
,

.j

TEXPERT:

AN APPLICATION OF MACHINE LEARNING TO TEXTURE RECOGNITION

BY

THOMAS CHANNIC

B.S., Maharishi International University, 1982

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1985

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

/

r--- This work could not have been started, completed, or anything else without the help of

my advisor! R.S. Michalski. Professors Robert E. Stepp and Arthur Baskin were also

supportive, if not helpful, understanding, patient and downright nice guys. My fellow

graduate students have always been an inspiration, particularly Carl Uhrik, and Stephen

Borodkin, who not only gave useful advice but also were real regular nice guys.

Also worth mentioning are Wayne Woodmansee and Bill Motzer of Boeing for supplying

ultrasound images, who, although I didn't get to know too well, did seem like reasonably nice

guys.

And then there are all those whose contributions simply transcend the nice guy label:

Richie, Maharishi, Gabriel, Michael and his eternal partner, D-E-F the second, Brother (in

every sense) Paul, Mom, Dad, Plunk, Spunk, Carmen, and Professor Liz Dolske the Great,

the most superconscious person ever to walk the halls of the Department of Computer

Science at the University of Illinois.

iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION .. 1

1.1. The Knowledge Transfer Continuum ... 2

1.2. Texture Recognition as Image Segmentation ... 4

1.3. Statistical Methods ... 5

1.4. Overview of the Thesis 6

2. TEXPERT ALGORITHMS AND METHODS .. 8

2.1. Learning Algorithm ... 11

2.1.1. Features for Learning Texture .. 13

2.1.2. Iterative Learning ... 16

2.1.3. Incremental Learning .. 18

2.2. Testing Method ... 19

2.3. Image Pre-Processing .. 20

2.3.1. Averaging... 20

2.3.2. Gray-Level Reduction .. 20

2.3.3. Event Generation ... 21

3. TEXPERT ARCHITECTURE AND IMPLEMENTATION 22

3.1. Image Classification and Processing ... 22

3.1.1. Classifying an Image ... 22

3.1.2. Other Processing .. 24

3.2. Event Generation .. 24

3.3. Rule Acquisition and Induction .. 26

3.4. Rule Application ... 28

3.5. Image Regeneration ... 29

3.6. Transformed Image Testing 30

3.7. Implementation Summary ... 30

4. EXPERIMENTATION AND RESULTS ... 32

4.1. Learning Texture Using Iterative Learning .. 32

4.2. Learning Texture Using Incremental Learning ... 39

5. CONCLUSIONS ... 49

v

5.1. Effectiveness of Learning in Vision 49

5.2. Directions for Future Research .. 50

5.2.1. Descriptive Language Capability.. 51

5.2.2. Extended Automation Features .. 51

5.2.3. Statistical Image Processing ... 53

5.3. Final Remarks .. 53

APPENDIX A. Experiment Rule Output ... 55

A.l. Iterative Learning 55

A.2. Incremental Learning .. 57

REFERENCES 60

1

CHAPTER 1.

INTRODUCTION

Computers outperform all humans at certain tasks, long division and reliable storage of

large quantities of data, to name a few. They outperform most humans at other tasks, like

playing chess and diagnosing soybean diseases for example. Unfortunately there are many

tasks which computers perform far worse than most humans, like understanding a human

language and recognizing objects or other intelligible collections of information from a visual

field. Because computers are utterly inferior to humans in these areas, the areas are

appropriately included under the term artificial intelligence (AI).

Getting a computer to make sense out of electromagnetic waves (also known as

computer vision) has often been considered as not really AI, but more of an engineering or an

industrial problem. The most likely reason for this bias is that the problem involves a non­

trivial transformation from an apparently continuous spectrum of light into discrete digital

information suitable for processing by a computer. Nevertheless, the processing of digital

information is by no means less trivial than the analog-to-digital (A/D) conversion of the

image. If computer vision researchers agree on anything, they agree that the key to designing

a computer that sees depends more on the intelligent manipulation of digital visual

information than on how that information is derived from its source.

Until recently, all approaches to VISIon have been largely statistical in nature.

Researchers sought the magic formula which would mathematically transform an image'into

easily discernible shapes and objects. Unlike these approaches, the research described in this

thesis is based on the view that learned concepts play an essential role in texture recognition

2

and human vision in general. What we know determines to a large extent what we see. This

idea could be described as a cognitive science approach. If this view is accurate, a computer

vision system could enhance its capabilities by learning general and flexible concepts to guide

its image processing strategy.

TEXPERT is a software system designed to acquire and apply knowledge for

recognizing textures in a two-dimensional digital image. The system was designed primarily

to test the usefulness of machine learning techniques in solving computer vision problems,

particularly the problem of texture recognition. The system utilizes similarity-based learning

(SBL) methods developed by Michalski [23]. Although there exist SBL methods which learn

"by discovery" - Le. without a human tutor, supervised methods were chosen here to allow

an expert to incorporate as much knowledge into the learning process as possible. Thus the

expert is allowed access to all points in what could be called a knowledge transfer continuum

between man and machine.

1.1. The Knowledge Transfer Continuum

Figure 1.1 shows a series of steps by which knowledge can be transferred from a human

expert to a machine. These steps can be referred to as a continuum because if any step is left

out, a noticeable gap in performance typically occurs. For example, a bottleneck in expert

systems [24] often occurs when a human expert attempts to define rules describing his

knowledge without any consideration of features of the domain or examples of concepts in

terms of the features. This unjustified "break" in the continuum is indicated by the dotted

line in Figure 1. L

3

i I Doma i n L' Doma i n I I I IEXPERT
_ I eat u res ,

i

Ex amp I e s, ' ~.-----,------J-\,_F, __I ''---~_I~ I '
l I ~----~------~ ~----------~

L_____ _ _ __________________ J

Figure 1.1: Knowledge Transfer Continuum

The use of bidirectional arrows in Figure 1.1 is significant. They indicate that both the

machine and the expert have input into the design and effectiveness of that step in the

continuum. The degree to which either expert or machine has control of a particular step

depends on the system and application. Ideally, tools for increased interaction at each step in

the continuum should be available to the expert. Such tools have been developed by Reinke

[2] in the context of the ADVISE Meta-Expert System [16]. These tools were used

extensively in TEXPERT, and will be described in more detail in the next two chapters.

The TEXPERT environment provides a high-level of interaction between a knowledge

engineer and the program. The system is menu and mouse driven, but still provides the high

degree of flexibility necessary for learning across a wide range of visual problems. The next

two sections discuss this range of problems, provide a brief description of notable approaches

to these problems, and discuss how the TEXPERT philosophy compares and enhances the

current methods.

4

1.2. Texture Recognition as Image Segmentation

In general, the problem of texture recognition can be thought of as equivalent to the

problem of segmentation [18] - that is, segmenting an image in segments or regions on the

basis of color, shape, or texture. Of all these segmentation criteria, texture seems to be the

most general. In a real world environment, objects are readily distinguished among

themselves by a distinct change in texture across the visual field. A book has a different

texture than a desk-top which has a different texture than the wall which has a different

texture than a picture frame and so on. In black-and-white photographs, where color is

non-existent, texture is the arguably the only criteria for image segmentation.

In some ways, texture recognition is a more complicated problem than image

segmentation. Inherent in the notion of texture is structure. A texture recognition program

must provide some facility for recognizing structure or patterns that correspond to a common

sense idea of texture. The search for textons [3,4], or elements of texture, has yielded few

practical benefits for the texture recognition problem. Elements of texture, if they exist at

all, vary greatly across regions of an image, and good descriptions for them are often difficult

for humans to make.

