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CHAPTER 1. 

INTRODUCTION 

Computers outperform all humans at certain tasks, long division and reliable storage of 

large quantities of data, to name a few. They outperform most humans at other tasks, like 

playing chess and diagnosing soybean diseases for example. Unfortunately there are many 

tasks which computers perform far worse than most humans, like understanding a human 

language and recognizing objects or other intelligible collections of information from a visual 

field. Because computers are utterly inferior to humans in these areas, the areas are 

appropriately included under the term artificial intelligence (AI). 

Getting a computer to make sense out of electromagnetic waves (also known as 

computer vision) has often been considered as not really AI, but more of an engineering or an 

industrial problem. The most likely reason for this bias is that the problem involves a non­

trivial transformation from an apparently continuous spectrum of light into discrete digital 

information suitable for processing by a computer. Nevertheless, the processing of digital 

information is by no means less trivial than the analog-to-digital (A/D) conversion of the 

image. If computer vision researchers agree on anything, they agree that the key to designing 

a computer that sees depends more on the intelligent manipulation of digital visual 

information than on how that information is derived from its source. 

Until recently, all approaches to VISIon have been largely statistical in nature. 

Researchers sought the magic formula which would mathematically transform an image'into 

easily discernible shapes and objects. Unlike these approaches, the research described in this 

thesis is based on the view that learned concepts play an essential role in texture recognition 
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and human vision in general. What we know determines to a large extent what we see. This 

idea could be described as a cognitive science approach. If this view is accurate, a computer 

vision system could enhance its capabilities by learning general and flexible concepts to guide 

its image processing strategy. 

TEXPERT is a software system designed to acquire and apply knowledge for 

recognizing textures in a two-dimensional digital image. The system was designed primarily 

to test the usefulness of machine learning techniques in solving computer vision problems, 

particularly the problem of texture recognition. The system utilizes similarity-based learning 

(SBL) methods developed by Michalski [23]. Although there exist SBL methods which learn 

"by discovery" - Le. without a human tutor, supervised methods were chosen here to allow 

an expert to incorporate as much knowledge into the learning process as possible. Thus the 

expert is allowed access to all points in what could be called a knowledge transfer continuum 

between man and machine. 

1.1. The Knowledge Transfer Continuum 

Figure 1.1 shows a series of steps by which knowledge can be transferred from a human 

expert to a machine. These steps can be referred to as a continuum because if any step is left 

out, a noticeable gap in performance typically occurs. For example, a bottleneck in expert 

systems [24] often occurs when a human expert attempts to define rules describing his 

knowledge without any consideration of features of the domain or examples of concepts in 

terms of the features. This unjustified "break" in the continuum is indicated by the dotted 

line in Figure 1. L 
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Figure 1.1: Knowledge Transfer Continuum 

The use of bidirectional arrows in Figure 1.1 is significant. They indicate that both the 

machine and the expert have input into the design and effectiveness of that step in the 

continuum. The degree to which either expert or machine has control of a particular step 

depends on the system and application. Ideally, tools for increased interaction at each step in 

the continuum should be available to the expert. Such tools have been developed by Reinke 

[2] in the context of the ADVISE Meta-Expert System [16]. These tools were used 

extensively in TEXPERT, and will be described in more detail in the next two chapters. 

The TEXPERT environment provides a high-level of interaction between a knowledge 

engineer and the program. The system is menu and mouse driven, but still provides the high 

degree of flexibility necessary for learning across a wide range of visual problems. The next 

two sections discuss this range of problems, provide a brief description of notable approaches 

to these problems, and discuss how the TEXPERT philosophy compares and enhances the 

current methods. 
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1.2. Texture Recognition as Image Segmentation 

In general, the problem of texture recognition can be thought of as equivalent to the 

problem of segmentation [18] - that is, segmenting an image in segments or regions on the 

basis of color, shape, or texture. Of all these segmentation criteria, texture seems to be the 

most general. In a real world environment, objects are readily distinguished among 

themselves by a distinct change in texture across the visual field. A book has a different 

texture than a desk-top which has a different texture than the wall which has a different 

texture than a picture frame and so on. In black-and-white photographs, where color is 

non-existent, texture is the arguably the only criteria for image segmentation. 

In some ways, texture recognition is a more complicated problem than image 

segmentation. Inherent in the notion of texture is structure. A texture recognition program 

must provide some facility for recognizing structure or patterns that correspond to a common 

sense idea of texture. The search for textons [3,4], or elements of texture, has yielded few 

practical benefits for the texture recognition problem. Elements of texture, if they exist at 

all, vary greatly across regions of an image, and good descriptions for them are often difficult 

for humans to make. 

Research has indicated that machine learning algorithms possess the capability of 

discovering simpler and more efficient rules for classification than experts in a domain [21]. 

Perhaps, a fairer statement is to say that machines perform better when allowed to generate 

their own rules from key examples described in terms of relevant features as provided by an 

expert, rather than by requiring the expert to condense all his knowledge directly into a rule 

formalism. Machine learning methodologies thus form an important step in the kno wledge 

transfer continuum described above. 
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TEXPERT allows an expert to interact with the system at each step in the knowledge 

transfer continuum. The expert designs his own statistical methods for applying to the 

image, selects the examples he wants the system to use for learning, and can view, test, and 

incrementally modify the learned rules to improve system output. Thus TEXPERT is easily 

adapted to image segmentation problems which are not specifically texture related. 

1.3. Statistical Methods 

The earliest work on texture recognition viewed the problem as one of pattern 

recognition [19,20]. Pixels were mapped into a feature space and clustered according to 

statistical pattern recognition methods. Over the years, the methods have become 

increasingly complex. Results of complicated statistical methods continue to show promise 

[22], but often at the expense of comprehensibility and adaptability across domains 

complex statistical methods make interaction with experts in the visual domain increasingly 

difficult if not impossible. 

For example, consider a vision system to recognize parts on a manufacturing assembly 

line. Ideally, a system for an automotive assembly line could be easily modified to a tool and 

machine assembly line by interaction with an expert from the tool and machine domain. Use 

of complex statistical methods require detailed knowledge of these methods to locate 

parameters for modifying performance in a given domain, and furthermore, the effects of 

changing parameters is not always well-known or well-behaved. 

Man-machine interaction in image processing is not new :14,15], but such systems also 

suffer from the drawback of being domain specific. The interaction of the expert is solely for 

the purpose of resolving problems within a given domain. The TEXPERT system provides a 
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general mechanism for any visual domain expert to tailor a texture recognition system to 

his/her domain. 

Given a series of images classified by a human tutor into various regions of texture, 

TEXPERT generates rules that classify pixels of unclassified images into a known texture. 

The expert is involved to some degree in every stage of the learning process, to insure that 

the final rules of the system represent the fullest extent of her /his expertise. 

An image that is input into the system is assumed to consist of a fixed number of 

distinct regions. For example, an image could consist of the following regions or textures: 1) 

a uniform background, 2) areas of random texture, and 3) areas of man-made texture. The 

regions of random texture might be characterized by high image intensity values relative to 

the background, irregularly shaped contours, and random size. The regions of man-made 

texture may be characterized by low image intensity values relative to the background and 

smooth contours, which consist of straight parallel lines in any direction. These descriptions 

represent logical combinations of image features. Textures defined in this way can easily be 

learned by almost any SBL algorithm. 

