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2-D Invariant Object Recognition Using Distributed

Associative Memory

HARRY WECHSLER, sevior memger, 1E£E, AND GEORGE LEE ZIMMERMAN, STUDENT MEMBER, IEES

Abstraci—This paper describes an approach to two-dimensions! ob-
ject recognition. Complex-log conformal mapping is combined with a
distributed associative memory to creste a system which recognizes ob-
jects regardless of changes in rotation or scale. Recalled information
from the memorized database is used to classify an object, reconstruct
the memorized version of the object, and estimate the magnitude of
changes in scale or rotation. The system response is resistant to mod-
erate amounts of noise and occlusion. Several experiments, using real,
gray scale images, are presented to show the feasibility of our ap-
proach.

Index Terms—Complex-log mapping, distributed associative mem-
ory, invarisnce, pattern recognition, space variant ltering.

1. INTRODUCTION

HE challenge of the visual recognition problem stems

from the fact that the projection of an object onto an
image can be confounded by several dimensions of vari-
ability such as uncertain perspective, changing orienta-
tion and scale, sensor noise, occlusion. and nonuniform
illumination. A vision system must not only be able to
sense the identity of an object despite this vanability, but
must also be able to characterize such variability—be-
cause the vanability inherently cammies much of the valu-
abie information about the world. For example, assume
that a computer vision system receives a series of motion
images of a ship from a remote sensor. If the image of the
ship expands but does not translate in each. successive
frame then a collision with the remote sensor is iminent.
The survival of the remote sensor may depend on the abil-
ity of the vision system to both recognize the object and
extract how the object is changing in time. Once the
variability has been characterized, action can be taken to
prevent the collision.

Our goal is to derive the functional characteristics of
image representations suitable for invariant recognition
using a distributed associative memory. The main ques-
tion is that of finding appropriate transformations such that
interactions between the internal structure of the resulting
representations and the distributed associative memory
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yield invariant receznition. As Simon [1] points out, 2!
mathematical derivazion can be viewed simply as a char;:
of representation, taking evident what was previous::
true but obscure. Txis view can be extended to all pro:-
lem solving. Solvirz a problem then means transformis;
it so as to make the solution transparent.

The seminal work of Marr (2] considers computationz’
vision as an informztion processing task. He defines thrz2
levels at which any machine vision system must be unde:-
stood. First, the basic computational theory specifies whz:
is the task, why is iz appropriate, and what is the strateg
by which it can be carried out. Second, the representatic:
and algorithm speciy how the computational theory caz
be implemented in terms of input, output, and transfo:-
mations. It is appar=nt that the visual task determines t:2
mixture of represextations and algorithms. Third, the
hardware specifies te actual implementation.

There are several major ways to handle the issue of im-
age vanability. The approaches can be distinguished a:-
cording to how memorized patterns are matched agairs:
input image represaatations. The interaction may occu:
along several differ=nt dimensions of the representatioz.
There are viewer-centered and object-centered represe:-
tations. A viewer-ceatered representation is viewpoint dz-
pendent and lacks ganerality but it might be necessary fe:
navigation tasks. An object-centered representation is 2
description given ir. terms of a coordinate system which
is attached to the oSject in space. One example of sucx
an object representztion is the generalized cylinders (3).
Representations cac also vary along the dimensions of
multiprototype versus a canonical representation and
complete versus in-omplete representation. A canonica!
representation can characterize the input pattern with 2
single template. A complete representation encodes suf-
ficient information 10 allow detection under geometnc
distortions, noise. 2nd partial occlusion. Our recognition
system requires tha: variability be dealt with by specify-
ing canonical, com;lete, object-centered representations.
The memory compcnent must be able to account for oc-
clusion and noise. partial key indexing and reconstruc-
tion. It should also wield the entire output vector even if
the input is noisy ¢r partially present. Distributed asso-
ciative memories [+ provide this capability.

We approach the problem of object recognition wit:
three requirements: classification, reconstruction. and
characterization. Clzssification implies the ability to dis-
tinguish objects tha: were previouslv encountered. Recon-
struction is the process by which memorized images carn
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Fig. L. Block diagram of the system.

be drawn from memory given a distorted version exists at
the input. Characterization involves extracting informa-
tion about how the object has changed from the way in
which it was memorized. Our goal in this paper is to dis-
cuss a system which is able to recognize memorized two-
dimensional objects regardless of geometric distortions
like changes in scale and orientation, and can characterize
those transformations. The system also allows for noise
and occlusion and is tolerant of memory faults.