Research has indicated that machine learning algorithms possess the capability of

discovering simpler and more efficient rules for classification than experts in a domain [21].

Perhaps, a fairer statement is to say that machines perform better when allowed to generate

their own rules from key examples described in terms of relevant features as provided by an

expert, rather than by requiring the expert to condense all his knowledge directly into a rule

formalism. Machine learning methodologies thus form an important step in the kno wledge

transfer continuum described above.

5

TEXPERT allows an expert to interact with the system at each step in the knowledge

transfer continuum. The expert designs his own statistical methods for applying to the

image, selects the examples he wants the system to use for learning, and can view, test, and

incrementally modify the learned rules to improve system output. Thus TEXPERT is easily

adapted to image segmentation problems which are not specifically texture related.

1.3. Statistical Methods

The earliest work on texture recognition viewed the problem as one of pattern

recognition [19,20]. Pixels were mapped into a feature space and clustered according to

statistical pattern recognition methods. Over the years, the methods have become

increasingly complex. Results of complicated statistical methods continue to show promise

[22], but often at the expense of comprehensibility and adaptability across domains

complex statistical methods make interaction with experts in the visual domain increasingly

difficult if not impossible.

For example, consider a vision system to recognize parts on a manufacturing assembly

line. Ideally, a system for an automotive assembly line could be easily modified to a tool and

machine assembly line by interaction with an expert from the tool and machine domain. Use

of complex statistical methods require detailed knowledge of these methods to locate

parameters for modifying performance in a given domain, and furthermore, the effects of

changing parameters is not always well-known or well-behaved.

Man-machine interaction in image processing is not new :14,15], but such systems also

suffer from the drawback of being domain specific. The interaction of the expert is solely for

the purpose of resolving problems within a given domain. The TEXPERT system provides a

8

general mechanism for any visual domain expert to tailor a texture recognition system to

his/her domain.

Given a series of images classified by a human tutor into various regions of texture,

TEXPERT generates rules that classify pixels of unclassified images into a known texture.

The expert is involved to some degree in every stage of the learning process, to insure that

the final rules of the system represent the fullest extent of her /his expertise.

An image that is input into the system is assumed to consist of a fixed number of

distinct regions. For example, an image could consist of the following regions or textures: 1)

a uniform background, 2) areas of random texture, and 3) areas of man-made texture. The

regions of random texture might be characterized by high image intensity values relative to

the background, irregularly shaped contours, and random size. The regions of man-made

texture may be characterized by low image intensity values relative to the background and

smooth contours, which consist of straight parallel lines in any direction. These descriptions

represent logical combinations of image features. Textures defined in this way can easily be

learned by almost any SBL algorithm.

1.4. Overview of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 discusses the algorithms

and methods used by TEXPERT. This discussion includes details about the learning

algorithms used, the methodologies by which an expert can use these algorithms, and the

overall framework in which these algorithms and methodologies are integrated.

Chapter 3 discusses the actual implementation of the system. Here the reader will find

descriptions of the various components of the TEXPERT system. Also discussed in this

7

chapter are the facilities for enhanced interaction with an expert.

Experimental results are presented in Chapter 4. Experiments were performed on both

actual and sample images. Conclusions and directions for future research are presented in

Chapter 5. In this chapter the results from the previous chapter are discussed in depth, along

with their ramifications for both computer vision and machine learning. References are

provided at the end of the thesis.

8

CHAPTER 2.

TEXPERT ALGORITHMS AND METHODS

This chapter describes the algorithms and methods used in the TEXPERT system. The

system is built out of similarity-based learning methods developed by Michalski [23].

Learning, however, is only a part of the system, which also incorporates rule application

strategies from expert systems [2,16] research in addition to standard image processing

methods. These methods are combined to form the top-level algorithm for the system as

shown in figure 2.1.

I . 	 "1nput and classify the image;
REPEAT
define active sub-region for learning or testing;
perform image pre-processing;
generate events from pixels in active sub-region;
if learning desired then

rules = learn{events);
if testing desired then

test(even ts, rules)
if further learning or testing desired then

regenerate image;
else

generate results;

done true;

UNTIL DONE

Figure 2.1: Top Level Algorithm

9

The first four steps in the algorithm involve image classification and pre-processing, and

generation of events for learning or testing rules. Classification requires display of the image

to a tutor or an expert who segments the image into regions or classes. An entire image need

not always be classified. With large images, classification of only a part of the image is

desirable. Once the sub-region of the image to be used for learning has been classified and

defined, the input events to the learning algorithm can be generated. Often, generation of

learning events first requires image pre-processing - use of convolution operators or other

statistical methods to generate features for the image. For example, images can be processed

using a "Mexican hat operator" [5], for the purpose of constructing an "on-edge" attribute.

Each pixel in the image will have both a gray-level value and an "on-edge" value, which can

be either the actual value or simply true or false depending on the result of the application of

the "Mexican hat". These two values, and any other values produced by the application of

other filters or operators to the image, together form an event which is essentially a point in

an n-dimensional attribute space where n is the number of values or attributes associated

with each pixel. Specific methods of attribute selection will be discussed in a subsequent

section in the course of discussing the learning algorithm. Additional methods of pre­

processing are also discussed in a later section.

The next stage in the algorithm is the actual learning phase. The learning phase takes

as input classes or sets of events from the image classification and pre-processing phase, and

outputs rules which correctly assign a pixel to a class based on the attribute values of the

pixel. As a simple example, consider an image where every pixel has a red-intensity level and

a blue-intensity level and that each level has three values high, medium and low.

Furthermore, suppose this image has two different "textures" or types of regions - that is.

each pixel in the image is part of some region which is of one of the two types of regions in

10

the image. Occurrences of these two types of regions could exist anywhere in the image to

form, for example, a checkerboard pattern as in figure 2.2. Now if one of the checkerboard

regions has pixels where the red-intensity value is always higher than the blue-intensity

value, and the other region's pixels always have a higher blue-intensity than red, then the

rules for classifying pixels would look like these:

[blue_value(pixel) = high] [red_value(pixel) = medium or low] or

[blue_value(pixel) = medium] [red_value(pixel) = low]

then

[class(pixel) = 1:

[red_value(pixel) = high] [blue_value(pixel) = medium or low] or

[blue_value{pixel) = medium] [red_value(pixel) = low]

then

[class(pixel) 2]

red value> blue

= blue value> red

Figure 2.2: Two Textures Forming a Checkerboard

11

Details of the learning algorithm will be discussed in section 2.1.

The next phase of the algorithm is rule application or testing. In this phase, the rules

output from the learning phase are applied to other images or other sections of the original

image to evaluate the accuracy of the rule. These other images or other sections of images

must also be classified by the expert or tutor in order to determine how well the rules were

able to perform in relation to the expert. If the testing shows acceptable performance over a

sufficient number of test cases, then the learning has been successful and these rules can be

used reliably on unclassified images in the domain. If testing does not indicate acceptable

rule performance, there are two options available for further learning: iterative learning,

where further learning takes place on a regenerated image; or incremental learning, where the

events/pixels are input to the learning algorithm along with a set of old rules, to produce

modified rules which are accurate over all events/pixels. The iterative method is most useful

in general, however the incremental method is frequently the method of choice when applying

rules learned from one or more images in a domain to a new image. Both these methods will

be discussed in more detail in the next section.