1.4. Overview of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 discusses the algorithms 

and methods used by TEXPERT. This discussion includes details about the learning 

algorithms used, the methodologies by which an expert can use these algorithms, and the 

overall framework in which these algorithms and methodologies are integrated. 

Chapter 3 discusses the actual implementation of the system. Here the reader will find 

descriptions of the various components of the TEXPERT system. Also discussed in this 
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chapter are the facilities for enhanced interaction with an expert. 

Experimental results are presented in Chapter 4. Experiments were performed on both 

actual and sample images. Conclusions and directions for future research are presented in 

Chapter 5. In this chapter the results from the previous chapter are discussed in depth, along 

with their ramifications for both computer vision and machine learning. References are 

provided at the end of the thesis. 
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CHAPTER 2. 

TEXPERT ALGORITHMS AND METHODS 

This chapter describes the algorithms and methods used in the TEXPERT system. The 

system is built out of similarity-based learning methods developed by Michalski [23]. 

Learning, however, is only a part of the system, which also incorporates rule application 

strategies from expert systems [2,16] research in addition to standard image processing 

methods. These methods are combined to form the top-level algorithm for the system as 

shown in figure 2.1. 

I . 	 "1nput and classify the image; 
REPEAT 
define active sub-region for learning or testing; 
perform image pre-processing; 
generate events from pixels in active sub-region; 
if learning desired then 

rules = learn{events); 
if testing desired then 

test( even ts, rules) 
if further learning or testing desired then 

regenerate image; 
else 


generate results; 

done true; 


UNTIL DONE 

Figure 2.1: Top Level Algorithm 
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The first four steps in the algorithm involve image classification and pre-processing, and 

generation of events for learning or testing rules. Classification requires display of the image 

to a tutor or an expert who segments the image into regions or classes. An entire image need 

not always be classified. With large images, classification of only a part of the image is 

desirable. Once the sub-region of the image to be used for learning has been classified and 

defined, the input events to the learning algorithm can be generated. Often, generation of 

learning events first requires image pre-processing - use of convolution operators or other 

statistical methods to generate features for the image. For example, images can be processed 

using a "Mexican hat operator" [5], for the purpose of constructing an "on-edge" attribute. 

Each pixel in the image will have both a gray-level value and an "on-edge" value, which can 

be either the actual value or simply true or false depending on the result of the application of 

the "Mexican hat". These two values, and any other values produced by the application of 

other filters or operators to the image, together form an event which is essentially a point in 

an n-dimensional attribute space where n is the number of values or attributes associated 

with each pixel. Specific methods of attribute selection will be discussed in a subsequent 

section in the course of discussing the learning algorithm. Additional methods of pre­

processing are also discussed in a later section. 

The next stage in the algorithm is the actual learning phase. The learning phase takes 

as input classes or sets of events from the image classification and pre-processing phase, and 

outputs rules which correctly assign a pixel to a class based on the attribute values of the 

pixel. As a simple example, consider an image where every pixel has a red-intensity level and 

a blue-intensity level and that each level has three values high, medium and low. 

Furthermore, suppose this image has two different "textures" or types of regions - that is. 

each pixel in the image is part of some region which is of one of the two types of regions in 
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the image. Occurrences of these two types of regions could exist anywhere in the image to 

form, for example, a checkerboard pattern as in figure 2.2. Now if one of the checkerboard 

regions has pixels where the red-intensity value is always higher than the blue-intensity 

value, and the other region's pixels always have a higher blue-intensity than red, then the 

rules for classifying pixels would look like these: 

[blue_value(pixel) = high] [red_value(pixel) = medium or low] or 

[blue_value(pixel) = medium] [red_value(pixel) = low] 

then 

[class(pixel) = 1: 

[red_value(pixel) = high] [blue_value(pixel) = medium or low] or 

[blue_value{pixel) = medium] [red_value(pixel) = low] 

then 

[class(pixel) 2] 


red value> blue 

= blue value> red 

Figure 2.2: Two Textures Forming a Checkerboard 
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Details of the learning algorithm will be discussed in section 2.1. 

The next phase of the algorithm is rule application or testing. In this phase, the rules 

output from the learning phase are applied to other images or other sections of the original 

image to evaluate the accuracy of the rule. These other images or other sections of images 

must also be classified by the expert or tutor in order to determine how well the rules were 

able to perform in relation to the expert. If the testing shows acceptable performance over a 

sufficient number of test cases, then the learning has been successful and these rules can be 

used reliably on unclassified images in the domain. If testing does not indicate acceptable 

rule performance, there are two options available for further learning: iterative learning, 

where further learning takes place on a regenerated image; or incremental learning, where the 

events/pixels are input to the learning algorithm along with a set of old rules, to produce 

modified rules which are accurate over all events/pixels. The iterative method is most useful 

in general, however the incremental method is frequently the method of choice when applying 

rules learned from one or more images in a domain to a new image. Both these methods will 

be discussed in more detail in the next section. 

2.1. Learning Algorithm 

Although not the first step in the top-level algorithm, the learning phase is the heart of 

the TEXPERT algorithm. The algorithm used is a modified version of the AQ algorithm, 

developed by Michalski, Reinke, Hong, Mozetic, and others :2,25,26~. The algorithm is a 

supervised covering algorithm. The fundamental input to the system are events, which are 

vectors in an n-dimensional a.ttribute space where n is the number of attributes. Attributes 

can have values of several types. Linear values are ordered values such as integers. Nominal 

/1 
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values are non-ordered, for example, a shape attribute mi~ht have nominal values square, 

circle, triangle. Values may also be structured - that is, the values of the attribute may 

form a hierarchy. The shape attribute for example, may also have the value polygon, which 

could have as sub-values square and triangle, but not circle, which could be a sub-value of 

the value ellipse. 

Given attributes with values of these types, the algorithm searches through a space of 

logical expressions relating attributes to values. The goal of the search is to find an 

expression, which is satisfied by the values for every event in one class, and which is not 

satisfied by the values of any event in any other class of events. The search is limited by a 

heuristic called the lexicographical evaluation function (LEF) which can be user-specified. 

The LEF evaluates candidate expressions and sub-expressions according to user-specified 

criteria. Only a small number of expressions are expanded at each stage in the search. The 

number of expressions to expand at each stage is also a user-specified parameter. The 

algorithm can be viewed as a very flexible beam search through the hypothesis space 

associated with the vector space defined by the attributes. 

Several additions to the AQ algorithm have been made over the years. The important 

ones are worth mentioning here. Background knowledge can be provided to the algorithm. 

Such knowledge can be used to perform constructive induction, i.e. automatic generation of 

new attributes for the events inputted to the learning algorithm. Background knowledge to 

AQ can take one of two forms. A-rules describe mathematical combinations of values to 

form a single value for a new attribute. F or example, the value for the attribute length may 

be multiplied by the value for the width attribute to produce a value for a new attribute 

called area. An example of this A-rule is shown in Figure 2.3(a). Figure 2.3(b) shows a 
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(a) area:= length * width 

(b) 	 [discomfort...level = high1if 
[temperature> 90][humidity > 50] 

Figure 2.3: A-Rules and L-Rules 

simple L-rule for AQ. L-rules create attributes on the basis of logical combinations of 

attributes and values. The L-rule in the figure says that if the temperature attribute has a 

value greater than 90 and the humidity attribute has a value greater than 50, then the new 

attribute discomfort-level should be constructed with the value high. 

