergone by human beings. Plausible reasoning is an ability to
draw inferences when direct links between concerned objects are not available.
This involves perturbation of established traces, traversal through the concerned
hierarchies, inheritance of the properties along the way, and combination of ev-

idences for selection of the best inference.

The core theory has been operationalized and expanded to use confidence
parameters, dynamic learning of dependencies and jm plications, automatic find.
ing of context for reasoning, and combination of evidence. A pilot version of the
theory of plausible reasoning has been implemented in a system called APPLAUSE
(APproximate/PLAUSIbIE reasoning). Some key operations are illustrated with
examples, and the plausible reasoning process, including discovery of useful de-
pendencies, is demonstrated on a problem in the domain of the chemijcal periodic

table.

iv



Contents

1 Introduction 1

2.1

2.2

2.3

24

2 Flements of the Theory of Plausible Reasoning 5
Uncertainty . 7
2.1.1 Sourcesat;Uncertainty.........‘........._ ....... 7
Knowledge Representation in APPLAUSE . . . . . . . . v o v v m s v o v 9
221 Elements of Expressions . . . .« ..o oL n e 10
222 Hierarchies . . . . . . v vt v v v v e e e e 13
Parameters in Knowledge Representation . . . .. .. ... ... 15
2831 Veracily f . o v . v v vi v i e e e e e e s e e e e 15
232 Frequency d. . v v v v o v v v s e e s s 17
033 SIMEAREY & . . . o . .o e e e e e 18
234 Typicality 7. . o o v v v i i s e e e e e 22
235 Dominanced . . . ..« v vv v v i m e s e e e e 23
2.3.6 Strength of Dependency/Implication, a,8 . . .« - v . oo v o v i 24
2.3.7 Estimationof aand 8: . .. . .. .0 it e i e 25
238 Certainties Yo, ¥8 - « - - v+ s 50 v e e e e e e s 26
2.39 PFunctional Dependencies . . . . . . . . .« v o v s e e 26
2.3.10 Certainty Parameters . . .. .. . .« o % « i et vn s 27
Complex Statements . . .. . .. . oo v ety ALY 28
2.4.1 CONIJUNCGTION . . . v s v iv v s st v m s b s im0 s 0 n vaa s oo s 28
242 DISIUNCTION . o 4 o v v v vt ve v v et m e et s e e e as v 29



243 BXOR .. 30

2.5 Further Discussion on Statements . . ., ., ., . ... ..... .. . . 30
26 Conclusion .. ... ... ... 32
3 Presentation of Statement Transforms 33
31 AGEN . e 34
e o L 36
33 ASIM e 3
3.4 Discussion on ARGUMENT Based Transforms . . ... ............. 42
341 AGENm . ... 44
3.4.2 Effect of Kind of Hierarchies on the Transforms . .......... na
38 RGEN .. . 48
36 RSPEC .. ... . 51
ST RSIM ... 84
3.8 Derivations from Implication . . ... ........ ... ...... ... 55
39 Conclusion . ... ... 57
4 Description of APPLAUSE ' 58
4.1 Knowledge Representation. . . . ., ... .. ... . .. >R R AT 58
4.1.1 Hierarchies ..................... .. ... .. ... 60
4.1.2 Representation of Attributes (Deseriptors) . . ... .......... 63
4.1.3 Representation of Dependencies and Implications . . , ., . ... .. 64
42 PeriodicTableDataBase . .. ................. ... . . 64
4.2.1 Historical Perspective . . .. ....... .. ... ... .. . .. . 65
422 Hierarchies in the Periodic Table . .. .., .... ., ... . . . 65
4.3. Building of Knowledge Base in APPLAUSE . . . ... ....... ... . 68
44 Query Processing . . ......................0.0 ... . 74
44.1 InferenceModule .. . ..................... .. ... 75
& Conclusions 31

vi



5.1 Summary

.......................

.......
........

...................
.............

vii



List of Tables

21 CONTEXT CBITIVOTE . . o v o v h v v et e e e e e i e e e e

viil



List of Figures

21
22
2.3
2.4
4.1
4.2
4.3
44

Mierarchies and Teaces . ... ... ..., 8
1sA Hierarchy: Animal Clasification . . .. .. .. .. . 14
Geographical parTor Hierachy ... ... . ... .. .. . . 16
Pairwise Similarity Asertions in protoe . .. ... ... ... . 21
BlockDiagrunofAPPuUu..................,....._... 59
The Periodic Table . . . BrE BARSIS YR ey e w0 e B3R 88
Group and Period Hierarchies , . . .. ... . 87
Construction of Hierarchies . . , . . . B AN e e s s 71



Chapter 1

Introduction

Human cognitive processes are too complex to be dealt with by classical Aristotelian logic.
In order to capture the essence of recurring human reasoning patterns, Collins and Michalski
have proposed a core theory of plausible reasoning [3]. The reasoning patterns typically
involve use of uncertain premises and facts related only indirectly to the desired conclusions.
Formalization of these plausible reasoning patterns involves use of transformations such
as simslarity, dissimilarity, generalization, specialization, together with dependencies and
tmplications.

Classical Aristotelian logic Provides an axiomatic framework for deductive inference,
where propositions are postulated, and the conclusions are derived by application of in-
ference rules, e.g. modus ponens, modus tollens. The truth preserving rules of deductive
reasoning allow inference of conclusions which are implicit in the premises, Complexity
of such a reasoning process increases with the number of premises. Furthermore, invalid
premises can produce erroneous conclusions. The task of establishing true and consistent
propositions remains an open problem in a strictly deductive inference framework. Induc-
tive reasoning is used in the process of conjecturing potentially useful premises. Inductive
reasoning involves generalization of a given set or sequence of events and is broadly cate-
gorized into instance fo class generalization and part lo whole generalization (4] Inductive
processes raise fundamental questions relating to causality, which were first examined by
David Hume (9] in eighteenth century and are still controversial, Rule finding or hypothe-

sizing by inductive processes has the pragmatic value of constructing knowledge consistent
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with observetions by consolidating information. Importance of inductive processes to the Al
methodology can be assessed by the number of learning systems such as cLusTen (31],[18],
AQ [17], ABACUS [6], cOPER [10], BACON [11], coBWEB (7| which have demonstrated success.
Reorganization of data/information by inductive and analogical processes has led to great
scientific and mathematical discoveries in the past, and it continues to be the paradigm of
most scientific discovery.

Deductive reasoning is truth preserving, while inductive reasoning is falsity preserving
{15]. Analogical reasoning is a hybrid form which involves both induction snd deduction.
Typical human reasoning involves all these elements in various degrees in different situstions.
Inductive processes in human reasoning are often imperfect, in other words, human beings
apply generalizations even when exceptions are known and thus they differ considerably
from clessical perfect induction. '

Plausible ressoning is mainly concerned with arriving at reasonable conclusions when ac-
curate and absolutely certain conclusions cannot be reached due to insufficient or uncertain
information. Motivation for studying the problem of plausible reasoning is twofold. First,
from the cognitive science point of view, it gives a formal representation/model for human '
reasoning. Second, from the computer science viewpoint, it provides en insight into the
usefulness, possibilities, and difficulties of implementing human reasoning patterns into au-
tomated reasoning processes. Polya [24] catalogued various human reascning patterns and
ejucidated importance of induction and anslogy in human reasoning especially with refer-
ence to mathematical problems solving methods. Nonstandard logics such es Intuitionistic
logic {13], Modal logic {8], Multiple valued logic [12], Variable valued logic [16], Variable
precision logic [20], Default logic [27),(34], Temporal logic [14], Fussy logic [35},(36], and
computational methods based on Rough sets [22], Belief networks [23], Dempster-Shafer
theory [29), Belief functions [28], [30], Decision trees [26], Probabilistic logic {21) attempt to
overcome inadequacies of the classical Aristotelian logic. The nonstandard logics introduce
additional axioms, more than two truth values, time dependent premises. The computa-
tional methods stress on represention and manipulation of uncertainty, and imprecision.
The approsches are by no means mutually exclusive, several of them can be combined
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and are combined to solve practical problems. For extensive bibliography on work done
on computational approaches 10 spproximate and pisusible reasoning, see [25]. The core
theoty of plausible reasoning proposed by Collins and Michalski is a descriptive model of
human reasoning processes under constraints of limited and uncertain knowledge. The the-
ory of plausible reasoning provides & framework for using various inference patterns and
estimating the validity of the conclusions. The proceas of transformation is guided by data
representation, heuristics and explicit rules.

The system APPLAUSE (AP prozimate and PLAUSIbE reasoning) implements some aspects
of human reasoning which are not easily captured by traditional logic. The aim of the thesia
is to operationalize the extended and revised theory of plausible reasoning and demonstrate
its scope and usefulness with the chemical periodic table as the test domain. The idea
of the periodic table of the elements was introduced by Mendeleev circa 1869, when he
discovered recurring patierns in the properties of the elements arranged in the increasing
order of their atomic weights. This table explained and more interestingly, predicted the
behavior of elements and their compounds. The table correctly predicted the existence of
sorne slements not discovered at that time, and drew attention to incorrect measurements of
atomic weights of some elements. Along with some resou.hd'mg successes, there were failures.
The failures were important in their own light; many important discoveries can be attributed
to the efforts to eliminate and explain anomalies in the then accepted arrangement of the
periodic table. Importance of patterns to the furtherance of our understanding of the world
is evident by the current efforts of the physicists to fit the elementary particles, and the
nuclear structure in a framework similar to that of the periadic table.

The thesis is organized into 5 chapters. Chapter 1 is the introduction. Chapter 2 defines
the necessary technical terms, provides examples of various types of statements that can
be repres'anted within the plausible reasoning theory framework, discusses methods for the
estimation of parameters for statements in the database. Chapter 3 describes, formalizes
and exemplifies various statement yransforms such a3 A GEN, R SPEC. It rationalizes the
formulae adopted in the computation of parsmeters of the conclusions. Chapter 4 discussena

the the data structure, knowledge representation, rule representation, heuristics employed
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in the APPLAUSE system and examines the derivations of the system. Chapter 5 presents
summary of APPLAUSE, an overview of the results, weaknesses, and strengths of the methods

and finally directions for further research are explored.



Chapter 2

Elements of the Theory of
Plausible Reasoning

The ability to reason under complex situations involving numerous premises, incomplete or
uncertain knowledge, and time conitraints marks the versatility of the human reasoning.
Without such abilities, familiar tasks such as medical diagnosis, stock market manipulstions,
getting dressed for the weather and hypothesizing in scientific research would be impossible.

Collins and Michalski formalized the theory of plausible reasoning to mode] the reasoning
processes involved in answering questions for which answers are not readily available and
must be obtained by reasoning from similar situations. According to the theory, (3] &
large part of human knowledge is represented in hierarchical structures. The structures
are highly dynamic, collapsing and differentiating according to the need. The nodes in the
hierarchies carry information and are connected to nodes in other hierarchjes by means
of traces. The traces affirm existence of relations among the connecting nodes. A trace
carries additional information qualifying the relationship itself. It may contain information
about the source which caused such s linkage to be established, the confidence about the
correctness of the linkage etc. The traces along with the nodes which they connect represent
factual knowledge, whereas perturbation in the traces are believed to correspond to certain
types of plausible reasoning patterns.

Figure 2.1 illustrates how a statement may be represented as & trace connecting nodes
m various hierarchies and how perturbations of a trace leads to a playsible inference. For

example, if the nodes fikes, Mary, Coke are connected by a trace, where likes is a node
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in the hierarchy of relations, Mary belongs to the hierarchy of persons, Coke belongs to
the hierarchy of drinks and other food items, then the perturbation in the original trace

may produce several other traces such as ikes, Mary, Diet-Coke, iikes, Mary, alcohalic-drinks,

likes, Mary’s-brother, Pepsi, likes, Mary, soft-drinks. Properly applied, these perturbations

give reasonable conclusions, at other times they may not be applicable and have to be
interpreted carefully. The theory of plausible reasoning provides a framework for estimating

the validity of the conclusions based on various inference patterns.

2.1 Uncertainty

The hierarchical knowledge base as well as the conclusions derived from them, have un-
certainties sssociated with them. These uncertainties have to be taken into account while

teasoning. Sources of some of these uncertainties are discussed in this section.
2.1.1 Sources of Uncertainty

The theory of plausible reasoning specifically handles reasoning under uncertain and in-
complete knowledge. Other aspects such as ambiguity or vagueness are also pertinent but
ignored for simplicity. Before discussing the effects of uncertainty, it is worthwhile to look
at some of the sources of uncertainty.

Memory confusjon: Memory is an information storage unit, Uncertainty results from
the unreliability of human memory in addition to the uncertainty of the information itself
when it is first stored, Memory confusion occurs when facts get mixed up or if the event to
be recalled has occurred in distant past, or has not been referenced recently. This prompts
human beings to attach a degree of uncertainty to any piece of information retrieved from
memory, and incorporate it in subsequent reasoning process. Tﬁe memories in modern
computers are very reliable and there is no need to assign an additional level of uncertainty
to a piece of information.

Credibility of source: This factor is applicable to machines as well as human beings. Eye.
witness experience, reputed journals are considered to be reliable sources, Gossip columns

are subject to doubt. For a data aquisition systems, the quality of sensors contributes to
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the credibility of information. The system may be made aware of the accuracy and relia-
bility of the ‘thermometer' which gives it data from time to time. To boost the credibility
(reliability) of the sources, majorily circuits may be employed, Multiple member Judiciary
bench or committee represent the human counterpart.

Uncertainty about future events: A future event is aiways uncertain, Degree of con-
fidence varies from statement to statement. The Sun will rise tomorrow has much more
credibility than the inflation rate next yesr will be 10%. The confidence values are assigned
by taking into account variation in relevant events experienced in the past. Future events
become more credible if predicted by theories ﬁhjch explain lﬂ-pllt relevant events. The
credibility of a future event increases if independently predicted by multiple theories. For
example, if inflation is predicted by tax-hike and rise in the OPEC oil prices independently,
then it has more credibility than if it had been predicted by a single factor.

Uncertainty about past events: Past events, where a record does not exist, are made
more credible by evidence that is a consequence of the event in question and of none other.
Past event becomes more credible if corroborated by muitiple independent evidences. For
example, no direct evidence exists for the theory that the continents were part of the same
tectonic plate some millions of years back in time. Ho_welver, ¢redence in the theory increases
by evidences such as a good fit in the boundaries of the continents to form a continous land
mass; presence of fossils or animals which could not have evolved independently or which
could not have crossed the oceans, in continents separated by oceans.

Uncertainty due to precision and universality of propositions: There i1 a common
tradeofl between the truth of a statement and its precision. A more precise and/or universal
statement is more informative and stands a greater possibility of refutation and hence
introduces an element of uncertainty in its claim to the truth. It is the endeavor of science
to generate more precise and universal theories without compromising their truth value.
(The word precise is to be contrasted with vague and not with universal), The statement
that there will be a solar eclipse is vague (imprecise) compared to the statement that there
will be a solar eclipse at noon on March 13,1989, A theory predicting time of every solar
eclipse is universal. Like science, a good reasoning system should strive to discover precise,



universal theories whoge power lies in their potential to explain, predict, and condense large

number of events.

2.2 Knowledge Representation in APPLAUSE

The remainder of the chapter is devoted to the knowledge representation suitable for plas-
sible reasoning. Emphasis has been placed on the representation adopted in the system
APPLAUSE. As in any system there is 3 tradeoff between the adequacy of the representation
and its complexity. The chosen representation is powerful enough to be able to test basic
Plausible reasoning patterns. Several changes are anticipsted in further expansions of the
system in order to incorporate free form statements, temporal reasoning ete.