2.1. Learning Algorithm

Although not the first step in the top-level algorithm, the learning phase is the heart of

the TEXPERT algorithm. The algorithm used is a modified version of the AQ algorithm,

developed by Michalski, Reinke, Hong, Mozetic, and others :2,25,26~. The algorithm is a

supervised covering algorithm. The fundamental input to the system are events, which are

vectors in an n-dimensional a.ttribute space where n is the number of attributes. Attributes

can have values of several types. Linear values are ordered values such as integers. Nominal

/1

12

values are non-ordered, for example, a shape attribute mi~ht have nominal values square,

circle, triangle. Values may also be structured - that is, the values of the attribute may

form a hierarchy. The shape attribute for example, may also have the value polygon, which

could have as sub-values square and triangle, but not circle, which could be a sub-value of

the value ellipse.

Given attributes with values of these types, the algorithm searches through a space of

logical expressions relating attributes to values. The goal of the search is to find an

expression, which is satisfied by the values for every event in one class, and which is not

satisfied by the values of any event in any other class of events. The search is limited by a

heuristic called the lexicographical evaluation function (LEF) which can be user-specified.

The LEF evaluates candidate expressions and sub-expressions according to user-specified

criteria. Only a small number of expressions are expanded at each stage in the search. The

number of expressions to expand at each stage is also a user-specified parameter. The

algorithm can be viewed as a very flexible beam search through the hypothesis space

associated with the vector space defined by the attributes.

Several additions to the AQ algorithm have been made over the years. The important

ones are worth mentioning here. Background knowledge can be provided to the algorithm.

Such knowledge can be used to perform constructive induction, i.e. automatic generation of

new attributes for the events inputted to the learning algorithm. Background knowledge to

AQ can take one of two forms. A-rules describe mathematical combinations of values to

form a single value for a new attribute. F or example, the value for the attribute length may

be multiplied by the value for the width attribute to produce a value for a new attribute

called area. An example of this A-rule is shown in Figure 2.3(a). Figure 2.3(b) shows a

13

(a) area:= length * width

(b) 	 [discomfort...level = high1if
[temperature> 90][humidity > 50]

Figure 2.3: A-Rules and L-Rules

simple L-rule for AQ. L-rules create attributes on the basis of logical combinations of

attributes and values. The L-rule in the figure says that if the temperature attribute has a

value greater than 90 and the humidity attribute has a value greater than 50, then the new

attribute discomfort-level should be constructed with the value high.

Of these two types of background knowledge, A-rules are the most applicable to the

prohlem of image processing. A-rules provide for arithmetic combinations of intensity values

to create new features for image pixels. An example of how A-rules can be used as image

filters is given in the next chapter under "Rule Acquistion and Induction." Other ways of

generating features for each pixel are discussed in the next section.

2.1.1. Features for Learning Texture

Many possibilities exist for computing features to recognize texture. The best features

will be those which define an attribute space which most easily lends itself to the partitioning

performed by the learning algorithm. The features generated by TEXPERT fall into one of

three categories: neighboring gray--Ievel values, simple statistics, and convolution filter

14

output.

2.1.1.1. Neighboring Gray-Level Values

These are the simplest attributes in the TEXPERT system. They consist only of the

gray-level values of pixels neighboring the pixel with which the event is associated. For

example, one could take the value for each immediate neighbor of a pixel to construct an

event with eight attributes for each pixel. The first attribute would correspond to the value

of the pixel to the central pixel's upper left, the second attribute would correspond to the

pixel directly above the central pixel, and so on, as in Figure 2.4. Even the value of the pixel

itself can often be used as an attribute, and is in fact the only attribute needed in the trivial

234 432

4 32

4 22

3 3 3

3 4 5i

4 6

I

5

4 i5 4

3 3 4 3 2 2

Event for central pixel (value 6):
[upper_left = 3] [above 4] :upper_right
[Ie f t 4: [r i gh t = 5]
[lower_left 4]lbelow 5]'lower_right

5

4]

Figure 2.4: Possible Event Using Neighboring Gray Values

15

case when texture is determined by gray level alone.

A tradeoff is clearly apparent in the use of neighboring values as attributes. More

information is available to the learning algorithm when more neighboring values are used,

however with more information processing time steadily increases.

2.1.1.2. Simple Statistics

Simple statistics are linear combinations of the neighboring pixel values. Some

examples of such statistics are sum of values, mean pixel value, maximum pixel value, and

minimum pixel value. The main advantage of the use of these statistics is that they

incorporate regional information about the pixel in one feature with only minimal additional

computation. Although these statistics can be useful, the information is frequently limited in

comparison with more involved statistics such as those discussed below.

2.1.1.3. Convolution

The third type of feature of benefit to a texture learning system are those that are

calculated using filters or convolution operators. A convolution operator can be thought of as

a coefficient template a grid which is centered over a pixel in the image where each

coefficient in the template multiplies the corresponding pixel value in the grid and the sum of

these products is the value of the operator at the central pixel. An early edge detection

template (the Kirsch operator) is shown in Figure 2.5. The equation in Figure 2.5 is the

application of the Kirsch operator to the central pixel of Figure 2.4. The low value of the

result indicates a small gradient in the vertical direction that is, no horizontal

through the central pixel is indicated.

--- --- ---

18

r~III
-1 -1 -1f
Value for central pixel of Fig. 2.4 (value = 6):

(1)3 + (1)4 + (1)5 + (-1)4 + (-1)5 + 1(4) 1

Figure 2.5: Kirsch Operator

Researchers have suggested a wide range of convolution filters for various purposes.

Even a summary of such filters extends beyond the scope of this thesis. The interested reader

is referred to [6,11,12] for a comprehensive overview of the subject.

2.1.2. Iterative Learning

In the TEXPERT system, the learning algorithm described above is performed

iteratively by using the classification of pixels from one iteration as the value of pixels for the

next iteration. This method was first proposed by Michalski)] and similar methods [13]

have also been proposed. This method has also been called a pyramid or hierarchical

architecture for vision.

Iterative learning is hierarchical because a new texture can be learned or recognized

from a combination of old textures from a previous iteration. To illustrate how this works,

consider the image in Figure 2.6. Such an image consists of three fundamental textures:

17

Figure 2.6: An Illustrative Image For Pyramid Learning

solid lines, dashed lines, and white space. At the first iteration of the learning algorithm

rules can be derived for classifying pixels into one of these three classes as appropriate. For

iterative learning a new image would be generated as follows: each pixel that was part of a

solid line in the first image would be given a value of 1, each pixel that was part of a dashed

line in the first image would be given a value 2, and all other pixels would be given the value

3. Now the new image serves as input to a new iteration of the learning algorithm. In this

iteration, the new values of the pixels can be used to recognize the two textures (areas where

lines run from top to bottom and left to right, and areas where lines run from top to bottom

18

and right to left) in the figure. The fact that there are two textures at the top-level and

three textures at the first level suggests the pyramid as a model for the architecture.

In the above example, a new classification was required at each level of the pyramid, but

this need not always be so. Iterations can occur using the original classification. This form of

iteration is a form of relaxation and is a way of dealing with noise in the image. The idea is

that only pixels whose attributes satisfy the learned rules to a high degree of consonance (see

[2]) or certainty are replaced by a class designator in the next iteration. All doubtful pixels

retain their original value for the next iteration. Once a pixel is classified, its value does not

change for the next iteration. Thus each iteration becomes a means of classifying more and

more pixels in the image until eventually the entire image is correctly classified.

2.1.3. Incremental Learning

At no time during either method of iterative learning are rules used in addition to

events as input to the learning algorithm. Learning which uses rules as input is called

incremental learning, and is entirely different than iterative learning. Incremental learning

can be thought of as modifying the input rules based on new input events. Incremental

learning is discussed in detail in [2,25,26].