Of these two types of background knowledge, A-rules are the most applicable to the 

prohlem of image processing. A-rules provide for arithmetic combinations of intensity values 

to create new features for image pixels. An example of how A-rules can be used as image 

filters is given in the next chapter under "Rule Acquistion and Induction." Other ways of 

generating features for each pixel are discussed in the next section. 

2.1.1. Features for Learning Texture 

Many possibilities exist for computing features to recognize texture. The best features 

will be those which define an attribute space which most easily lends itself to the partitioning 

performed by the learning algorithm. The features generated by TEXPERT fall into one of 

three categories: neighboring gray--Ievel values, simple statistics, and convolution filter 
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output. 

2.1.1.1. Neighboring Gray-Level Values 

These are the simplest attributes in the TEXPERT system. They consist only of the 

gray-level values of pixels neighboring the pixel with which the event is associated. For 

example, one could take the value for each immediate neighbor of a pixel to construct an 

event with eight attributes for each pixel. The first attribute would correspond to the value 

of the pixel to the central pixel's upper left, the second attribute would correspond to the 

pixel directly above the central pixel, and so on, as in Figure 2.4. Even the value of the pixel 

itself can often be used as an attribute, and is in fact the only attribute needed in the trivial 

234 432 


4 32 

4 22 

3 3 3 

3 4 5i 

4 6 

I 

5 

4 i5 4 

3 3 4 3 2 2 

Event for central pixel (value 6): 
[upper_left = 3] [above 4] :upper_right 
[ Ie f t 4: [r i gh t = 5] 
[lower_left 4]lbelow 5]'lower_right 

5 

4] 

Figure 2.4: Possible Event Using Neighboring Gray Values 
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case when texture is determined by gray level alone. 

A tradeoff is clearly apparent in the use of neighboring values as attributes. More 

information is available to the learning algorithm when more neighboring values are used, 

however with more information processing time steadily increases. 

2.1.1.2. Simple Statistics 

Simple statistics are linear combinations of the neighboring pixel values. Some 

examples of such statistics are sum of values, mean pixel value, maximum pixel value, and 

minimum pixel value. The main advantage of the use of these statistics is that they 

incorporate regional information about the pixel in one feature with only minimal additional 

computation. Although these statistics can be useful, the information is frequently limited in 

comparison with more involved statistics such as those discussed below. 

2.1.1.3. Convolution 

The third type of feature of benefit to a texture learning system are those that are 

calculated using filters or convolution operators. A convolution operator can be thought of as 

a coefficient template a grid which is centered over a pixel in the image where each 

coefficient in the template multiplies the corresponding pixel value in the grid and the sum of 

these products is the value of the operator at the central pixel. An early edge detection 

template (the Kirsch operator) is shown in Figure 2.5. The equation in Figure 2.5 is the 

application of the Kirsch operator to the central pixel of Figure 2.4. The low value of the 

result indicates a small gradient in the vertical direction that is, no horizontal 

through the central pixel is indicated. 
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r~III
-1 -1 -1f
Value for central pixel of Fig. 2.4 (value = 6): 

(1)3 + (1)4 + (1)5 + (-1)4 + (-1)5 + 1(4) 1 

Figure 2.5: Kirsch Operator 

Researchers have suggested a wide range of convolution filters for various purposes. 

Even a summary of such filters extends beyond the scope of this thesis. The interested reader 

is referred to [6,11,12] for a comprehensive overview of the subject. 

2.1.2. Iterative Learning 

In the TEXPERT system, the learning algorithm described above is performed 

iteratively by using the classification of pixels from one iteration as the value of pixels for the 

next iteration. This method was first proposed by Michalski )] and similar methods [13] 

have also been proposed. This method has also been called a pyramid or hierarchical 

architecture for vision. 

Iterative learning is hierarchical because a new texture can be learned or recognized 

from a combination of old textures from a previous iteration. To illustrate how this works, 

consider the image in Figure 2.6. Such an image consists of three fundamental textures: 
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Figure 2.6: An Illustrative Image For Pyramid Learning 

solid lines, dashed lines, and white space. At the first iteration of the learning algorithm 

rules can be derived for classifying pixels into one of these three classes as appropriate. For 

iterative learning a new image would be generated as follows: each pixel that was part of a 

solid line in the first image would be given a value of 1, each pixel that was part of a dashed 

line in the first image would be given a value 2, and all other pixels would be given the value 

3. Now the new image serves as input to a new iteration of the learning algorithm. In this 

iteration, the new values of the pixels can be used to recognize the two textures (areas where 

lines run from top to bottom and left to right, and areas where lines run from top to bottom 
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and right to left) in the figure. The fact that there are two textures at the top-level and 

three textures at the first level suggests the pyramid as a model for the architecture. 

In the above example, a new classification was required at each level of the pyramid, but 

this need not always be so. Iterations can occur using the original classification. This form of 

iteration is a form of relaxation and is a way of dealing with noise in the image. The idea is 

that only pixels whose attributes satisfy the learned rules to a high degree of consonance (see 

[2]) or certainty are replaced by a class designator in the next iteration. All doubtful pixels 

retain their original value for the next iteration. Once a pixel is classified, its value does not 

change for the next iteration. Thus each iteration becomes a means of classifying more and 

more pixels in the image until eventually the entire image is correctly classified. 

2.1.3. Incremental Learning 

At no time during either method of iterative learning are rules used in addition to 

events as input to the learning algorithm. Learning which uses rules as input is called 

incremental learning, and is entirely different than iterative learning. Incremental learning 

can be thought of as modifying the input rules based on new input events. Incremental 

learning is discussed in detail in [2,25,26]. 

As mentioned earlier, incremental learning is used in TEXPERT when learning occurs 

over several images in the domain. The main advantage to incremental learning is efficiency. 

Cross-image learning could be effected by storing all the events for all the images, but this is 

not only cumbersome but often expensive. In fact, it is often advisable that incremental 

learning be used on a single image if that image is large. It is not always necessary, however, 

to invoke the learning algorithm several times to perform incremental learning on a single 
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Image. The verSlOn of AQ described in the next chapter provides a mechanism for 

partitioning large event sets, and generating rules one set at a time until all the sets have 

been examined. 

2.2. Testing Method 

The testing phase consists of applying the set of rules generated during the learning 

phase to a separate region of the current image (or to another image in the domain) and 

evaluating the performance of the set of rules on this new region. In applying the rules, an 

event for each pixel in the testing region is generated in the same way events were generated 

for pixels in the learning area to learn the given rules. Each rule is applied to an event and 

an estimate of probability is calculated based on the degree to which the event satisfied the 

rule. The specific methods of calculating the estimate of probability are not discussed here. 

The reader is referred to [21] and [25] for details on these measures. 

Once a measure of rule satisfaction is obtained for each rule, the event can be assigned 

to the class whose rule has the highest measure of satisfaction. In the case of the iterative­

relaxation method described above, the rule satisfaction must exceed a given threshold 

parameter set by an expert. It can also be required that the winning measure exceed its 

nearest competitor by a certain threshold. If these conditions are not met, no classification 

occurs and the pixel maintains its original value for the next iteration. In the next iteration, 

the conditions may be relaxed - i.e. either or both the thresholds are lowered. 