Knowledge consists of various components such as
o Facts- ‘2 + 2 = 4" is known to most people as a fact,

* Rules- We know the sum of two small numbers as a fact, To add two arbitrary
numbers, i.e. to compute z = x + ¥, we use rules or procedures. Rules assist in
condensation of factual knowledge. Rules may be described by means of other simpler
rules, e.g. procedure for multiplying two numbers might use a procedure for adding

two pumbers,

* Metarules- Metarules prescribe which rules are to be applied and when. They have
the effect of organizing knowledge base and rendering it more efficient and useful,

The theory of plausible reasoning as developed by Collins and Michalski [3] has & set of
primitives comsisting of basic expressions, operators and certainty parameters to represent
knowledge of each of the above type. The nodes related by parent-child relationship have
parameters typicality v and dominance § associated with them. A pair of nodes at the
same level in & hierarchy has similarity o associated with it. Veracity u and frequency
¢ are associated with statements describing relation between two nodes of two different

hierarchies. Each of these parameters is assigned a confidence measure which indicates the

confidence in the value assigned to the parameter. A part of the knowledge base consists
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of propositions or statements which are represented as traces connecting nodes (arguments,
descriptors, referents) in different hierarchies. Many of the definitions and some examples

given below are adapted from [3].
2.2.1 Elementa of Expressions

Facts are represented as statements such as:
color(flag(USA)) = { red, blue, white }

The left-hand-side is called a term and consists of a descriptor applied to an argument. The
right-hand-side is the evaluation of the term and is called a referent.

Arguments: Arguments are denoted by a3, a3, f{a1), 9(a3),...

Arguments are objects. The objects may be simple or may be compound, having many
components. The components of compound objects may have interrelations among them.
Wheels, & chain, and pedals are parts of a bicycle with a well defined interrelationship. The
interrelations between parts add considerable information content; however, it is difficuit
to use this information except in domain specific applications. The arguments may also

represent abstractions of other objects.

EXAMPLE 2.1 hydrogen simple argument
flag(USA) nested argument
audio:system compound argument
group-l.elements abstraction of H, Li, Na, ete.

Descriptor: Descriptors are denoted by dy, dy, ...
The descriptors can be either predicates, functions or attributes,

ExamprLe 2.3 temperature attribute, function
can_fly predicate

Terms: Terms have the form dy(a;), di(ay, 83, . )y da(ar, f(as), g(as, aq),.. T
Terms are formed by applying descriptors to arguments.

EXAMPLE 2.3 temperature(pisce)
temperature(latitude, altitude)
color(flag({USA}))

10



Note that the last term uses a nested argument (33].

Referents: Referents are denoted by ry, {r,...}.

A referent is a result of an evaluation of a descriptor applied to an argument. It can be a
number, a simple object, a compound object, or an abstraction.

EXAMPLE 2.4 10.9 number, simple referent
{ red, blue, and white } multivalued referent

Simple statements: Simple statements have the form dy(a,) = ry = [u, 4, &, 7¢), where
B is veracity, ¢ is frequency, Tuy V¢ are confidences in u and ¢ respectively thai will be
discussed below.

Examrre 2.5 density(aluminum)
is-old(john) true: [0.7, 0.9, 1, 1]
engine_type(car) 4.cylinder: [1, 1, 0.8, 0.95)
color{ Rag(USA) ) = { red, blue, white }i1.1,1,1)

2.7: [1,0.99,1, 1

Factual statements represent traces connecting different hierarchies. The traces are anno-
tated by parameters associated with the statements. Veracity u is associated with every
referent. It indicates the degree of membership of the refersnt in the set defined by a
descriptor-argument pair. Frequency ¢ indicates the fraction of the set of the argument for
which the statement holds, When the argument is a singleton, the frequency must neces-
sarily be 1 or 0. The above statements are interpreted as follows. It is true that ‘the density
of all aluminum is 2.7, with confidence in the statement of (.99 reflecting a little uncertainty
sbout the numerical exactness of the referent, ‘John is old’ is true to the extent of 0.7, the
. estimate being certain to the degree of 0.9. 'Engine.type of a car is 4 cylinder' is true for
sbout 80% of cars (confidence = 0.95). In the last example the descriptor color is applied
to a nested argument flag(USA), which is a term formed by applying the descriptor flag to
a simple argument USA. The result of evaluating the term is the multivalyed referent {red,
blue, white}. Clearly (he same object can serve as an argument or a referent in different

statements, depending ~n in which part of the statement it appears.

Multiplicity of arguments and referents: The descriptors may be such that when
applied to an argument it yields more than one referent. In thiy case the multiplicity of
11



the referent (m, ) is more than one. If the descriptor evaluates to the same referent, when
independently applied to more than one argurnent, it is said to have a high multiplicity
of argument (m,.) This concept is useful in deciding the suitability of plausible reasoning
statement transforms.

ExaMPLE 2.8 flower.type(engiand) = daffodils

The descriptor flower_type has a high multiplicity of argument as well as referent. High
referent multiplicity v, is explained by the fact that the term flower_type{england) evaluates
to several Bowers such as roses, tulips ... Several countries such a3 Holland, France have same
flowers which explains high argument multiplicity my,

ExAMPLE 2.7 states of(USA) = Alabama, Alaska, ...

The above example has a high referent multiplicity m, since the U.S.A. has many states,
but has a low argument multiplicity m,.

ExamMpLE 2.8 head_quarters(Intel) = California

The above statement has a low referent multiplicity since any company has only one
head quarters, but has s high argument multiplicity since several companies such as Mo-
torols, National Semiconductors have their head_quarters in California.

Dependency between termas: Dependencies quantify cansal and diagnostic relationships
between two terms and are central to the plausible reasoning process. The dependencies
have the following form: dy(a;) «— da(az) : [, Va, 5, 78]

where, a, § indicate forward and backward dependencies respectively, and 7., 75 are confi-
dence values associated with them.

ExAMPLE 2.9 is.philosopher(X) «— is_greek(X): [0.5, 0.8, 0.0001, 0.8]

Forward dependency a = 0.5 indicates that given X is s philosopher, expectation that X is
Greek is 50%. The confidence in the estimate of this expectation value is 0.8. The backward
dependency, 0, is low, indicating that expectation of X is a philosopher based on the fact
that X is Greek is very low. Whenever a or § and v,, 7g, respectively are 1, modes ponens

and modus tollens are applicable giving results of Aristotelian logic.
T2




ExAMPLE 2.10 latitude(place) — temperature(place): [0.7, 0.9, 05, 0.6)

The above statement indicates 70% predictability of temperature of 3 place with 90% con-

fidence level, given the latitude of a place.

Implications between simple statements: Implications have the form
difay) =r = dy(az) = ry : [a.‘rm-ﬁ,'rn]
The values of a and A indicate the strength of causal relationship in the appropriate di-
rection. Implications are dependencies belween slatements derived by explicitly stating the
referents in dependencies between terms. A single statement indicating dependency between
two terms can produce many implication statements, one for every legal pair of values of
the terms.
Exampie 2.11

latitude(place) = 0 temperature(place) = hot: (0.9, 0.9, 0.5, 0.6]

latitude(place) = 25 = temperature(place) = miid: (0.8, 0.9, 0.5, 0.6]

latitude(place) = 60 e= temperature(place) = cold: {0.95, 0.95, 0.5, 0.6)
The implications can also be encoded by functions as follows:
diay) = ry; <= dy(ay) = f(ry): (@ 7a1 8, 75)

EXAMPLE 2.12 radius(circle) = r = area(inscribed square) = 2¢2. [1.1,1,1]

2.2.2 Hierarchies

In the proposed model, knowledge is organized into 1sa or PARTOP hierarchies with as-
sociated parameters representing typicality 7, dominance § » similarity o, and with links
to relevant contexts or background knowledge. The inheritance characteristics and hence
the rules for applying transforms are different for each. Common attributes are the basis
for 1sA/TYPE hierarchies, whereas for pARTOP hierarchy the structural relations are more
important,

TYPE/1SA hierarchy: A taxonomic classification such as animal classification is an example
of & TYPE or 13A hierarchy (Figure 2.2.) In this kind of hierarchy, all the properties of an
ancestor are shared by all of its successors. The distinctive attribute-values of the successors

determine the dissimilarity between two nodes.
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PARTOP hierarchy: Nodes in this hierarchy are constructed by aggregation of nodes at

a8 lower level. The nodes at a lower level are components which make a compound node at
an upper level. A geographic paRTOP hierarchy is shown in F igure 2.3,

Each hierarchy represents a classification of entities (objects or concepts) within a given
CONTEXT. The primitives GEN, sPEC and 1M allow traversal within a hierarchy, For ex-
ample: feline = GEN(cat), whale = spEc(mamma), leopard = siM(jaguar). Several plausible
inference paths are considered by using implications, dependencies, and cen, SPEC, SIM
primitives in the hierarchy-traversing statement transforms (e.g. A GEN, A SiM which are

discussed in Chapter 3).
2.3 Parameters in Knowledge Representation

Various parameters associated with parts of the knowledge base are exemplified and dis-

cussed in this section.
2.3.1 Veracity g

Veracity is the degree of truth and in general can be any value in [0,1]. However, for most
statements veracity is either 0 or 1 (indicating falsity or truth of the statement respectively).
In case of fuzzy descriptors, veracity may have a fractional value,

Veracities for statements are generally known as a part of the domain knowledge. Verac-
ity is associated with every referent. Statements about multivalued descriptors have many

referents, each referent having a veracity. Following examples illustrate the use of .

ExampLe 2.13 iswold(John) = true: [y = 0.7,v, = 0.9)

Exaupre 2.14 education(jane) = bs.compse:  [p=1,7.=1,6 =1, 76 = 1]
education(jane) = phd_compse: [p=0,7, =1, ¢ =1, 76 = 1]

When the term descriptor(argument) exactly evaluates to the referent, the veracity is 1.
When the referent does not represent the left-hand-side Lgs term, the veracity is 0 (Exam-
ple 2.14), The lack of confidence in the assignment of 4 is indicated by a value of 7, less

than 1. It is also possible that a referent is not a perfect description for the LES term, yet
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there is some agreement with the assigned referent as the descriptor value. In such cases,
a veracity value of less than 1 is assigned a1 in Example 2,13. Impossibility of a referent is
encoded by assigning u = 0, v, = 1.

EXAMPLE 2.15 number_of states(USA) = 100: [u=0,9, = 1]

A negated statement receivés the verac-ity of 1 — u, Le. the complement of u.

ExaMrLe 2.18 height(John) = 160cms: [p = 1,7, = 1]

ExampLe 2.17 height{John) = 160cms: [u = 0,9, = 1]

The Examples 2.16 and 2.17 are negations of each other.

Confldence in veracity, v,: The certainty associated with veracities can be any value
in the interval [0, 1]. The certainties of veracity values associated with simple statementis
depend on the source of the information. If independent evidences suggest that a statement
is true with different confidence values, the overall confidence in the truth of the statement
is greater than or equal to any of the individual confidence levels subject to a maximum of
1. The estimation of the certainties of veracities for the derived statements depends on the

transforms used and will be discussed in the next chapter.
2.3.2 Frequency ¢

For a factual database, the frequency values are supplied by the user. Frequency ¢ is
the ratio of cardinality of the subset of argument for which the statement is true and the
cardinality of the domain of the argument. For example,

can.fiy(birds) = true: [ =1, v, =1, ¢ = 0.95, v4 = 0.9]
is interpreted as following:

_  Cardinality(flying birds)
® = “Cardinality(all birds)

Frequency computations for the statements derived by various transforms differ accord-
ing to the transforms and are discussed in detail in the next chapter. Plausible reasoning
transforms, such as A SPEC, are less sensitive to the typicality parameterat ¢ = 1 or ¢ = 0
rather than at intermediate frequencies. The frequency parameters of 1 and 0 correspond
to the universal quantifier and the negation of the existential quantifier respectively, and
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yield results as in the traditional logic. [n many instances the frequency can be flipped from
0 (or a low value) to 1 (or a high value) by selecting a different descriptor or by complie-
menting the veracity. The statements in Example 2.18 are all equivalent. The parameter
74 indicates confidence in the estimate of ¢.
EXAMPLE 2.18 can.fly(birds) = true: [ = 1,7, = 1, = 0.9, 74 = 0.95]

can.fiy(birds) = trve:  [u = 0,7, = 1, ¢ = 0.1, 74 = 0.85}

can_ fly(birds) = false: [p=1,v,=1,¢ = 0.1, v4 = 0.95)
can_fly(birds) = false: [u=0,9, =1, = 0.9, 74 = 0.95)

Confidence in frequency, 74t Confldence in the frequency is primarily determined by
the credibility of source for the statements in the database, and by the nature of the trans-
forms and statements used in the transforms in case of inferred statements. The frequency
parameter is sensitive to the similarity parameter when the inference is drawn by sim trans-
form and to the typicality and domsinance when GEN, and SPEC transforms are applied.
The confidence in the frequency assignment for the conclusion derived from the plausible
reasonsng depends on the type of transform applied and is discussed in Chapter 4. Ini-

tial frequency and confidence measures are either subjective estimates or are estimated by

statistical techniques.

2.3.3 Similerity o

Similarity between two arguments is computed within some CONTEXT and can be approx-

imated as the weighted sum of attribute similarities relevant to the CONTEXT. There are

several problems with this approach. The weights may not necessarily be constant but
might depend on the attribute values, Weights alone are incapable of incorporating infor-
mation such as necessary attributes, sufficient attributes, dependent attributes etc. The
concept of necessary, sufficient, supportive, contradictory and dependent attributes can be
seen in the CONTEXT ‘carnivore’ whose relevant attributes are listed in Table 2.1.

It is possible to estimate the similarity between two objects in the given CONTEXT
by suitably combining the evidence relevaat to the CONTEXT. In other words, common

attribute match is not an appropriate way to compare the similarity between two arguments.
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Condition ype wagh

eats.fish sufficient condition 1.0
eats_meat sufficient condition 1.0
has_claws sufficient condition 1.0
has_sharp_teeth sufficient condition 1.0
has_hoofs strong negative factor -1.0
has_keen _vision supporting factor 0.6
is_nocturnal supporting factor 0.5
Lives_in herds weak negative factor -0.3
keen_sense_of smell wealkly supporting factor 03
sharp_hearing neutral 0.0
is_diurnal neutral 0.0
runs_fast neutrat 0.0

Table 2.1; CONTEXT carnsvore

For example, a cat and a dog may be considered similar in the CONTEXT ‘carnivore’, if the
cat is known to eat fish and the dog is known to have sharp teeth, although nothing more
is known about the cat and the dog. The cat and the dog are not known to share any
attribute-values but undoubtedly belong to the set of carnivores and must therefore be
considered similar. Computation of similarity in this unconstrained sense is a difficult task.
Simplified similarity computation: Attribute based similarity match must posses the
following chuacteriltilcs.
1) Similarity of an object with itself should be 1.
Sim(A,A)=1

2) Similarity measure should be symmetric

Sim(A, B) = Sim(B, A)
Several functions satisfy these criteria. A common measure of sirnilarity between two objects
(arguments) is the weighted sum of the similarities of the relevant attributes.

Let coNTEXT = { (a;/w;)}, then,

g X Vira -

- S

where
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o = SIM(argy, args), similarity between arg; and args
w; = weight of the attribute a; defining the CONTEXT
@ = sim(ai(argy), ai(args))

= similarity between values of the attribute a; of the two arguments.
The weights are normalized to make the denominator equal to 1, though such a condition
is not necessary for the application of Equation 2,1. Knowledge of the pairwise similarity
for elementary scalar attribute-values and of parametric similarity (relative or absolute
proximity) for numeric attribute values [37] is necessary for similarity computation, The

certainty of the estimate of the similarity is computed as follows.

Yo = Z Wy ® iy * i * Yy * Visia (2:2)
where
Yo = the confidence in the estimate of o
i1 = the veracity of ai(arg:)
Bia = the veracity of a;(args)
Yisir = the confidence in the veracity g1
Yog = the confidence in the veracity u;a

Use of Equation 2.2 is justified as follows. The computation of pairwise similarity involves
a;(arg;) and a;(arg;) hence the confidence in the output depends on the veracities and the
confidence in the veracities of a;(argy) and a;(args).

An example of the computation of similarity using the above method is illustrated below.

The following is a list of job_names.

carpenter 15 A jab.name
goldsmith IS A job_name
smith 1S A job_name
professor 15 A job_name
programmer 15 A job.name

Assume that the pairwise similarities specified in Figure 2.4 are given.