As mentioned earlier, incremental learning is used in TEXPERT when learning occurs

over several images in the domain. The main advantage to incremental learning is efficiency.

Cross-image learning could be effected by storing all the events for all the images, but this is

not only cumbersome but often expensive. In fact, it is often advisable that incremental

learning be used on a single image if that image is large. It is not always necessary, however,

to invoke the learning algorithm several times to perform incremental learning on a single

19

Image. The verSlOn of AQ described in the next chapter provides a mechanism for

partitioning large event sets, and generating rules one set at a time until all the sets have

been examined.

2.2. Testing Method

The testing phase consists of applying the set of rules generated during the learning

phase to a separate region of the current image (or to another image in the domain) and

evaluating the performance of the set of rules on this new region. In applying the rules, an

event for each pixel in the testing region is generated in the same way events were generated

for pixels in the learning area to learn the given rules. Each rule is applied to an event and

an estimate of probability is calculated based on the degree to which the event satisfied the

rule. The specific methods of calculating the estimate of probability are not discussed here.

The reader is referred to [21] and [25] for details on these measures.

Once a measure of rule satisfaction is obtained for each rule, the event can be assigned

to the class whose rule has the highest measure of satisfaction. In the case of the iterative­

relaxation method described above, the rule satisfaction must exceed a given threshold

parameter set by an expert. It can also be required that the winning measure exceed its

nearest competitor by a certain threshold. If these conditions are not met, no classification

occurs and the pixel maintains its original value for the next iteration. In the next iteration,

the conditions may be relaxed - i.e. either or both the thresholds are lowered.

Once all the pixels in the testing region have been classified by the rules, the classified

image can be used to evaluate the rule performance. Learning is considered successful when a

reasonable level of accuracy has been maintained over a sufficient number of images in the

20

domain. Exact measures for "reasonableness" and sufficiency are provided by the expert.

2.3. Image Pre-Processing

As in any image system, additional processing of the image prior to the operations of

one's own system is often useful. For example many systems work with a Fourier transform

of an image or "smoothed" images. In the design of the TEXPERT system, three methods of

pre-processing are considered: averaging, gray-level reduction and event generation.

2.3.1. Averaging

Averaging is a standard method of image reduction. Averaging an image replaces each

m x n region in the image by the average values of the pixels in that region. This method

thus reduces the number of pixels in the image by the product mn. Such data reduction is

often useful with large images, but should be used with care since information is often

drastically reduced.

2.3.2. Gray-Level Reduction

Gray-level reduction reduces the number of values that an individual pixel can have.

This reduces the search space for the learning algorithm. The new value of the pixel is

obtained by dividing it by:

MAX
IV

where MAX is the maximum value of any pixel and N is the new number of values allowed

for the pixel. If the minimum value for a pixel in the original image is not zero, the

21

minimum value can be subtracted from the pixel before the division described above.

2.3.3. Event Generation

The last pre-processing done on an image before learning is event generation. During

this phase, an event is generated for each pixel in the image. For learning, there is an exact

correspondence between pixels and events. Events are generated using an event shape

operator which is specified by the user of the system. This operator extracts features (as

described in section 2.1) from the image to form an event which is saved for subsequent input

into the learning algorithm. Since the learning algorithm requires that pixels classified into

similar classes be presented as such, event generation accomplishes this as well.

Additional details on event generation are covered in the next chapter as part of the

discussion on the implementation of all the methods described above.

22

CHAPTER 3.

TEXPERT ARCmTECTURE AND IMPLEMENTATION

This chapter describes the implementation of the methods and algorithms described in

the previous chapter. The system was implemented on a SUN-2 Workstation and uses the

Sun Windows window and graphics package. Development of the system was primarily in

Pascal, although some portions of the system were written in C in order to interface with the

Sun Windows routines. This interface is described in detail in [7]. •

The general architecture of the TEXPERT system is shown in Figure 3.1. Each module

is described in detail in a corresponding section below.

3.1. Image Classification and Processing

In the implementation of TEXPERT, image classification is considered as one possible,

although usually essential, mode of processing. Classification occurs as the last step before

event generation. Any pre-processing is required to take place before classification.

3.1.1. Classifying an Image

The TEXPERT system displays the fully pre-processed image to the user in the window

in which the user started the program. The system can also be run outside the Suntools and

Sun Windows environment as long as this is done on the console and a mouse is available.

Given the displayed image, the user can use the mouse to paint pixels which the user

determines as belonging to a specific texture or region. Erasing is available in case the expert

23

Image Acquisition

Module

Image Pre-Processing

Module

Event Generation

Module

Rule Acquisition

Module

Rule Application

Module

Image Regeneration

Module

Transformed Image

Testing Module

Figure 3.1: TEXPERT General Design

changes his/her mind as (s)he is prone to do from time to time. The user is free to classify as

much or as little of the image as (s)he desires.

24

As currently implemented, TEXPERT allows a user to classify images pixels into as

many as 10 different classes. Once a pixel is classified into a class, and only then, is that class

(or texture) assumed to exist in the image. However, only classes which exist in the learning

area have rules produced in the learning algorithm. The user should, therefore, have pixels

from all specified classes within the learning area specified during event generation (see next

section).

3.1.2. Other Processing

In the current implementation of TEXPERT, there are two filters for pre-processing

data. The first is a gray-level reduction filter as described in the previous chapter. This

filter reduces the number of gray-levels rrom 255 to 12. The maximum number or levels

allowable as input to the learning algorithm is set to 58 by default. In practice, the rewer

number of levels, the more efficient the algorithm.

The second filter available within the context of TEXPERT is the second-order

Gaussian edge detector described in [5]. This filter produces a separate image file which can

be read into TEXPERT simultaneously with the original image. These two images together

can then be used to generate edge detection and "zero crossing" attributes ror learning.

3.2. Event Generation

Event generation is a crucial stage or the TEXPERT system. When a user defines the

way events are to be generated, (s)he is in fact defining the attribute and hypothesis space in

which the learning algorithm is to search. TEXPERT is designed with a flexible interactive

means of specifying attributes for events.

25

In the current implementation, a user is allowed to select one of four sizes for an event

template. An event template is best thought of as a mask which is centered over the pixel for

which the event is to be generated. A three-by-three template is shown in figure 2.4. Event

templates are presently required to be square and to have an odd dimension so it can be

centered over a pixel. The four templates range in size from three by three to nine by nine.

Once the user has selected a size for the template, he can then select which locations in

the template (s)he would like to use as attributes for the event. Figure 3.2a) shows a five­

by-five template with locations marked with attributes Xl' x2' x3' and so on. All other

locations other than those with attributes do not generate an attribute for the event.

Figure3.2c) shows an event corresponding to the template as positioned in the sample section

of image shown in part b). In this example, all the attributes are neighboring gray-level

values.

After defining a template, a user can save the template in a file for future use. Thus a

user need not always define a template for every event generation process.

In addition to specifying neighboring gray-levels as attributes, the user is also allowed

to select other attributes for learning from a menu. These attributes are: mIDlmum,

maximum, sum, average, and the difference between the minimum and maximum values.

These attributes are calculated over the neighboring gray-values specified In the event

template.

