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ABSTRACT 

Most real-life concepts are flexible • that is they lack precise defInitions and are context dependent. 
Representing and learning flexible concepts presents a fundamental challenge for ArtifIcial 
Intelligence. This paper describes a method for learning such concepts, which is based on a two­
tiered concept representation. In such a representation the flI'St tier, called the Base Concept 
Representation (BCR), describes the most relevant properties of a concept in an explicit, 
comprehensible, and efficient form. The second tier, called the Inferential Concept Interpreration 
(ICI), contains procedures for matching instances with concept descriptions. and inference rules 
defining allowable transformations of the concept under different contexts and exceptional cases. 

In the method. the BCR is obtained by first creating a complete and consistent concept description, 
and then optimizing it according to a general description quality criterion. The complete and 
consistent description is obtained by applying the AQ inductive learning methodology. The 
optimization process is done by a double level best fJrSt search. The lei is defmed in pan by a 
method of flexible matching and in pan by a set of inference rules. The method has been 
implemented in the AQTI-15 learning system, and experimental results show that such a two­
tiered concept representation not only produces simpler concept descriptions, but may also increase 
their predictive power. 
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1. INTRODUCTION 

Most cmrent methods of machine learning assume that concepts are precise entities., representable 

by a single symbolic description. The boundaries of such concepts are well-defmed and context­

independent. Concept instances are usually assumed to be equally representative. If an instance 

satisfies the given concept description. then it belongs to the concept, otherwise it does not. 

In some methods. these assumptions are somewhat relaxed by assigning to a concept a set 

membership function (e.g. Zadeh, 1974) or a probability distribution (e.g., Cheeseman et al., 88). 

However, once such measures are defined explicitly for a given concep~ the concept again has a 

fixed well-defined meaning. Moreover. concept descriptions remain inadequate for handling 

exceptional cases. for representing context-dependency. or for capturing increases of knowledge 

about the properties of the concept 

In contrast, most human concepts lack precisely dermed boundaries. and have a context-dependent 

meaning. The imprecision of the boundaries seems to have a logical rather than probabilistic 

character. It means that the classification of instances of flexible concepts typically involves 

logical. rather than probabilistic inference. Also. examples of human concepts are usually not all 

equivalent They may have different degrees oftypicality in representing the concept. For example. 

a robin is conventionally viewed as a more typical bird than a penguin or an ostrich. Also. under 

different contexts the "bird" concept may apply to a live. flying bird. a picture or a sculpture. a 

chick hatching out of the egg, or even an airplane. Thus human concepts areflexible. as they adapt 

to the context in which they are used. It is clear that in order to handle such flexible concepts, 

machine learning systems need to employ richer concept representations than are currently used. 

Developing methods for acquiring flexible concepts and reasoning with them is thus an important 

goal in the new phase of machine learning research. 

The starting point of the research presented here is the idea of the rwo-tiered concept represemation 

proposed by Michalski (1987). In this representation the total meaning of a concept consists of two 

components. the Base Concept Representation (BCR) and the Inferential Concept Interpretation 

(lCl). The BCR defines the most relevant properties of the concept The ICI makes the boundaries 

of the concept flexible by describing allowed modifications of the concept's features in different 

contexts. Early ideas on learning two-tiered concept representations were presented in (Michalski. 

1988). A system which employed a simple form of rule simplification. called TRUNC. to 

implement two-tiered representation is described in (Michalski et al•• 86). An intriguing result of 
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that research was that a substantial reduction of the description's complexity can be achieved 

without affecting its performance. The effect was obtained through removal of these pans of the 

description which were responsible for covering only a small fraction of examples (removal of so 

called light complexes from the description), and by applying a flexible matching function for 
second tier classification. 

This paper is an extension and continuation of these early ideas. Imponant advances are the 

development of a heuristic search procedure that explores the space of two-tiered descriptions, the 

use of a more powerful matching procedure, and the introduction of a rule base for performing the 

leI. The search is done by applying simplification operators and is guided by a new general 

description quality measure taking into consideration the accuracy, the comprehensibility and the 

computational cost of both parts of the two-tiered description (BCR and leI). By introducing such 

a general evaluation measure (Bergadano et al., 1988) the learning process can be redefmed. 

Namely. it can be viewed as a multistep process of modifying/improving an initial concept 

description to maximize the concept quality criterion, which reflects the goals of learning. In such a 

process the initial description could be, e.g., a set of positive and negative examples, a complete 

and consistent description obtained by an inductive learning program, or a tentative description 

supplied by a teacher. 

The presented method has been implemented in the AQTI-15 learning system and experimentally 

applied to two different test problems: learning the concept of an acceptable union contract and 

learning the distinction between republicans and democrats in the U.S. congress. The experiments 

have confmned the initial fmdings that a two-tiered representation can lead to a substantial 

reduction of memory and at the same time to an improvement of its predictive power. 

2. TWO-TIERED CONCEPT REPRESENTATION 

Traditional work on concept representation assumes that the whole meaning of a concept resides in 

a single stored structure, e.g. a semantic network that captures all relevant properties of the concept 

(Collins and Quillian, 1972, Minsky. 1975, Sowa, 1984). The process of recognizing a concept 

involves simple matching of the stored representation with the perceived facts. Such matching may 

include comparing feature values in instances and concept descriptions, or tracing links in 

networks of concepts, but has not been assumed to involve any complex inferential processes. A 

different approach is followed in case-based reasoning and learning systems (Bareiss, 1989), 

(Hammond. 1989), (Kolodner 1988). In this area of research, domain knowledge, deep indexing 
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and powerful inference mechanisms based on similarities and differences of cases are used in the 

matching phase. but concept descriptions correspond to individual examples. 

The starting point of our approach is the observation that human knowledge can be viewed as a 
combination of two components, recorded knowledge and inferential extensi~ i.e., knowledge 

that can be created from recorded knowledge by conducting many forms of infetenee.. This view 

leads us to the proposition that the meaning we assign to a concept in any given situation is a result 

of an interplay between two parts. The first pan represents what the agent knows, or remembers. 

The second part represents what the agent can infer from his knowledge, using rules of inference 

(deductive, inductive and analogical). Cognitive science supports this point of view in the so called 

transformational model (Smith and Medin. 1981). In this model. besides classical matching of 

object features with concept descriptions, features of an object are transfr--mable into features 

comprising the concept definition. Consequently, the matching process besides being simply a 

substitution of individual feature values for variables in a concept description. may also have a 

transformational. or inferential. character. 

In order to investigate the consequences of this conjecture. Michalski (1987) has proposed a two­

tiered representation of individual concepts. A concept description is split into two-pans: a Base 

Concept Representation (BCR) and an Inferential Concept Interpretation (lCI). The BCR defines 

the concept explicitly. by giving a description of the concept. either in terms of the attributes 

observed in the example. or in terms constructively learned during concept formation. The 

prototypical instances of the concept are classified by matching with the BCR. Characteristics of 

the concept represented in the BCR tend to capture the principle, the most relevant properties or the 
intention behind the concept 

Anomalies. exceptions and context-dependencies 1 are covered by a reasoning process that uses 

information contained in the ICl The ICI deals with exceptions by inferring that they are either 

extensions of the base representation (concept extending). or that they ought to be excluded from 

the base representation (concept shrinking). This process involves the background knowledge and 

relevant inference methods contained in the ICI. that allow the recognition, extension, or 

modification of the concept meaning according to context 

When an unknown entity is matched against the BCR, it may satisfy it directly, or it may satisfy 

1The tenDS such as anomalous. exceptional. and representative eumples. as well as context, are used bcce in their 
colloquial meaning. They will be more precisely defined in sec. 2.4. 
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some of its inferential extensions. During the process of interpreting the ICI, one may use a 

probabilistic inference based on a simple distance measure (so calledflexible matching (Michalski 

et aI., 1986)), analogical reasoning, inductive reasoning, or deductive reasoning to classify 
"special" uses of concepts. 

Let us illustrate the idea of two-tiered concept representation with the concept of chair. A two­

tiered representation of the chair concept could have the following form: 

BCR: 	 A piece of fUrniture. 


Purpose: to seat one person. 


Structure: seat, four legs, and a backresL 


ICI: 	 No-of legs may vary from 1 to 4 

two wheels support seat --> irrelevant(four legs) 

chair without the backrest --> stool 

context = museum exhibit --> chair is not used for seat-ing 

persons 

context = toys --> size can be much smaller. Does not serve 

for 	 seating persons, but correspondingly small 

dolls 

This simple example illustrates several important features of the two-tiered representation. If 

recognition time is important. only BCR will be used to match an example. If more time can be 

allocated, or if a more precise classification is required for a given event, ICI is used. When 

interpreting the ICI rules. one relies on background and general knowledge. and on the context in 

which the concept operates. Contexts can have hierarchical organization. Finally. ICI rules may be 

chained. although it is not shown in this simple example. 