Once all the pixels in the testing region have been classified by the rules, the classified 

image can be used to evaluate the rule performance. Learning is considered successful when a 

reasonable level of accuracy has been maintained over a sufficient number of images in the 
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domain. Exact measures for "reasonableness" and sufficiency are provided by the expert. 

2.3. Image Pre-Processing 

As in any image system, additional processing of the image prior to the operations of 

one's own system is often useful. For example many systems work with a Fourier transform 

of an image or "smoothed" images. In the design of the TEXPERT system, three methods of 

pre-processing are considered: averaging, gray-level reduction and event generation. 

2.3.1. Averaging 

Averaging is a standard method of image reduction. Averaging an image replaces each 

m x n region in the image by the average values of the pixels in that region. This method 

thus reduces the number of pixels in the image by the product mn. Such data reduction is 

often useful with large images, but should be used with care since information is often 

drastically reduced. 

2.3.2. Gray-Level Reduction 

Gray-level reduction reduces the number of values that an individual pixel can have. 

This reduces the search space for the learning algorithm. The new value of the pixel is 

obtained by dividing it by: 

MAX 
IV 

where MAX is the maximum value of any pixel and N is the new number of values allowed 

for the pixel. If the minimum value for a pixel in the original image is not zero, the 
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minimum value can be subtracted from the pixel before the division described above. 

2.3.3. Event Generation 

The last pre-processing done on an image before learning is event generation. During 

this phase, an event is generated for each pixel in the image. For learning, there is an exact 

correspondence between pixels and events. Events are generated using an event shape 

operator which is specified by the user of the system. This operator extracts features (as 

described in section 2.1) from the image to form an event which is saved for subsequent input 

into the learning algorithm. Since the learning algorithm requires that pixels classified into 

similar classes be presented as such, event generation accomplishes this as well. 

Additional details on event generation are covered in the next chapter as part of the 

discussion on the implementation of all the methods described above. 
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CHAPTER 3. 

TEXPERT ARCmTECTURE AND IMPLEMENTATION 

This chapter describes the implementation of the methods and algorithms described in 

the previous chapter. The system was implemented on a SUN-2 Workstation and uses the 

Sun Windows window and graphics package. Development of the system was primarily in 

Pascal, although some portions of the system were written in C in order to interface with the 

Sun Windows routines. This interface is described in detail in [7]. • 

The general architecture of the TEXPERT system is shown in Figure 3.1. Each module 

is described in detail in a corresponding section below. 

3.1. Image Classification and Processing 

In the implementation of TEXPERT, image classification is considered as one possible, 

although usually essential, mode of processing. Classification occurs as the last step before 

event generation. Any pre-processing is required to take place before classification. 

3.1.1. Classifying an Image 

The TEXPERT system displays the fully pre-processed image to the user in the window 

in which the user started the program. The system can also be run outside the Suntools and 

Sun Windows environment as long as this is done on the console and a mouse is available. 

Given the displayed image, the user can use the mouse to paint pixels which the user 

determines as belonging to a specific texture or region. Erasing is available in case the expert 
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Figure 3.1: TEXPERT General Design 

changes his/her mind as (s)he is prone to do from time to time. The user is free to classify as 

much or as little of the image as (s)he desires. 
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As currently implemented, TEXPERT allows a user to classify images pixels into as 

many as 10 different classes. Once a pixel is classified into a class, and only then, is that class 

(or texture) assumed to exist in the image. However, only classes which exist in the learning 

area have rules produced in the learning algorithm. The user should, therefore, have pixels 

from all specified classes within the learning area specified during event generation (see next 

section). 

3.1.2. Other Processing 

In the current implementation of TEXPERT, there are two filters for pre-processing 

data. The first is a gray-level reduction filter as described in the previous chapter. This 

filter reduces the number of gray-levels rrom 255 to 12. The maximum number or levels 

allowable as input to the learning algorithm is set to 58 by default. In practice, the rewer 

number of levels, the more efficient the algorithm. 

The second filter available within the context of TEXPERT is the second-order 

Gaussian edge detector described in [5]. This filter produces a separate image file which can 

be read into TEXPERT simultaneously with the original image. These two images together 

can then be used to generate edge detection and "zero crossing" attributes ror learning. 

3.2. Event Generation 

Event generation is a crucial stage or the TEXPERT system. When a user defines the 

way events are to be generated, (s)he is in fact defining the attribute and hypothesis space in 

which the learning algorithm is to search. TEXPERT is designed with a flexible interactive 

means of specifying attributes for events. 
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In the current implementation, a user is allowed to select one of four sizes for an event 

template. An event template is best thought of as a mask which is centered over the pixel for 

which the event is to be generated. A three-by-three template is shown in figure 2.4. Event 

templates are presently required to be square and to have an odd dimension so it can be 

centered over a pixel. The four templates range in size from three by three to nine by nine. 

Once the user has selected a size for the template, he can then select which locations in 

the template (s)he would like to use as attributes for the event. Figure 3.2a) shows a five­

by-five template with locations marked with attributes Xl' x2' x3' and so on. All other 

locations other than those with attributes do not generate an attribute for the event. 

Figure3.2c) shows an event corresponding to the template as positioned in the sample section 

of image shown in part b). In this example, all the attributes are neighboring gray-level 

values. 

After defining a template, a user can save the template in a file for future use. Thus a 

user need not always define a template for every event generation process. 

In addition to specifying neighboring gray-levels as attributes, the user is also allowed 

to select other attributes for learning from a menu. These attributes are: mIDlmum, 

maximum, sum, average, and the difference between the minimum and maximum values. 

These attributes are calculated over the neighboring gray-values specified In the event 

template. 

Events are generated automatically as preparation to learning rules or testing them on 

an image. When invoking learning or testing on an image, the user is first asked to define a 

region in which to learn or test rules. The user can define a region either by entering 

coordinates directly from the keyboard or by selecting the desired boundaries of the area 

http:Figure3.2c
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Figure 3.2: Possible Event Using Neighboring Gray Values 

using the mouse. A separate file is written for each class of events - i.e. if there are n 

classes, n files are constructed with each file containing only the events from one class. In the 

case of testing only one file is created. 

3.3. Rule Acquisition and Induction 

After events have been generated for a specified learning area, TEXPERT builds an 

input file from the events and other appropriate files and feeds the input file into the learning 
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algorithm. The user can change the parameters of the algorithm by editing these files. 

TEXPERT has enjoyed the use of several learning algorithms in its brief but promising 

history. Originally, GEM (Generalization of Examples by Machine) [2] was used. Some 

experiments were then performed using a LISP version of AQl1 developed by Jeff Becker at 

the University of Illinois. Currently TEXPERT uses the most recent version of AQ, AQ15 

[26]. 

AQ15 provides all the enhancements to the AQ algorithm described in the previous 

chapter. Rules produced by AQ15 are saved in a file specified by the user. These rules can 

then be used for testing on the current image or any other image which is input into 

TEXPERT. These rules are also available for incremental learning as described earlier. 