20



sim( X, X, 1.0). Similarity is reflexive.
sim( veryhigh, high, 0.9).

sim( high, medium, 0.8},

sim( medium, low, 0.8).

sim( low, verylow, 0.9).

sim{ verylow, nil, 0.7)

sim( veryhigh, medium, 0.5).

sim( veryhigh, fow, 0.1).

sim{ veryhigh, verylow, 0.0).

sim( green, blue, 0.6).

sim( red, blue, 0.2).

sim( labor.intensive, sedentary, 0).

sim( X, Y, Z) :- sim(Y. X, Z). Similarity is symmetric.

Figure 2.4: Pairwise Similarity Assertions in PROLOG

Attributes (descriptors) applicable to each of the job_names together with their domains

are given below.

domain{skill) = {high, medium, low}
domain(pay) = {high, medium, low}
domain( status) = {high, medium, low}
domain(type_of_job ) = {sel;lent-lry, labor_intensive}
domain(demand) = {high, medium, low}

Let the following statements be present in the database;

skill{ goldsmith) e high
pay(goldsmith) = high
status(goldsmith) = medium
type_of job(goldsmith) = sedentary
demnand(gotdsmith) = low
skill{smith) = medium
pay(smith) = medium
status(smith) = low

type of job(smith) = labor.intensive

demand(smith) = medium



Further sssame that the CONTEXT of interest is
CONTEXT = (skill/0.5, status/0.2, type_of_job/0.3)
then, the similarity between goldsmith and smith can be computed from Equation 2.1 as

foillows

stM(goldsmith, smith) = ( 0.5esim( skill(gildsmith), skill(smith) )

+ 0.2xsim( status(goldsmith), status(smith) )

+ 0.3#sim( type_of_job(goidsmith), type_of_job(smith) ) )
/(05+4+024+03)=1

0.5usim( high, medium ) + 0.2+sim( medium, low )

+ 0.3xsim( sedentary, labor.intensive )/ 1.0

= 0.5(0.8) + 0.2(0.8) + 0.3(0)

= 0.56

The computation of the similarity assumes that the basic attributes therein are inde-
pendent, This is not always justifisble and will cause errors due to counting s single factor
maore than once. The assumption of independence is necessary in order to avoid practically
infeasible computations and is invariably made in the systems using Bayesian models [23]
or the Dempster-Shafer Rule [1).

The similarity measure is used to draw plausible conclusions about an object, based on
information about similar objects, Marking of neighbors of objects from the point of some
important CONTEXT is helpful in limiting the search space of objects for finding the best
match in a different CONTEXT. As an example, geographic proximity may serve as a criterion
to limit search space to find similar countries within CONTEXTs such as agriculture produce,
wildlife, economic condition, weather condition ete. The default coNTEXT may not always
yield good results. Geographic proximity is hardly & good CONTEXT to compare sconomic

condition or political condition of two countries, such as East Germany and West Germany.
2.3.4 Typicality

Typicality is central to the inheritance mechanism in 13A hierarchies. Inheritance of prop-
erties allows condensation of knowledge by avoiding explicit representation of repetitive

information. Repetitive information from the lower level nodes is passed ou to the par-
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ent (higher level) node by o GEN transform or by dependency based generalization., When
required, the generalized properties are transferred to the lower level node via A sPEC trans-
formation based on parameters such as the typicality of the lower level node in its parent
node within a8 CONTEXT relevant to the property in question. The more diverse the children,
the lower is the typicality value of any of them, and both A GEN and A SPEC transforms
vield less reliable results.

Typicality of a set is computed in its superset. In an 154 /TYPE hierarchy, the successor
nodes are subsets of ancestor nodes. A cat 13 A typical mammal in the CONTEXT of habitat,
whereas a whale 18 NOT A typical mammal in the same CONTEXT:

Typicality like similarity is computed within some CONTEXT. A CONTEXT, which is
represented as a combination of weighted attributes defines the relative imporiance of the
attributes of the nodes. Typicality of a node in its parent node is computed as the average
match of the weighted attributes defining the coNTEXT. Typicality may also be ansigned
subjectively by an expert. For example,
potassium = SPEC(groupl); CONTEXT = Chemical_properties;

[r=09,7=1,6 =0.2,7 = 0.8]

Computation of typicality does not involve donﬂnaﬁce, §. For example, Mr. Jones may
represent a typical American, though obviously he does not dominate the class of Americans.
He must, however, share attributes of the concept American. Typicality is best computed
in an (5A hierarchy where nodes at different levels share common attributes. v+ represents
the confidence that the typicality is r.

ExaMpre 2.19 Boeing747 = spec(airplanes), CONTEXT = passenger carrier:

[ T = high, v» = high, § = low, 75 = high |

2.3.5 Dominance §

Dominance § of a subset (child_node) within a set {parent.node) is defined as the quotient

of the respective cardinalities.

Cardinality(subset)
Cardinality(set)

§(subset) = (2.3)
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ExAMPLB 2,20 Cars = spec(vehicles): [§ = high, 75 = high]
This definition is suitable when the cardinalities of all leaf nodes are known with a reasonable
certainty. In this case dominance of each node (leaf or otherwise) in the hierarchy can
be computed. When the required cardinalities are not known, & subjective or statistical
estimate of dominance can be used. ‘

Problems arise when dealing with abstract or indefinite quantities. There is no way to
find dominance of rectangles in a set of quadrilaterals. Dominance of potassium in groupl
can be inferred either as relative abundance or as 1/(number of elements in groupl). The
choice of usage must be made beforehand.

Like typicality, the values of dominance affect the validity of GEN, SPEC transforms. Gen.
eralisation based on dominance helps to summarise common properties of the set. There
are situations, however, when small subsets attain importance due to exceptional properties
they possess and the description of the superset would not be complete without inclusion of
the properties of these subsets. For example, group3b elements can be summarized as non
radioactive materials based on the properties of the dominant elements of the group. How-
ever, with this approach, uranium, which is radioactive and happens to be a nondominant
element in the group, is not adequately represented in the parent node. Loss of exceptional
information such as radioactivity of uranium from the parent node ¢an be too great to com-
pensate. Benefits associated with GENERALIZATION can be enjoyed without concomitant
loss of important information by means of ezception clauses [20]. At present APPLAUSE does
not use these clauses.

The parameter 45 indicates confidence in the estimate of dominance, and chiefly depends

on the confidence of the values that are used in 'the computation of the dominance.
2.3.8 . Strength of Dependency/Implication, o,/

a indicates the degree nf predictability of the right-hand-side RuS of a dependency, given
the left-hand-side LHS, i . a denotes the degree of dependency of the RHS term on the LRS
term or dy(ay}) — dz(62). 74 is defined as the confidence that the dependency is a. A

high value of v, reflects that a is a good estimate of the dependency.
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ExXAMPLE 3.31 girth(tree) — age(tree): {a = high, v, = high]
3 and v indicate the predictability in the reverse direction. The parameter 4 denotes the
degree of dependency of the LHS term on the RES term, di(a1) — d3(a3). 75 refiects the

confidence in the backward dependency estimate 3.

EXAMPLE 2,22 season(year) = spring ~— disposition(people} = hsppy:
[ = medium, 74 = medium]
o and [ need not have to have identical values. Whenever a and 7, are 1, modus ponens

and modus tollens are applicable giving fully valid results.
2.3.7 Estimation of @ and 8

The following example showing computation of a and 8 for a dependency and an implication
statement is adapted from [3].

a, § for dependencies: Given a dataset with the following summary,

rice wheat corn total
heavy rainfall 8 6 2 16
light rainfall 2 14 6 22
total 0 20 8 38

it is desired to estimate parameters ay, B, ¥, 75, for the dependency

rainfali(place) — grain(place): (a1, Ve 51,78,
where, a; reflects the degree to which one can predict the crop grown in a place, given
the rainfall in the place. Best estimate of grain type is rice for heavy rainfall and whest for
light rainfall, giving 22 correct predictions out of 38. Hence, a; = 22/38. f; reflects the
degree to which one can predict whether a place has a heavy rainfall or light rainfall, given
the predominant grain grown in that place. The most Likely prediction is made by choosing
the rainfall most associated with that grain. B; evaluates to 28/38.
a, A for implications: The parameters a and § for implications are also estimated simi-
larly.

rainfall(place) = heavy <= grain{place) = rice: {az, 7ay, 52, 78]

For this implication, a3, 53 can be derived as follows. Out of 16 cases of hesvy rainfall, 8 re-
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sult in main crop of those places being rice. Hence az = 8/16 = 0.5. Out of 10 places which
grow rice, 8 of them have heavy rainfall which indicates the predictability of the rainfall in a
place given crop of that place as §; = 8/10 = 0.8,

2.3.8 Certainties v,, 73

In the example in Section 2.3.7, Ya,, 7, reflect the confidence levels in the estimated values
of ay and 3; respectively. Ideally they should be 1, indicating total confidence. A subjective
value may be assigned based on factors such as the typicality of the cases from which the
dependencies and implications are generated. In the rainfall-grain example the typicality of
the 38 places which have been chosen to represent all the places, and the credibility of data

would affect the confidence parameters.
2.3.9 Functional Dependencies

The dependencies are concise and quantify a correlation between twa descriptors. Implications
go a step further and specify referent for the aHs term when the descriptor value is known
for the LHS term of the implication. The enumerative representation of valid pairs referents
for the LES and RHS terms is impractical, In case of referents with numeric domains it
is sometimes possible to circumvent this difficulty by :bpecifyi.ng the mapping between the
argument and the referent domains in a functional form. APPLAUSE provides means for
user guided discoveries of functional dependencies. It is possible to restrict the scope of the
dependencies in order to get high measures for the dependencies by putting constraints on
the objecta for which the dependencies is generated. For example, '
boiling.pt{element) = 42speriod(element) - 31T: [a = 0.845, v, = 0.548]
{ ¥ element | element € Group8a }
The above functional dependency states that boiling point of an element belonging to
Group8a is given by multiplying the Period of the element by 42 and subtracting 317. The
quality of the functional dependency is summarized in the parameters a, ¥a. APPLAUSE also

discovers dependencies on its own initiative, in the process of inference. The discovered
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dependencies constitute a form of learning which is stored for future use. The process of

discovering dependencies and assigning confidence parameters is described in Section 4.3.

2.3.10 Certainty Parameters

Certainty parameters are primarily determined by the credibility of sources for the state-
ments in the database. In the case of inferred statements, the certainty parameters depend
on the nature of transforms and the propositions used in transforms. Importance of con-
fidence measures lies in the ability to represent knowledge and ignorance as faithfully as
possible and to use them to draw valid inferences. Ignorance is represented by low con-
fidence values in the parameter estimates. Propositions with poor confidence values are
useful in tagging some lines of reasoning as unpromising, thereby limiting the search for &
plausible answer.

The certainty parameters are combined according to the Dempster-Shafer rule in order to
draw an inference from multiple evidences. In the Dempster-Shafer treatment, the certainty
parameters are represented by 8 pair of numbers, representing support and plausibility of a
statement. The support and plausibility can be interpreted as the upper and lower bounds
on the certainty factors. Total ignorance about a siatement is represented by a support
value of 0, and plausibility value of 1. If § and P are the support and plausibility values for a
atatement C, then the support and plausibility values for ~C are given by (1— P) and (1 - §)
respectively, In APPLAUSE the certainty factors are treated as support values in Dempstet-
Shafer sense with the plausibility implicitly assumed as 1. Independence of multiple evidences
to be combined is necesary for the validity of the application of the Dempster-Shafer rule,
and is assumed to be true for the evidences cbtained in the APPLAUSE system.

Occasional references are made to the precision of & statement, although a quantitative
measure or a formal definition is nc;t given. The statement that there are 186 shops in
the Mermaid Mall is more precise than the statement that there are about 200 shops in the
Mermaid Mall. A more precise statement is potentially more refutable since more conditions
need to be satisfied for it to be true. Hence in general a more precise statement has lower

certainty parameters associated with it as compared to a less precise statement.
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2.4 Complex Statements

Simple statements have the form

descriptor(argument) = referent; [, 74,9, 4]
Complex statements may ha.n multipie argumnents and referents.

descriptor(argument,, ar‘umentgl,. ..) = {referent,, referents,...}: [parameters]
The argument and referent components may have complex structural relationships to be
described within the framework of parameters defined in Section 2.3. Representation and
manipulation of generalized complex statements is 3 problem for future research.

Restricting the number of arguments in a statement to one, simplifies the the choice

and manipulstion of the statement parameters, and at the same time allows Ireuonably
adequeate knowledge representation capabilities. When a composite referent is specified,
its components may be applicable disjunctively or conjunctively. Accordingly, different
inference can be drawn from such statements, Receni studies have addressed this problem

(5]. This section describes semantics of some complex statements.
2.4.1 CONJUNCTION

Statements is said to be of CONJUNCTIVE type if the referent is composite and each of the
referent parts is applicable simultanecusly. CONJUNCTIVE statement is meaningful only for
the descriptors with high referent multiplicity m...

ExamMpLE 2.23 states of(USA) = { conauncTION,

[ Hawaii: [p=1lLy.=80é=171=1]
Alsbama; [p=1lv.=1¢=1v%=1]]...1}

In Example 2.23, varying values of 7, reflect varying degree of confidence level for

different referents. The fact that the descriptor takes on all the referents explains the
CONJUNCTION part of the name. If the argument is atomic, i.e. if it is a leaf node in a TYPE
hierarchy and the descriptor applies to all of the arguments, then ¢ must necessarily be 1.

The above statement can be broken into simple statements as follows.

EXAMPLE 2.24 states.of(USA) = Hawaii: B=lru=8,0=19=1),
' states of(USA) = Alsbama: [p=1L, v =1,06=1 94 =1]
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2.4.2 DISJUNCTION

When the descriptor can assume one or more values from the set of possible referents, the

statemnent is qualified as of type DISJUNCTION.

EXAMPLE 2,25 dessert(dinner) = { DISJUNCTION,

[ice-cream: [u=1,7,=1 ¢ =04, v4 =08,
apple-pie: [p=Ly.=1 =01 9=07],
fruit-salad: [p = 1. =1 90=02 94 =089,
plum-cake: [p=1.v,=1¢=01 v,=08]]}

There can be one or more of the specified dessert items for the dinner. The syntax of the
statement itself does not pose any resrictions on occurrence of a group of items. However,

such restrictions are common in real life sitwations as can be seen from the following example.

EXAMPLE 2.28 wears(John) = { pisjuncTION,

[shirt:  [p=19,=1¢=1y=1],
tie: k=l ra=lLd=119=1)
bow: [p=19.=1¢=1v=1].
cost: [u=Ly.=1l¢d=17=1]]}

Some of the items such as tie and bow in the referent list obviously are mutually ex-
clusive possibilities, whereas some items such as tie and shirt must occur together. Such
constraints can be represented by expressing the statement as disjunction of several con-
junctive statements, as shown in Example 2.27. Note that the frequency for all parts is 1,
since it pertains to the fraction of argument for which the statement is valid. John is a leaf
node, as far as the statement is concerned and hence the frequency is 1. We would require
a different parameter to represent a statement that John wears tie about 30% of times.

EXAMPLE 2.27 wears(lohn) = { pDiSJUNCTION,

[ shirt: =1 7u=1¢=11=1]
V shirt A tie: B=Ly=1¢=117=1],
v shirt A bow; B=lLy.=1l¢=19=1]
Vv shirt A tie A coat: lt=Lyu=10=194=1]

Vshirt Abow Acoat: fu=1lv.=1494=1, 19 =1]}
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2.4.3 EXOR

This is a special type of DISJUNCTIVE statement where, one and only one of the component
of the referent is applicable, i.e. the type EXOR indicates mutual exclusion among possible
descriptor-values.

ExAMPLE 2.28 president(USA, 1864) = { ExoR,

[ Lincoln: B=19.=08¢=1 74 =1]
Jackson: (=1, =02 ¢=171=1]]}

exor form is used in Example 2.28, since there can be only one president of the USA
(st any moment) which justifies the use of up = 1. The lack of total confidence in the
information has probably arisen because of memory confusion or lack of credibility in the
source of the information. Another example of an EXOR statement involves a superlative
predicate.