2.1. Base Concept Representation 

In the method presented. we use the attribute based Logic System VLl (Michalsld 1983) as a 

representational formalism. The BCR for a concept is a disjunctive normal form expression in 

VL1. Such an expression corresponds to a cover, which is a set of complexes. A complex is a 

conjunction of selectors. A selector is a form: 

[L t R] 
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where the attribute L is called the referee. R, called the referent., is a set ofvalues from the domain 
of L . Symbol t denotes one of the relational symbols _, <, >, ~, ~, ~ 

For example the expression [shape == circle v square] & [length - 2 a., " 

complex containing two selectors. A cover could be obtained by supplying i'seta " '~~~.".:-~ 
. .' '~':':""'~""

complexes. which correspond to alternative descriptions. It is obvious bow covers COI'1"CS}ionCi to~ ~,;~ ., 
disjunctive nonnal form expressions. 

2.2 Inferential Concept Interpretation: Flexible Matching Function 

A flexible matching function F is used as a part of the ICI and it is predefmed. The flexible 

matching function F measures the degree of fit between the event and a concept description. The 

specific F used in our CUITent implementation matches events from the set E with concept 

descriptions from the set 0: 

F: E x 0 --> [0 .. 1] . 

The value of F of an event e and a cover c is defined as the probabilistic sum of F of its 

complexes. If c consists ofa disjunction of two complexes CPXl and CpX2, we have: 

F(e,c) == F(e,cpxl) + F(e,cpx2) - F(e,cpxl) * F(e,cpx2) 

The value of F (e, cpx) in the above expression is substituted by 0 if it is below a given 

threshold t. The probabilistic sum introduces a strong bias toward the covers that consist of many 

complexes. If the cover c is represented by many complexes. F (e, c) may be close to 1, even if 
each F (e, cpx) is very small (see Table 3 in sec. 6). 

The degree of fit F of an event e and a complex cpx is defmed as the average of the 

corresponding degrees for its constituent selectors, weighted by the proportion of positive 

examples covered by the complex: 

F (e, cpx) - (1: F (e, sell) In) * tcpxposl (tcpxpos + tcpxneg) 

where n is the number of the selectors in cpx, and tcpxpos and .cpxneg are the number of 


positive examples covered by cpx, and the number of the negative examples covered by cpx, 
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respectively. 

F of an event e and a selector se1 is defined by the degree of match between the selector and the 

event weighted by the coverage of positive and negative examples of the selector: 

F(e,sel) = DMatch(e,sel) * (1+ (Iselpos/lpos - Iselneg/'neg»/2 

where Iselpos and tselneg are the number of positive and negative examples covered by 

the selector. respectively. tpos and .neg are the number of the positive and negative 

examples. respectively. Suppose that selector sel is [x = aj1 V ...v ajm]' DMatch (e, 

s e 1) is then defined as 

1 if x is nominal and e is covered by sel, 
DMatch(e, sel) = o if x is nominal and e is not covered by 

sel, 

1 - dis (ak, sell/Max - if x is linear 

where Max = max ~=1 n(dis(ai, sel»,...... , ••• I 

dis(ak, sel) = mini_j1, ... ,jm(li - kl) 

It is assumed that the domain of the selector x is the ordered list (aI, a2, ... , an), and ak is 

the value of x of the event e. For example, if the domain of x is [0 _. 10] and the value of x for 

the event e is 4, then 

DMatch(e,[x = 2vS]) = 1- (S-4)/maxi_0, ... ,lO(dis(i, sell) .. 1 ­

1/5= O.S. 

The system is not forced to make a decision when the difference between the values of flexible 

matching function for two concepts is very small. If the difference is smaller than the preset 

threshold, the result will be no_match. 

2.3 Inferential Concept Interpretation: Deductive Rules 

In addition to flexible matching. the ICI includes a set of deductive rules, allowing the system to 

recognize exceptions and context-dependent cases. For example, flexible matching could allow us 
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to recognize a sequoia as a tree, although it does not match the typical size requirements. Deductive 

reasoning is required to recognize a tree without leaves (in the winter time) or to include in the 

concept of tree its exceptional instance (e.g. a fallen tree). In fact, flexible matching is most useful 

to cover instances that are close to the typical case, while deductive matching is appropriate to deal 

with concept transformations necessary to include exceptions or context-dependencies in the 

concept description. 

The deductive rules in the ICI are expressed as Hom clauses. Inference on these rules is 

implemented using the LOGLISP inference system (Robinson and Sibert, 1982). Numerical 

quantifiers and internal connectives are also allowed (Michalski 1983). 

2.4. Types of Matching 

According to the type of knowledge exemplified by it, an event can be covered by a two-tiered 

description through the following three types of matching: 

1. 	 Slrict matching: the event matches the BCR exactly, in which case we say that the event is 

S-covered. 

2. 	Flexible matching: the event matches the BCR through a flexible matching function, and 

we say that the event is F-covered. 

3. 	 Deductive matching: the event matches the concept through deductive reasoning by using 

the ICI Rules, and we say that the event is O-covered 

These three sets are made murually exclusive: if an event is S-covered, then it is not O-covered or 

F-coverecl. and if an event is O--covered. then it is not F-covered. Thus, S-covered events are 

explicitly covered. and F-covered and D-covered events are implicitly covered. The sets of all S­

covered, O-covered, and F-covered events will be called Scov, Dcov, and Fcov, respectively. We 

can now give a precise meaning to the term exception used throughout this paper. An event is an 

exception if it neither S-covered nor F-covered. Events that are S-covered are said to be 

representative examples. The notion of representative examples and exceptions depends on the 

context in which the examples are obtained. Context can be therefore viewed as an environment 

providing examples together with their typicality. 

Two-tiered concept descriptions are usually simpler, easier to understand and more efficient to use 

than the conventional ones. They also exhibit performance improvement on a testing set In the 

systems developed so far. the ICI includes only a flexible matching function. More importantly, in 

their quality evaluation measures. these early systems do not take into account the inferentially 
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covered pans of concept descriptions. Improvement in quality is therefore measured only by the 

improvement in the first tier. 

3. SYSTEM OVERVIEW 

We have implemented a system that produces a two-tiered description of flexible concepts. The 

system operates in two phases. described below. Table 1 specifies the input, output, and the 

function of the system. 

Learning two-tiered concept descriptions is performed in two stages; the general structure of the 

system is given in Fig. 1. In our approach. we have relied on AQIS (Michalski et al. 86) to obtain 

a complete and consistent concept description. The description generated in this phase. together 

with the flexible matching function, forms the initial BCR. The second phase improves this initial 

description by conducting a "double level" best frrst search. This process is guided, at the frrst 

level. by the description quality measure. defming which descriptions should be considered frrst, 

and, at the second level, by heuristics that indicate which searcl) operators should be applied to the 

chosen description. 

Phase 1 

Given: 

Examples obtained from a source. 


Background knowledge 


Determine 

Complete and consistent description of the concept 

Phase 2 

Given 
Complete and consistent description of the concept 

Measure of description quality 

Background Knowledge 


Determine 
Two-tiered description. maximizing the description quality measure 

Table 1. A specification of the system 
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One can observe that the quality does not have to be measured using the same set of examples from 

which the initial description was learned during the first phase. A different set of examples could 

have been used, if the initial description was obtained independently. According to the nature of 

the quality measure, descriptions can be improved mainly by increasing their accuracy or by 

decreasing their complexity. For this reason the operators in the search simplify the BCR of a 

given description by removing some of its components or by modifying the arguments of some 

predicates. The search process is described as follows: 

Search space: a tree structure, in which the nodes are two-tiered descriptions (BCR + leI) 
of a given concept. 

Operators: selector removal, complex removal, referent modification. 
Search strategy: controlled by the quality measure. 

The goal of this procedure is not necessarily to find an optimal solution, Le. the deSCription with 

the highest quality, because this would require a combinatorial search. On the conttary, the system 

tries to improve the given concept description by expanding a limited number of nodes in the 

search tree, and is guided by heuristic information. In the current implementation these heuristics 

are based on the coverage of the individual selectors and complexes. 

BACKGROUND KNOWLEDGE 

ICIrules 

-special­

events 

INDUC11VE LEARNlNG 

t 

SOURCE 


Fig. 1. Design of the AQIT-15 System 
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The BCR is represented in disjunctive normal form and described in VL1 notation (Michalski 83). 

The ICI consists of two pans: a flexible matching function and deductive rules. 1be system learns 

the BCR and guides the generation of the deductive rules. The flexible matching function is the one 

given in the previous section and is rlXed during learning. The experimental system relies on the 
expert to provide either rules that explain special events or a more general domain theory. 