The A-rules facility of AQ15 provides a convenient way of implementing values of filters 

over the image as an additional attribute for events/pixels. Consider, for example, the 

Kirsch operator in figure 2.5. Remember each element in an operator is a coefficient for 

multiplying the corresponding pixel value in the image, and that the value of the filter is 

simply the sum of all these products. Then given an event template which generates 

attributes xl to X 9 as the pixels of a three-by-three region centered around the pixel for 

which the event is being generated, an A-rule which calculates the value of the Kirsch 

operator as attribute x
10 

is given in figure 3.3. 

In general, any image filter can be declared using a single A-rule as in figure 2.5. The 

specification of A-rules is currently not an interactive feature of the TEXPERT system. 

rules must be added to the learning input file by means of an editor, and the learning 

algorithm must be invoked outside a TEXPERT session. 
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Figure 3.3: A-Rule for Applying the Kirsch Operator of Figure 2.5 

This, however, is not as an unreasonable requirement as it may seem. Given large 

images with many textures, the learning algorithm may require several hours of processing 

time to produce rules for the texture. When such processing times occur, it is not 

unreasonable to require that the user do some manual massaging of an input file. 

If such long processing times do occur, TEXPERT provides a mechanism for running 

the learning algorithm as a background process, leaving the user free to perform other tasks 

(e.g. classification of an area for testing the rules after they are generated) while the learning 

algorithm is running. This feature is based on multiprocessing within the UNIX 

environment. 

The expert of an image domain may find several other useful features of AQ15 as 

applicable to herIhis domain. For a summary of these features the interested reader is again 

referred to [26]. 

3.4. Rule Application 

Rule application (also known as rule exercising [9]) consists of generating events from a 

testing area and applying a set of rules to these events. Testing is also available through the 

AQ15 program which incorporates the tools and facilities of the ATEST program [2]. As 
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with the learning algorithm, the user is allowed to change the testing parameters by editing 

the default file used in generating the testing input file. 

Rule application produces a file which is automatically used to regenerate an image as 

described below. 

3.5. Image Regeneration 

Given the Rule Application Module above, image regeneration is a straightforward 

operation. The class to which a pixel is assigned by the induction rules replaces the pixel in 

the regenerated image. This image is maintained internally in the program and can be 

written to a file at the user's request. 

Oftentimes only a section of an image will undergo testing. In this case, all pixels in the 

regenerated image which were not a part of any testing area in the original image will be 

retain their value in the original image. 

Once testing is completed, the user is free to view the testing results directly on the 

screen. The "test results" mode is one of three modes of image display available to the user. 

The other modes are "raw image" and "classified image" mode. Thus the user can quickly 

see the differences between the original image, the classified image and the regenerated image 

that results from all testing done on the image in the current session. In "test results" mode, 

discrepancies between the classified image and the test results that is, pixels for which the 

expert has assigned a different class than that assigned by the rules are highlighted in the 

image. This gives the expert immediate feedback as to how well the rules agree with his 

initial classification. 
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3.8. Transformed Image Testing 

Often the expert requires a more analytical method of how well the rules perform in 

relation to his classification. In the Transformed Image Testing Module, precise statistics are 

calculated and are saved in a file for future reference. These statistics include the number of 

pixels for each class (as determined by the expert) and then the percentage of these pixels 

which were classified into each possible class. A sample statistics file in shown in figure 3.4. 

These statistics were generated for a small region of an image which contained only two 

classes, class 0 and class 1. In this section of the image the expert classified 170 pixels into 

class 1. Of those pixels, the learned rules classified 89% of those pixels correctly (into class 1) 

and 11% incorrectly (into class 0). The statistics file can thus be thought of as a matrix, in 

which values on the diagonal represent the percentage of correct classification by the rules. 

3.7. Implementation Summary 

The TEXPERT system implementation provides a reasonably flexible environment for 

processing images through an machine learning algorithm. Given the large number of 

possible attributes, some restrictions are inevitable given that graduate student man-hours 

CLASS 
o 
1 

No. of pixels 
1030 

170 

% in class 
98 
11 

0 % in class 
2 

89 

1 

Figure 3.4: Sample Statistics File. 



31 

are not (contrary to popular belief) an unlimited resource. Nevertheless, sufficient features 

are available to perform sophisticated learning and texture recognition experiments. Such 

experiments are described in the next chapter. 
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CHAPTER 4. 

EXPERIMENTATION AND RESULTS 

To illustrate the capabilities of the TEXPERT system, experiments were performed on 

two-dimensional digital images obtained from ultrasound analysis of laminated material. 

Textures in these images represent areas of varying thickness or structural flaws in the 

material. The domain is well suited to testing the TEXPERT system for the following 

reasons: 

I) 	 The textures are complicated enough to make difficult the task of an expert to 

write rules to describe the image, but are still well within the scope of the language 

used by AQI5. 

2) 	 The textures lend themselves to both the iterative and incremental learning 

features of the TEXPERT system. 

3) 	 The problem is non-trivial and has practical ramifications for industry. 

In the following sections, experiments are described for generating and testing rules in 

both the iterative and incremental learning modes. Results from applying these rules to the 

image are provided. The results are discussed in detail in the next chapter. 

4.1. 	Learning Texture Using Iterative Learning 

Figure 4.1 shows a section of the digital ultra-sound image used for the iterative 

learning experiments. The image window in the upper left corner of the main TEXPERT 

window indicates the area of the image which is visible in the display below. The user is also 
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guided by the coordinates at the upper left and lower right corners of the displayed section of 

the image. The actual size of the entire image is displayed at the top of the window with the 

name of the file which contains the raw image. 

In this image (and for all the images in this chapter), there are two classes or textures. 

These are normal or class 0 texture and abnormal or class 1 texture. The reader can easily 

recognize four regions of abnormal texture on a background of normal texture in figure 4.1. 

Figure 4.2 shows these regions after they have been classified into class one by "painting" 

them using a mouse. Note that none of the background texture has been classified. This is 

unnecessary because the system assumes that all unclassified pixels automatically belong to 

class O. 

In order to learn rules for classifying pixels into one of these two textures, the user 

selects a training area from which TEXPERT generates events to give as input to the 

learning algorithm. Figure 4.2 also shows the learning area used for the iterative learning 

experiment. 

For this experiment, events were generated using a simple three-by-three pixel event 

template to generate twelve attributes for each pixel. These attributes consist of the 

intensity value of the pixel, the intensity value of the eight neighboring pixel, the maximum 

and minimum values among these nine, and the difference between the maximum and 

minimum value. 

Figure 4.3 shows the results of applying the rules learned to the learning area. The 

rules classified ninety-four per cent of the class 0 (normal) pixels correctly and ninety-seven 

per cent of the class 1 (abnormal) pixels correctly. During iterative learning, all correctly 
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Testing statistics from image file "bimage1" 

Rows 191 to 209 and Columns 162 to 193 inclusive. 

CLASS No. of pixels % in class 0 % in class 1 
0 351 94 0 

1 257 0 97 

Figure 4.3: Results of Applying Rules to the Learning Area 

classified pixels are glven a new value to indicate their class, whereas incorrectly classified 

pixels are not classified but retain their same value for the next iteration. In other words, in 

iterative learning either an event is classified correctly or it is not classified at all. For this 

reason, statistics on incorrectly classified pixels are not generated (or more correctly are not 

distinguished among the incorrect classes). Figure 4.4 shows the pixels which were not 

correctly classified as highlighted within the learning region. 