EXAMPLE 2.29 current.richest state(USA) = { ExoR,

[ Califernia: [u=1v,=0690¢=1, 74 =1],
Texas: [e=179.=03,¢=1v%=1]]}

Either Texas or California is the current.richest_state. A different degree of confidence

is attached to each assertion.

2.5 Further Discussion on Statements

Varistions of statement representations which alter the meaning of the statements are dis-

cussed below.

Examere 2.30 risetomorrow(sun) = true: [p =1, v, = 1]

The referent in Example 2.30 has two mutually exclusive possibilities, true and false. The
veracity of 1 is assigned to the referent true with confidence 1.

ExXAMPLE 2,31 rise_time(sun) = 6am..7am: [u = 1, v, = 0.95]

The type of the referent is a time interval, with mutually exclusive possibilities. The veracity
can assume value 1 or 0; the veracity of 1 indicates an event that the sun will rise in the

specified time interval, and the veracity value of 0 indicates an event that the sun will
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not rise in the specified time interval. Referent is a range of time from 6am to 7am with
confidence 0.95, which means that the confidence in a statement claiming that the Sun will
tise between 6am and 7am is 0.95. Frequently a wide interval such as §am..7am is of little
use. It is desirable to have a much narrower interval.

EXAMPLE 2.32 rise_time(sun) = 6.14am..6.15am: [u = 1, 4, = 0.3]

In the above example, the interval is narrowed down to 1 minute. As a result, the confidence
in the statement is diminished from 0.95 to 0.3. In this example, a partial veracity can be
assigned if the time interval for which the veracity is assigned overlaps partially with the
exact time interval when the sun rises. The Examples 2.31-2.32 demonstrate the general
tendency of diminishing credibility with increasing specificity.

Examples 2.33 and 2.34 illustrate the distinction between EXOR and CONJUCTION state-
ments using identical descriptor-argument pair. Consider two statements describing the
color of John's hair, In Example 2.33 it is assumed that the color of John’s hair is one from
the set of colors black, brown, red, blond.

ExAMPLE 2.33 color(hair{John)) = { ExOR,
black: [ =1 9.=080 ¢ =1 74 = 1].
brown: [u=1,7,=015¢=1 4 =1],
red: [6=1,7,=005¢=1 9 =1]
blond: B=07=19¢=19=1]}
The statement means that it is highly credible (y,, = 0.8) that the color of John's hair
is black, it is known for sure that his hair is not biond, and that very little ¢redibility can
be assigned to the statement that color of his hair is either brown or red. Possibility of a

composite color is represented as follows,

ExaMpPLE 2,34 color( hair(John) ) = { CONJUN-CTIO'N.
black: =05 9,=09¢=1 94=1]
brown: [p=03,9,=07¢=194=1]
red: =02, 9.=08¢=14=1],
blond: [u=00,vu=14=1v4=1]}
Note that the frequency is 1 in all cases. If fractional values were assigned to @, it would
mean that a part of John’s hair is colored differently from the rest. Since the color of his
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hair is assumed to be uniform, ¢ is assigned a value of 1, with the correct composition of
the color indicated by combination of truth values assigned to individual colors. (Contrast
this example with Example 2.35.) Type of staternent is CONJUNCTION to indicate that all
the values in the referent are true at once.

EXAMPLE 2.36 color( flag(USA) ) = { consuncTION,

red: =1 1.=1¢=035 v =1},
blue: e=1Lv=10=020,9,=1],
white: [u=1,7.=10=045v,=1]}

The example states that the colors of the flag of the USA are known with certainty, The

frequency for a color refers to the fraction (area) of the flag having that color.

2.6 Conclusion

In this chapter, the primitives of the plausible reasoning system were introduced and various
staternent types and their representations were discussed. These statement constructs are
used in the implementation of the APPLAUSE system. Also discussed were the issues involved
in the estimation of various parameters. Propositions are sssigned primary parameters such
as veracity and frequency. At a second level, uncertainty in the assignment is represented
by confidence values. Of course it is possible to go overboard by assigning confidence
measures to confidence measures ad nauseam. Importance of confidence measures lies in
the ability to represent knowledge and as well as the lack of knowledge aa faithfully as
possible and to use them to draw inferences. The lack of knowledge is represented by low
confidence values for the parameters. Statements with poor confidence values are useful in
tagging some lines of reasoning as unfruitful thereby saving on useless computations. As
in any knowledge based reasoning systems, APPLAUSE has to strike a balance between the
complexity of knowledge representation and type of statements that can be represented.
For example, statements incorporating temporal information would require more powerful

representation and additional parameters.

32



Chapter 3

Presentation of Statement
Transforms

A large part of human knowledge is represented in hierarchical structures. The nodes in
the hierarchies carry information and are connected to the nodes in other hierarchies by
means of traces representing statements. Parameters are associated with statements. The
plausible reasoning essentially involves perturbation of existing traces to arrive at desired
results by constructing new statements. Perturbation of a trace involves substitution of
a node by another using hierarchy traversal primitives GEN, SPEC, SIM. There are eight
basic statement transforms (A siM, R SIM, A DIS, R ms}, A SPEC, R SPEC, A GEN, R GEN),
and some more such as MUTUAL IMPLICATION, NEGATIVE DERIVATION described in [3] that
lead to plausible conclusions. The GEN, sPEC, SiM, or DIs transforms move up, down, or
sideways in a hierarchy. The transforms of arguments are denoted by A -, whereas & -
stands for referent based transforms. These transforms are presented in this chapter. Many
alternate transforms are possible and judicious selection of applicabie transforms must be
made to give good results. The goal of formalization of the statement transforms is to

distinguish the good transforms from the bad ones.
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3.1 A GEN

A GEN is an argument based generalization' statement transform which is used to extend
the scope of a descriptor from an argument to its ancestor. This is a plausible inductive
inference, A hierarchy may be established with respect to a descriptor {descriptory ) which
is different from one being generalized (descriptor;). In this case a dependency telationship
between the two descriptors is necessary so that the typicality parameters with respect to
one descriptor are appropriate for generalization or inheritance of the other descriptor, Loss
in the confidence in a generalized statement is minimal if the argument is highly typical of

its ancestor with respect to a CONTEXT relevant to the descriptor.

A GEN; : Inference from argument, to arg-gen, ancestor of argument,

descriptor; (argument;) = referenty: (i1, %, 1, 7o) P,
descriptora(arg-gen) — descriptor;(arg-gen): [a, 7a) Dy
arg-gen = GEN(argument,); CONTEXT = (descriptor;): [r, 7., 8, 7s] Gy
descriptor;(arg-gen) = referent;: [, v.,, e, Ta.) C

The parameters for the conclusion are computed using the following formulae.

Be = M (3.1)
Ve = Yy rmax(asya e Ty, §2v5) (3.2)
e = & (3.3)
Yoo = Vo omax(axygeTuy,, fuyg) (3.4)

Veracity p; of the child from which the A GEN transform is applied is the best estimate of
the veracity g, for the parent (Equation 3.1). .High dependency a between descriptors and
descriptor;, and a high value of typicality = of argument; in arg-gen within the CONTEXT =
descriptor; or alternatelv a high dominance § of argument, preserve the degree of confidence
in the conclusion. Intuitively, v, , the confidence in the conclusion should monotonically

increase with each of v,,,, @*vy4, P#v,, and feys. Equation 3.2 satisfies the monotonicity

'In the examples, the symbols P, G, D, C, §, I, Q, SIM suffixed when necessary, stand for Premise,
Generalisation, Dependency, Conclusion; Specialisation and Implicstion, Query and Similurity respectively.
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condition and is chosen for simplicity. The dominance § becomes effective in the estimate of
the confidence level when the estimates of dependency a or typicality 7 or their confidence
values are poor. Same rationalization applies for computation of paramleters ¢ and 7q,
(Equations 3.3-3.4).

A GENj given below is an extension of A GEN; to allow generalization from a node
argument; to its ancestor argument;. The dep_endency or implication which is given at
arg-gen, is applicable to its descendants argument, and argument; without regard to the
typicality and dominance of argument; and argument;. This is because the dependency
is context independent, whereas, the typicality is always compufed within some context:
hence, the parameter computations for A GENy are identical as for A GENy. Irrelevance
of the typicality for the inheritance of a dependency from s higher level node to a lower
level node is justified by an example below, There is a very high dependency at the root
node ejements, between atomic.number and atomic.weight of an element, since given the
stomic.number of an element it is possible to predict the atomic.weight of the element with
good accuracy. This dependency is safely specialized to any of the groups which are the
children of the root node elements. However, no demands are necessary for high typicality

between 3 group and elements in any context.

A GENj : Inference from argument; to argument,, ancestor of argument,

descriptor; (argument;) = referent;: [y, ¥y, , $1, ¢, Py
descriptors(arg-gen) — descriptor;(arg-gen): [a, 7al D,
argumenty = GEN(argument;); CONTEXT = descriptory: [T, 7., §, 74 Gy
argumenty = SPEC(arg-gen); S:
descriptory(azguments) = referenty: [pe, Tu., e, T4, C

Query Q in the following example inquires whether the elements in groupl react with
chlorine, given that potassium reacts with chlorine and that the groupl is the generalization
of potassium with high typicality in the CONTEXT of valence-electrons of an elem, and further
given that there is a strong dependency between the valence-electrons of an elem and the

elements which react with elem.
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Exampre 3,1 : Use of A GEN3

reacts.with(groupl) = chlorine ? . Q1
rescts_with(potassium) = chiorine; [y = 1. 9, = 1. ¢ =1, 74, = 1] P
# valence-electrons(elem) —— reacts.with(elem). [a = 0.9, v, = 0.95] D,
groupl = GEN{potassium); CONTEXT = (# valence-electrons):
fr=0959,=186§=02 v = 0.9 G,
groupl = spec(elem): S

reacts.with(groupl) = chiorine: [pe = 1, 74, = 0.8, ¢ = 1, 7o, = 0.81] G

Parameter computations given below yield high confidence in the veracity and frequency.

be = =1
Tue = Y *mBX(@ Vg # T # Yy, b wg)
= 1+max(0.9+0.95=095+1, 0.2%0.9) = 0.81
¢ = 1 =1
Yoo = Yo vmax(asyg 4T Yy, §uyy)

= 1+max(00+0.95=0.95x1, 0.2+0.9) = 0.81

It is clear that the statement transform A GEN; is a general form of A GEN,. In the further

discussions A GEN will refer to A GENj.

3.2 A SPEC

The transforms A GEN; and A GENj are used to extend the scope of a statement, whereas,
A SPEC is used to restrict the scope of a statement from a larger set of arguments to its
descendant. The transform is the same as syllogism in classical logic when the statement Py
is universal with no uncertainty in the assigned parameters. For the frequency of less than
1, the deductive inference changes to a plausible inference. Circumscription and default
logic {27) rely on low incidence of exceptions to derive conclusions in the absence of explicit
knowledge of various conditions. Low incidence of exceptions corresponds to frequency

values close to 1.



A SPEC: Inference from argument; to argument,, descendant of argument;

descriptor;(argument;) = referenty: (g1, ¥y, #1,74, ) P,
descriptor;(arg-gen) — descriptor;(arg.gen): [a, v4) Dy
argument; = SPEC(argument,); CONTEXT = (descriptor): 7, 7+, &, 74 S
argument; = SPEC(arg-gen) Sa
descriptor;(argument,) = referent1! [te, Yo @c, Ve.) Cy

Parameter computation is done as follows.

Be = (3.8)
Toe = T cmAX{(Q ¥ Tq ¥ T Yy, §¥ ) (3.6)
P = P (3.7)
Vée = Yo rmax(asyarTay,, §ey) (3.8)

As in case of A GEN, the best veracity p. that can be assigned to argument; a subset of
argument,, is the veracity of argument; itself (Equation 3.5). The confidence in the assigned
veracity diminishes with decreasing typicality, dominance, and frequency (Equation 3.6).
The same reasoning applies to the assignment of frequency parameters ¢, and Y¢é. (Equa-
tions 3.7, 3.8).

The frequency distribution among the children of the same parents may be uniform or
skewed. The skew factor of the frequency will be large for children with poor typicality
and dominance values. However, in the case of high parent frequency, the dispersion of the
frequency values among the children is limited. As an example, consider two populations
of 100 balls each, In the first population there are 50 white balls and 50 black balls. In
the second population there are 90 white balls and 10 black balls. This gives the frequency
of 0.50 and 0.90 for white balls in the respective populations. Suppose that each of the
populations is partitioned into 10 equal subsets. The range of frequencies for the white
balls in the subsets of the first population is expected to be in the range 0.20-0.80, whereas
the corresponding figure for the subsets of the second population is expected to be in the
range 0.70-1.00. The dispersion of frequencies in the children of a parent with frequency

37



vaiue close to 1 is expected to be low. Similar arguments are applicable to frequency values
close to 0. This suggests that the statements with good defalut values (frequency close to 0,
or close to 1) give more reliable results using plausible inference. Human plausible reasoning
judiciously selects statements with very high frequencies or with very low frequencies, as is
evident in default reuon.ing.. Default assignments tacitly acknowledge that the exceptions
to the default are few, in other words the frequency of the defsult is high.

ExaMPLE 3.2 : Use of A SPEC

Languagespoken(Chilesn) = 7 Q1

Language_spoken(Latin.American) = Spanish:
[51 = 17 =1, &1 = 0.8, 74, = 0.9] Py
Place of birth(person) — Language_spoken(person): {a = 0.95, ya =09] D:
Chilean = spec(Latin-American); CONTEXT = (Place.of birth):
r=1L4=18=0Lv= 0.9} S
Latin_Arnerican = sPEC(person); Sa

language_spoken(Chilean) = Spanish:
[#t‘ = 1' 7#: = 0'855' ¢¢ = ua' 7¢s = 077] C]

Parameter computations according to Equations 2.5-3.8 yield

pe = m=1
Ve = Ywsmax(@#«Ya T Yy, §2)
= 1emax(0.05%0.8+10+10, 01« 0.9) = 0.855
. = ¢ =08

Yo = Yo rmax{a@sya =T eys, §r%)
= 0.9+max(0.95+09+1.0+«10, 0.1= 0.9) =0.77
The sbove example illustrates an inference that the language spoken by a Chilean is
Spanish given that the language spoken by a Latin.American is Spanish. A child of node
Latin_American inherits the value of attribute language.spoken depending on the typicality

of the child with respect to the CONTEXT (Place.of-birth) that was used in building the

hierarchy.
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3.3- ASIM

The similarity transform is based on the assumption that if two arguments are similar
with respect to their attributes which are important for the descriptor in question, they
probably share the same or highly similar referent values. For example, given similar weather
patterns, one can expect similar crop productions in two years or in two .connt_ries. On the
other hand, A siM cannot be used whenever only one referent is applicable to an argument
(Low multiplicity of argument, see page 11). Consider two individuals who are almost
identical with respect to the gualities that make a president. However, both cannot be »

president at the same time.

A 8IM Inference from argument; to argument,, cousin® of argument,

descriptor; (argumenty) = referenty: (g1, Yu:+ @1 Té4) P,
descriptory(arg-gen) — descriptor,(arg-gen): (@, va Dy
argument; = SiM(argument;); CONTEXT = (descriptor;): (o, 7] SIM,
argument; = SPEC{arg-gen) S
argument; = SPEC(arg-gen) Se
descriptor;{argument;) = referenty: [fte, Tu.) Per Too) C

The parameters are computed from the following equations:

Be = M (3.9)
Tae = Tm*THTe*A*Ta (3.10)
i s b @11)
I —— 31

The veracity g, of the conclusion is identical to that of the premise (Equation 3.9, as in cases
of A GEN and A sPEc). The certainty of veracity v, is adversely affected by an imperfect
match in the similarity and an imperfect dependency between descriptar; and deacriptor;

(Equation 3.10). The dependency holding for arg-gen is applicable to all its descendants,

10ounins (szgument; and argument, ) are nodes at the ssme level in & hierarchy that (may) have different
parents, but have a commen ancestor (arg-gen) at some level in the hierarchy.
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The frequency ¢. and its certainty 74, are also affected like veracity and its certainty by an

imperfect match in similarity and an imperfect dependency (Equations 3.11, 3.12).