3.1. Learning tbe Base Concept Representation. 

An elementary search operator may either specialize or generalize a description. The heuristics used 

at a given step of the search (section 5.2) decide which operation is applied. In the described 

system, generalization is done by removing selectors. and specialization is done by removing 

complexes. Removing a selector is an instance of the "dropping condition" generalization rule 

(Michalski, 1983). Removing a whole complex is the reverse of the "adding an alternative" 

generalization rule. and thus is a specialization rule. When a description is specialized. it will then 

cover a smaller number of positive and negative examples. Another operation. referent 

modification. simplifies the range ofa selector, and may behave either as a generalization. or a 

specialization, depending on the selector relation (see table m. For example, if the selector is 

[size c 1 .. 5 v 7] 
then referent modification giving 

[size - 1..7] 

is a generalization. since the cover is extended. On the other h~ if the selector is 

[size <> 1 .. 5 v 7] 
then the same referent modification represents a specialization. since the cover shrinks. Table n 
summarizes the implementation of generalization and specialization operators in the existing 

system. 

Search operator Knowledge modification performed 

Selector removal (SR) Generalizati.on 

Complex removal (CR) Specialization 

Referent extension (RE) Generalization 

Referent shrinking (RS) Specialization 

Table n. Implementation of dle search operators 
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3.2. Learning the Inrerential Concept Interpretation. 

Each application of a search operator (SR, CR. RE. RS) modifies the BCR, making it either JOOre 

general or more specific (as described in the previous section). If the new BCR is more specific, 

some positive events previously covered may not be covered any more. Their coverage can be 

achieved by the ICI. On the other hand. if the new BCR is more general than the original one, 

some new events. previously not covered by the BCR, may have been added. These events could 

be positive as well as negative. If additional negative events are covered as a result of some 

generalization, they will have to be excluded from the set of events covered by the BCR by means 

of the ICI rules. Therefore, there are two types of rules in the ICI: rules that cover a positive 

example otherwise left out of the BCR, and rules that eliminate a negative example from the BCR.. 

In order to exclude or cover an event by the ICI part of a concept description, one has to obtain 

rules that will match the event, and perform the action necessary for the exclusion or coverage of 

the event. These rules, or their chains that ultimately lead to a conclusion regarding the 

membership of an event in the concept, are treated as an explanation of the event. 

Rules can be either inherited from higher level concepts or supplied by the expert. But even if the 

expert provides a knowledge base which can be used to cover or exclude some examples, the form 

of this knowledge may not be operationally effective, and may be made more efficient through a 

process of analytic learning (e.g. Mitchell et al., 86; Prieditis and Mastow 1987). If the knowledge 

supplied by the expert is too specific or even partially in~t, it may be improved by induction 

(Dienerich and Flann 1988. , Mooney and Ourston 1989), In our approach. only exceptions will 

be subject to explanation. The purpose of the explanation here is to justify the special character of 

the event explained, rather than to operationalize the proof of its membership in the concept In 

both cases the search procedure described in Fig. 1 will guide learning by pointing at the examples 

that need special explanation. 

4. QUALITY OF CONCEPT DESCRIPTIONS 

The learning methodology described here is based on the General Description Quality measure 

(GDQ), that guides the search for better two-tiered descriptions. The quaJity of a concept 

description used in our system is influenced by three basic characteristics: the accuracy. the 

comprehensibility, and the cost. This section discusses these three components, as well as a 
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mechanism for combining them into a single measure. 

The accuracy represents the description's ability to produce correct classifications. A common way 

to prefer more accurate descriptions is to require that they be complete and consistent with respect 

to the training events (Michalski, 1983). Even if a description is incomplete and inconsistent, the 

number of positive and negative examples it covers provides important information for evaluating 

its quality. In this case, we can measure the degree of completeness and consistency of a given 

description. If the description is also sufficiently general and does not depend on the particular 

characteristics of the training events, these measures can be a meaningful estimate of the accuracy 

of the description. In order to achieve completeness and consistency in the presence of noise, one 

may generate overly complex and detailed descriptions. Such descriptions, however, tend to be too 

dependent on the training set and consequently may not perform well in future cases and examples. 

This phenomenon is well known in statistics as overfitting (Watanabe. 1969; Sturt. 1981). 

The comprehensibility of the acquired knowledge is related to subjective and domain-dependent 

criteria. Because an Al system is often supposed to supply advice to humans, knowledge used by 

such a system should be understandable by human experts. A black box classifier will not be 

accepted by experts as a help in their work. Therefore. knowledge acquired by a learning system 

should be related to terms, relations and concepts used by experts, and should not be syntactically 

too complex. This is called the comprehensibility criterion (Michalski, 1983). There is no, 

however. established measure of comprehensibility of a description. In our method, we will 

approximate it by representational complexity of the description's expression. This complexity is 

evaluated by counting the number of operators involved, and taking into consideration the 

complexity of the operators. Comprehensibility of a two-tiered representation takes into account 

the operators occurring in both BCR and ICI, and has to weigh the relative contribution of each 

part to the comprehensibility of the whole description. 

The cost captures the properties of a description related to its storage and use (computational 

complexity). Other things being equal, descriptions which are easier to store and easier to use for 

recognizing new examples are preferred. When considering the cost of a description, two 

characteristics are of primary importance. The first one is the cost of measuring the values of 

variables occurring in the description. In some application domains, e.g., in medicine. this may be 

a very important consideration. The second one is the computational cost of evaluating the 

description. Again. certain applications in real-time environment, e.g., speech or image 

recognition. may impose constraints on the evaluation time of a description. The cost 

(approximated by computational simplicity) and the comprehensibility (approximated by 
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representational simplicity) are usually related to each other, but in general these are different 

criteria. 

The criteria discussed above can also be applied to two-tiered descriptions. The accuracy of the 

acquired know1e:dge does not only depend on the explicit information, but also on the implicit 

reasoning abilities. Inferential Concept Interpretation also affects cost, since it allows the 

performance system to use a simpler BCR, and reason about special details only in exceptional 

cases. Finally. the comprehensibility of a two· tiered representation must be carefully evaluated, 

since one of its implied goals is to state a clear and simple concept description in the BCR and to 

account for special cases through a reasoning process. In fact. both the BCR and the ICI are parts 

of the concept description and they are used together in concept recognition. They influence each 

other. It is nOl necessarily true that if a BCR performs well with one ICI. then it also performs well 

with a different ICI. For example, the experiments described later showed that a BCR performed 

poorly with an empty ICI, but it performed well with a flexible matching function. Furthermore, in 

order to learn a better two-tiered concept description, the distribution between the BCR and the ICI 

should be adjusted during learning. Therefore they should not be learned separately and they 

should be related during learning. Current existing learning systems acquire a base concept 

representation from given examples and then may use a form of flexible matching only in the 

performance element. In our approach. when computing GDQ of a concept description. both the 

BCR and the leI are considered. In particular, candidate concept descriptions are compared on the 

basis of how well they perform with flexible matching. This is only reasonable since flexible 

matching is actually used during classification of further examples. 

These criteria need to be combined into a single evaluation procedure that can be used to compare 

different concept descriptions. A possible solution is to have an algebraic formula that, given the 

numeric evaluations of individual criteria. produces a number that represents their combined value. 

Examples of such approaches are multiplication. weighted sum, maximum/minimum, t-normJt­

conorm (Weber, 1983). Although these approaches are often appropriate. they have certain 

disadvantages. First, they usually combine a set of heterogeneous evaluations into a single 

number, and the meaning of this final number is hard to understand for a human expert. Second, 

they may force the system to evaluate all the criteria, even if it would be sufficient to compare two 

given descriptions on the basis of the most important one, ifone is much better than the other. 

In order to overcome some of these problems, we use a lexicographic evaluation functional (LEF) 

(Michalski, 83) that combines the aoove mentioned criteria. 
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4.1. The Preferenct .. ba~d Evaluation Criterion 

In this section, we are delCribing a LEF/WEF method that combines the simple description 

evaluation criteria. Let us discuss lexicographic evaluation junctional (LEF) ftrst. The General 
Description Quality measure under LEF is thus deftned as: 

GDQ(description). «Accuracy;tl), (Comprehensibility,t2), (Cost,t3» 

where tl. t2, and t3 are tolerance thresholds. 

In this evaluation scheme. the criteria are ordered according to their imponance, and a tolerance 

threshold is associated with each criterion. If the difference of the evaluation of two expressions 

under a given criterion is lell than the corresponding tolerance, the two descriptions are considered 

equivalent with respect fa that criterion. The most important measure in the LEF is evaluated flI'St. 

and the subsequent measure is evaluated only if the previous one is a tie. 

The LEF evaluation scheme is not affected by the main problems of algebraic func_tions which we 

have discussed above. The imponanceof a criterion depends not only on the order in which it is 

evaluated in LEF evaluation scheme, but also on its tolerance. It may be difficult to determine this 

tolerance. If the toleranu il too small, we have little chance of using the other criteria. If the 

tolerance is too large, lOme important criterion might be underestimated. Furthermore, in the case 

of a large tolerance, many descriptions might be equivalent under the LEF evaluation scheme. In 

order to avoid this Problem, the LEF measure can be extended in the following way: LEF is flI'St 

applied with larger tolerances. in such a way that all the relevant criteria are taken into account If 

the comparison still results in a tie, a Weighed Evaluation Functional (WEF) is used to combine the 

measures (i.e. the deSCTiplion having the maximum weighted sum of the measures is preferred). 
The weights for WEF are determined by the user. 