Sections II and III describe the various components of
the system in detail. Section IV presents the results from
several experiments we have performed on real data. The
paper concludes with a discussion of our results and their
implications for future research.

Il. INVARIANT REPRESENTATION

The goal of this section is to examine the various com-
ponents used to provide the vectors which are associated
in the distnibuted associative memory.

The block diagram which describes the various func-
tional units involved in obtaining an invariant image rep-
resentation is shown in Fig. 1. The image is complex-log
conformally mapped so that rotation and scale changes
become translation in the transform domain. Along with
the conformal mapping. the image is also filtered by a
space variant filter to reduce the effects of aliasing. The
conformally mapped image is then processed through a
Laplacian in order to solve some problems associated with
the conformal mapping. The Fourier transform of both the
conformally mapped image and the Laplacian processed
image produce the four output vectors. The magnitude
output vector | ® |; is invariant to linear transformations of
the object in the input image. The phase output vector ¢,
contains information concerning the spatial properties of
the object in the input image.

A. Complex-Log Mapping and Space Variant Filtering
The fist box of the block diagram given in Fig. 1 con-
sists of two components: complex-log mapping and space
variant filtering. Complex-log mapping transforms an im-
age from rectangular coordinates to polar exponential co-
ordinates. This transformation changes rotation and scale
into translation. Fig. 2 shows vertical lines and 45 degree
lines and their respective complex-log mapped images.

e o i o o o g

Original Tmagy Comples-Log Mapped lmage
Fig. 2. Roution in the complex-log mapped domain.

Notice that the rotation in the image space corresponds to
a translation along the x-axis in the complex-log space.

Fig. 3 shows an image of concentric white circles and
the corresponding complex-log mapped image. Although
the distance between the edges of the white circles be-
comes Jarger with eccentricity, the distance between the
layers of its complex-log mapped image stays the same—
scale changes are thus transformed into vertical transla-
tion,

The complex-log mapping transforms radial lines into
vertical lines and concentric circles into horizontal lines.
If the image is mapped into a complex plane then cach
pixel {x, y) on the Canesian plane can be described math-
ematically by z = x + jy. The complex-log mapped points
w are described by

w=ln(z) = In (|z]) + 8, (1)

where |z| = (x? + y?)'?and 6, = tan"! (y/x).

Our system sampled 256 x 256 pixel images to con-
struct 64 X 64 complex-log mapped images. Samples
were taken along radial lines spaced 5.6 degrees apart.
Along each radial line the step size between samples in-
creased by powers of 1.08. These numbers are derived
from the number of pixels in the original image and the
number of samples in the complex-log mapped image. An
excellent examination of the different conditions involved



Y £

S ECHSLER AND 2IMMERMAN

wl!

e o i =

Comsplex-Log Mapped Imags

Ongqisal lage

Fig. 3. Scaling in the complex-log mapped domain.

in selecting the appropriate number of samples for a com-
plex-log mapped image is given in [5]. The nonlinear
sampling can be split into two distinct parts along each
radial line. Toward the center of the image the samples
are dense enough that no antialiasing filter is needed.
Samples taken at the edge of the image are large and an
antialiasing filter is necessary. The image filtered in this
manner has a circular region around the center which cor-
responds to an area of highest resolution. The size of this
region is a function of the number of angular samples and
radial samples. An example of such filtering is shown in
Fig. 4. Notice in Fig. 4 that the area of highest resolution
encircles the word **pattern’” and that the image is greatly
blurred beyond that region. The filtering is done, at the
same time as the sampling, by convolving truncated Bes-
sel functions with the image in the space domain. The
width of the Bessel functions main lobe is inversely pro-
portional to the eccentricity of the sample point.

There are several problems associated with the com-
plex-log mapping. First, because the system samples from
high resolution to low resolution, the image reconstructed
from the samples will not carry all the information from
the original. In panticular, details close to the edge of the
original image will be smeared by sampling and recon-
struction. This smearing is shown clearly in Figure 4. The
size of the objects used in our experiments is small com-
pared to the size of the whole image so that most of the
object details fit inside the region of highest resolution.