EXAMPLE 3.3 : Use of A s1M

electrical_conductivity(gold) = 7 Q:
electrical_conductivity(copper) = high: [uy = 0.95, 9, = 0.9, ¢ = L. 74, = 1) Py
physical_properties(element) — electrical.conductivity(element);

[a =08, va = 1] _ 3]
gold = siM(copper); CONTEXT = {physical_properties): [¢ = 0.676, v, = 0.9] SiMm,
gold = spec{element) S
copper = SPEC{element) S3

electrical_conductivity(gold) = high: [g. = 0.95, 4, =043, 9. =1, 74, = 0487] C,

Copper and gold are at the same level in the hievrarchy periodic_table. Similarity and confi-
dence in the similarity between gold and copper with respect to CONTEXT physical properties
is evaluated as follows, Let Au and Cu represent goid and copper respectively.
coNTEXT(cxphys) = [ period /0.3, group/0.15, dens/0.1, boilPt/0.05, meltPt/0.05, atvol/0.05,
heat_vap/0.05, eiec.copd/ﬂ.l.. therm.cond/0.05, specific_ht/0.05, heat_fus/0.05 ]

o= 2 we w oy
Yo = Zwi LTS T O IS R PP
where ¢, 7, refer to the simnilarity parameters for gold and copper in the CONTEXT cxphys,
&, 95, are the similarities computed using parametric similarity measures specified in [37),

with respect to attribute a; between the two arguments, and ui), g3, Yui» T Tefer to ve-

racity parameters of attribute a; values for the twe arguments,
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0.30%sim(Au,Cu)periog 02

+ 0.15 ssim(An,Cu)yroup + Q.15
+ 0.10 ssim(Au,Cu)gens + 0,011
+ 0.05 wsim(Au,Cu)goype . 4+ 0.045
+ 0.08 ssim{Au,Ct)meispt + 0.05
+ 0.05 =sim(An,Cu)avol + 0,041

¢ = SIM(Au, Cu)egphye =  + 0.05 ssim(Au,Cu)recr.vap = 4 0.045
+ 0.10 =sim(Au,Cut)glee_cond + O(unknown)
+ 0.05 +8im( Aw,Cu}iherm cond + 0.0395
+ 0.05 ssim(Au,Cu),peeificht. + 0.0464
+ 0.05 ssim{Au,Cu)asor. fus + 0.048

= 0.676

The computation for 7, yields,

Ye = Zw‘ = ph * -YJMI. ® i ‘7]“3

= 03+14+015¢1+0.1514+005=1+005=1
400541400521 4+01+0+005«1+0.05«1+0.05=1
0.9

The parameters for the conclusion are computed from Equations 3.9 - 3.12 as follows.

pe = 1 =095
Toe = T *T Ve * @2 %
= 0920876+09:08«1=043
e = M =1
Yée = T ¥t Mo *A*Ya

= 1+0.6876x09=08«1=10487

The similarity transform can be applied from maultiple arguments, and in APPLAUSE it

is implemented for numeric referents.
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A SIM

Inference from {argument,, .., argumenty} to argument., cousin of argument,’
descriptor; (argument;) = referent;: (85, Yy #1170, P;
descriptor;(arg-gen) — descriptor; (arg-gen): (@, 7] D,
argument; = SIM(argument.); CONTEXT = (descriptors): (0,7, SIM;
argument; = SPEC(arg-gen) S
argument. = sPEC(arg-gen) Se
delcriptor,(ugumentg) = referent.: (., v,,, o, Yé.) Ci

The referent value and parameters are computed from the following equations:

Z(referent; =g 7‘,.)
i

referent, = (3.13)
Z.(o'i * 70’1)
ki
Be = N (3.14)
axy, s Z(Tui * 0% Ye,)
T.He = . N (3‘15)
Z‘#i
a ey, * Z(Td,-.‘ %i*7s,)
1‘: = : N (3‘17)

The referent,, v, , and 7,4, are the weighted averages of the corresponding quantities of the
similar nodes (Equations 3.13, 3.15 3.17). u. and ¢, are computed by taking unweighted

averages of the parameters (Equations 3.14, 3.186).
3.4 Discussion on ARGUMENT Based Transforms

Suitability of plausible reasoning transforms depends on the type of hierarchy of the argu-
ment and the referent. Verification of applicability is an important and integral part of the

plausible reasoning process in order to avert erroneous conclusions.

argument; € {srgument,,, . ., argumenty } _
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In general it is observed that the less typical a child, the more likely are the frequencies
of the child and its parent polarized when the referent in the parent node is specialized via
A sPEC transform to the child node (Equation 3.8). Low typicality also adversely affects the
confidence in the veracity of the conclusion as can be seen from application of Equation 3.6.
As an example, consider a descriptor habitat. Let argument; be whales. Let arg-gen be
mammals. The typicality of whales in mammals with respect to the CONTEXT of means of
locomotion is small. The frequency of a statement asserting that habitat(whales) = oceans
is 1. Low typicality of whales suggests polarization of [requency for mammals compared to
that of whales, and the frequency of mammals for the descriptor-referent pair habitat-ocean
is expected to be low, which in fact is the case.

Consider the effect of choosing an irrelevant coNTEXT for generalization in which
the typicality of the child-node in the parent:node is high. Suppose the descriptor
has_vertebral.column is chosen as the CONTEXT of gemeralization. In this case whale is a
highly typical element within mamemals. However, since there is hardly any demonstrated
dependency between has_vertebral_column and habitat, a is low and a false confidence in
the conclusion that ‘habitat(mammals) = oceans is blocked by this low value of a when
substituted in Equations 3.2 and 3.4.

A GEN is best applied to descriptors which are known not to have significantly differens
referents in the set of arg-gen. This iz metaknowledge about the descriptor. Consider an
example. Given that it is raining in Knoxviile, this fact cannot be generalized to it is raining
in Tennessee. This is due to the known variation in weather pattern (referent), regardless
of the typicality of Knoxville (argument;) in Tennessee (arg-gen). Yet, despite of the low
certainty, it is raining remains the best esl:imate‘ of weather condition of Tennessee, using the
available information.

Good confidence levels are preserved by applying A GEN transform not from a single
statement, but from a set of statistically representative statements with identical descriptors
and with arguments from a subset of children of arg-gen. The A GeN,, transform from
multiple premises for numeric descriptors is presented below. The parameter computations

for A GENm are viewed as a natural extension of the parameter computations given in
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Equations 3.1-3.4 for A GEN.

3.4.1 A GEN,,

A GENm : Inference from argument; to argument,, ancestor of atgument;

descriptor; (argument;) = referent;: (B2 Yo 855 74:] P;
descriptory(arg-gen) — descriptor; (arg-gen): [a, v D,
argument; = SPEC(argument,); CONTEXT = (descriptors): [m, vr,, 8,75 S
argument. = IPEC{arg-gen); Si
descriptor) (argument,) = referent,: [y, Tuer Per e, Cy

referent,

Ve

@

Te.

-

3" (referent, « 6;)

% (3.18)
Yo (w2 &)
S (3.19)

max (Z(n.-: *8ixvg), aeqyyn @(7,.,- Tyw 1,.-)) (3.20)

i

(=)

—ZT (3.21)

max (E(‘m *Gev) avra s Dl e mis -rﬂ)) (3.22)

The @ operator indicates the application of the Dempster-Shafér orthogonal rule for

combining confidence values. In the Dempster-Shafer treatment, the confidence parameters

are represented by a pair of values, representing support and plausibility. The Dempster-

Shafer orthogonality rule |

29] provides means for combining two independent evidences. Let

(51, Py] and [S;, Py represent the two independent evidences. Then (S, P}, the combined

evidence is given by

[§,P] = |1

51 5; P P,

TSGR+ RS 1-(5iP+ P (923}
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where 5 = (1-5) and P =(1 - P)
It APPLAUSE the confidence parameters are treated as the lower bounds and correspond to
support values in the Dempster-Shaler sense. The plausibility value of I:_ile parameters is

assumed to be 1. This means P; = P; = |, and P,=P;=0in Equation 3.23, giving
[5, P] — [51 + 51 - Sl » S;, 1]

When there are more than two evidences to be combined, the Dempster-Shafer rule is
applied for two confidence intervals at a time. The Dempster-Shafer rule is associative and
gives identical final confidence parameters irrespective of the arder in which the independent
evidences are combined.

The referent, veracity, and frequency of the conclusion are average of the respec-
tive parameters of the children weighted by dominance. The weighting is necessary to
avoid unreasonable shifting of the average by a statistically insignificant population (Equa-
tions 3.18, 3.20, 3.22).

There is another useful way of computing referent.. Let Fmin;Tme=z De the minimum
and maximum referent values from referent;, The referent, is defined as a single contiguous
range of values [Pmin . . fmes) instead of using Equation 3.18. It is desirable for this range to
have some predefined or user given sparsity cutoff point [18]. For a discrete domain, relative
sparsity is defined as the ratio of the referent values missing from referent; to all possibie
referent values in the range rmin - - Tmaz- 1t should also have a small width compared to
the width of the domain. In general, a narrow range has a better precision but a lower
associated certainty value compared to that of a wider range. A good generalization is one

which has a low loss of precision and certainty. Consider the following example.
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ExamprLE 3.4

Suppose we want to answer the query ‘Are people employed? If so, how many percent?’

The query is represented as

employed( people ) = ? Q

employed( Highschool .dropout ) = true; [ =175 = 1,61 =05, =095 } Pi
employed( High_school graduate ) = true: [ p; = L%, = 1,67 = 095,95, =095] P,
employed( College.graduste ) = true: | 3 = LiYus = 1,83 = 0.99, 74, = 0.95 | P3
income(people) — employed(people): {a = 0.95,7, = ) _ Dy
High.school dropout = sPEc(people); coNTEXT = (income):

[ri = 0.4,yn =0.9,8 = 0.1, 9, = 095] 5

High school graduate = SPEC(people); CONTEXT = (income):

[r2=08,95 =0.9,6; = 0.6, 4, = 0.95] Sa

College.graduate = spec(people); conTEXT = (income):

(12 = 0.8, 7 = 0.9,8; = 0.3, 74, = 0.95] Sy

Using Equations 3.18-3.22, with i = 1, 2, 3 we get

referent, =

Tue =

P =

V.

Z(referent.- w 8;)

P
i
true= 0.1+ true » 0.6 + true + .3
0.1 +084+0.3

o6
z‘-:(’" )_1-:0'.1+1-0.s+1-0.3_
& 0.1+0.6+03

= true

max (Z(m €ivvg), avyan G_B(n.- “T; e -rﬂj)
max(0.95, 0.95 » 1 = (0.36 ® 0.81 ® 0.72)) = 0.95

Y (dinbi)

AT = (0.5 0.1+ 0.954 0.6 +0.99 5 0.3) = 0.917

AX (Z(T“ 28ieqg), asygx @(7&1 *Ti s Tf.'])
111a%(0.9025, 0.95«1+(0.3428 0.7695 ¢ 0.684)) = 0.9025

Putting the referent and the parameters together we obtain,

employed( people ) = true: [ = 1,7, = 0.95,4 = 0.917, 44 = 0.9025]
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3.4.2 Effect of Kind of Hierarchies on the Transforms

The kind of hierarchy is another important factor for applicability of A GEN. The trans-
form is more applicable to an 18A hierarchy. For PARTOF hierarchy, additional information
regarding the inheritance characteristics of the descriptor is necessary. ‘

If the referent type is a n-sa_I number, it is almost impossible that the same referent value
will kold for other arguments. One remedy is to specify the referent as a range. By widening
the range, it is possible to encompass greater number of arguments in a single statement,
albeit with a concomitant loss of precision. Even this approach is not entirely satisfactory,
since a universal, domain independent method cannot be given for widening the interval.
Ground rules governing the relationship between the confidence levels and precision can be
given for specific applications as a part domain knowledge and can be used by the inference
process,

The applicability of a descriptor to a lower level node in a PARTOF hierarchy is depen-
dent on the type of descriptor and its inheritance characteristics. If there are 100 libraries
in Tennessee, it is not necessary that there are 100 libraries in Knoxville which is a part of
Tennessee. For a descriptor of this type the inheritance is based on factors such as popu-
lation of Knoxville compared to that of Tennessee. A descriptor such as capitol.of, which is
applicable to a node_type state is not at all applicable to the lower level node.types such as
county. On the other hand, a descriptor such as language-spoken can be inherited without
significant modification from a node state to a node county. These examples show that
appropriate information must be supplied as a part of the domain knowledge in order to’
resolve inheritance constraints.

In case of an 1A hierarchy, the extent of variations in the inheritance of properties is

limited, but is nonetheless present. The deviation of actual properties from those propagated

within the hierarchies is a consequence of generalizations. Information that is distinctive to
the individual podes is lst in the A GEN operation, hence it cannot be retrieved later with
the A SPEC transform.

The inheritance of the referent of a statement from a parent to its children is less sensitive
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to the typicality and dominance parameters if the frequency ¢ is either close to | For low
frequency ¢, the likelihood of inheritance depends on the dominance § or the typicality
of the child with respect to a CONTEXT appropriate for the descriptor to be inherited.
The following examples illustrate some of the points discussed above with reference to
a PARTOY hierarchy. C'onsid& 3 statement
flower_type(Europe) = rose: [u = 1,4, = 1, ¢ = high, 74 = high]
The referent value is valid for most European countries in a specialized statement such as
fiowertype(Holland) = rose: {4 = 1, 7, = 1, ¢ = high, 74 = high]
since the frequency for the original statement is high. On the other hand, consider
language_spoken(Europe) = Dutch: [ =1, v, = 1, ¢ = low, 74 = high]
and the corresponding more specific statement
language spoken(Holland} = Duteh: [p= 1.y, =1, ¢ = 1,94 = 1]
The [requency associated with the general statement is low because only a small portion of
Europe i.e. Holland, speaks Dutch, hence the referent is not inherited in equal proportion
from the parent node Europe to the children countries, but is highly skewed. Similar effects

of unequal inheritance are observed in an 15A hierarchy.

3.5 R GEN

The transformation & GEN is applicable only to multivalued descriptors, i.e. when a term de-
scriptor(argument) evaluates to more than one referent, hence the multiplicity of the referents
m, is high. Unlike argumnent based transforms, the question of deciding a suitable CONTsx"r
within which to generalize a referent, so that it is still valid for the descriptor-argument pair,
is a difficult one. In case of argument based transforms, the descriptor applicable to the ar-
gument to be generalized or specialized provides a direct CONTEXT for computing typicality.
In case of referent based transforms, a descriptor which is applicable to an argument is not
necessarily applicable to the referent. For example, from a statement habitat(catfish) = lake,
a statement habitat(fish) = lake is inferred using A GEN transform if catfish has a habitat
typical for a fish. The descriptor habitat provides a basis for & CoNTEXT for computation

of typicality between fish and catfish. B GEN transform is required to infer habitat(catfish)
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= water.mass; but as mentioned earlier, the descriptor habitat does not provide a suitable
CONTEXT for referent lake to generalize to water.mass. Some help in getting a suitable
CONTEXT comes by realizing that most statements of type descriptor(argument) = referent
can be rewritten (with recomputation of the associated parameters) as descriptor —! (referent)
= argument. Now, deseriptor™! provides a suitable CONTEXT for generalization of refsrent.
The referent in the originsl statement serves in reality as an argument in the modified state.
ment to which A GEN is applied to obtain the results of R GEN transform to the original
statement. In the current example, inhabitant_of serves as descriptor™?, hence the trans-
formed staternent is inhabitant .of(lake) = catfish. The transformation of a statement of the
form descriptor;(argument;) = referent; to a statement of the form descriptorf’(refereut;) =
argument; is not straightforward, since the frequency parameter pertains to the fraction of
the argument set for which the statement is applicable, and the roles of the argument and
the referent are reversed in the transformed statement. A solution out of this difficulty is to
look for a dependency where descriptory ! appears in the rus of the dependency. In other
words, presence of a dependency
descriptors(referent;-gen) — descriptor; (referent,-gen)

offers a useful CONTEXT descriptors to compute-the ty-pica.lity- of referent, within its parent
r.eferentl-gen, provided that a = v, for the dependency is high. The inverse for a descriptor
has to be given to the system. Most descriptors have inverse descriptors, whereas for other
descriptors, especially which have numbers or boolean values as the referent domain, the
definition of inverse descriptors may be awkward and artificial. R GEN transform is given

by the following inference pattern.