One may be surprised that a learning algorithm would not produce a one hundred per 

cent accurate classification on the pixels from which it generated its rules. Certainly this 

would be alarming in a simple blocks world domain. However, in digital images pixels with 

identical attributes are often found in different regions. In learning terminology, this means 

the same event belongs to two classes. These rules must somehow compete with each other 

for correct classification of these two identical events. The only possible solution to this 

problem is to change the events themselves. Replacing correctly classified pixels in the image 

with unique values provides the necessary change among the neighbor attributes of the 

problem pixels. Using the regenerated events from this learning area produces perfect results 

as shown in figure 4.5. 
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Once satisfactory rule performance is achieved, the rules can be used to classify 

additional sections of the image or other images in exactly the same way as testing was done 

on the learning area. (Actual rules generated from iterative learning are included in the 

Appendix.) The next section on incremental learning provides results of more extensive 

testing of the system. 

4.2. Learning Texture Using Incremental Learning 

Although iterative learning provides a suitable method for dealing with noise and other 

inconsistences in the images, a more powerful mechanism of learning will be required to 

modify rules across images or across widely varying textures within a single image. 

Incremental learning can provide this capability by allowing rules to be modified to reflect 

new information about a texture. 

Consider the already classified image in figure 4.6. Again the user can readily 

distinguish the background and foreground textures. However, the background texture 

makes a sudden change in the middle of the image. For some applications, this could very 

well be considered a third texture and rules could be learned using three classes instead of 

two. However, in the domain of locating abnormal and normal textures, two classes should 

suffice. 

To illustrate the power of incremental learning, choose for the base case of learning the 

region shown in figure 4.7. This is a region similar to that used in the iterative learning 

example in the previous section. Although this region appears to be small, it is reasonably. 

sufficient for generating rules for other regions with a similar background texture. Figure 4.8 

shows two separate testing regions for the rules generated from the area in figure 4.7. Since 



: ' 
; 

.. -.~- .. ::­



_:"-=-==­ ::-:-::.:: ..::~:-
_:::-:: ­

-: ::§~~~=~:= 

·~ ·i 
,· · 



"'2j 

Ii' 
e::.. 
..It 
~ .. 

::::::- ­

~:~~~~~~~~:~~~~~~~~:=:~~'~".::~~. 

~ M 

: :: i ,. : = : 5 .. 
~. '! 
.. .. Z 
; : -: 
~ . 

... 
~ 



43 


the lower testing testing region most resembles the learning regIOn, testing is highly 

successful, but not nearly as successful in the the upper testing region especially with regard 

to the background texture where only two per cent of the pixels were classified correctly (see 

figures 4.9 and 4.10 for the testing results). 

In such cases of poor performance, iterative learning is not practical since many 

iterations would be required before the influence of the correctly classified pixels could spread 

among the incorrectly classified to produce an accurate set of rules. Several iterations means 

several applications of rule sets whenever pixels in the image are to be classified. For large 

images and domains where large numbers of images are required to be processed, as few as 

three or four iterations could prove prohibitive. 

Testing statistics from image file "bimagel" 

Rows 166 to 179 and Columns 203 to 234 inclusive. 
i CLASS No. of pixels % in class 0 % in class 1 

0 197 99 1 

1 251 13 87 

Testing statistics from image file "bimagel" 

Rows 121 to 137 and Columns 203 to 238 inclusive. 

CLASS No. of pixels % in class 0 % in class 1 

0 351 2 98 

1 257 ,7 93 

Figure 4.9: Results of Applying Rules to Two Testing Areas 
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In such domains, incremental learning can be used to modify rules at a single level of 

iteration. Incremental learning takes additional events along with the original rules and/or 

events and generates new rules which can be successfully applied to all learning areas and 

similar sections of the image. 

In this experiment, another learning area was chosen which was more similar to the 

problem testing area. This additional learning area is show in figure 4.11. (For a comparison 

of the rules for this experiment see the Appendix.) 

The results of the incrementally learned rules are shown in figures 4.12 and 4.13. 

Although performance decreases slightly in the lower testing area, overall performance across 

both areas improved significantly. These rules perform well enough to form the basis for 

successful iterative learning, or in some domains may perform acceptably as is. 

These experiments show only the fundmental capabilities of the TEXPERT system. 

Because of its great flexibility in choosing parameters, developing filters, and generating 

events, additional experiments will benefit largely from expertise in a given domain. A 

thorough discussion of TEXPERT strengths and weaknesses in relation to certain domains is 

included in the next chapter. 
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Testing statistics from image file "bimage1" 

Rows 166 to 179 and Columns 203 to 234 inclusive. 

CLASS No. of pixels % in class 0 % in class 1 

0 197 99 1 

1 251 29 71 

Testing statistics from image file "bimage l" 

Rows 121 to 137 and Columns 203 to 238 inclusive. 

CLASS No. of pixels % in class 0 % in class 1 

0 351 75 25 

1 257 7 93 

Figure 4.13: Results of Applying Incremental Rules to Two Testing Areas 
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CHAPTER 5. 

CONCLUSIONS 

The goals of the TEXPERT system were not only to build a vision system which 

incorporates and learns expertise from an expert in a given domain but also to test the 

effectiveness of machine learning in a textural vision domain. This chapter discusses the 

degree to which the above goals were met, and on this basis, suggests several directions for 

future research in the endeavor to more fully synthesize machine learning and computer 

vision. 

5.1. Effectiveness of Learning in Vision 

A system was created to allow a user to interactively tune the image and learning 

algorithm to produce acceptable rules. The interface is friendly and learning can be tailored 

according to the domain and the expertise of the expert. 

The experiments in the previous chapter show the basic capabilities and effectiveness of 

similarity-based learning in a low-level vision domain. Reasonably accurate rules were able 

to be learned through both techniques of iterative and incremental learning. Effective rules 

were generated using only a small percentage of the actual pixels in the image. 

Although test results are promising, they are by no means conclusive. Also, the 

question of efficiency for real-time applications was not directly addressed. Currently, 

testing is done with acceptable efficiency, but learning rules to use in testing can take 

approximately twenty or more minutes. This is acceptable only in cases where a large 
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percentage of testing is required. However, once satisfactory rules have been generated for 

processing a certain image domain, these rules need not be modified until significant changes 

have occurred in the domain. It would be worth a week or more of the expert's time to 

correctly train the system, if the automated classification using rules could save him a week 

or more of examining image after image without any automated help whatsoever. 

Nevertheless, with a few of the possible enhancements described in the next section, the 

TEXPERT system could be a powerful tool in image processing. Besides detecting faults in 

ultra-sound images, several other areas of image processing could be aided by the 

incorporation of machine learning techniques into texture recognition processing. Satellite 

image processing and robotics vision systems could benefit from being taught by an expert in 

that domain. Robots could conceivably recognize objects solely on the basis of texture. 

Whatever the future application of this system may be, the system can be improved in 

several areas at present. These enhancements are discussed in the next section. 