A second problem is sensitivity to center misalignment
of the sampled image. Small shifts from the center causes
dramatic distortions in the complex-log mapped image.

" This is shown in Fig. 5.

Our system assumes that the object is centered in the
image frame. Slight misalignments are considered noise.
Large misalignments are considered as translations and
could be accounted for by changing the gaze in such a
way as to bring the object into the center of the frame.
The decision about what to bring into the center of the
frame is an active function and should be determined by
the task. An example of a system which could be used to

3%

Qriginal Image Space Variant Filtered Image

Fig. 4. Space variant filtering.

Fig. 5. Ceoter misalignment effects on complex-log mapping.

guide the translation process was developed by Anderson
et al. [6). Their pyramid system analyzes the input image
at different temporal and spatial resolution levels. Their
smart sensor was then able to shift its fixation such that
interesting parts of the image (i.e., something large and
moving) was brought into the central part of the frame for
recognition.

A third problem that occurs in the complex-log map-
ping is related to its size invariant aspect—a change in
scale does not appear as a direct translation in practice.
When an image is scaled from smaller to larger a trans-
lation occurs in the complex-log mapped image but the
points left vacant by the translation are filled with more
samples from the center of the image. If the object in the
image has no hole in its center the new samples which
take the place of the translating points will in general be
very similar to those translating points. This has the effect
of stretching, not simple translation in the complex-log
mapped image. Fig. 6(a) shows the radial dimension of
an object that has a hole in the center and a scaled version
of the same object. Fig. 6(b) is the complex-log mapped
version of these images. Notice that scaling in the image
domain corresponds directly to translation in the com-
plex-log mapped domain. Fig. 6(c) shows an object whose
center is not like the background (i.e.. no hole) and a
scaled version of this object. Fig. 6(d) is the complex-log
mapped version of these objects. In this case. expansion
in the image domain does not correspond to translation in
the complex-log domain, but instead to stretching. The
problem is solved by convolving the complex-log mapped
image with a Laplacian which sharpens the edges and 2¢-
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Fig. 6. Translation and stretching. (a) Original images. (b) Compiex-log
tapped images. (¢) Original images—no hole. {d) Complex-log mapped
images. (e) After Laplacian.

roes regions that vary slowly as shown in Fig. 6(¢). The
Laplacian is the derivative of a bandpass filter so high
frequency variations due to textured central region of an
object will also be smoothed and set to zero. The range
of variations which are accentuated are determined by the
size of the Laplacian channel. Determining the optimal
size of the channel parameter is not addressed in this pa-
per. A description of the Laplacian and its use is dis-
cussed in more detail later.

B. Fourier Transform

The second box in the block diagram of Fig. 1 is the
Fourier transform. The Fourier transform of a two-dimen-
sional image f(x, y) is given by

F(u, v) = S:. ﬁ:-f(x. yle /=M dr dy (2)

and can be described by two two-dimensional functions
corresponding to the magnitude |F(u. v)| and phase
$,(u. v). The magnitude component of the Fourier trans-
form which is invariant to translation. carmes much of the
contrast information of the image. The phase component
of the Fourier transform carries information about how

R

things are placed ir an image. Traaslation of f(z, . ..~
responds to the ac:tion of a linear phase compone-- T;
complex-log mapsing transforms rotation and i ’
translation and the mavmtudc of the Fourier trans
invariant to those t:anslauons so that | ¢, will no; =
significantly with rotation and scale of the och, X
image.

The rcprcscn:at.on system we have developed is ¢ =15, -
to the Mellin transform with a polar transformatior, -+ the
input data. The magnitude of the polar Mellin trar...-m‘
which is invariant to rotation and scale, has been uss: fo,
object recognition in the past [7]. Our system is d:¥s-an;
from these past systems in several ways. We use s;a:
variant filtering to account for the aliasing caused :.
nonlinear sampling. Instead of matching using dir::. Cor.
relation of the magnitude of the Mellin transform, w2 use
the magnitude to index the appropriate memorized ;-ase.
This allows our syvstem to classify, characterize, 2= re.
construct the previcusly memorized vector.