R GEN: Inference from referent; to referenty, ancestor of referant,

descriptor;(argument() = referent;: [y, Yuy . 91, Yo, Py
descriptory(referent;-gen) — descrip_tor]"(reférenh-gen): CRA Dy
referent; = GEN(referent,); CONTEXT = (descriptors) : [, vr, &8, 74) G,
referent; = sPEC(referent;-gen) Sy
descriptory(argument;) = referents: [te, Vi, s DesVe,) Ci
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The descriptory is the CONTEXT used to compute the typicality of referent, in referenta. The

following equations apply for A GEN in ISA referent hierarchies.

Be = I (3.24)
Twe = Tmrmax(asygerey,, §eoyy) (3.25)
b = ¢ (3.26)
Yoe = Vo *max(asyaeray,, fuyy) (3.27)

The veracity u) and frequency ¢, associated with the staternent P are the best possible as-
signments to the veracity g, and the frequency ¢, of the conclusion C; (Equations 3.24,3.26).
The confidence in the veracity and frequency of the conclusion are affected by the typicality
of referent; in referent;. The a * Yo term in Equations 3.25 and 3.27 emphasize importance
of choosing a good dependency rule for & GEN. The dependency D, essentially asserts that
the CONTEXT descriptor; has an important bearing on the possibility of referent, -gen being
an evaluation of the term descriptor; (argument,). The terms =+, and § « ¥s both affect
the confidenice parameters Tuer Yé.- When § ¢ 9; is high, a is less relevant and hence does
not appear with § « 95 term (Equations 3.25, 3.21). -

EXAMPLE 3.5 @ Use of R GEN

reacts_with(potassium) = chlorine: [y = 1,9, = 1,9y = 1, Yo, = 1] Py
electronegativity(element) — reacts with(element): [a = 0.8, v, = 0.9) D,
group7.element = GEN(chlorine); CONTEXT = (electronegativity ):

[r=0859 =095 6 =029 =08 G;
group7_element = spec(element) 5

reacts_with(potassium) = group7.element: (e = 1,9, = 0.654, 0. = 1,74, = 0.654] C,

The aHS descriptor; ! in D, is the same as descriptor) since descriptor; is symmetric. i.e.
reacts.with(element, ) = element; =— reacts.with(efement;) = element,

The parameters for the conclusion were obtained by the following computations.
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pe = m=1

Toe = T * mai_(a Yo Ty, §97)
1 +max(0.9 0.9+ 0.85+0.95, 0.2s0.8)
max(0.654,0.16) = 0.654

@ = $ =1

Y. = Yoy smax{axyg sTavyy, §47)
— Yemax(0.9+09¢«085+0.95, 0.2¢0.8)
= max(0.654,0.16) = 0.654

3.6 R SPEC

Like R GEN transform, R SPEC is applicable only to the multivalued descriptors. R SPEC
is similar to R GEN except that the perturbation of the trace is downward in the referent

hierarchy instead of upwards.

R SPEC: Inference from referent, to referenty, descendant of referent;

descriptor;{argument;) = referenti: [B1, Yuy» 11 Vé:] Py
descriptora(referent,-gen) — descriptor; }(referent;-gen): [a,¥a) Dy
referent; = sPEC(referent,); CONTEXT = (descriptors): {7, 7.6, 7] S
referent; = SPEC(referenty-gen) : S3
descriptou(ugmmnh) = referents: [nm‘rn..%n.l Cy

The descriptor; is the CONTEXT used to compute the typicality of referenty in referent;. The

following equations apply for & GEN on 1SA referent hierarchies.

pe = b (3.28)
Tue = Tmr(@sva*T*7, §+7) (3.29)
¢ = (3.30)
Yo = To*(@evavT=vr, §27) (3.31)

The descriptor; is assumed to be such that referent, is applicable to argument, in CON-
JUNCTION sense, i.e., each part of referent, is assumed to be applicable to argument; (Sec-
tion 2.4.1), hence g, is the best assignment for .. A statement P, is valid in a strict CON-
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JUNCTION sense if each child_node of the referent is applicable to the descriptor)(argument, )
pair, without regard to the typicality, dominance of referent; in referent;, or dependency
between descriptors and descriptor;. On the other hand, a statement may not be valid in
a strict CONJUNCTION sense, in which case the applicability of referent; that is a part or
a subset of referent; has to be estimated by the typicality, dominance parameters and a
relevant dependency. If the statement P; is not valid in a strict CONJUNCTION sense then
P; is an overgeneralization of facts, as a result of which the parameters associated with the
conclusion C, are different than for the statement P;. The frequency for the conclusion is
expected to be at least as great as that for the statement Py since the arguments for which
ceferent; is true is a subset of arguments for which referent, is true. The above discussion
is clarified by the following examples.

EXAMPLE 3.8
qualification(tva_employee) = { bs. ms }: [g = 1,7, = 1, ¢ = 0.4, 74 = 0.90)

The statemnent indicates that 40% of tva employees have both BS and MS degrees (statement
constried in CONJUNTIVE sense). Use of R sPEC transform yields following statement.

EXAMPLE 3.7
qualification{tva_employee) = { bs }: [p =1, yu = 1, ¢ = 0.4, 74 = 0.90]

The referent bs is applicable to the argument tva_employee without qualification, since Ex-
ample 3.6 is in CONJUNCTIVE sense, The true frequency associated with Example 3.7 is
higher than 0.4, however without domain knowledge it is impossible to estimate the devia-
tion of the frequencies between the two statements.

The deviation of frequency between the generalized and specialized statements in a
PARTO? hierarchy is dependent on the type of the descriptor and may be in opposite direc-

tion a8 compared to the deviation in 1sA hierarchies (For discussion see Section 3.4.2).

EXAMPLE 3.8  habitat(whales) = oceans: [u =1, v =1. ¢ =1 74 = 1]

The parameters in the above example indicate that habitat of all whales is oceans. The

Example 3.8 can be specialized to
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ExAMPLE 3.8  habitat(whales) = Indian.ocean: [u =1, v, =1, ¢ = 0.20, v, = 09)

If the Example 3.8 is true in strict CONJUNCTION sense, i.e. if all the oceans are habitat
of whales, then Example 3.9 is valid with the indian.ocean as the referent, regardless of
the typicality of the Indian_ocean in oceans with respect to some CONTEXT such as size or
temperature. On the other hand if the statement is not true for all ocesns then the typicality
of the Indian_ocean, within some CONTEXT relevant to the descriptor habitat would determine
its applicability as a valid referent. The frequency in Example 3.9 which is a specialization
of Example 3.8, is less than the frequency parameter in Example 3.8. The Indian_ocean is
3 PARTOF oceans, and the frequency distributes according to the sige (dominance) of the

Indian_ocean within oceans, in addition to typicality parameter within a relevant CONTEXT.

EXAMPLE 3.10 : Use of B SPEC

reacts_with(potassium) = group7.element: [y = 1,7, =09, 41 = 1,74, =1] P,

valence_electrons(element) — reacts_with(element); [a = 0.9,7, = 0.8} D,
chlorine = spec(group? element); CONTEXT = (valence_electrons):
[r=1,9-=1,8=0.2,7 = 0.8] 54
group7_element = spEc(element) ; S
reacts.with(potassium) = chlorine: [y, = 1,%,, = 0.73,¢. = 1,7, = 0.81] C:

The computations according to equations 3.28-3.31 yield:

He = p1 =1
e = Vg *max(@ e Ya s TV, §375)
= 09emax(0.9+09s1s1, 0.2¢0.8) =0.73
P = $h=1
Tee = Yo *max(asvasTsYy, §evs)

= 1.0smax(0.9«0.9s1%1, 0.2«0.8)=0.81

The example states that if potassium reacts with group7.element, and if group7.element is a
generalization of chlorine 1n the CONTEXT of valence_electrons, and if valence.electrons of an

element is a suitable CONTEXT for reacts.with, then potassium reacts with chlorine.
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3.7 R SIM

Like R GEN and R SPEC, R SIM is applicable to multivalyed descriptors. The similarity
is computed for many potentially similar candidates and the one with the best similarity
measure is chosen for application of the R siM transform. The R StM transform s presented

below.

R 81M: Inference from referent, to referent, its sibling

descriptor; (argument,) = referenty: [y, v, ¢y, Yo _ Py
descriptor;(referentl-gen) — descriptor; 1(l'ei'emrn:;-gen): [@, va] Dy
referent; = sim(referent;); cONTEXT = (descriptor;): (e, Yol SIM,
referent; = SPEC(referent-gen) 5y
descriptor; (argument,) = referents: [pe, v,., @, Ye.] C,

The parameters for the conelusion are computed as follows.

He = @y (3.32)
Tuoe = Yy raaygsesy, (3.33)
P = ¢ (3.34)
Vo = Yy rQryanaey, (3.35)

The following example illustrates the 3tM transform.

ExampLe 3.11 : Use of R sim

reacts_with(potassium) = chiorine: (uy = 1,%,, = 1, ¢y = Lyg =1] P,
valence. electrons(element) —. reacts.with(element): [a = 0.9, 4, = 0.9] D,
fluorine = sim(chlorine); conTEXT = (electronegativity): [¢=09,v, = 0.9]  SiM,
chlorine = spEC(element) S

reacts.with{potassium) = fluerine: [y, = L Yue = 0.656,0; = 1,4, = 0.656] C,
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The parameters for the conclusion were computed as follows.

e = =1
Yue T Tu *Q Vo T *Ye
= 1209+09+0.9«0.9=0.656
¢ = @1 =
Yée = T *QA*Ta*T*Yp

= 1209%0.9+09¢0.9=0.656

3.8 Derivations from Implication

Implications in plousible reasoning are an extension of implications in the classical logic. The
only difference is that the implications in the plausible reasoning are not necessarily perfect.
Perfect implications (implications without exceptions) are rare. Even scientific procediires
simplify rules and laws by eliminating or ignoring exceptions and excessive details so as to
focus the attention on the higher level phenomena. For example, Newton's laws of motion
are accepted as very good laws for computation of motion related parameters, even though a
more accurate mode! (Einstein’s theory of relativity) is available. In plausible reasoning, the
presence of exceptions in the implication is indicated by the dependency parameters a, v,
of less than 1. The transform POSITIVE DERIVATION from implication has the following

form.

POSITIVE DERIVATION.

descriptor, (arg-gen) = referent, =

descriptory(arg-gen) = referenty: [ay,7,,] Ty
descriptor;(argument) = referenty: [p1, Yu;) $1, Vo) P,
argument = SPEC(arg-gen): Sy
descriptorz(argument ) = ceferents: (e, Tuer Per Yol C,

The parameters of the conclusion are computed as follows. Note that as long as the argumnent
belongs to arg-gen in some 15A hierarchy, the typicality and dominance of the argument

in arg-gen do not come into picture anywhere. This is because implication I; is context
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independent, whereas the computation of typicality iy always performed in some context.

Be = ‘ (3.36)
Tae = Ty %@y ey, (3.37)
. = ¢ (3.38)
Moe = Ve v w9, (3.39)

EXAMPLE 3.12 : Use of posITIVE DERIVATION

edu.cation(pefs_on) = college.diploma —=

income(permn) = (15K .. 45K): fay = 0.95, Yo, = 0.9] I
John = SPEC(person): [r = 0.9, v, = 08,8=00 v =1 51
education(John) = college diploma: | 4y = 1, Ty =L =194 =1) P,
income(John) = ( 15K .. 45K); [pe = 1.4, = 0.85, =19, =08] C

There is also a NEGATIVE DERIVATION from implication. -~ & is plausibly inferred from
(A = B) A - A Thisis weak inference and is reasonable only when B is scarcely true
by itself. This transform is called NeGaTIVE DERIVATION from IMPLICATION and has the
following form.

NEGATIVE DERIVATION

-descriptor;(arg-gen) = referent; —
descriptors( arg-gen) = referent,: (@1, Vay, B, 76, I

srgument = SPEC(arg-gen): (r, vy, §, 7] 5y
delcriptorl(l.rgument) # referenty: [u;, Yurr D14 Y4, ] P,
descriptors(argument) # referents: (Be: Yues Be; 714, C;

EXAMPLE 3.13 : use of NEGATIVE DERIVATION

studies(person) = hard — succceds-_in.test(person) = trye: l

mary = SPEC(person) 5
studies(mary) % hard P,
Succeeds.in_test(mary) - trye: L

Currently the transform has not been implemented and the parameter computations are
kept open.
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3.9 Conclusion

Various transforms have been presented in this section. At this point it is worthwhile to
discuss the reasons for using certainty parameters with every parameter in the modified
core theory of plausible rea;oning rather than a single certainty parameter for 8 statement
in the original core theory of plausible reasoning.

The certainty parameters reflect the knowledge about the parameters and are useful
in pegative inferences, though they have not yet been implemented in APPLAUSE. The
following example illustrates the typical use of a pair of parameters (parameter and its
certainty) as opposed to a single parameter.

EXAMPLE 3.14
Suppose the following statements are present in the knowiedge base:

descriptory(argument;) = referent: [, 7., &, 74 P,
argument; = SIM(3rgument; ); CONTEXT = (descriptory): le.ve]  SIMy
descriptorg(arg-gen) <= descriptory(arg-gen): (@, 7al D,

Consider the following possible conclusions which may-be drawn from the above statements.

{. # = 0, and 7, = 1. Here the similarity is between the two arguments is zero and it
would be appropriate to plausibly infer that descriptor; (argumenty) # referent (nega-
tive inference), rather than inferring that descriptor; (argument;) = referent with a low

certainty {as is currenly done in A $iM transform).

2.0 =1, and 7, = 0. In this case it would be appropriate to infer that

descriptor; (argument;) = referent with low certainty.

The above example shows that the connotations of o, and ¥, are different. Similar reasoning
holds for all other parameters and certainties associated with them.
The next chapter describes the implementation of the transforms, and extensions to the

core theory of plausible reasoning incorporated in APPLAUSE.
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Chapter 4

Description of APPLAUSE

This chapter describes the system APPLAUSE which is a preliminary implementation of
plausible reasoning. APPLAUSE has many features to assist experimentation within the
framework of plausible reasoning. The block disgram of APPLAUSE is given in Figure 4.1.
The program is written in PROLOG. Apart from the normal user interface to creste a
database, and build hierarchies, there are utilities to discover possible dependencies, make
a list of nodes most similar to a given node in a user defined CONTEXT. Discovery of useful
dependencies and preferred hierarchies for generalization is viewed as a learning behavior,
where the system consolidates the higher level characteristics of its database. The inferred
knowledge is used to arrive at the contlusion; efficiently and accurately. Furthermore,
the discovered dependencies enrich the knowledge base. The Section 4.1 describes the
knowledge representation. Section 4.2 gives the details of the Periodic Table database. The
Section 4.3 shows how initial knowledge base is built in APPLAUSE and how the dependencies

are generated. The Section 4.4 describes the procedures nd&pt.ed to answer the queries.