Events are generated automatically as preparation to learning rules or testing them on

an image. When invoking learning or testing on an image, the user is first asked to define a

region in which to learn or test rules. The user can define a region either by entering

coordinates directly from the keyboard or by selecting the desired boundaries of the area

http:Figure3.2c

26

II I x I
I

xI
1 I 2 I

I ! I
x I x

4Ia)
3 I b)

I

II

x I x 65

12[3:4\4
1

3

i 2 13 4 5 4

1214 6 5 4

! 3 4 514 3
I

! 3
1

3 4 13 2

2

3

2

3

2

I

I
i

i

X
7

i

J
X

8

c) Event for template positioned as in b):
[x 1 3][X2 4][X3 2]
[X4 4] [X5 3]
[X 6 3] [X7 3] [X8 2]

Figure 3.2: Possible Event Using Neighboring Gray Values

using the mouse. A separate file is written for each class of events - i.e. if there are n

classes, n files are constructed with each file containing only the events from one class. In the

case of testing only one file is created.

3.3. Rule Acquisition and Induction

After events have been generated for a specified learning area, TEXPERT builds an

input file from the events and other appropriate files and feeds the input file into the learning

27

algorithm. The user can change the parameters of the algorithm by editing these files.

TEXPERT has enjoyed the use of several learning algorithms in its brief but promising

history. Originally, GEM (Generalization of Examples by Machine) [2] was used. Some

experiments were then performed using a LISP version of AQl1 developed by Jeff Becker at

the University of Illinois. Currently TEXPERT uses the most recent version of AQ, AQ15

[26].

AQ15 provides all the enhancements to the AQ algorithm described in the previous

chapter. Rules produced by AQ15 are saved in a file specified by the user. These rules can

then be used for testing on the current image or any other image which is input into

TEXPERT. These rules are also available for incremental learning as described earlier.

The A-rules facility of AQ15 provides a convenient way of implementing values of filters

over the image as an additional attribute for events/pixels. Consider, for example, the

Kirsch operator in figure 2.5. Remember each element in an operator is a coefficient for

multiplying the corresponding pixel value in the image, and that the value of the filter is

simply the sum of all these products. Then given an event template which generates

attributes xl to X 9 as the pixels of a three-by-three region centered around the pixel for

which the event is being generated, an A-rule which calculates the value of the Kirsch

operator as attribute x
10

is given in figure 3.3.

In general, any image filter can be declared using a single A-rule as in figure 2.5. The

specification of A-rules is currently not an interactive feature of the TEXPERT system.

rules must be added to the learning input file by means of an editor, and the learning

algorithm must be invoked outside a TEXPERT session.

28

Figure 3.3: A-Rule for Applying the Kirsch Operator of Figure 2.5

This, however, is not as an unreasonable requirement as it may seem. Given large

images with many textures, the learning algorithm may require several hours of processing

time to produce rules for the texture. When such processing times occur, it is not

unreasonable to require that the user do some manual massaging of an input file.

If such long processing times do occur, TEXPERT provides a mechanism for running

the learning algorithm as a background process, leaving the user free to perform other tasks

(e.g. classification of an area for testing the rules after they are generated) while the learning

algorithm is running. This feature is based on multiprocessing within the UNIX

environment.

The expert of an image domain may find several other useful features of AQ15 as

applicable to herIhis domain. For a summary of these features the interested reader is again

referred to [26].

3.4. Rule Application

Rule application (also known as rule exercising [9]) consists of generating events from a

testing area and applying a set of rules to these events. Testing is also available through the

AQ15 program which incorporates the tools and facilities of the ATEST program [2]. As

29

with the learning algorithm, the user is allowed to change the testing parameters by editing

the default file used in generating the testing input file.

Rule application produces a file which is automatically used to regenerate an image as

described below.

3.5. Image Regeneration

Given the Rule Application Module above, image regeneration is a straightforward

operation. The class to which a pixel is assigned by the induction rules replaces the pixel in

the regenerated image. This image is maintained internally in the program and can be

written to a file at the user's request.

Oftentimes only a section of an image will undergo testing. In this case, all pixels in the

regenerated image which were not a part of any testing area in the original image will be

retain their value in the original image.

Once testing is completed, the user is free to view the testing results directly on the

screen. The "test results" mode is one of three modes of image display available to the user.

The other modes are "raw image" and "classified image" mode. Thus the user can quickly

see the differences between the original image, the classified image and the regenerated image

that results from all testing done on the image in the current session. In "test results" mode,

discrepancies between the classified image and the test results that is, pixels for which the

expert has assigned a different class than that assigned by the rules are highlighted in the

image. This gives the expert immediate feedback as to how well the rules agree with his

initial classification.

30

3.8. Transformed Image Testing

Often the expert requires a more analytical method of how well the rules perform in

relation to his classification. In the Transformed Image Testing Module, precise statistics are

calculated and are saved in a file for future reference. These statistics include the number of

pixels for each class (as determined by the expert) and then the percentage of these pixels

which were classified into each possible class. A sample statistics file in shown in figure 3.4.

These statistics were generated for a small region of an image which contained only two

classes, class 0 and class 1. In this section of the image the expert classified 170 pixels into

class 1. Of those pixels, the learned rules classified 89% of those pixels correctly (into class 1)

and 11% incorrectly (into class 0). The statistics file can thus be thought of as a matrix, in

which values on the diagonal represent the percentage of correct classification by the rules.

3.7. Implementation Summary

The TEXPERT system implementation provides a reasonably flexible environment for

processing images through an machine learning algorithm. Given the large number of

possible attributes, some restrictions are inevitable given that graduate student man-hours

CLASS
o
1

No. of pixels
1030

170

% in class
98
11

0 % in class
2

89

1

Figure 3.4: Sample Statistics File.

31

are not (contrary to popular belief) an unlimited resource. Nevertheless, sufficient features

are available to perform sophisticated learning and texture recognition experiments. Such

experiments are described in the next chapter.

32

CHAPTER 4.

EXPERIMENTATION AND RESULTS

To illustrate the capabilities of the TEXPERT system, experiments were performed on

two-dimensional digital images obtained from ultrasound analysis of laminated material.

Textures in these images represent areas of varying thickness or structural flaws in the

material. The domain is well suited to testing the TEXPERT system for the following

reasons:

I) 	 The textures are complicated enough to make difficult the task of an expert to

write rules to describe the image, but are still well within the scope of the language

used by AQI5.

2) 	 The textures lend themselves to both the iterative and incremental learning

features of the TEXPERT system.

3) 	 The problem is non-trivial and has practical ramifications for industry.

In the following sections, experiments are described for generating and testing rules in

both the iterative and incremental learning modes. Results from applying these rules to the

image are provided. The results are discussed in detail in the next chapter.

4.1. 	Learning Texture Using Iterative Learning

Figure 4.1 shows a section of the digital ultra-sound image used for the iterative

learning experiments. The image window in the upper left corner of the main TEXPERT

window indicates the area of the image which is visible in the display below. The user is also

--

--- -----________________________ __ __

------ - -

--- -- ------------------ -------------

_____ __________ __

---------------------- ------------
---------------------- ------------

............ ­ -_...,
,... -, ­ -... ­ --....'. -_ "'--_ _.. -_

.. _ ... 116

•• -II,!'