The phase of the Fourier transform holds the s;atial
layout of the imags under examination. Oppenhei= and
Lim [8] examined the importance of the phase and szowed
that under fairly loose conditions the entire image could
be reconstructed to within a constant multiple of the mag-
nitude given only the phase. This implies that most =7 the
information allowing discrimination between real izz2ges
lie in the phase. However, Lane er al. [9) showed th:: the
intrinsic form of a finite positive image is uniquely r=lated
to the magnitude of its Founer transform, except zader
contrived conditiors or trivial situations. This suzzests
that reasonable discrimination can still be obtaine¢ using
the magnitude of the Fourier transform of an imag:.
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C. Laplacian

The Laplacian that we use is a difference-of-Gaussians
(DOG) approximation to the V>G function as givez by
Marr [2].

VG = 2/20% et i) (3

The result of convolving the Laplacian with an imag2 can
be viewed as a two step process. The image is blurzd by
a Gaussian kernel of a specified width 0. Then th iso-
tropic second derivative of the blurred image is com-
puted. The width of the Gaussian kernel is chosen such
that the conformally mapped image is visible—apy-oxi-
mately 2 pixels in our experiments. The Laplacian s=arp-
ens the edges of the object in the image and sets ar re-
gion that did not change much to zero. Below we describe
the benefits from using the Laplacian.

The Laplacian eliminates the stretching probler: en-
countered by the complex-log mapping due to changss in
object size. When an object is expanded the complex-log
mapped image will translate. The pixels vacated by this
translation will be filled with more pixels sampled som
the center of the scaled object. These new pixels wiil not
be significantly different than the displaced pixels so the
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result looks like a stretching in the complex-log mapped
image. The Laplacian of the complex-log mapped image
will set the new pixels to zero because they do not signif-
icantly change from their surrounding pixels. After the
complex-log mapped image is processed through the La-
placian. scale changes in the image will correspond di-
reztlv to translation in the complex-log mapped image.
The second benefit of using the Laplacian is that it is
not necessary to window the Fourier transform. The im-
ages that we work with are discrete and of finite dimen-
sion. The Fourier transform is obtained using an FFT rou-
tine which assumes the input is periodic. If, for example,
the image being transformed has a left edge which is dark
and a right edge which is light, an artifact in the form of
an abrupt jump in contrast between the edges will be ob-
served. This will cause a high frequency spreading in the
Founier transform. The complex-log mapped images have
this kind of abrupt jump along the radial dimension. Since
the Laplacian sets the edges of the complex-log mapped
images to zero such frequency spreading is avoided.
Another benefit of using the Laplacian is to enhance the
differences between memorized objects. The Laplacian
accentuates edges and deemphasizes areas of little change.
Since the objects that are being memorized differ mostly
in shape, this processing emphasizes these differences.

D. Summary

The end result of applying the different transformations
outlined in this section is to produce two vectors from an
image: |®|, which is invariant to geometric changes and
%, which contains information about the position of the
object in the image. Access to both of these vectors allows
the image to be reconstructed. The magnitude vector | |,
is used to reconstruct the memorized object. Most of the
transforms are completely invertible so little of the useful
information has been removed.

III. DisTRIBUTED ASSOCIATIVE MEMORY (DAM)

The particular form of distributed associative memory
that we deal with in this paper is a memory matrix which,
like a filter, can modify the flow of information. Stim-
ulus vectors are associated with response vectors and the
result of this association is spread over the entire memory
space. Distributing in this manner means that information
about a small portion of the association can be found in a
large area of the memory. New associations are placed
over the older ones and are allowed to interact. This means
that the size of the memory matrix stays the same regard-
. less of the number of associations that have been memo-
rized.

The above discussion illuminates several properties of
distributed associative memories which are different from
the more traditional ones about memory. Because the as-
sociations are allowed to interact with each other an im-
Plicit representation of structural relationships and con-
textual information can develop, and as a consequence a
very rich level of interactions can be captured. Since there

L I

are few restrictions on what vectors can be associated there
can exist extensive indexing and cross-referencing in the
memory. Since the information is distributed, the overs!;
function of the system is resistant to faults in the memory
and degraded stimulus vectors. Distributed associative
memory captures a distributed representation which is
context dependent. This is quite different from the sim-
plistic behavioral model [10].