5.2. Directions for Future Research 

When a child is born, one never says "Sure it's cute but it will be months before it can 

feed itself." Directions for growth are patiently attended and welcomed when they arrive. 

Likewise when a new system is "born," deficiencies should be thought of as potential areas of 

growth, and should be attended to with parental enthusiasm. Being a man-made computer­

based offspring and not a naturally and miraculously evolving entity, however, even more 

patience may be required. 

The areas for potential growth of the TEXPERT system comprise three major areas ­

namely. descriptive language capability, extended automation features, and statistical image 
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processing. 

5.2.1. Descriptive Language Capability 

The VL1 language used by AQ15 provides an adequate descriptive capability for 

utilizing the information in an image for the purposes of learning. Nevertheless, the rules 

generated can sometimes be difficult to understand (see Appendix). This problem can be 

alleviated somewhat by the wise use of the constructive induction facilities of AQ15, but a 

more promising solution to the problem would be the incorporation into the system of an 

algorithm to discover structures and substructures in the image on which basis more 

meaningful rules could be learned. 

An interesting structure and substructure discovery algorithm which uses the VL1 

language has been proposed by Holder [8). This substructure information can easily be 

obtained by applying the substructure algorithm as a pre-processing stage prior to event 

generation, and either adding an attribute to each pixel which states that the pixel is part of 

a given substructure or actually changing the value of the pixel to a special value that 

corresponds to the specific substructure to which the pixel belongs. This structural 

information would make life easier for the expert who may not always be able to define an 

event generator to recognize low-level structures in images from the expert's domain. In 

fact, the expert may not even be aware of low-level structure at all. 

5.2.2. Extended Automation Features 

Although the interface to the system is friendly in the sense that it is largely menu­

driven and mouse-oriented, several additional features of the system are strong candidates 
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for further automation. The primary area of consideration for further automation of the 

system is the area of event generation. As the system stands now, event generation must be 

completely defined by the expert. This is a great demand on her Ihis expertise. The ",ystem 

would be much improved if, once an image was classified, several learning experiments could 

be performed automatically, each with different methods of event generation. The event 

generation which produced the most accurate rules would be the final output of this extended 

automated learning process. 

Since this multiple learning and event generation procedure could become 

computationally expensive, intelligent reduction of work would be useful if not required. Two 

modes of pre-processing would provide valuable information in reducing the amounnt of 

work done by the system. 

The first way of reducing work is to perform experiments which generate events from 

attributes which are most relevant to the image. The most relevant attributes can be 

determined either before or after event generation. Methods for attribute reduction among a 

set of events has been researched and is discussed in [17]. To select attributes before event 

generation, some information must be extracted from the image information which will 

determine which attributes would be more relevant to the specific images. For example, a 

Fourier transform may be done on an image which extracts information about the spatial 

frequencies in the image. High frequencies would suggest the use of a small template which 

would extract much of the information about the variations of intensity occurring in the near 

vicinity of the pixel, whereas low frequencies would suggest the use a larger template in which 

near neighboring values of the pixel are not used as attributes. 
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It may be possible that given enough image input into the system, rules could be learned 

which determine the most likely means of effective event generation based on features found 

during image preprocessing. Such a system would be learning how to learn to recognize 

texture. This "meta-learning" system could significantly reduce the burden of event 

template definition currently placed on the expert. 

The second way of reducing work is to reduce the number of events which are inputted 

to the learning algorithm at each learning phase. In large images, many events are often 

redundant and need not be input into the algorithm. Selecting representative events for 

learning as discussed in [10] would effectively reduce the amount of work done by the learning 

algorithm. 

5.2.3. Statistical Image Processing 

The last area for enhancing the capabilities of the TEXPERT system is in adding the 

power of raw statistical image and signal processing methods. As the system stands now, 

only "local" processing techniques are available. "Global" processing such as Fourier 

transforms cannot be easily used in generating events. A facility for producing related 

images and allowing multiple related images (such as stereo images) to be input into the 

system would provide much more information to the learning algorithm, which would most 

likely result in more powerful and meaningful rules. 

5.3. Final Remarks 

This chapter has described the power and problems of using similarity-based learning 

methods to solve texture recognition and image segmentation problems in digital images. 
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Directions of research to alleviate the problems have been discussed and potential new 

applications have been suggested. Although promise has been demonstrated, much work 

remains to be done. Nevertheless, a synthesis of machine learning and computer vision does 

appear to offer practical insights into the very difficult problem of enabling computers to 

"see." 
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APPENDIX A. 

Experiment Rule Output 

A.1. Iterative Learning 

This section contains the AQ15 output for the iterative learning experiment. Two sets 

of rules are shown: the first set consists of the rules derived from the raw image, the second 

set consists of the rules derived from the image which was regenerated from the application 

classO-outhypo 
'if cpx 
1 x2&:x3 <> 2][x4 = 0 v 1 v 4.!lx5&:x7 = 0 v 1 v 31 
2 x2 = 0 v 11[x5&:x9 <> 21[x7 = 0 v 1 v 41 
3 xl=Ov2v41[x3011!x4 Ov2v31lx5 Ovlv4![x6 o v 1 v 3] 
4 xl <> l11x6 = 0 v Ii [x7 = 0 v 2 v 41 [x9 <> 2] 

classl outhypo 
1F cpx 
1 [x6 2 v 4] ( x7 2) 
2 Ix5 = 2) [ x 7 = 1 v 31 
3 [xl = 1 v 3) [x4 2 v 31 I x 9 = 2] 
4 : x3 = I] [ x 7 = 2 v 4] ! x9 = 21 
5 [X4&:x5 = 2 v 3] I x 9 = 2] 
6 Ix2&:x6 >= 2]lx4&:x5 = 2 v 31 
7 x2 >= 2) [ x 5 &:x 6 2 v 4] 
8 xl = l' [x7 = 21 
9 x2&:x6 >= 211 x3 = 21 I x4 = 1 v 41 
10 x2&:x6 >= 2 I [x4 = 1 v 4) I x 7 2 v 4i 
11 x2 2] I x6 = 2 v 41 
12 x3 = 11 !x4 = 2 v 3] [x7 = 3] 
13 xi = 1 v 4] [ x 5 2 v .. ! [ x 7 = 31 

Th i 5 learning used (milliseconds of CPU time) : 
System time: 31683 
User time 1901850 

Rules From Raw Image 
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of the first set of rules to the image. 

The first set of rules may appear difficult to understand because of the nature of the 

attributes. If one bears in mind that the x5 attribute represents the value of the pixel itself, 

the rules can be interpreted as specializations of the condition that a pixel belongs in classO if 

its value is 0 or 1 or 3 (or sometimes 4) and belongs in class1 if its value is 2. 