:<

--"'­--""'­

-------------"""---­ ..------------­ .. ---_ .. _------­
---_ .. -._--­ ------------­ ----­ ----­------- ­ _______ __________ __~ __ w_______ _________________ _

------ -------------p--- -------------------- -----------­.. -- .. -- _----------------- --------~.~-- .. -----------------­---_._-- _.... _-_ .. _----------_ .. - --------------------_ .. _-------- ­
::::::::::::::~:::::::::::::::-::

~;~~~~~~§§~~~;~~~§~~;~::~~~~~;:~~
-------~----"-------------------­-~------------------------------­

•• ----- ___ •• _ •• ____ _ --------------~-----------------­__ •• M _____ W_ ••• __________ ri _______ _
____________________ M_~ ________ " __________ M

-- ___ •••• • _ --~------------------------------._. ~ H~•• -- ___ •• _______________ ______ ______ ____________ __

_____ N __ M •• ___ •• ___ _

-- __ •• ____ M __ "·_ •• N _________• ____________ ••• ____ " __________ N ___ _---_ .. _-- _-------------------- ______ ~ __________________ ---------------------------------~ H

--- _______ ~_~ ___~_.~__~________ M ____ _

-------;~~::::::=:::::::::::::::::-:=::
------~~._~~V~VyV_~U.WVW~_WV-____________________ .. ---__ NW.W.W••• ••••_M•••W____ M _____--- _______ _ _V.~

~.~~ ~.~~~~ ~M.w------- _________ •••• •••• _______ _ __ _______ .. ______w.~.~••~~_~~••••• ••w________ _~~

--------- ------ ____________ v •••• ••••••w__________ _~~~~~~_._~

••• - .. - •• --- •••• ------ ______ •• ____...._ 4IJ'IitU _______ _
-..t""~- .. _-- ____ .. ____ _ __ w •• _ •• __________ _
__~~ ~~ ~

_ M ___W __________ _

--::::~::::=:::::::::::::::~:::::::::::W •••• ••••••__________ _
~ ~ ~

______ W.................................._________ _

-_::::::::::::::::::t:::::::::::::::::::.. _•••••• ••_________ _____
_W.~~ ~~

---"-~ ~~- ~...---------­
_____ ---~--~-- W •• •• ~.~ --~-------­--------"____ _ ___ ~__________ _

....-................ ~~~..

•••••• _N ___ .····._ •••• _____ M ________ •••••• _________ _
~._ ~ ~._.-----··-----·. _______________ ..••• ••••• •••_________ _··_~W._ ~.~~_~ ~

_~ ____ .. ___ .. ___ .. _. ____ .. _M_ ___ ~~..... ..~_.~..... ..._________ _~ ~

-.. ------------------~~--..~~.~..•.••...~~.-~--------­... -- --- ---- ----~ '""......... ..------ ----­~ ~~
-----~~

....-~~....~...••.•.•~~.-----_______---_W.~....................__ M -----_
------.-.......................~---~------­----........~....•.....••...----------­
_____ ~--~ ~ ~ ... ~~~ ______W ••••••~.~.~.............. ~ __ _
..--~------­
_____ W •• W •• •• •••_________ _~ ~ ~ ~~~

____ ~ _____ M _______ _ ____ ~........... ~••• ~ _ •• ~ ...__________ _
------------------ ________W.V.~_~..._.V.....____ -______·~ - - - - __ •• __ •• __ .. _________ - __ WV 'WI ..._________ __W~W._._ ..,.'W_.~

~:~~~~~~~~~~~~E~~~~~i~~~~~~~~~~~~;~~~~~~~;~~~~~§~I~;;~~~~~~~~~~~~~

__ N_________________ ________________________ ~ _____ M______ _~~~~~~~~~~iili~II!~~~~!ii~~~~~~~~~iiii~!ii~~~~~!!~ii!!!i!!!!!ii~~~i

___________________________ w ______ _

--- -:::::=:=:::==:::::"--- ______ ~_N_____ _ ______________________ ft ________ _W~ ~K-----------.~-----------­
•• ___________________ M ___________ _==:::::::==::::=::: -:::~­

... ---- ..-........
~­

..... ---- ­

.. - .. _--"" .. - ...

-. =
-.. >­

----------------~~-*-------------­
____ ~ri ___________________ ~~ _____ ~ ___ _ ---------------~------------ ----------­
___ W ______________________ •• ______ .W ____ _

________________________________ ~W _____ _

-------------~------~----- -~-- -----~-­W~__________ ___________________ M _______ _ ---~--~-------------------------~~-----­
___________ ~ ____ M ______________________ _

---------------------------------------~ __________________ ~ ____ ____ ~~ __________ w
_________________ • __ ~ _______ H ____ ~ _____ _
_____ ~_____________ W _____________ ~ _____ _----~----------------------------~-----­_________ .._W_W_~_________ ~ _______ h~ ___ ~ _ ____ ·_.V_V._W_~ ~ _____ _...W_.____________ M
____ -------------------~------~~ -----------~-._... •••••••.. W ___________ _______ ~~WV
____ ...~.W¥~¥ ____ ~ _______________ _
_____ ~•• W ~••~___ ~ ____________ M_~ __
-- ___ ._......... ~~••V ___ ~ ______ ~ _________ _

____ ~W...............____________________ _
-----~~....-------------------­____ .W•••••••••••••N_____________ •••...••_•.Uv.~ ______ _
___ •••••••• •• ___ H __ _~_~.~ ~ ~ _____ U_............N_______ --

~­

_____ •••••• •••••N ______________ _

~ ~~

.~.~~~••~••• ~••W____ ~ _________ _
___ H_~.~.. ~...... ~•.•N ______________ _

-----~-w •••••••....~.....•••••~.....----- _____ ---------__ _
______.W______ ____ __
~ ~ ~ ~

_____ _ ____ wN~ ~

y.~.w.N...v.w. -~~ ____ ._N_~N__~___ W_W __ ~ __ M ___ _ H ___ _

::::::::==::=:!===:::::::::::::::::~ ____ ~~M _________________________ _

-------~------~------~ ----~ ---­______ ~WH _____ " _____ ~ ____ ~H ____ ~ __

" __________ M __________ • _______ U _ _R____________________ NM ______ "

---------------------- - --"-----~"

: -- --------_.. _----_ ..- _........ _------ ­-~ ~­.. -.. _.. -"._­ ~­..- .. __ .. _-­- .. __ .. _---­

&

I iii
! !J
"
i.
!

..
· · I
:" •!

~

..
~·

:; · · · "
~

,!
:
·.. ri·
·
·~ ·
·
;

34:

guided by the coordinates at the upper left and lower right corners of the displayed section of

the image. The actual size of the entire image is displayed at the top of the window with the

name of the file which contains the raw image.

In this image (and for all the images in this chapter), there are two classes or textures.

These are normal or class 0 texture and abnormal or class 1 texture. The reader can easily

recognize four regions of abnormal texture on a background of normal texture in figure 4.1.

Figure 4.2 shows these regions after they have been classified into class one by "painting"

them using a mouse. Note that none of the background texture has been classified. This is

unnecessary because the system assumes that all unclassified pixels automatically belong to

class O.

In order to learn rules for classifying pixels into one of these two textures, the user

selects a training area from which TEXPERT generates events to give as input to the

learning algorithm. Figure 4.2 also shows the learning area used for the iterative learning

experiment.

For this experiment, events were generated using a simple three-by-three pixel event

template to generate twelve attributes for each pixel. These attributes consist of the

intensity value of the pixel, the intensity value of the eight neighboring pixel, the maximum

and minimum values among these nine, and the difference between the maximum and

minimum value.