A. Construction and Recall

The construction stage assumes that there are n pairs of
m-dimensional vectors that are to be associated by the dis-
tributed associative memory. This can be written as

Ms,=r;, fori=1-,n

(4)

where §; denotes the ith stimulus vector and 7, denotes
the ith corresponding response vector. We want to con-
struct a memory matrix M such that when the kth stimulus
vector ¥, is projected onto the space defined by M the
resulting projection will be the corresponding response
vector 7. More specifically we want to solve the follow-
ing equation:

MS = R (5)

where § = [5,|53] -+ |F.]Jand R = [F,|Fy] - --
| 7.).A unique solution for this equation does not neces-
sarily exist for any arbitrary group of associations that
might be chosen. Usually, the number of associations n
is smaller than m, the length of the vector to be associ-
ated, so the system of equations is underconstrained. The
constraint used to solve for a unique matrix M is that of
minimizing the square error, | MS - R ||, which results
in the solution

M=RS* (6)

where S * is known as the Moore-Penrose generalized in-
verse of S [4].
The recall operation projects an unknown stimulus vec-

tor § onto the memory space M. The resulting projection
yields the response vector #

r = M. (7

If the memorized stimulus vectors are independent and the
unknown stimulus vector § is one of the memorized vec-
tors §;, then the recalled vector will be the associated re-
sponse vector 7;. If the memorized stimulus vectors are
dependent, then the vector recalled by one of the memo-
rized stimulus vectors will contain the associated response
vector and some crosstalk from: the other stored response
vectors. Fig. 7 shows the result of a recall from a mem-
ory. The vector associations for this example are shown
in Fig. 7(a). Notice that the first two stimulus vectors are
combined o make up the last stimulus vector. If there is
no crosstalk between the vectors in the memory we would
expect the recall 1o be similar to the last response vector.
The actual recall in this case is shown in Fig. 7(b). The
recall is a combination of the first two response vectors
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instead of the last response vector. The resulting noise or
crosstalk in the output is due to the similanty of the mem-
orized vectors.

The recall can be viewed as the weighted sum of the
response vectors. The recall begins by assigning weights
according to how well the unknown stimulus vector
matches with the memorized stimulus vector using a lin-
ear squares classifier. The response vectors are multiplied
by the weights and summed together to build the recalled
response vector. The recalled response vector is usually
dominated by the memorized response vector that is clos-
est to the unknown stimulus vector. The distributed as-
sociative memory will have interactions between the dif-
ferent associations and this allows some generalization of
responses to previously unknown stimulus.

Assume that there are n associations in the memory and
each of the associated stimulus and response vectors have
m elements. This means that the memory matrix has m~
elements. Also assume that the noise that is added to each
element of a memorized stimulus vector is independent.
zero mean, with a variance of ¢?. The recall from the
memory is then

(8)

where U, is the input noise vector and 7, is the output
noise vector. The ratio of the average output noise van-

?ﬂ?g+E°=M(Fk+v‘)=?g+M;‘

ance to the average input noise vaniance is

1,31
o3/ol = - Tr[MMT]. (9)
For the autoassociative case this simplifies to
s, 2. N
g3/0; = —. (10)
m

This says that when a noisy version of a memorized input
vector is applied to the memory the recall is improved by
a factor corresponding to the ratio of the number of mem-
orized vectors to the number of elements in the vectors.
For the heteroassociative memory matrix a similar for-
mula holds as long as n is less than m [11].

oi/o} = ZTRRTITH(S™S)] (1)
Another way of viewing this error correcting process is to
notic.e that the memory matrix is the orthogonal projection
matrix for the set of stimulus vectors. The noise vector in
this m-dimensional space will be projected onto the space
spanned by the n memorized vectors. The parts of the
noise vector that are orthogonal to the n memorized stim-

ulus vectors will be lost and this accounts for the noise
reduction in the output recall vector.

R

rota W
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Fault tolerance is a byproduct of the distributed nature
and error correcting capabilities of the distnbuted asso-
ciative memory. By distnbuting the information, no sin-
gle memory cell carries a significant pontion of the infor-
mation critical to the overall performance of the memory.

IV. EXPERIMENTS

In this section we discuss the result of computer simu-
jations of our system. The computer simulations occur in
three phases: construction, recall, and recognition. In the
construction phase, associations to be memorized are used
to construct the memory matrix. In the recall phase, an
unknown image is processed and then projected onto the
memory matrix to produce a recalled vector. In the rec-
ognition phase, the recalled vector is used to reconstruct,
classify, and characterize the unknown object.