4.2. The Role of the Typicality of the Examples. 

The accuracy is the fint criterion of concept description qUality. Accuracy depends linearly on 

completeness and consiltency of the description, as well as on the typicality of the events covered 

by the two pans of the delCription. In evaluating the accuracy of a two-tiered concept description, 

we have to take into account the fact that degree of confidence in the results of inference decreases 

from deduction to induction (Michalski, 1987). These requirements are met by introducing the 

notion of typicality <Rosch and Mervis. 1975). Completeness and consistency are made dependent 

on the typicality of the COVered examples and on the way these examples are covered. We assume 
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that an expert can provide typicaJity of examples at the time they are presented to the system 

responsible for building the initial description. The experts are usually quite good at determining 

the typicality of events in their area of expertise. 

In general, descriptions that cover many typical positive events are mo~t preferred. Completeness 

is therefore proportional to the typicality of the events covered. Moreover. if negative events are 

covered. the consistency of the description is smaller if the typicality of the negative events covered 

is high. 

Completeness and consistency of a two-tiered description brings up additional requirements: a 

good description should cover the typical examples explicitly. and the non-typical ones implicitly. 

It is also preferred that the typical events are covered by the BCR. and non-typical. or exceptional 

events are covered by the ICl. In fact, the BCR is inductively learned (rom the events provided by 

user. and it is more reliable when the training events are typical. The leI. on the contrary. is 

deductively obtained from the background knowledge. or from a human expert. and relies more on 

general and domain knowledge. Generally. the ICI is more reliable when dealing with the special 

or rare cases, since experts often have difficulty in explaining large quantities of typical events. For 

these reasons, a typical positive explicitly-covered event should contribute to completeness more 

than implicitly-covered. And vice-verse, non-typical positive implicitly~covered events contribute 

to completeness more than explicitly-covered. These assumptions are rcf1ccted by weights ws. wf. 

wd. used in the definitions of completeness and consistency (sec. 4.3), 

Funhennore, since ICI rules are obtained from background knowledge or from a human expert, 

they are more reliable than the flexible matching function. Consequendy. a positive D-covered 

event should contribute to completeness more than F-covered. We may also observe that flexible 

matching is not very useful for exceptions of low typicality. A similar argument holds for 

consistency. 

4.3. A Detailed General Description Quality Measure. 

The purpose of this section is to defme in delail the GDQ measure rhat was implemented in our 

experimental system. FIrSt, we have to define die completeness with typicality measure (COMPT) 

and the consistency with typicality measure (CCfiST) of a description: 
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I ws*Typicality(e+) + I Wf *Typicality(e+) + I 'Wd*Typicality(e~ 
e+E S-cov e+e F-cov e+ e D-coY 

COMPT= 

1:, Typicality(e) 
e e pas 

Typicality-dependent consistency (CONST) of a description is defined as follow: 

:E ws*Typicality(e-) 
e-e S-cov 

+ :Ewf*'l'ypicality(e-) 
e-e F-cov 

+ :E 'Wd*Typicality(e-) 
e- e D-cov 

CONST - 1 -
:E Typicality(e) 
e e NED 

where P~S is the set of positive events covered by a two-tiered concept description, NEG is the 


set of negative events covered by a two-tiered concept description, and Typicality (e) is the 


numeric degree of typicality of the event e specified by the expert when the event is given. 


Furthermore, weights assigned to different types of coverage depend on thresholds to reflect the 


appropriateness of types of coverage for different kinds of typicality: 


Ws: if Typicality(e) ~ t2 then 1,elsew, 


wf: ift2 ~ Typicality(e) ~ tl then 1, elsew, 


wd: ift2 ~Typicality(e) thenl,elsew, 


wheret1 and t2arethresholds,and1 ~ t2 ~ t1 ~ 0, 1 ~ w > o· 

Now accuracy can be defined in terms of COMPT and CONST: 

Accuracy(descrlption) =Wl *COMPT(description) +w2 *CONST(description) 

where Wl + W2 - 1. The weights Wl and W2 reflect the expert's judgement about the relative 
importance of completeness and consistency for the given problem. 

A measure of comprehensibility of a concept description is difficult to define. We will approximate 

it by a complexity measure, defined as: 

V1 * ::Ec(op) + V2 * Ic(op) 
op e B:R(dsp) op E lCI (dsp) 

where BCR (ds p) is the set of all operator occurrences in the BCR, I C I (dsp) is the set of all 

operator occurrences in the leI. and C (op) is the complexity of an operator. Complexity of an 

operator is a real function that maps each operator symbol into a real number. Values ofcomplexity 

ofoperators are ordered as follows: 

C(interval) < C(internal disjunction) < C(-) < C(<» < C(&) < 
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C(v) < C(implication). 


When the operator is a predicate, C increases with the number of the arguments of the predicate. 


In the above expression, VI and V2 are weights, and VI +v2 = 1. The BCR should describe 


the general and easy-to-define meaning of the concept, while the ICI is mainly used to handle ~ 


or exceptional events. As a consequence, the BCR should be easier to comprehend than the leI 


(VI should therefore be larger than V2). 


The cost consists of two pans: 

Measure-Cost -­ the cost of measuring the values or variables used in the concept description. 
it is defined as the function K:: 

Evaluation-Cost-­ the computational cost ofevaluating the concept description, it is defined as 
the function EC. 

M: (description) = 1: 1: lTC (v) / (IPos I + I Neg I) 
eepOSUEq vevars(e) 

EC(description) = 	 1:ec(e)/(IPosl + INegI) 
eepoS\...Neq 

where vars (e) is the set of all occurrence variables used to evaluate the concept description to 
classify the event e, mc (v) is the cost or measuring the values of the variable v, and ec (e) is 
the computational cost or evaluating concept description to classify the event e. The latter depends 
on computing time or on the number ofoperators involved in the evaluation. 

We now define the cost or a description: 

Cost(description) = UI *Mc(description) + U2 *EC(description) 

where uland u2 are weights defining the relative importance or measure cost and evaluation cost. 

With the exception of the weights which can be determined experimentally. we have already 

defined all three components of the quality measure of concept descriptions. More details and 

example about the quality measure can be found in (Bergadano et at 1988). 

s. LEARNING BY MAXIMIZING THE CONCEPT DESCRIPTION QUALITY 

Learning two-tiered concept descriptions is performed in two phases. In the first stage. a complete 

and consistent concept description is obtained from an inductive learning system. In our approach, 

we have relied on AQ15 (Mich~ski et al.• 86a) to obtain such descriptions. This paper 

concentrates therefore on the second phase, ie. the improvement of the description obtained in the 
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first phase with respect to its GDQ, through a process of simplification. 

5.1. Searcb Heuristics 

The GDQ measure is computationally expensive, because it requires the system to perform flexible 
matching for every newly generated description against the whole set of training examples. In 

order to limit this inefficiency we have introduced a heuristic measure for choosing the operation 

which has the best chance of improving the GDQ of the description. The specific choice of the 

operators CR and SR is determined based on the Potential Accuracy Improvement heuristic 

(PAl). This scheme corresponds to a double-level best first search: the GDQ is used to select the 

description to be modified by the search operators (the node to be expanded) and the PAl is used 

to select one of the operators, which will be then applied to the selected description. The idea 

behind the P AI heuristic is to truncate first a complex which covers uniquely a small number of 
examples. Then, a specific choice of the operator Sij is made so that the removal of a selector 

improves the completeness of the description. while the consistency measure has an acceptable 

value. Finally, when no other operator is recommended. referent m<?dification can be selected. 

Referent modification can improve both consistency and completeness measures. In the worst 

case. this algorithm will perform a PAI-controlled exhaustive search of the whole search space. 

The complex and selector truncation heuristics are implemented together in the following way. Let 

us first define the PAl. The PAl of truncating a complex is defined as follows: 

PAl - 'CNl/'NEG - 'CPl/'POS 
where .eNl (.CP l) is the number of negative (positive) examples no longer covered by the 

concept description after truncating the complex, respectively. ,NEG and 'POS are the numbers 

of negative and positive examples, respectively. The PAl of truncating a selector is more complex 

and is defmed as follows: 

PAl - (.SPl/'POS) * P - (,SNl/'NEG) * N 
where 'SNl (.SP I) is the number of additional negative (positive) examples covered by the 

concept after having truncated the selector. respectively. N is the proportion of the negative 

examples which are not covered by the description, and P is the proportion the positive examples 

which are not covered by the description. 

The PAl heuristic is more efficiently computed than the GDQ. For every selector in the 

descriptions we maintain the list of examples covered by it, using bit vectors. The list of examples 

covered by complexes and covers will then be obtained from this by intersection or union 
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operations operations. Matching time can be improved funher by maintaining also the bit vectors 

for the examples covered by complexes (time for intersection will be traded off against memory). 