Figure 4.3 shows the results of applying the rules learned to the learning area. The

rules classified ninety-four per cent of the class 0 (normal) pixels correctly and ninety-seven

per cent of the class 1 (abnormal) pixels correctly. During iterative learning, all correctly

01

....,! •••.,t'
I.' f<O"'. nt coif
."t., to........., c••raU:. of ...,,", .., arca •
[;]

...tl Mf..O.. <"•., .rt Itcre)

IIII

11111: If III filII I 'Ullin ttl I '1111111

Ill:,,: I till nUIU11 filii III II •• ttlill

1111111111 ttl t1111 HUIU In III tlllll tlllllll uutn Illlll' In, III IIIIIII

•• iii i •• i •• '. i' i i ••• , ••• i •• , ••••• II r. t 1'1111 J" II t, II 111111 tit I' r IIII III

II' 1"lltt lnntlnllllllill nfll"IIII'II'1

1111.IlIIH'tf"1 ItnUH HU"II'tfJtllllll

"I nnn 1IIIIIlIIUIIII tlflllllllllllilit II

111t11 IllI' lilt 11l1t,"IIIIIIIOUllllllt1f1

/I: rtl UII' It'lln 11111111111111 Utlllll1 ttl I

III JtllilltiltUn ,It III 11111 III 'II' 111f11l' r

11 ftllllllf,nutt Ilf 111111 II Ifill H nllllill

1IIIIIItlllUtli ,.Utlll'Hi tllll tlfflll"1111

1"'IOtlt!" III "UIIlIIIIIIII 1111111111111

'1'1IIft tllill 0111111 tUIIIIIlItflllilitH I

Iftlttill" I I Itt I'll till' Illlttt 11I11 It 11111

In ll' 1111111 Bunt *' 1IIItltH II fill Hlttt I

III tlllilltli tttn I1II ij 1",1111111111f1t It IIIII

1IIIIIIJttllttliliUllllltlllilltin 1 till IIIII II

11111111111 ft IllltlUtttllllllll1 In tlIIIIU1111

111!tflUIIII t I!fUttllllllll 1111111111 t tHlltll

H I1UIIIIIIII HIl' 111111111 Hllllllll nun 1I1I

4t II: I III f II tTD1111TTT"f': t t t: t II ,= f t t II: I1II II II III t t 1I11 t 11II t III1III1I J tit t I1II11

tIl I t 1111 I II

•Wi. Ii i it iii. \ i i It i I' J fl F! j i i! II If I t ii' : I III t 1:1 n t 111 i 1111 H 11111' I It II U til I I II

ill III ~I: II III: In I UH HtlllllilltUt II' IIIIIH I

tIll: 11:.1 Iltt r: II: I j IllI ttllllll111UIIIII.1I1 n It

I: 11111I1t I It 111'1111 t 111111111111111U 1111' ttn I fIIs this learning area 11::ttllfll;;lllllllllllllllllllll'IIIIII',t1Ilttll
1II11tltllllllllili tt III1IIIII ntlllllnnnu" III
'" acceptable? Press
II! t 1 I I I I I I I I I 1 I I I I t I I I I I I I I I t I I I I I I , I I , ~ J ttl I t I I I I
"' left mouse button to (I".".}confirm.

Figure 4.2: Classified Image for Iterative Learning

38

Testing statistics from image file "bimage1"

Rows 191 to 209 and Columns 162 to 193 inclusive.

CLASS No. of pixels % in class 0 % in class 1
0 351 94 0

1 257 0 97

Figure 4.3: Results of Applying Rules to the Learning Area

classified pixels are glven a new value to indicate their class, whereas incorrectly classified

pixels are not classified but retain their same value for the next iteration. In other words, in

iterative learning either an event is classified correctly or it is not classified at all. For this

reason, statistics on incorrectly classified pixels are not generated (or more correctly are not

distinguished among the incorrect classes). Figure 4.4 shows the pixels which were not

correctly classified as highlighted within the learning region.

One may be surprised that a learning algorithm would not produce a one hundred per

cent accurate classification on the pixels from which it generated its rules. Certainly this

would be alarming in a simple blocks world domain. However, in digital images pixels with

identical attributes are often found in different regions. In learning terminology, this means

the same event belongs to two classes. These rules must somehow compete with each other

for correct classification of these two identical events. The only possible solution to this

problem is to change the events themselves. Replacing correctly classified pixels in the image

with unique values provides the necessary change among the neighbor attributes of the

problem pixels. Using the regenerated events from this learning area produces perfect results

as shown in figure 4.5.

i
i
•

"'J!j...
ora
"'II ..I'D

C

-....;... ii.. ...
:1t:I :.... %4
44•~ .­."'II

I'D t4..4'"0
III ;;;

,.:=
~...,••...I'D

.~.. _c ­...•
:= · ..
~ ·I'D
"'II ~ III

!.......
<
I'D ·· lt"'
I'D iDl
"'II
:= !...
:=

ora

[;J
..... w,..... (vo...... ")

1MaC.[~

ItS "oWl. , •• CO"

Ttn .t.tt.tJe. wrUU.. to I bl.'U."t.U
ttlt"." co_teted,

(.1•• ")

(,21•• a!l4)

Figure 4.5: Iterative Learning Area without Discrepancies

39

Once satisfactory rule performance is achieved, the rules can be used to classify

additional sections of the image or other images in exactly the same way as testing was done

on the learning area. (Actual rules generated from iterative learning are included in the

Appendix.) The next section on incremental learning provides results of more extensive

testing of the system.

4.2. Learning Texture Using Incremental Learning

Although iterative learning provides a suitable method for dealing with noise and other

inconsistences in the images, a more powerful mechanism of learning will be required to

modify rules across images or across widely varying textures within a single image.

Incremental learning can provide this capability by allowing rules to be modified to reflect

new information about a texture.

Consider the already classified image in figure 4.6. Again the user can readily

distinguish the background and foreground textures. However, the background texture

makes a sudden change in the middle of the image. For some applications, this could very

well be considered a third texture and rules could be learned using three classes instead of

two. However, in the domain of locating abnormal and normal textures, two classes should

suffice.

To illustrate the power of incremental learning, choose for the base case of learning the

region shown in figure 4.7. This is a region similar to that used in the iterative learning

example in the previous section. Although this region appears to be small, it is reasonably.

sufficient for generating rules for other regions with a similar background texture. Figure 4.8

shows two separate testing regions for the rules generated from the area in figure 4.7. Since

: '
;

.. -.~- .. ::­

_:"-=-==­ ::-:-::.:: ..::~:-
_:::-:: ­

-: ::§~~~=~:=

·~ ·i
,· ·

"'2j

Ii'
e::..
..It
~ ..

::::::- ­

~:~~~~~~~~:~~~~~~~~:=:~~'~".::~~.

~ M

: :: i ,. : = : 5 ..
~. '!
.. .. Z
; : -:
~ .

...
~

43

the lower testing testing region most resembles the learning regIOn, testing is highly

successful, but not nearly as successful in the the upper testing region especially with regard

to the background texture where only two per cent of the pixels were classified correctly (see

figures 4.9 and 4.10 for the testing results).

In such cases of poor performance, iterative learning is not practical since many

iterations would be required before the influence of the correctly classified pixels could spread

among the incorrectly classified to produce an accurate set of rules. Several iterations means

several applications of rule sets whenever pixels in the image are to be classified. For large

images and domains where large numbers of images are required to be processed, as few as

three or four iterations could prove prohibitive.

Testing statistics from image file "bimagel"

Rows 166 to 179 and Columns 203 to 234 inclusive.
i CLASS No. of pixels % in class 0 % in class 1

0 197 99 1

1 251 13 87

Testing statistics from image file "bimagel"

Rows 121 to 137 and Columns 203 to 238 inclusive.

CLASS No. of pixels % in class 0 % in class 1

0 351 2 98

1 257 ,7 93

Figure 4.9: Results of Applying Rules to Two Testing Areas

.*'11 .. t ••, ••

a.:ts. nO c.U

'.t.af,at,., I fr •• te.ttilt, r ••"lt•..

tutUt' co.'.t,41, ~

'-.1 N''',M <v.v .,.....,..)