Images of objects are first preprocessed through the
subsystem outlined in Section II. The output of such a
subsvstem is four vectors: |*|,, ®,, |*|.. and $,. We
construct the memory by associating the stimulus vector
|*}, with the response vector ¢, for each object in the
database. To perform a recall from the memory the un-
known image is preprocessed by the same subsystem to
produce the vectors |#|,, ,, | ¥}, and $,. The resulting
stimulus vector | # |, is projected onto the memory matrix
to produce a response vector which 15 an estimate of the
memorized phase .. The estimated phase vector ¢, and
the magnitude | ® |, are used to reconstruct the memorized
object. The difference between the estimated phase $- and
the unknown phase &, is used to estimate the amount of
rotation and scale experienced by the object.

The database of images consists of twelve objects: four
keys, four mechanical parts, and four leaves. The objects
were chosen for their essentially two-dimensional struc-
ture. Each object was photographed using a digitizing
video camera against a black background. We emphasize
that all of the images used in creating and testing the rec-
ogrition system were taken at different times using var-
tous camera rotations and distances. The images are dig-
itized to 256 x 256. eight bit quantized pixels. and each
object covers an area of about 40 X 30 pixels. This small
object size relative to the background is necessary due to
the nonlinear sampling of the complex-log mapping dis-
Cussed in Section II. The objects were centered within the
frame by hand. This is the source of much of the noise
and could have been done automatically using the object’s
center of mass or some other criteria determined by the
task. The orientation of each memorized object was at-
bitrarily chosen such that their major axis was vertical.
The two-dimensional images that are the output from the
Invaniant representation subsystem are scanned horizon-
tally 10 form the vectors for memorization. The database
used for these experiments is shown in Fig. 8.

The first example of the operation of our system is
shoun in Fig. 9. In the upper left quadrant is the image
Ot one of the leaves as it was memorized. In the upper
Rght quadrant is the unknown object presented 10 our sys-

teara Wachasncsi Parw

Fig. 8. The daabase of objects used in the expenments.,
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Estimated Rotation: 90 Degrees 11

SNR =029 Db
Fig. 9. Recall using 3 rotared leaf.

tem. The unknown object in this case is the same lear that
has been rotated by 90 degrees. In the lower left quadrant
is the recalled. reconstructed image. The rounded edzes
of the recalled image are anifacts of the complex-log
mapping. Notice that the reconstructed recall is the un-
rotated memorized leaf with some noise caused bv errors
in the recalled phase. The lower right quadrant is a his-
togram which graphically displays the classification vec-
tor which corresponds 10 §°3. The histogram shows ihe
interplay between the memorized images and the uc-
known image. The 117" on the barzr:pﬂ indicates wid
of the twelve classes the unknown object belones.
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The histogram 2:ves a value which is the best linear
estimate of the image relatve to the memorized objects.
Another measure, the signal-to-noise ratio (SNR), is given
at the botiom of the recalled image. SNR compares the
variance of the ideai recall after processing with the vani-
ance of the differencz between the ideal and actual recall.
This is a measure of the amount of noise in the recall. The
SNR does not carry much information about the quality
of the recall image because the noise measured by the SNR
is due 10 many factess such as misalignment of the center,
changing reflectiors. and dependence between other
memorized objects—each affecting quality in a variety of
ways.

Rotation and scalz estimates are made using a vector
D corresponding to the difference between the unknown
vector $, and the rezalled vector ¢,. In an ideal situation
D will be a plane whose gradient indicates the exact
amount of rotation and scale the recalled object has ex-
perienced. In our svstem the recalled vector 4, is cor-
rupted with noise which means rotation and scale have to
be estimated. The estimate is made by letting the first or-
der difference D at each point in the plane vote for a spec-
ified range of rotation or scale. The estimate is the range
which receives the most votes. For example, rotation will
have a first order difference of D in the horizontal direc-
tion that lies between =180 and 180 degrees. If the first

order difference is berween —22.5 and 22.5 degrees then
" a vote is added to the no shift range. If it lies between
22.5 and 67.5 degre=s then a vote is added to the 45 de-
gree range, and so on.