Note that the GDQ could not be obtained by intersection and union of bit vectors, since it requires 

flexible matching. 

If an even more efficient heuristic is needed, the following is used: 

PAl' = fNI/'NEG - fPI/fPOS 
where iNI (iP I) is the number of negative (positive) examples covered by the complex or the 

selector to be removed. This heuristic information is efficiently computed because it can be 

obtained before the search starts, for every selector and every complex in the initial description, 

and does not need to be repeated for every node in the search, as is the case for the GDQ measure. 

The operator is chosen based on the value of P AI. The operator with the largest P AI is chosen. 

Finally. the PAIs of selector and complex removal are weighted differently. More weight is 

assigned to PAI of complex removal. since the operator simplifies the description more than 

selector removal. Nevertheless. it should be noted that removing a selector may enable the system 
to remove additional complexes afterwards. In fact, by removing a selector from a complex. more 

examples will be covered. and other complexes may become redundant, because they only cover 
examples that are already covered. As a special case. two complexes may become syntactically 
equal after selector truncation. and may be merged into a single one. If two complexes. after 
truncation. become very similar to one another. they may be merged into a single one by adding 

alternatives in the internal disjunctions of their selectors. For example the complexes [shape == 

circle] & [size = 2] and [shape = square] & [size - 2] may be replaced by 
[shape = circle v square] &[size = 2). 

S.2. Algorithm 

The general search procedure is more precisely presented by the following search algorithm: 

1. 	 Identify in the search tree the best description D (one with the bighest GDQ).lnitially. D 

is the complete and consistent description obtained in stage 1. 

2. 	 Apply to D the operator (from among CRi •SRij •REij, RSij) that potentially improves 

GDQ of D the best, based on the Potential Accuracy Improvement (PAI) heuristics 
CRi: Remove the i-th complex from D. 



21 

SRij: Remove the j-th selector from the i-th complex in D . 


REij: Extend the referent of the j-th selector in the i-th complex in D. 


RSij: Shrink the referent of the j-th selector in the i-th complex in D. 


3. Compute the GDQ of the node obtained in step 2. If this GDQ is smaller than the 


GDQ of D, then proceed to step 1. As it was mentioned above, when computing the 


accuracy of a description, flexible matching is always used. 


4. Ask for an explanation of 

(a) the positive examples that are not covered any more 

(b) the negative examples that are now covered 

If such an explanation is given, add the rules that make up this explanation to the 10. 

5. Update the GDQ value of the new node, by taking into account the added ICI rules. 

6. If the stopping criterion is satisfied, then STOP, otherwise proceed to step 1. 

We shall now discuss the motivation and details of the algorithm, and explain the search strategy. 

In step I, the nodes are chosen on a best flI'St basis. that is the node in the search space with the 

highest GDQ value is expanded first. This is not always an optimal choice, since apparently "bad" 

nodes can lead to better descriptions after a number of removals. Whether the search will behave in 

this manner will depend on the adequacy of the GDQ as the measure of concept quality. 

In step 2, a search operator is chosen heuristically and applied to the description. The heuristics 

used are discussed in the next section. Only one operator is applied at any given time. 

In step 3, the system computes the GDQ of the new node. It should be noted that, in the GDQ 

measure, the typical examples covered directly by the BCR can weigh more than those covered 

through flexible matching. The examples covered by leI rules should weigh more than the ones 

covered through flexible marching but less than the ones covered by the BeR. 

In step 4. the "explainer" module is used in order to improve the description even further: the BCR 

description is extended or shrunk by adding ICI rules. Firstly. complex removal might have 

caused some positive examples. that were previously covered, to be lost. In this case some new 
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rules could be introduced in the lCI. that would allow the system to reason about such "special" 

positive examples, and understand why they should still be classified as instances of the concept 

under consideration. On the other hand. selector removal might have caused some negative 

examples to be covered, and new rules in the ICI may be added in order to "shrink" the BCR and 

avoid these erroneous classifications. Another issue. concerning step 4. is whether an explanation 

should be required at all, since, in some cases, the chosen removal operator is not an appropriate 

one. and will lead to a very poor description. In this case it is not even worth to ask for an 

explanation. and search can continue in other directions. The current strategy is as follows. 

Suppose the relation < denotes the GDQ ordering among two-tiered descriptions. n is the node we 

are expanding and mis the node we obtain after the selected removal. If m«n. then no explanation 

is even tried. otherwise the explainer is asked for an explanation and is told how mcompares to n 

with respect to <. in order to know how important the request for the explanation is for the search 

procedure. 

In step 5. the GDQ of the obtained two-tiered description is updated after the new ICI rules have 

been added. Since ICI rules are taken into consideration in the GDQ. new ICI rules will change the 

GDQ 'value for a concept. 

In step 6, the system decides whether to stop or continue the search. The stopping criterion is 

satisfied when the search space that has been explored is large (more than k 1 nodes have been 

expanded). or when no qualitative improvement has been obtained for a long time (more than k2 

nodes have been expanded since the last GDQ improvement). When the system stops. the best 

node in the search space is produced and becomes the modified two-tiered concept description. 

One more characteristic of the system should be mentioned: only one operator is applied to the 

selected (best-quality) node at anyone time; therefore. the new node can be selected if its quality is 

bener than the quality of the father node. This is different from standard search procedures, where 

all the applicable operators are used for the selected node (node expansion). This choice was 

introduced because the creation of a new node involves the computation of its quality. which, in 

some cases, can be time-consuming. On the contrary, we try to avoid generating bad quality nodes 

by selecting the best applicable operator on a heuristic basis, and applying only that operator. The 

other operators will be used only if the results obtained on this search branch tum out to be 

unsatisfactory. 
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5.3. A Simple Example 

An abstract example of the search process is given in Fig. 2. The nodes contain BCR. ICI, and a 

graphical representation of the covered examples. The tree is kept in memory throughout the 

search. The BCR is expressed in disjunctive normal form (it is a "cover"). 

In the example, the accuracy is computed according to the formula discussed in Section 4. 

assuming the same typiCality for all the instances. The initial description is represented in node 1, 
and contains two disjuncts (complexes). The complexes cover the two corresponding rectangular 

areas in the graphical representation. containing five positive examples out of eight, and one 

negative example out of five. The ICI extends this coverage by recognizing one more positive 

example. By eliminating conjunct (selector) s 5 in the second complex we obtain node 3 in the 

search tree. The accuracy of the description is now improved since all the positive examples are 

covered. Finally, by truncating the first complex we obtain node 5. It does not cover negative 

examples any more, and is definitely simpler. This node is then accepted as the improved 

description resulting from the search. The other nodes lead to inferior concept representations. 
with respect to GDQ. and are discarded. The quality has been computed with Wl =w2=O.5. 

For clarity. the cost is omitted. and the simplicity of the leI is not taken into account. The 

simplicity of the BCR depends on the number ofcomplexes and selectors. 

6. EXPERIMENTS 

We have run experiments with the system in two different domains: labor management contracts 

and congressional voting record. In particular. the system acquired discriminant desai.ptions for 

(a) acceptable/unacceptable latx:.. management contracts and 

(b) republican/democrat congresspersons in the U.S. House of Representatives. 

The labor~management contract data used in this section comes from Collective Bargaining - a 

review of current collective bargaining issues published by the Government of Canada through its 

Department of Labor. The data given in Collective Bargaining describes labor-management 

contracts which have been currently negotiated between organizations and those union locals that 

count at least 500 members. The raw data is divided geographically. as well as by economic 

sectors. The format of the raw data is pretty standard. Each conttact is described by a number of 

attributes. Since the attributes vary between economic sectors~ we have decided to focus on a 

single sector: personal and business services. This sector includes unions representing hospital 

staff. teachers, university professors~ social workers. and certain classes of administrative 
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personnel of different organizations. With this kind of data, described by attributes only, it was 
natural to represent concepts using the VL1 formalism. 

s1 & 12 -." 
.... 

.,,;t.. 
s3&s4&~ .... 

+ 

""+ --4+ lei 
+ - ... f. ­
+ + lJ 
Accuracy: 0.76 

Simplicity: 2 complexes 
5 selectors 

s1 &s2 

Accuracy: 0.52; simplicity: 2 complexes Accuracy: 0.89; Simplicty: 2 complexes 

4 selectors 4 selectors 

€) 

truncate first 

~ 
complex 

.... 
+ 

s1 & s2 

Accuracy: 0.79; Simplicity: 2 complexes 

3 selectors 

.... 
s3&s4 + + 

+ 

Accuracy: 0.92; Simplicity: 1 complex 

2 selectors 

Fig. 2. Example of the search space organized as a ttee. 