4.1 Knowledge Representation

&

Domain knowledge in APPLAUSE consists of various interrelated components such as hi-
erarchies which are composed of nodes connected by parent-child links, tuples describing
nodes in the hierarchy, similarity measures between nodes, dependencies and implications
between attributes used to describe nodes, All these components are useful in deriving

plausible reasoning inferences,
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Figure 4.1: Block Diagram of APPLAUSE
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4.1.1 Hierarchies

Nodes in a hierarchy represent arguments or referents A hierarchy is defined by specifying
interconnection or partial ordering successor-ancestor relationship among all the nodes of
the hierarchy. A tuple listing attribute values for the node is associated with every node.
The attributes associated with a node define its type. In APPLAUSE the structure of an
entire hierarchy is defined beforehand. It is possible to add or delete nodes as lung as
creation of a new type of node is not required.
Nodes:
Each node in a hierarchy has a node_name which represents an entity that has a tuple
associated with it:

node_name(node.type, [attribute_val/parameters, ...] ).
node.type is the schema definition or the template that defines the attribute names that are
used to describe the node_name. It has the form:

template( node_type, [attribute.name;. attribute_name,, .. | ).
The attribute.val/parameters list specifies attribute values and associated parameters in an
order defined by the template. Consider the following database entry:

lithium( element. [2/{1, 1, 1, 1}, 1/[1, 1, 1. 1], 6.9/[1. 1. 1, 1], ...] ).
It has a node_type spe'ciﬁed by

template( element, [periad, group, st.wt, ...])

The entry is interpreted as follows:

node_type(lithium)} = element

period(lithium) = Z2[l.1,11]
group(lithium) = Ll 11,1]
at.wi(lithium) = 69[1111]

The approach of representing all attribute values for a node in a single tuple instead of
several attribute, node, attribute_value triplets has merits as well as disadvantages. On the
positive side, the data representation is compact. The data retrieval is positional and hence

is fast. On the negative side, node.type of each node in the hierarchy has to be known
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and defined. The restriction imposed by a fixed node_type for a node makes it difficult to
represent unique information about a node. Representation of data in the tuple form is
advantageous when there are a few node_types in the database.

Links:

The parent-child links defining the hierarchy are represented as follows.
parent(hierarchy/context .v. [childy /|71, = 61,75, ) childa/[T2, Y 82, 755], -+ ).

For example,

elernents{ period/cxnil . V.

[ plelem/[1, 1, 002, 1},
p2elem/[1, 1, 0.08, 1},
pelem/[L, 1, 0.08, 1],
pdelem/[1, 1, 0.17, 1},
pSelem/(1, 1, 0.17, 1},
pGelem/[1, 1, 0.31, 1],
plelem/[1, 1, 0.17, 1], ] ).

plelem( period/cxperiod . V.
[ W/ 1 051
He/[1, 1. 0.5. 1}, ]).
plelem, p2elem denote elements in period 1, period 2 respectively. The CONTEXT cxnil in-
dicates that no criteria has been used to generalize various periods into elements. The
CONTEXT cxperiod indicates that elements having same period.num have been generalized
to the appropriate pericd-element. The child-parent links are generated from parent-child

links which are entered as the initial domain knowledge. For example,
H( period/cxperiod . A. plelem/{1, 1, 0.5, 1] ).

indicates that hydrogen (H) is a node in the period hierarchy, and that it generalizes to a
node called pletem within the CONTEXT cxperiod. It further states that the typicality and
dominance of h within plelem are 1 and 0.5, respectively. Similarity links are also generated
for some important CONTEXTS as follows:

node( hierarchy/context .=. [node; /[¢1,70,). nodey /[e1,%e,). .--1)
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For example,

¢u( period/cxphys =,
[ a2g/[0.89. 1.00}
ni/[0.84, 1.00)
co/[0.84, 1.00)
fe/[0.82, 1.00)
er/[0.80. 1.00)
2u/[0.77, 1.00] )).

This indicates that silver (ag) is similar to copper (cu) in the conTEXT of physical_properties
with a degree of 89%.

The CONTEXTS used above are represented as follows

context( context_name, [ attribute; /wt,, attributey /wts, ...]).

For example,

context( cxphys, [  period/0.3,
group/0.15,
density/0.1,
boiling.point /0,08,
melting -point /0.05,
atomic.volume/0.05,
heat_of vapaorization/0.05,
electrical_conductivity /0.1,
thermal.conductivity/0.05,
specific_heat/0.05,
heat .of fusion/0.05 ] ).

context( cxperiod, [pericd/1] ).

The CONTEXTS are defined in terms of attributes and their relative importance to the
context. The weights are given by the user, are normalized to add up o 1, and can be
modified by the user. The context cxphys is defined as a weighted combination of attributes

such as period, group, density. The context cxperiod indicates that period is the sole relevant
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attribute defining the context, thus two elements having identical periods will have simnilarity

of 1 within the context cxperiod. Contexts are used to construct hierarchies.

4.1.2 Representation of Attributes (Descriptors)

Descriptors have lots of domain dependent information applicable to them. The descriptors
may have high or low argument multiplicity {3]. Argument multiplicity is high if same
descriptor-value (referent) is applicable to many argurmnents. For example, the descriptor
group has a high argument multiplicity since more than one elements has the same group.

group(potassium) = la

group(sodium) = la
On the other hand, the descriptor atomic_number has a low argument multiplicity since one
atomic number is applicable to exactly one element.

atomic.number(potassium) = 19

atomic_number(sodium) = 11
The concept of referent multiplicity is simnilar, When the descriptor is multivalued, i.e. when
the descriptor(argumsnt) term evaluates to more than one referent, the referent multiplicity
of the descriptor is high. High argument and referent multiplicities are necessary to derive
good conclusions via argument and referent based transforms, respectively.

Other pertinent information regarding the descriptors involves identification of the type
and the domain of the descriptor-values. This information is useful to locate and trap gross
errors. Examples of the declaration of attribute_type and attribute.df:main are given below,

type_attr{pericd, number).

type_sttr(group, number).

type.attr(atnum, number).

domain.of attr{ period. | 10..7.0)).

domain_of attr( group. | 1.0,20 21,22, ,23,24,25, 26, 2.65, 2.7.
28,29, 3.0, 40 5060,7.080}).

domain_of _atte( at.num, [1.. 103})
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4.1.3 Representation of Dependencies and Implications

Apart from providing an excellent way of condensing knowledge, the implications and de-
pendencies between attributes constitute a higher level description of the knowledge. In
scientific research, a good higher level description of low level phenomena is a precursor
to deeper understanding of the world. APPLAUSE has the capabilities of discovering linear
functional dependencies. The state space for discovering functional dependencies is very
large and hence the dependencies are computed either when guided by the user or when
intermediate computations in the derivation of a result warrant an examination of the pos-
sible dependencies in a well defined space. Dependencies are represented as,
descriptor; (argument) = madescriptora(argument) + b: [a, val
Y argument satisfying the constraint.list,

where the constraint list is provided by the user as a guidance in discovering the depen-
dencies or is imposed by the definition of the hierarchy within which the dependencies are
automatically computed. |

The detailed procedure for the discovery of dependencies is described in Section 4.3.

4.2 Periodic Table Data Base

The Periodic Table is chosen as a test domain for the plausible reasoning statement trans-
forms presented in Chapter 3. The Periodic Table has some advantages and some limitations
as a test domain for the theory. Two natural hierarchies are constructed from the table
(Figure 4.3) which provide good means of comparing the results of 'tra.nsforms in different
hierarchies. The data in the Periodic Table is definitive and hence knowledge acquisition
is not dependent on an interface with the domain expert. Also the known data can be
deliberately removed, derived from plausible reasoning transforms and compared with the
removed actual data. This provides an objective method of evaluation of the transforms.
On the negative side, the hierarchy is shallow (two levels deep). Most of the descriptors are
single valued (low argument and referent multiplicity). This necessitated improvisation in

the original transforms so that meaningful inferences could still be drawn.
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4,2.1 Historical Perspective

The Periodic Table has an interesting history as it has undergone several changes before
the current form shown in (Figure 4.2) was generally accepted [32]. The reasons for the
absence of an unanimous agreement on the form included some arbitrariness in deciding
the number of elements in each period. Mendeleev’s conviction for finding an octave-like
harmony analogous to music was weakened by the- presence of only two elements in the first
period and more than eight elemnents in the fourth and subsequent periods. The elements
were ordered on the basis of their known atomic weights. The idea had its merit in that it
helped Mendeleev to predict the existence and properties of some unknown elements (e.g.
ekaboron,,. now known as Sc), and to fill the gaps of the Periodic Table as it was known at
that time. His conviction in the Periodic Table led to the correction of an error in the atomic
weight of beryllium. Yet he could not account for the discrepancies between the observed
properties and the properties expected according to his table, for iodine and tellurium.
While this was considered as a failure, it illustrates the merit of the methodology, since it
prompted the search for organizing the elements based on more fundamental properties than
atomic weight. Indeed, when the elements were ordered by atomic number the anomalies
disappeared. Anomalous conclusions derived from plausible reasoning point towards fruitful

research areas, spart from organizing and condensing the knowledge.
4.2.2 Hierarchies in the Periodic Table

The chemical Petiodic Table is used as the test domain to demonstrate the results of the
theory of plausible reasoning. The domain knowledge and the scope of queries is limited |
to the properties of elements found in nature. The Periodic Table published by Sargent
Welch Scientific Company has been used as the source of data (Figure 4.2). The currently
agreed upon arrangement of the elements, which is a result of efforts spanning over several
decades, is taken as the basis of constructing hierarchies of the elements. The 102 elements
are divided into 7 rows and 18 columns. The arrangement suggests construction of two
hierarchies group, and period (Figure 4.3).

The first hierarchy is a period hierarchy. Each of the elements is classified into one of
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the 7 pericds, depending on its number of electron shells. The periods contain a variable
number of elements which is explained by the fact that different sheils have different capacity
for electrons. The period is of secondary importance to most chemical properties, however,
some physical properties, such as radioactivity, electric conductivity, metallic characteriatic,
have significant correlation with periods. Even the chemical properties, which are primarily
determined by the group they belong to, show gradual variation with respect to period.
Such knowledge is represented as dependencies between CONTEXTs composed of weighted
combination of attributes. Stronger correlations are encoded in functional form, As s trivial
example, the number of electron shells in an element can be equated to the period it belongs
to.

The other hierarchy is formed by groups. The groups are principally decided by the
number of electrons in the outermost electron shell. This method does not assign unique
group-period pair to each element. From the plausible reasoning viewpoing, it is not neces-
sary to identify each element uniquely by a group-period pair. However, inability to do so
was a source of controversy regarding the form and validity of the Periodic Table. The issue
was partially resolved by creating b groups and extending the identification by considering
combination of electrons in two outermost shells. For some elements (i.e. all the elements
collectively called lanthanides and actinides), even this did not resolve the issue.

The Periodic Table data is incomplete in that, not all attribute values are known for all
elements. This is true for many trans-uranium elements which have very short half lives.
In the present study, occasionally known data is intentionally deleted and attempted to be
derived again by means of plausible inference. This gives an opportunity to compare the

results of plausible reasoning transforms with the known real data.
4.3 Building of Knowledge Base in APPLAUSE

In general, the number of node types could be large even for a strict 1A hierarchy. Consider
for example, an animal classification hierarchy. The class of animals is divided into 10 major
phyls. The attributes for each phylum may be different; the same is true for any lower level

nodes.
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Construction, maintenance, update and interpretation of domain knowledge in Ap-
PLAUSE is explained below. The initial database is built by inputting raw data and per-
forming compatations of similarities, typicalities and dependencies. After the initial setup
the program is ready 10 answer queries using plansible reasoning.

Specification of hierarchies: The domain knowledge also consists of specifying known
patterns (e.g. known hierarchies) or relationships (dependencies /implications) among ele-
ments. It is possible to construct hierarchies by clustering the data, using machine learning
algorithms such as cLusTER[31], AQ (18], coBwEB [T]. In APPLAUSE, the initial hierarchies
are entered by the user. The parent._child relation between no&es is explicitly stored in the
nodes as described in Section 2.2. It is convenient to specify a hierarchy as a parent _child
relation from which child.parent relations are easily derived. The dominance and typicality
Parameters are currently assumed to be a part of the domain knowledge.

Similarity information: Routine GEN_SIM generates similarity information by analyzing
all the data. This similarity information is generated for user specified contexts. Chemical
properties and physical properties of elements are contexts which are potentially useful
in many plausible reasoning situations. Similarity information js generated for both these
contexts.

Constraint based dependencies: It is possible to discover various dependencies between
the attributes. The utilities are provided to select nodes based on some constraints. For
example, it is possible to evaluate dependency between ionization energy and electronega-
tivity for all elements with a period number between 3 and 5 and group numbers greater
than 4. Examination of the behavior of attributes in a constrained subspace is useful for
user guided discoveries. The insight and experience of the domain expert is put to use by
providing an interface where the expert can guide pattern discovery. For example, the user
may feel it worthwhile to explore the dependency between melting points and boiling points
of elements. The system will analyze the relevant data and come up with a quantitative
estimate of the quality of the dependency. The dependency is evaluated at various [evels.
Dependency at the global level is estimated by regression analysis. Currently, linear de-

pendency alone is considered. Utility is provided to transform values of data by shifting
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and scaling to a constsnt, logarithmic or exponential scale. It can be useful in estimating
dependencies at a local level, For example, dependencies may be estimated at each group
or period level. Since sample size of nodes is much smaller while computing local depen-
dencies, generally higher values of a and ¥, are assigned than can be justified. This is
remedied by putting a penalty factor for confidence values of dependencies ‘obuined from
small samples. The local linear dependencies are expressed in terms of the slope and the
intercept. If the slopes and intercepts have a regular pattern, then the confidence in theis
estimate is higher. The trends of dependencies is another useful high level description of
the nodes in an ordered hierarchy. An example of such a rule is atomic radius increases with
period and decreases with group, Dependencies, trends, or exceptions (if any) are discovered
easily in a hierarchical structure. Exceptions are of interest, since their elimination increases
the quality of dependencies, and explanations of exceptions lead to better understanding of
the domain.

If the database is static, then the dependencies and similarities are generated at the time
of initial loading of the database. In case of a dynamic database, dependencies are either
computed with every alterstion in the database or are computed periodically after some
changes in the database so as to improve the cost effectiveness of maintaining the database.
Currently dynamic databases are not supported in APPLAUSE. Discovering useful depen-
dencies and preferred hierarchies for generalizations can be viewed as a learning behavior,
where the system becomes aware of the higher level characteristics of its database. This
inferred knowledge is used to arrive at conclusions efficiently and more accurately.

Data compaction by generalization: Consider a h-ierarchy consisting of & levels.
The top level node is denoted as m»; 7y, Az, My oo indicate level 1 nodes; and
41,132, - -» Thik, - - . indicate level 2 nodes, etc. Node ng is the k*® child of the node n,
and n;; indicates j** child of the node n;. Let G(Dsery),G{Dscrs),...,G(Dscry) be de-
scriptors (attributes) used in constructing 8 hiersrchy of depth k. At the leaf leve] (depth
= k) all descriptors are used in describing an object. The more general nodes at a level
! < k are constructed by eliminating a descriptor G(Dscry), i.e. nodes are described by

the remaining descriptors G(Dscry),...,G(Dacri_1). At the level 0 (root) no hierarchy-
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constructing descriptors apply. Let Dscr be a descriptor not used in building the hierarchy.
Assume that Dscr values exist at a level [ and are to be generalized to a higher level
{ = 1. Let us consider a hierarchy of depth 2 depicted in Figure 4.4. Generalization can be

performed two ways.

e Aggregation of data into a range: This is a simple operation performed on the
descriptor values Dscr(n;y), Dscr(niz),... to obtain a range [Dser(ny). . Dacr(nm)};
where Dacr(n;) and Daer{n;n) are minimum and maximum descriptor values for the
children of the node n;. This generalization can be performed fast and is good when

the spread in the descriptor values is small, however, it has poor precision.

¢ Dependency based generalization: Often, the children n;; of node n; can be
ordered such that G(Dser)(ni1) < G(Dser)(nia) < ... < G(Dseri)(nim), where
G(Dscri)(n;;) is the value of the hierarchy constructing descriptor G(Daer;) at node
n;;. If there exists a linear functional dependency of the descriptor Dscr with respect

to G{ Dscry), ie.
Dscr(nij) = m « G(Dsery)(n;;) + b (4:1)

where m denotes the slope or rate of variation of Dscr with respect to G(Dsery), it
is used in generalization. Precision of the generalization is greatly increased, without

sacrificing the compactness of the description.