We show only the 2stimate of the rotation of the object
and not an estimate of the scale because of the coarseness
of the method. It works well for estimation of the amount
of rotation because rotation in the image corresponds to
relatively large transiations in the complex-log mapped
image. This is not the case for scale. The images used in
our simulation can be perceptively larger in the image do-
main but the differences in the complex-log domain are
not very great. The unknown object in Fig. 10 is a mem-
orized key that has bezn expanded. The reconstructed re-
call is a key which is the same size and shape as the mem-
orized key. At the bottom of Fig. 10 is the complex-log
mapped version of the memorized key and the scaled key.
Notice that the difference along the scale axis is not very
great which makes esiimating the size change very diffi-
cult.

Fig. 11 shows the recall when the unknown is a key
which is both rotated and scaled. The reconstructed image
is not rotated or scaled relative to the way it was memo-
rized. There is an error in the estimate of rotation on this
example. The unknown key is rotated 180 degrees and the
estimate is — 135 degrzes. This error is due to noise in the
D vector. The estimate is actually off only by one adjoin-
ing bin and the difference between the number of votes
between the real rotation and the éstimate is 12 out of 600.

Fig. 12 is an example of occlusion. The unknown ob-
ect in this case is an **S"" curve which is larger and

2 Estimated Rotation: 0 Degrees 2
SNR = -0.90 Db
Fig. 10. Recall using scaled key.

Original Unkoowa

Estimated Rotation: 138 Degrees [

SNR ».337
Fig. 11. Rezall using scaled and rotated key.

of the bottom curve was occluded. The resulting recon-
struction is very noisy but has filled in the missing part of
the bottom curve. The noisy recall is reflected in both the
SNR and the interplay between the memories shown by
the histogram.

Fig. 13 displays the result of locally setting a fraction
of the memory matrix elements to zero. The damage done
locally in the memory matrix is present in a local sense in
the recall. In the upper left quadrant is the ideal recon-
struczed recall with no damage to the memory matrix. In
the upper night quadrant is the recall when 30 percent of
the memory matrix is set to zero. In the lower left quad-
rant is the recall for 50 percent and in the lower rigs
quadrant is the recall for 75 percent. When 73 percent 3 M
the memor. matrx is 'noalle b

car I Tarn
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Recall 4
Fig. 12. Recall using scaled and rotated **S™" with occlusion.

0% of Memory Set to Zero 7555 of Memory Ses to Zero

Fig. 13. Recali for memory matnx locally set to zero.

Fig. 14 is the result of randomly setting the elements
of the memory matrix to zero. The effect of this kind of
damage is not nearly as cntical as in the case of the local
damage. The upper left quadrant shows is the ideal recall.
In the upper right quadrant is the recall after 30 percent
of the memory matrix has been set to zero. In the lower
left quadrant is the recall for SO percent and in the lower
fight is the recall for 75 percent. Even when 90 percent
of the memory matrix has been set to zero a faint outline
of the pin could still be seen in the recall. This result is
important in two ways. First. it shcws that the distributed
assoc:ative memory is robust in the presence of noise.
Second. it shows that a completely connected network is
ot necessary and as a consequence a scheme for data
tOmpression of the memory matrix could be found.

V. CoscLysioN

In this paper we demonstrate a computer vision system
Which recognizes two-dimensional objects invanant to ro-
WEAn ar seule The <ystem combings an iRy anant reore-
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75% of Memory Set to Zero
Fig. 14, Recall for memory matrix randomly set 16 2¢ro.

$0%% of Memory Set 1o Zers

sentation of the input images with a distributed associa-
tive memory such that objects can be classified,
reconstructed, and characterized. The distributed associ-
ative memory is resistant to moderate amounts of noise
and occlusion. Several experiments, demonstrating the
ability of our computer vision system to operate on real,
gray scale images, were presented.

There are some similarities between the computer vi-
sion system that we present and the transformations that
may take place in early biological vision. We do not sug-
gest that our computer vision system is anything more than
a very rough first-order approximation to the diverse and
complex biological system but we feel it is important to
understand the strengths and weaknesses of the system
within this context.

One of the fundamental assumptions of our svstem is
that the object or a feature of the object can be centered
in the frame. We do not take translation of the object into
account. Instead we suggest this centering can be done by
a change in the viewpoint. which is not completely un-
characteristic of the biological vision system’s approach
to translation. Although there are many studies which
show that humans have the ability to recognize pattems
which are not centered on the fovea. for normal recogni-
tion tasks such as reading. humans do bring the object -
under examination to the center of their view [12].