Our data describes contracts finalized in the second half of 1987 and fll'St half of 1988. Each 

contract is described by sixteen attributes, belonging to two main groups: issues related to salaries 

(e.g. pay increases in each year of contract, cost of living allowance, stand-by pay, ~c.), and 
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issues related to fringe benefits (e.g. different kinds of pension contributions, holidays, vacation, 

dental insurance, etc.). Negative examples were obtained from description of a contract proposals 

deemed unacceptable by one of the parties. The training set consisted of 18 positive and 9 negative 

examples of contracts; the testing set consisted of 19 positive and 11 negative examples. 

The second application was concerned with the U.S. Congress voting record. We have relied. on 

the same data set as used by (Lebowitz 1987) in the experiments on conceptual clustering. The data 

represents the 1981 voting record for 100 selected representatives. The data set was split randomly 

into a training and testing set.. with voting records of democrats entered as positive examples. and 

voting records of republicans entered as the negative ones. The goal was to obtain discriminating 

descriptions of democrat and republican congressmen. 

Four experiments have been performed. In each experiment we have looked at the number of 

events correctly and incorrectly covered by both descriptions, and at the number of events that 

were not covered by either concept. This was done both on the training set and on a testing set of 

examples not previously seen by the system. The results of the three experiments summarized in 

Tables 3, 4, 5, and 6 are discussed below. In each of the tables, L denotes the labor-management 

experiment, and C denotes the congress experiment. In each experiment, the same training and 

testing sets were used. 

Factual Knowledge 
Labor-mgmt data (L) : 27 complexes and 432 selectors 
Congress data (C) : 51 complexes and 969 selectors 

Correct Incorrect 

Strict Match L C L C L C 

Training Set 1()(}% 100% 0% 0% ()tI. 0% 

Testing Set 0% 4% 0% 0% 100% 96% 

Flexible Match 

Training Set 100% 100% 0% 0% 0% 0% 

Testing Set 37% 66% 0% 2% 63% 32% 

I-nearest Neighbor 
Training Set 1()(}% 100 ()tI. 0% 0% 0% 

Testing Set 77% 85% 23% 15% 0% 0% 

Table 3 Resultsof.Experiment 1 
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Initial Description 
Labor-mgmt data (L) : 11 complexes and 28 selectors 
Congress data (C) : 10 complexes and 32 selectors 

Strict Match L C L C L C 
Training Set 100% 100% 0% 0% 0% 0% 

Testing Set 80% 86% 17% 14% 3% 0% 

Flexible Match L C L C L C 
Training Set 100% 100% 0% 0% 0% 0% 

Testing Set 80% 86% 17% 14% 3% 0% 

Table 4 Results of Experiment 2. 

Base Complex (rule simplification using the TRUNC method) 
Labor-mgmt data (L) : 2 complexes and 6 selectors 
Congress data (C) : 2 complexes and 6 selectors 

Correct No.-Match 

Strict Match L C L C L C 

Training Set 52% 62% 0% 0% 48% 38% 

Testing Set 63% 69% 7% 7% 30% 24% 

Flexible Match 

Training Set 81% 75% 19'11 25% 0% 0% 

Testing Set 83% 85% 17% 15% 0% 0% 
4~ 

Table 5 Results of Experiment 3. 

.;.; . 

. . 
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Optimized Des(ription 
Labor-mgmt data (L) : 9 (omplexes and 12 sele(tors
Congress data (e) : 10 complexes and 21 selectors 

Correct No_Match 

Strict Match L C L C L C 
Training Set 63% 84% 0% 0% 37% 16% 
Testing Set 43% 73% 3% 4% 54% 23% 

Flexible Match 

Training Set 85% 100% 0% 0% 15% 0% 

Testing Set 83% 92% 13% 8% 4% 0% 

Inferential Match 

. Training Set 96% 96% 0% 4% 4% 0% 

Testing Set 90% 92% 10% 8% 0% 0% 

Table 6 Results of Experiment 4. 

Concept descriptions were obtained using the search procedure. In the case of inferential matching. 

expert-provided rules were used in combination with flexible matching. 

In the first experiment (see Table 3), we have used the events from the training set as a purely 

factual concept description (Factual Knowledge): the concept was just the disjunction of the 

training examples. nus description is obviously complete and consistent on the training set but has 

no predictive power for the labor contracts application, i.e. it always produces a no_match 

answer. This happens because in our experiment, as it often happens when dealing with real data. 

no testing examples were exactly ~ual to some training event. On the contrary. for the congress 

voting record application. 2% of the testing examples were ~ual to some examples in the training 

set. Therefore even strict matching of the factual knowledge does not always produce a 

no_match answer for the voting record problem. 
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The factual knowledge was also used with a flexible matching technique, based on a measure of 

the distance between an event and a concept description (see Section 2.2). Consistency and 

completeness are achieved in the training set, since flexible matching is only used when either no 

match or multiple match has occurred. The flexible matching causes some performance 

improvement for the test set, where 37% of the events are now correctly classified. and we still do 

not obtain any erroneous classification. This experiment is similar to the simple forms of case­

based reasoning described in (Kibler and Aha 1987). where the one nearest neighbor (INN) 

approach is used to classify events which do not match a single concept description. 

INN approach is also applied to the factual knowledge and results are shown in the bonom part of 

Table 3. The method used to measure the distance between two instances is same as the method 

that we use to measure the degree of fit of an event e and a complex (see Section. 2.2). The only 

difference between flexible matching approach and the INN approach is that the scheme used to 

evaluate the disjunction of complexes. Disjunction of complexes is evaluated as probabilistic sum 

with a threshold in flexible matching approach and as maximum in INN approach. Flexible 

matching approach produces a lot of no_matches. whereas INN produces no no_match. This 

is caused by the threshold (0.5) we set for probabilistic sum. IT the distance between two instances 

is below 0.5. the distance is substituted by O. As discussed in Section 2.2. probabilistic sum 

performs worse, when it is applied to a description that consists of many complexes. 

In the second experiment (see Table 4). we have used the descriptions learned by AQl5 (Initial 

Description). Since AQl5 only generates consistent and complete descriptions, classification is 

100% correct for the training set, and flexible matching does not affect this performance. For the 

testing set, the number of correct classiflC8.tions is still high (80-86'1», and flexible matching does 

not improve the result in this case. This is partly related to the fact that the descriptions generated 

by AQ are detailed and specify many alternatives, leaving little space for the DO_match case (3'1». 

Moreover. the multiple match case was impossible because AQl5 was run with the "disjoint 

cover" parameter. causing the generated concept descriptions to have disjoint extensions. In 

general the flexible matching can improve the performance of the initial description on the test set. 

IT compared with the factual knowledge augmented with INN matching. performance of the 

descriptions generated by AQ is not improved. However, AQ descriptions are order of magnitude 

simpler. in terms of the number of complexes and selectors. Simplicity is closely related to 

comprehensibility in the given domain. and allows the performance system to recognize new 

events more efficiently. 
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In the thin:i experiment (see Table 5), base complex (Michalski et al. 1986) approach is evaluated. 

The base complex approach is a simple method used in by Michalski et al. (1986) to generate two­

tiered concept descriptions. In base complex approach, the BCR is generated by removing all 

complexes except the most representative one that covers the largest number of training examples. 

The BCR generated in this approach is very simple and has only one complex for each class. The 

performance does not drop much, in some cases it is even improved. 

The fourth experiment, reported in Table 6, allows us to evaluate empirically the method presented 

in this paper. We have used the description generated by the search process (Optimized 

Description). and evaluated its performance both with the flexible matching alone and with the 

combination of flexible and deductive matching (Inferential Match). For the sake of completeness 

we also present the performance of the generated descriptions with strict matching. although this 

would never be used. Strict matching alone yields restricted coverage and poor performance. In 

fact, the power of the modified description is due to a combination of all three types of matching 

(strict. flexible and deductive), and all three contribute to the quality measure of a description as 

computed during the learning process. This represents a new feature of this system. since in earlier 

work (Bergadano and Giordana, 1989; Michalski et al., 1986) inferential matching is introduced 

only after the learning phase is completed. 

The BCR of the improved descriptions are simpler than the ones generated by AQ1S, and, for 

both data sets, represent the salient characteristics of the concepts being learned. The performance 

of these descriptions is slightly better if inferential matching is used (3%-6% increase in correct 

classifications for the testing set, compared to the initial description with flexible matching in Table 
4). 

The combination of the BCR and the ICI (flexible matching and rules) produces the best results. 

The description is still simple. although it now includes the ICI rules. and the number of correct 

classifications is 90-92%. Moreover. some of the examples that were previously recognized by 

flexible matching or strict matching are now also correctly recognized by the 10 rules, and this 

might suggest that the description is more robust, and could perform even better on a larger test 

set. The latter phenomenon also explains the fact that inferential match did not improve 

performance over flexible matching in the case of Congress data. In our experiment, deductive 

rules acquired on the training set, when used on the testing set, D-cover events that are also F­

covered. Nevertheless. the result must not be underestimated: although performance is the same, 
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inferential matching is preferred over flexible matching. In fact, the examples that are correctly 

matched through some ICI rule are actually explained by relevant domain knowledge, and not only 

matched on the basis of a knowledge-independent distance measure. This is important both to 

accuracy and comprehensibility of the modified description when evaluated with the deductive 

rules. The quality measure used in the system actually reflects this idea and scores higher when 

inferential matching is used. 