The second set of rules use special values 14 and 15 for pixels which were correctly 

classified into classO and class1, respectively. These rules are much simpler to understand 

and essentially give a single condition for those pixels already classified correctly, and then 

extend these conditions for misclassified pixels in the vicinity of correctly classified pixels. 

c1assO-outhypo 
#- cpx 
1 !xS<>lv15] 
2 [ x S <= 1 4] [ x T <> 1 4 I 
3 [x4&x6 <> 1 v IS] 

cla.ssl-outhypo 
#- c p x 
I [xS=151[x6=lvI51 
2 [x4=lvlSllxS=15] 
3 Ix 5&x 6 = 1 v 1 5] [ xT = 1 4 I 
4 !x4&x5 = 1 v 1511xT = 14] 

This learning used Imi Iliseconds or CPU time); 
System time: 10784 
User time 288833 

Rules From Regenerated Image 
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A.2. Incremental Learning 

This section consists of the two sets of rules derived during the incremental learning 

experiment. The first set of rules is best understood by focusing on the xll attribute in 

complex (cpx) #1 in both rules. xli IS the maximum value of all pixels immediately 

surrounding the pixel to be classified. With the specializations provided by the other 

conditions in the complex, pixels with surrounding maximum value equal to zero through 

three inclusive or equal to ten belong to classO, otherwise they belong to classl. This 

classO-outhypo 
# c px 

xl <> S v 7 v 10] iX4 <> 3 v 7 v 8 viol [x6 = 0 .. 2 v S v 8 v 11.13 1 

xl! = 0 .. 3 viol 
2 xl = 0 .. 4 v 6 v 7 v 13][x2 <> 2 v 4, v 101[x3 <> 9 v 10 v 121 

x6 <> 4, v 6 .. 81[x7 0 .. 3 v 8 v 9 v 11 v 131 
x9 = 0 v 1 v 4 v 6 .. 8 v 10 v 121 

c lassl-outhypo 
# cpx 
1 x7 4. .7 v 10 v 121 [xli = 4. .9 v 11 . . 13 ! 

2 
 x4 3 v 7 v 8 v 10! [ x6 = 4 v 6 .. 81 
3 x6 9 v 101 [ x 7 = 10 v 121 [xl0 = 6 v 8 v 91 

4 
 x2 2 v 4 v 10] [xII = 4. .9 v 11 . 13 [ 
S x4 = 8 v 10 .. 13][x7 = 10 v 12] [xlI >= 11 I 
6 xl 8 v 9 v 11 v 121 [xi = 8 v 10 .. 13] [XII >= 1 1 I 
7 xl 5 v 8 .. 121 [x6 3 v 4 v 6 v 7 v 9 v 10 1= 
8 xl&x2 = 10] I x4 = 8 v 10 .. 131 
9 xl 8 v 9 v 1 1 v 121 [ x 6 91 

10 
 x9 9 v 11 v 13] [xl0 = 6 v 8 v 91 [ xiI >= 11 ] 

11 
 x6 8 v 9 v II] Ix9 9 v 11 v 131 [xlI >= 11 ] 

12 
 x2 2 v 4 v 10] [ x 4 = 3 v 7 v 8 v 10 1 


13 
 x6 81 [x 11 >= 11] 

14 x6 4 v 6 v 7] 

1 5 x9 2 v 3 v 5 v 9 v 1 1 v 131 :xll = 4. .9 v 11 .. 131 

16 xl = 5 v 8 .. 12][x4 3 v 7 v 8 v 101 


This learning used (milliseconds of CPU time): 

System time: 77534 

User time 4833467 


Rules From First Learning Area 
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generalization performs well in the first testing area but poorly in the second because the 

maximum value of neighboring pixels varies more among classO pixels in the second testing 

area. 

The second set of rules shows how the maXImum value attribute was appropriately 

modified to more correctly distinguish classO and class! pixels in the second testing area. 

cla.ssO-out;hypo 
# c px 

x4 <> 3 v 9 v 12 v 13)Ix6 <> 2 v 9 v 10]ix7 <> 8 .. 10] 
xl0 <> 2 v 3 v 5 v 11] [xlI <> 4 v 5 v 11 v 12] 

2 xl <> 9 v 11 v 12i [x2 = 0 v 1 v 4 v 7 v 8 vII .. 13] 
x7 0 .. 4 v 7 v 8 v 12]ix9 0 .. 2 v 4 v 6 .. 8 v 10 v 13)[xl0 <> 2 v 5i 

3 xl=0 .. 3v1][x2 Ov4v9 .. 13] 

classl-outhypo 
cpx"* 

xl 4. .6 v 8 .. 13] x9 3 v 5 v 11 v 11 v 12] [XII 4 v 5 v 1 1 v 12]1 = 
xl 4. .6 v 8 .. 13] x7 11 v 101 

3 
2 

x2 2 v 3 v 5 v 6 Ixl0 2 v 3 v 5 v 11]= 
xl 4 .. I} v 8 .. 13 x2 2 v 3 v 5 v 6 v 11 v 101 [ x I} = 2 v 9 v 101 

5 
4 

xl 4 .. 6 v 8 .. 13 x4 = 3 v 9 v 12 v 131 1 x 9 = 3 v 5 v 9 v 1 1 v 12] 
6 xl 4. .6 v 8 .. 13 x9 3 v 5 v 9 v 11 v 1 2 1[xl0 = 2 v 3 v 5 v IIi 
7 x2 1 .. 3 v 5 .. 8 . 3 v 9 v 12 v 131 1 x 7 5 v I} v 9 .. 11 v 13] 
8 xl 4. I} v 8 .. 13 lx2 = 2 v 3 v 5 v 6 v 9 v 10] [xll = 4 v 5 v 11 v 121= 
9 x2 2 v 3 v 5 v I} j [x 7 = 8 .. 101 
10 x2 = 1 .. 3 v 5 .. 8 Ix6 2 v 9 v 101 [ x 9 3 v 5 v 9 v 11 v 121 
1 1 x2 = 1. .3 v 5 .. 8 Ix9 = 3 v 5 v 9 v 11 v 121 [xlI 4 v 5 v 11 v 12] 


12 
 xl 9 v I 1 v 12 [x4 3 v 9 v 12 v 13) 

13 
 x2 = I .. 3 v 5 .. 8 [x7 9 v 10] 

14 x2 1. .3 v 5 .. 8 Ix6 2 v 9 v 10] [x 7 5 v 6 v 9 .. 11 v 131 

15 xl = 4. .6 v 8 .. 13[lxl0 2 v 5i 

16 
 x2 2 v 3 v 5 v 61 I xIl = 4 v 5 v 1 1 v 12[ 

11 
 xl 4 .. 6 v 8 .. 13[[x2 = 2 v 3 v 5 v 6 v 9 v 10 j [x 4 3 v 9 v 12 v 13] 

18 xl 9 v 11 v 12] [xli = 4 v 5 v 11 v 12[ 


19 
 x2 2 v 3 v 5 v 6 J [x4 = 3 v 9 v 12 v 13] 


20 x2 1 .. 3 v 5 .. 811xl0 = 2 v 51 

21 x2 1 .. 3 v 5 .. 8[lx1 = 5 v 6 v 9 .. 11 v 13r Ixl1 = 4 v 5 v 1 1 v 121 


22 xl 4 .. 6 v 8 .. 13]lx4 = 3 v 9 v 12 v 13] ; x 7 = 5 v 6 v 9 . . I 1 v 131 
Tn!s learning used (mi II iseconds of CPU time) 

Syst;em time: 12500 
Use r time 4035117 

Rules From Second Learning Area 
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When the maximum value attribute is considered (and this is true for a large number of 

events since the complexes are ordered according to the number of learning events which 

satisfy the complex), classO pixels can take on a significantly -.vider range of values, whereas 

the class! pixels can take on fewer values. 
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