Preferred criteria for generalizations: Assume that G(Dscry) and G(Dser;) are two
candidate descriptors for construction of hierarchies. We get two distinct hierarchies, say
Hy and Hj, by using the descriptors in different order while constructing the hierarchy. It
is possible to generalize some descriptor Dser in either H, or Hj. It needs to be decided
which of the hierarchies is to be preferred for the purpose of generalizing Dscr. The two
hierarchies will partition the level 2 nodes differently to form different sets of level 1 nodes.
Let the level 2 nodes in the two hierarchies H, and H; be denoted as nl,, and n2,,, and
level 1 nodes be denoted as nl, and n2,. Let some element n, belonging to the leal nodes
be represented as nl;; and n2y in the two hierarchies. Suppose, Dacr(n.) is unknown and
needs to be estimated by plausible reasoning. It can be estimated by specialising either from

72



nl; or from n2¢, The specialization must be preceded by generalization of the known values
of Dser(nlyy) and Dgcr(n2,,). The generalization may be performed by aggregatinn (see
page 45 and page 72) or may be dependency based. Criteria for evaluating the dependency

based generalizations are described below.

1. Minimize intersection of the range of Dacr(n;) with the corresponding adjacent ranges
Dscr(ni_1), Dser(n,.1). We would like the generaliged range to intersect minimally
with the neighboring generalized ranges and if possible with the rest of the classes
Dser(n;). Zero intersection connotes preservation of highly discriminating and ex¢lu-
sive characteristic of the class, and this produces least ambiguity when a characteristic

is inherited to lower level nodes Myj.

2. Maximize the number of points, p, from which generalization is performed and their
representativeness to the domain of the nodes to which the generalization is applica-
ble, The greater the number of sample nodes from which generalization is petformed,
the better is the data compaction and the lesser is the pomibility of spurious general-

ization.

3. Minimize the rate of variation of attribute values. Generalization is best performed

on a low gradient space, as it reduces the possibility of errors of & large magnitude,

These criteria are combined in the following formulae which estimate @ and v, of depen-

dencies
a=(1-Wesz)s(l-g,) (4.2)
Woa | e ) P -
Ta = W, (m,.;Hm-l) +#ye () (43)
where
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Meef

% intersection with the neighboring generalized classes

intersection of ranges
smaller of the two ranges

the penalizing factor for intersection z (default = 0.2)
standard devistion of residuals expressed as % of the average of the absolute

Dscr values in the generalized class.

average variation of attribute_values over the node space.

Range( Dscr{n;))
Number of leaf nodes
siope as obtained from Equation 4.1 - for dependency based generalization
Range( Dscr(n;)) _
Number of children of n; - for aggregation

the number of points from which the generalization is performed
weight factor for slope (default = 0.5)

(1 = W,]
weight factor for number of points used for generalization (default = 0.5)

a user specified constant, related to the minimum desired vaiue of p,

based on the degree (number of children) of the generalized node.

The hierarchy in which a » 7, has the highest value is chosen for generalization.

Generalization by aggregation is simple and fast, hence it is preferred when there are

time constraints. One factor against aggregation is that the precision of the conclusion is

poor, howeves the confidence in the conclusion is good and is a coml.:;ensatin_g factor for the

choice of aggregation based generalization.

4.4 Query Processing

This section describes procedure adopted to answer the queries, There are numerous ways

of resolving the query, one is to apply transforms on all the relevant data. Such an approach

is computationally expensive and hence the following guidelines are foilowed.

It is clear that argument based transformms A GEN and A sPEC described in Sec-
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tions 3.1, 3.2 require the same referent (at least almost the same) over the set of arguments
on which the transform is applied. This condition is not so critical in case of A siM, since
some extrapolation is possible (Section 3.3). If the type of the referent is a real number with
a single value for an argument, then it is difficult to apply A cen, and A $PEC transforms.
The situation can be remedied partially by broadening exact numeric values into interyals.
This constrains the mapping of the descriptor fl:om a set of arguments to a discretized do-
main, and the chances of applicability of the argument based transforms increase. Loss of
precision s the penalty that is paid for using the ranges. Also the task of discretization of
the domain is not trivial.

The descriptors applicable to the elements are single valued (low referent multiplicity)

and hence the referent based transforms are not suitable in the Periodic Table.
4.4.1 Inference Module

The database is chiefly used to answer simple queries, The classical database is not well
suited to handle missing or unknown data. Plausible reasoning attempts to answer the
queries, based on the knowledge of higher level rules summarizing the properties of similar
objects. In plausible reasoning, the search space to find similar objects is reduced consid-
erably due to hierarchical structure of arguments and referents. The number of links is
reduced phenomenally by replacing the links at the lower level nodes by links at the higher
level node, with a reduction in certainty and distinctive information among the children,

being the price paid for it, The reasoning at the higher level nodes is much more efficient

since the essential knowledge is condensed by fltering out the low level details. The proce-

dure adopted in the inference module to answer the queries is described below along with
an example.
QUERY has a form:

descriptor{argument) = ref?[[,u, Tur @5 7e]? (Q1)
The query requests the system is to retrieve/estimate the best referent value together with

the parameters. The best referent is one with the highest u = Tu* @ = 74 product.
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PROCEDURE
» get.query(Q)

o if ( getfact(Q) successful ) then
- report retrieved information, exit.

» else
[ estimate the referent value and parameters by applying suitable transforms.

A siM Get a list of nodes similar in a CONTEXT relevant to the descriptor.

1. If the domain of the referent is intrinsically unordered (such as color), then
choose referent of the most similar node,
2. In case of an ordered domain, take the weighted average of the referents,
with w; = 0y 2 74,.
pEP/IMP Dep := set of dependencies/implications, such that the descriptor to be
generalized appears in RHS and a s 4, > threshold T).
Sort ‘Dep’ according to decreasing a « 4, (gather strongest evidence first).
From each dependency/implication estimate the required referent.

A GEN/A SPEC Apply suitable argument based generslization/specialization trans-
forms and estimate the required referent. |

Combine the evidence and choose a referent with the highest x = v, = ¢ » 74 product,
exit

The procedure may have to be applied recursively when data required for the transformed
itself has to be plausibly inferred. The excessive depth of recursion is prevented by the
use of a counter, as well as by pruning the reasoning path for which p» 4, « ¢ « 94 falls
below a threshold of acceptance T3. Any inference whose certainty parameters are poor, is
useless in further computations, hence only those inferences which have high certainty values -
are considered. Michalski's Variable Precision Logic is capable of reasoning when tradeoff
among precision, accuracy, and time required ta infer are involved [20). The veracity and the
frequency parameters alsn appear in the criteria for retention of inferences in a reasoning
chain. This is to prevout the statements with very low veracity or frequency and high
certainty parameters fr ' entering into the reasoning chain. It is very easy to generate such
statements merely by ;s 1ing an impossible referent value in a statement. Such a statement
has a little information content and is useless in a reasoning process. The thresholds Ty and
T; are user given and may be different.
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EXAMPLE

jven:
o Group8a consists of 6 gases [He, Ne, Ar, Kr, Xe, Rn|.

* Boiling points (BP) of only 4 gases in Group8a are known.
[ He/-269, Ne/-246. Ar/-185, Xe/-108 ).

¢ Period4 consists of 18 elements.
(K. Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se. Br, Kr].

* Boiling points of all elements except Kr are known.
[ K/760, Ca/1440, S¢/2730, Ti/3260, V/3450, Cr/2665, Mn /2150, Fe/3000, Co/2900,
Ni/2730, Cu/2595, Zn/908. Ga/2337, Ge/2830, As/613, Se/68S, Br/58)

Query: Find botling point (BP) of Kr.

Process:
o get_fact( BP(Kr) } fails, so try plausible reasoning.

* Apply A siM, A GEN, A SPEC transforms together with the applicable dependencies.

L. Apply A siM transform.

(8) There exists a dependency with BP in the s,
physical_properties(element) — BP(element): (@ =0.8,7, = 1).

This establishes the coNTEXT for computing similarity.

(b) Get a list of elements similar to Kr in the CONTEXT of physical_properties
(cxphys). .
Kr(periodic_table/cxphys .=. [ Ar/(0.70.0.85], Xe/[0.66,0.85], Ne/[0.50,0.85],

C1/(0.50.0.85]. Se/{0.43.0.85) ]).

(c) Discard similarities with & « 3, fess than 0.50.

(d) Take the referent value of the result as the weighted average value of the
BPs where the weights are decided by ¢ « v, product.

() Boiling piint of Kr is computed as the weighted average of the beiling points

of similar elements, using Equation 3.13:
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Y BP(elem;) s o(Kr, elem;} « Yo,
Zi o(Kr, elem;) « Te,

_(-185+ 7+ .85 108-.66-.85—-246:.5t_85—34¢.50:;55)
- (7«.85+ .664.85+ 5«85+ 5+ .85)

BP(Kr) =

= -144.4

(f) The parameters of the conclusion are computed as the weighted averages of
the parameters of the similar nodes, using Equations 3.14-3.17. The parame-

ters for the individual similar eiements are computed from Equations 3.9-3.12

Tibi/N =(141+141)/4=1

Be
Tue = avYg e (v % 0ixy,,)/N
= Bele(le.705 85+ 1%.66«.85+ L«.50=.85+1«.50s 85)/4
= 040
e = Lii/N=(1+1+1+1)/4=1
Yoo = @cYarFT (1400007, )}/N
= Balu(1s.70%.85+1+.66+.85+1+.500.85+ 1+ 50.85)/4
= 0.40

Hence, from sim transform, BP(Kr) = -144.4:‘[;: =1L =040, = 1,74 = 0.40]

2, Use Equations 4.2-4.3 to discover dependency-based generalizations. Kr has two
parents, Group8a and Periodd.
(a) Consider a hierarchy where the leaf nodes (all elements) are generalized into
periods.
» Consider neighbors of Periodd.
i. Range(BP(Period3)) = [-186 .. 2680)
Range(BP(Periodd)) = [-152 .. 3450]
Range(BP(Period5)) = [-108 .. 5560]
Intersection z between Period4 and Period5

3450 - (—103):
© 3450 - (-152)
Intersection z between Period4 and Period3 = 97%

= 58%

Average intersection z for Periodd = 97.5%
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li. Residual standard deviation o, for Periodé = 42%

Range(BP) _ 5930 - (-269)

Number of elements ~ 100 = 62.0

i My =
Use the above values and W, = 0.2, W, = 0.5, Wp = 0.5,k = 4 in Equations
4.2, 4.3 to get a dependency in Period4 as

BP = -393.6+Group + 3290: [a = 0.46, Yo = 0.47]

Substitute 8 for Group to get

BP(Kr) = -393.6+8 + 3290 = 146.0

» Compute the parameters for the above conclusion.

Be = Z;ﬂi/N =1,
where p; = veracities of the BP valnes of the children of Period4

of from which the dependency-based generalization is discovered
Tae = asvaeT;y/N =022
e = F;&/N =1
Toe = a*Ya s« T, 7p,/N =022
* Combine the referent and the parameters in a single statement:
BP(Kr) = 146.0:[u = 1,7, = 0.22,¢ = 1,79 =0.22)

(b) Consider a hierarchy where the leaf nodes (all elements) are generalized
into groups. Dependency computations for GroupBa are similar to those for
Period4.

i. Intersection z between Group8a and Group7a = 61%.
(Group8 has a single neighbor).
ii. Residual standard deviation o, for Group8 = 3.8%
ili, BP = 41.8+Period - 317:' [a=0.845,95 = 0.548]
From i-iii above BP(Kr) = -149.8: [u= 1,7, = 0.463,¢6 = 1,74 = 0.463]

3. The value of BP(Kr) obtained from dependency in Period4 is discarded on the
account of low confidence values and large disparity of the referent value from
other estimates. The boiling point estimates from the 4 sim and GroupBa based
dependency match very closely. The final estimate of the boiling point is ob-

tained by averaging the boiling point estimates. The confidence parameters are
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combined by using Dempster-Shafer’s orthogonal rule. Apply Equation 3.23 to

combine evidence and obtain
BP(Kr) = [-144.4 . -149.8]; [u=1,v,=06778,¢9= 1,74 = 0.6778]

The conclusion compares favorably with the actual boiling point of Kr which is -152.



Chapter 5

Conclusions

This chapter gives an overview of the results, summarises highlights and shortcomings of

APPLAUSE, and gives directions for future research.
5.1 Summary

APPLAUSE is a preliminary implementation of expanded and modified Collins-Michalski the-
ory of plausible reasoning. A core theory of plausible reasoning was introduced by Collins
and Michalski to identify and formalize recurring patterns in human reasoning [2], [3]. The
system APPLAUSE has a shift towards engineering approach rather than cognitive approach
of the original formulation of the theory. This shift is seen necessary in view of large differ-
ences in the structures of human brain sand modern computers. The engineering approach

stresses computational mechanism in the hope of getting good results on the modern com-

puters despite their shortcoming in terms of inadequate background knowledge, and lack -

of associative structure to store and represent knowledge. Computational mechanisms are
introduced without sacrificing the original flavor of plausible reasonung patterns.

In the core theory of plausible reasoning various parameters such as frequency, typi-
cality, dominance, forward and backward dependency, forward and backward implications,
certainty, etc, were introduced. This formulation was modified to include a certainty fac-
tor for each of the parameters rather than a single collective certainty parameter for a
statement. This has an advantage of identifying and isolla_ting & bad source of data, and

thus facilitates search for a better source. The certainty parameters reflect the knowledge
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about the parameters and are useful in negative inferences which are being implemented
(Section 3.9).

Extension to the core theory of plausible reasoning in APPLAUSE include automatic
discoveries of dependencies to guide the plausible reasoning process. APPLAUSE supports
learning (construction of hi.erarch’.iesl, discovery of dependencies) for numeric attributes.
The argument based transforms are implemented, and referent based transforms are being
developed. Construction of hierarchies, discovery of dependencies for non numeric attributes
is envisaged as future research topics. The present version APPLAUSE employs user defined
hierarchies that are static throughout the inference process.

Currently the plausible reascning transforms operate on descriptora with single argu-
ments. The limited preliminary implementation of APPLAUSE has demonstrated that the
theory of plausible reasoningis a useful mechanism to manipulate available knowledge base
to infer conclusions not derivable by traditional logic. This methodology holds s promising
future for building 2 system that adequately simulates human reasoning and leaming with

incomplete, imprecise, uncertain, or indirectly relevant facts or knowledge.

5.2 Future Research

There is much experimentation and research to be done in various directions. The following
paragraphs give some of the areas where immediate attention can be focussed.

The statement representation of the form descriptor(argument) = referent limits the type
of knowledge that can be represented. The scope of plausible reasoning will be increased con- ‘
siderably by allowing similarity, generalization or specialization transforms for descriptors
requiring multiple arguments. Such reformulation will require different scheme to represent
various parameters and structural relationships among the arguments of the statement, A
frequency parameter for referent seems a natural extention to the ides of frequency assign-
ment for the argument. This additional parameter will facilitate transposition of statements
(see Section 3.5) and use of referant based transforms.

Currently the descriptors, arguments, and referents are stored in hierarchies. A useful
extension is to use lattices instead of hieraychies. Incorporation of Two Tiered Concept
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Representation introduced by Michalski, has & great potential of achieving economy of
knowledge representation [L5]. As another improvement, dynamic discovery of suitable
hierarchies can be implemented as an ongoing process in the system. The hierarchies are
constructed dynamically by selection of suitable hierarchy constructing descriptors and
further ordering these descriptors to form a useful and compact description of knowledge.
In real life the situation is very similaz. The initial arrangements of the Periodic Table
were partly based on increasing atomic.weights. Later on it was noticed that choosing the
atomic.number as a relevant descriptor yielded better placement of the elements to'l'orm the
Periodic Table. A hierrachy needs to be selected for generalization, specialization operations.
Effects of global evaluation of complete hierarchies rather than local evaluation as is done
now, need to be investigated.

Lot of experimentation can be done with design of memory organization and search
techniques. A user friendly interface for knowledge acquisition, and explanatory capabilities
need to be added to the system.

Finally, the theory and the system has to be tested experimentally in complex domains

and and its performance needs to be compared with that of human subjects.
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