In Table 7, we sum up the results of an experiment that compared the performance of OUT method 

with the performance of descriptions obtained from the decision tree building system ASSISTANT 

(Cestnik et at, 1987). This system was developed from Quinlan's ID3; the basic algorithm was 

improved to handle incomplete and noisy data. continuous and multivalued attributes. This system 

also supports tree-pruning mechanisms, which will be discussed in the next section and compared 

with our method. ASSISTANT was used on the same training sets that produced results reponed 

in Tables 3. 4. 5. and 6. 

These results indicate that a two-tiered approach to learning allows a system to learn concepts from 

a small number of examples. and produce highly accurate descriptions. The performance of 

different concept descriptions is measured by the percentage of training set events recognized 

correctly by each description. In Table 7, the Factual Description again denotes the disjunction of 

training examples. plus the flexible matching function. 

The Initial Description is provided by AQl5 and also uses the flexible matching; the missing 3% of 

the training set represent the no_rna t ch situation. The third row of the table shows 

ASSISTANT's performance on the training seL It should be mentioned that the results for 

ASSISTANT were obtained with decision trees optimiud using the tree-pruning process (Cestnik 

et al.• 1987). rather than with the purely inductive learning. The last row shows the performance 

realized by the Optimized Two-tiered Description. 

All these experiments show how a two-tiered learning scheme allows a system to learn concepts 

from a small number of examples. and produces simpler but still accurate descriptions. The 

concept meaning is now divided into a cover. generated by the search, a flexible matching 

procedure, defined a-priori. and a set of deductive roles given by the expen on the basis of 

misclassified examples selected automatically during the search process. 
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Factual Description 

Performo,nce (flexible matching) 
(%correct I ~ incorrect) 

Performo,nce (l·nearest neighbor) 
(%correct I ~ incorrect) 

Complexity 
(#Complexes I #selectcx'S) 

Labor (2 classes) 

37/0 

77/23 

27/432 

Congress (2 classes) 

66/2 

85/15 

51/969 

-"---------------------------------------------------------------._----------------------------------------­
Initial Description 

AQlS (witbout truncation) 


Performance 
(~ect I ~ incorrect) 

Complexity 
(#COJ!lplexes I #selectors) 

Base Complex Description 

Performance 
(%correct I ~ incorrect) 

Complexity 
(#Complexes I #selectcx'S) 

ASSISTANT 
+ PRUNING 

Performance 
(%coo'ectl ~ inccxrect) 

Complexity 
(#of leaves I tree nodes) 

Optimized 
Description 

Performance 
(%correctl ~ incomct) 

Complexity 
(#complexes I #selectm) 

80/17 86/14 

11/29 10/32 

83/17 85/15 

2/6 2/6 

86/14 86/14 

29/53 19/28 

rxJ /10 92/8 

9/12 10/21 

Table 7. Summary of the experimental results. 
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When the expen provides the typicality of the training events. the method will generate the BCR 

that covers typical events, and the lCI that is able to classify events with low typicality, When the 

typicality infonnation is unavailable, as was the case in the experiments described in this section, 

the system will still produce a two-tiered concept representation. Moreover. this representation ~ 
may be used to introduce levels of typicality in the set of examples. Examples that &recovered 

explicitly may then be labeled as typical, while examples that are covered inferentially may be 

categorized as non-typical. Another typicality-related feature of our method its potential noise­

resistance. The method will recover from noise. because light complexes and unimportant selectors 

will be removed (Zhang and Michalski, 1989). More experiments will be needed to verify the 

impact of typicality on the quality of a concept description, and behavior of the method in the 

presence of noise. 

We conclude this section by showing the concept description obtained by applying AQTI·15 in the 

labor management domain. The description was obtained by our system using the training set 

consisting of 18 positive and 9 negative examples of contracts. In Fig. 3 below, we show the 

complete and consistent initial description produced by AQ15 on this data: 
. . 

[duration ¢ 1J , [waqe_incr-yr2 > 3.0] , [holidays ¢ 

10] v 
[waqe_incr-yr1 > 4.5'J v 
(waqe_incr-yr1 > 4.0'] , [waqe_incr-yr2 ¢ 2.0' v4.0')v 
(waqe_incr-yr1 > 4.S'] , [holidays> 9] v 
[waqe_incr-yr1 ¢ 2.0'] , [vacation - above_averaqe) ::> 
acceptable contract 

[waqe_incr-yrl-2.0' v2.S' v 4.0') , [holidays-10) & 
[vacation-below averaqe v averaqe) v 
(waqe_incr-yr1 < 4.5\] , [waqe_incr-yr2 - 2.0' v 4.0'1 
, [holidays - 10) , 
[vacation - below averaqe v averaqe] v 
(duration 1]' [waqe_incr_yr1 < 4.0%] & 
[holidays-g), 
[vacation - below average v average} v 
[wage_incr-yrl-2.0\v2.S' v4.0\J '[waqe_incr-yr2-3,0'1~ 
[vacation-below averaqe v averaqe]v 
[duration = 11 , [waqe_incr-yr1=2.0'v2.S' v4.0'J& 
[vacation-below averaqe v averaqe] v 
[waqe_incr-yrl -;. 2.0'1 , [waqe_incr-yr2 - 3.0') ::> 
unacceptable contract 

Fig.3. Descriptions Generated by AQ15 

By running AQTI·15 on the description shown in Fig. 3, a simplified description shown in Fig.. 

4 has been obtained: 
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[wage_incr-yr2 > 3.0%] v 
(wage_incr-yrl > 4.5%] v 
[holidays > 9] v 
[vacation - above_average] ::> acceptable contract 

[wage_incr-yrl - 2.0\ v 2.5\ v 4.0\) , [holidays-l0]v 
[wage_incr_yr2 - 2.0\ v 4.0%] , [vacation ­
below_average v average) v 
(holidays - 9J v 
[duration - 1] , [wage_incr-yrl - 2.0\ v 2.5\ v4.0\)v 
[wage_incr-yr2 - 3.0\) ::> unacceptable contract 

Fig. 4. BCR of the Optimized Descriptions of the Acceptable and 

Unacceptable Labor Management Contracts. 

The BCR of the optimized descriptions are much simpler than the ones generated by AQ15, and 

they represent the most important characteristics of the labor management contracts: a contract is 

acceptable when it offers a significant wage increase (the first two complexes in Fig. 4), or it 

offers many holiday days, or the vacation is above average. 

The training events that were not correctly classified by the BCR, as it was modified step by step 

during the search, were analyzed by a domain expert. who provided deductive rules allowing the 

system to classify almost all the training events (one of them could not be explained by the expert). 

Fig. 5 shows one of those deductive rules obtained for the lCI of the contraCt concept. 

(wage_incr-yrl < 3.1\1 , Iwage_incr-yr2 < wage_incr-yrll ::> 

unacceptable contract 

Fig. 5. An lCI Rule from a Two-tiered Description of Unacceptable Labor-Management Conttact 

The rule addresses the case of a contraCt with a low wage increase in the first year, and an even 

lower increase in the second year. In those circumstances, the holiday and vacation offered do not 

matter: the contraCt is deemed unacceptable by the union. 

7. RELATED WORK 

The research presented here improves over the recent work in machine learning that investigates 

the effects of simplifying concept descriptions, e.g. (Fisher and Schlimmer. 1988; Iba et at., 
1988). First. the method described here does not have to experience any loss of coverage as a 

result ofdescription modification. This is a major difference between experlmcntal results :reported 
..J. ~. 
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in section 6, and the findings of both (Iba et al., 1988) and (Fisher and Schlimmer, 1988). The 

reason is that in our approach events that lose their strict cover as the result of BCR simplification, 

may then become covered by the ICt Moreover, unlike (Fisher and Schlimmer, 1988) and (Iba et 

al., 1988), this approach is capable of taking into account the typicality of events covered by the 

simplified description, thus preventing loss of coverage of typical events. whenever typicality 
information is available. 

The experiments of (Fisher and Schlimmer. 1988) in truncating the ID3's decision trees are based 

on a statistical attribute dependence measure that determines the attributes to be pruned. Because of 
its statistical character. there is a loss of predictive power when simplifying descriptions learned on 

small training sets. As the experiments indicate, the approach presented here does not seem to 
suffer from this problem. 

The system developed by (lba et al. 1988) uses a trade-off measure that is similar to the GDQ 

measure proposed in this paper. The GDQ measure considers more factors. Besides taking into 

account the typicality of the instances covered by the description, it considers the type of matching 

between an instance and a description. Moreover, the simplicity measured by the GDQ depends 

not only on the number of disjuncts in the description. as in (Iba et al. 1988). but also on the 

different syntactic features of the terms in the description. 