The complex-log mapping has been proposed previ-
ously as a model of the projection of the retina onto visual
area 17 of the cat [13]. Other evidence such as size con-
stancy and the cortical magnification factor strongly sug-
gest that scale invariant recognition is at work in biolog-
ical vision. Qur system required a space varant filter to
reduce the effects of aliasing caused by sampling the im-
age nonlinearly. This process is similar to the kind of
summation found across the retina. Another requirement
of our system from the standpoint of signal processing is
the need to use a Laplacian after the complex-iog map-
ping. The application of the isotropic Laplacian of a sin-
gle channel size (0 the complex-log maprad imaze is the
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same as convolving the image with 3 Laplacian whose
chanael size incre2:i¢s with eccentncuy—similar to the
spatial frequency channel mechanisms in human vision
proposed by Wilson and Bergen [14]. Complex-log map-
ping is only a first order approximation to the early visual
processes and is not intended to account for a multimode
of phenomena such as onentation selective cells present
in the corex [15].

Although the existence of spatial frequeacy channels in
the biolegical vision system is well established [16], there
is no evidence that the global Fourier transform is per-
formed anywhere in the contex. The magnitude of the
Fourier transform is used in our computer vision system
to index the distributed associative memory primarily be-
cause it is invariant to translation of the input signal. There
are other classes of shift invariant transforms, such as C-
transforms [17]. which can be executed by networks of
simple threshold logic units—more consistent with the
type of processing of which neurons are capable. The
phase of the Fourer transform is used to reconstruct the
memorized object and estimate corresponding scale and
rotation changes. The reconstruction and estimation can
be used by other systems to accomplish a desired task. If
scale or rotation are necessary for the task. then the con-
cept of indexing with an invariant pattern to gain relative
information about change in the input is not an altogether
unlikely model for what might occur in early biological
vision.

Neural network models, of which the distributed asso-
ciative memory is one example, were onginally devel-
oped to simulate biological memory. They are character-
ized by a large number of highly intercornected simple
processors which operate in parallel. An excellent review
of the many neural network models is given in [18]. The
distributed associative memory we use is linear, and as 2
result there are centain desirable properties which will not
be exhibited by our computer vision system. For exam-
ple. feedback through our system will not improve recall
from the memory. Recall could be improved if a non-lin-
ear element, such as a sigmoid function, is introduced into
the feedback loop. Nonlinear neural networks, such as
those proposed by Hopfield {19] or Anderson er al. [20],
can achieve this type of improvement because each mem-
orized pattern is associated with stable points in an energy
space. The price to be paid for the introduc:zion of nonlin-
earities into a memory system is that the system will be
difficult to analyze and can be unstable. Implementing our
computer vision system using nonlinear distributed asso-
ciative memory is a goal of our future research.

Each component of our computer vision system can be
implemented in parallel. Messner and Szu [21] described
a parallel architecture which can produce the complex-log
mapping of an image. There exist many parallel algo-
- rithms for implementing discrete Fourier transforms and
matrix multiplications. Another approach is to implement
the different functions of the system optically. Case er al.
[22] designed holographic lenses to perform mathematical
transformations such as the comnlex-lae manping ot an

-
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image. The Fourier transform of an image is easily ac.
complished using a lens. The distributed associatie
memory and holograms have many similarities but it is
not immediately apparent how this pant of our system
could be implemented optically.

We are presently extending our work toward three-d:.
mensional object recognition. Much of the present re.
search in three-dimensional object recognition is limited
to polyhedral, nonoccluded objects in a clean, highly con-
trolled environment. Most systems are edge based and use
a generate-and-test paradigm to estimate the position and
orientation of recognized objects. We propose to use an
approach based on characteristic views [23] or aspects [24]
which suggests that the infinite two-dimensional projec-
tions of a three-dimensional object can be grouped into a
finite number of topological equivalence classes. An ef-
ficient three-dimensional recognition system would re-
quire a parallel indexing method to search for object
models in the presence of geometric distortions, noise,
and occlusion. Our object recognition system using dis-
tributed associative memory can fulfill those requirements
with respect to characteristic views.
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