An imponant difference between the approach presented here and pruning of decision trees 

(Cestnik et aI., 1987; Quinlan, 1987) is lack ofconstraints on the part of the representation that is 

truncated when learning a two-tiered concept description. In post-pruning of decision trees, only 

paths ending in leaves may be truncated, which may improve the efficiency at the expense of the 

description quality. Moreover, pruning will always specialize one class and generalize the other. 

while truncation of rules can perform generalization and specialization independently. In (Qujnlan, 

1987) a method for transforming decision trees into rules and then performing truncation is 

presented. The method is based on a hill-climbing approach that first truncates selectors and then 

complexes. No search is performed, only one alternative truncation is tried at every step and the 

fmal result may not be the best possible. although the procedure should be faster than in the ' 

AQTI-15 system. In the same paper (Quinlan. 1987) other methods for pruning decisiOll1rees ate _. 

also described. Some of these methods require a separate testing set for the simplification,p~ ',. 

others use the same training set that was used for creating the tree. The simplification ~ in the , 
AQTT-15 system can be done either with the original training set or with a separate set of 

examples. None of the presented methods for pruning decision trees involves a search in a space 

" 
. "~ ~~ ..~: 

'., 
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of alternative truncations, i.e., alternative truncations are not backtracking points and are selected 

irrevocably. As a consequence the best simplification that is possible may never be taken into 

consideration by these methods. This is also a difference between AQIT-15 and earlier methods 
described in (Michalski et al, 1986). 

Truncation of the BCR. obtained inductively from a smallieaming set does not affect predictive 

power if an adequate typicality measure is available. The existence of an adequate ICI further 
alleviates the problems resulting from induction with few examples. 

CN2 inductive algorithm (Clark and Niblett, 1989) uses a heuristic function to terminate search 

during rule construction. The heuristic is based on an estimate of the noise present in the data. 

Such pruning of the search space of inductive hypotheses results in rules that may not classify all 

the training examples correctly, but that peIform well on testing data. CN2 can be viewed as an 

induction algorithm that includes pre-truncation. while the algorithm reponed here is based on 

post-truncation. CN2 applies truncation during rule generation and AQTT-15 applies truncation 

after the rule generation. The advantage of pre-truncation is efficiency of the learning process, but 

irrelevant selectors and redundant complexes generated during learning are not removed. 

The problem of defining and using the typicality of examples has been considered in the past both 

in machine learning and cognitive science. Negative examples of low typicality are referred to as 

near misses in Winston's system (Winston, 1975). Such examples, that have to be labeled by the 

user as near misses, are used in Winston's system to delineate the borders of a concept. (Michalski 

and Larson, 78) introduced the idea of an outstanding representative of a concept. The concept of 

prototypical examples has been also studied by (Smith and Medin 1981) and by (Rosch and 

Mervis 1975). 

To summarize. there are four major differences between the work presented here and related 

research described in the literature. FlI'St, the above method may not experience a loss of coverage 

although it still yields a simpler description with improved predictive power. Second, it simplifies 
the description by performing independently both generalization and specialization. Third, any pan 
of the description may be truncated in the simplification process. Fmally, the method takes into 

account the typicality of the examples and a general description quality measure is used 

From a more general standpoint, it seems interesting to situate the method introduced here in the 

spectrum of existing machine learning approaches. The methods that we would like to relate to are: 
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simple inductive techniques (concepts are represented on one level only), and case-based 

reasoning. Table 8 below describes these methods, as well as the two-tiered approach in terms of 

the type of concept representation, and the kind of matching applied for classification. 

Simple Induction Case-based Two-tiered 
Representation General Specific General 
Matching Precise Inferential Inferential 

Table 8. Comparison of Two-tiered Approach with Simple Inductive and Case-based Methods 

8. CONCLUSIONS AND OPEN PROBLEMS 

The paper describes a method of learning two-tiered concept descriptions. The method is based. on 

transforming an initial Base Concept Representation. The transformed BCR covers groups of 

events characterized by high typicality. It is also syntactically simpler, and therefore more 

comprehensible than the initial BCR. A more complete coverage of the events from the learning set 

by the whole two-tiered description is achieved through inference. The method presented in this 

paper relies not only on the probabilistic inference, implemented as a flexible matching function in 

(Michalski et al., 1986). It uses also a rule base for deductive inference. Deductive inference has 

the additional advantage of explaining why a given event is to be included (or excluded) from the 

cover. 

Transformations of BCR are implelllCDted as truncations of the cover. The cover is provided by 

AQ I 5 in a standard, disjunctive normal form. The truncations either specializc the description 

(complex removal, referent shrinking), or generalize it (selector removal, refenmt extension). A 

search process, guided by a quality measure, is used to obtain a "good" description. The measure 

takes into account not only the explicit part of the description. but also the implicit ODe. 

The experimental results that we obtained confmn the hypothesis that two-tiered descriptions can 

be simpler, IllOte accurate and easier to understand. The ICI used in the experiments included a 

flexible matching function and a set oflogical rules. The performance of the descriptions produced 

by the search process on the test set is influenced by the use of the inferential matching. This is due 

to the fact that ICI is used during learning. in order to choose and modify the best descriptions. 

This property represents an important difference between the presented system and previous 



37 

approaches, that tend to apply flexible matching only after the learning process is completed. 

There is a number of advances and differences of the method presented here. compared to 

previous work (Michalski et al, 1986). That earlier approach produced some preliminary results in 

which flexible. matching function was applied during the testing phase. The same research 

investigated the effect of ttuncating concept descriptions. In the system presented here. though, the 

flexible matching function is augmented by a set of rules derming how to extend or modify a 

concept description at the "knowledge level" (Dienerich 1986). by describing symbolically its 

possible transformations. Besides complex removal, the new operators of selector removal and 

referent modification are introduced. In the TRUNe approach (Michalski et a1.. 1986) truncations 

of the description were applied manually, with a limited number of tries. This is in contrast with 

AQTI-1S, which is based on the automatic search for better two-tiered descriptions. 

An important issue for future research and improvements of the implemented system is the 

integration of the search procedure with the inductive learning system used to generate the initial 

description (AQ). The first step in this direction is being experimented with: it allows the two 

systems to share the same heuristics and the same measure of quality. Further progress is related to 

the possibility of obtaining partially incomplete and inconsistent description also during the 

generation of the initial description. More experimentation is also needed in order to evaluate more 

precisely the performance of the implemented system. 

The relationship of the work presented here with analytical learning methods has at least two 

aspects. FIrst, we view the generation of a two-tiered description as a knowledge transformation 

process. If this process is purely deductive, one obtains the standan1 EBL method (Mitchell et al. 

1986). In general, the transformation involved may not be truth-preserving, as is the case in our 

system. The transformed knowledge is expected to be more acc:urate and more efficient, acc:ording 

to our description quality measure GDQ. This measure corresponds to the notion of operationality 

in EBL. Second, the problem of automatic acquisition of the ICI rules has to be investigated. 

These rules can either be inherited from higher level concepts or provided by the expen. The 

methods developed in Explanation-Based Learning will provide a good starting point, when the 

expert is able to specify classification knowledge which is correct but not operationally effective. If 

the knowledge supplied by the expen is not correct or is too specific it can be improved by 

inductive methods. It has to be observed, however. that since the events to be explained are 

usually exceptions, the knowledge necessary to explain them may be lacking from the system. 
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The problem of learning second tier rules has to be addressed in future. One approach, currently 

under development (Plante and Matwin 1990), learns ICI rules using chunking techniques in an 

environment in which multiple explanations for both positive and negative training events are 

provided. 

Another form of knowledge level learning is constructive induction (Michalski 1983). In general, 

this approach produces descriptions that are easier to understand, and capture the salient features of 

the concept. The effects of this type of induction are even more relevant for our method. 

Constructive induction folds several disjuncts into a single one. Moreover, the use of constructive 

rules will usually merge relevant conjunctive descriptions of the concept, regardless of how many 

examples they cover. This feature of constructive induction may prevent removal of relevant 

complexes. 

The system in its current form does not address the problems of dynamically emerging hierarchies 

of concepts. The system only learns one concept at a time, and concepts do not change or split as 

new examples become available. 

Another open issue is the ability of the system to self-reorganize. The distribution of knowledge 

between the BCR and the ICl will be determined by the performance of the system on large testing 

sets. If it turns out, e.g., that some ICI rules are used very often, then these rules could be 

compiled into explicit BCR assertions. It seems. therefore, that in concept representation one can 

trade one parameter against the other. within certain limits. This interesting research problem 

merits further investigation. 

Finally the system is being experimented also with structural descriptions. and in this case the 

initial description to be simplified is provided by INDUCE, rather than by AQ. The search 

procedure is essentially the same, but the computation of the GDQ and of the search heuristics is 

less efficient. A different kind of flexible matching needs to be defined for structural concept 

descriptions. This paper has been focusing on artributional descriptions. and the experiments that 

were presented do not deal with relationships among objects in the examples. 
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