(tll.lI't.}

Figure 4.10: Teet Reeulte of IncrelDental Learning (Baee Cue)

45

In such domains, incremental learning can be used to modify rules at a single level of

iteration. Incremental learning takes additional events along with the original rules and/or

events and generates new rules which can be successfully applied to all learning areas and

similar sections of the image.

In this experiment, another learning area was chosen which was more similar to the

problem testing area. This additional learning area is show in figure 4.11. (For a comparison

of the rules for this experiment see the Appendix.)

The results of the incrementally learned rules are shown in figures 4.12 and 4.13.

Although performance decreases slightly in the lower testing area, overall performance across

both areas improved significantly. These rules perform well enough to form the basis for

successful iterative learning, or in some domains may perform acceptably as is.

These experiments show only the fundmental capabilities of the TEXPERT system.

Because of its great flexibility in choosing parameters, developing filters, and generating

events, additional experiments will benefit largely from expertise in a given domain. A

thorough discussion of TEXPERT strengths and weaknesses in relation to certain domains is

included in the next chapter.

·,· ~
,··

1.lft lI!i ..., ••

,.,".. n. c."[;J 'Cit .t"tuttu _Itt«.. to t .'.,3.ft.t,.
tt,t t"t u,.'«U"

....r w.,.... (".~ "..f'.)

(1".JI)

(tl1."4)

Figure 4.12: Results of Rules after Incremental Learning

48

Testing statistics from image file "bimage1"

Rows 166 to 179 and Columns 203 to 234 inclusive.

CLASS No. of pixels % in class 0 % in class 1

0 197 99 1

1 251 29 71

Testing statistics from image file "bimage l"

Rows 121 to 137 and Columns 203 to 238 inclusive.

CLASS No. of pixels % in class 0 % in class 1

0 351 75 25

1 257 7 93

Figure 4.13: Results of Applying Incremental Rules to Two Testing Areas

49

CHAPTER 5.

CONCLUSIONS

The goals of the TEXPERT system were not only to build a vision system which

incorporates and learns expertise from an expert in a given domain but also to test the

effectiveness of machine learning in a textural vision domain. This chapter discusses the

degree to which the above goals were met, and on this basis, suggests several directions for

future research in the endeavor to more fully synthesize machine learning and computer

vision.

5.1. Effectiveness of Learning in Vision

A system was created to allow a user to interactively tune the image and learning

algorithm to produce acceptable rules. The interface is friendly and learning can be tailored

according to the domain and the expertise of the expert.

The experiments in the previous chapter show the basic capabilities and effectiveness of

similarity-based learning in a low-level vision domain. Reasonably accurate rules were able

to be learned through both techniques of iterative and incremental learning. Effective rules

were generated using only a small percentage of the actual pixels in the image.

Although test results are promising, they are by no means conclusive. Also, the

question of efficiency for real-time applications was not directly addressed. Currently,

testing is done with acceptable efficiency, but learning rules to use in testing can take

approximately twenty or more minutes. This is acceptable only in cases where a large

50

percentage of testing is required. However, once satisfactory rules have been generated for

processing a certain image domain, these rules need not be modified until significant changes

have occurred in the domain. It would be worth a week or more of the expert's time to

correctly train the system, if the automated classification using rules could save him a week

or more of examining image after image without any automated help whatsoever.

Nevertheless, with a few of the possible enhancements described in the next section, the

TEXPERT system could be a powerful tool in image processing. Besides detecting faults in

ultra-sound images, several other areas of image processing could be aided by the

incorporation of machine learning techniques into texture recognition processing. Satellite

image processing and robotics vision systems could benefit from being taught by an expert in

that domain. Robots could conceivably recognize objects solely on the basis of texture.

Whatever the future application of this system may be, the system can be improved in

several areas at present. These enhancements are discussed in the next section.

5.2. Directions for Future Research

When a child is born, one never says "Sure it's cute but it will be months before it can

feed itself." Directions for growth are patiently attended and welcomed when they arrive.

Likewise when a new system is "born," deficiencies should be thought of as potential areas of

growth, and should be attended to with parental enthusiasm. Being a man-made computer­

based offspring and not a naturally and miraculously evolving entity, however, even more

patience may be required.

The areas for potential growth of the TEXPERT system comprise three major areas ­

namely. descriptive language capability, extended automation features, and statistical image

51

processing.

5.2.1. Descriptive Language Capability

The VL1 language used by AQ15 provides an adequate descriptive capability for

utilizing the information in an image for the purposes of learning. Nevertheless, the rules

generated can sometimes be difficult to understand (see Appendix). This problem can be

alleviated somewhat by the wise use of the constructive induction facilities of AQ15, but a

more promising solution to the problem would be the incorporation into the system of an

algorithm to discover structures and substructures in the image on which basis more

meaningful rules could be learned.

An interesting structure and substructure discovery algorithm which uses the VL1

language has been proposed by Holder [8). This substructure information can easily be

obtained by applying the substructure algorithm as a pre-processing stage prior to event

generation, and either adding an attribute to each pixel which states that the pixel is part of

a given substructure or actually changing the value of the pixel to a special value that

corresponds to the specific substructure to which the pixel belongs. This structural

information would make life easier for the expert who may not always be able to define an

event generator to recognize low-level structures in images from the expert's domain. In

fact, the expert may not even be aware of low-level structure at all.

5.2.2. Extended Automation Features

Although the interface to the system is friendly in the sense that it is largely menu­

driven and mouse-oriented, several additional features of the system are strong candidates

52

for further automation. The primary area of consideration for further automation of the

system is the area of event generation. As the system stands now, event generation must be

completely defined by the expert. This is a great demand on her Ihis expertise. The ",ystem

would be much improved if, once an image was classified, several learning experiments could

be performed automatically, each with different methods of event generation. The event

generation which produced the most accurate rules would be the final output of this extended

automated learning process.

Since this multiple learning and event generation procedure could become

computationally expensive, intelligent reduction of work would be useful if not required. Two

modes of pre-processing would provide valuable information in reducing the amounnt of

work done by the system.

The first way of reducing work is to perform experiments which generate events from

attributes which are most relevant to the image. The most relevant attributes can be

determined either before or after event generation. Methods for attribute reduction among a

set of events has been researched and is discussed in [17]. To select attributes before event

generation, some information must be extracted from the image information which will

determine which attributes would be more relevant to the specific images. For example, a

Fourier transform may be done on an image which extracts information about the spatial

frequencies in the image. High frequencies would suggest the use of a small template which

would extract much of the information about the variations of intensity occurring in the near

vicinity of the pixel, whereas low frequencies would suggest the use a larger template in which

near neighboring values of the pixel are not used as attributes.

53

It may be possible that given enough image input into the system, rules could be learned

which determine the most likely means of effective event generation based on features found

during image preprocessing. Such a system would be learning how to learn to recognize

texture. This "meta-learning" system could significantly reduce the burden of event

template definition currently placed on the expert.

The second way of reducing work is to reduce the number of events which are inputted

to the learning algorithm at each learning phase. In large images, many events are often

redundant and need not be input into the algorithm. Selecting representative events for

learning as discussed in [10] would effectively reduce the amount of work done by the learning

algorithm.

5.2.3. Statistical Image Processing

The last area for enhancing the capabilities of the TEXPERT system is in adding the

power of raw statistical image and signal processing methods. As the system stands now,

only "local" processing techniques are available. "Global" processing such as Fourier

transforms cannot be easily used in generating events. A facility for producing related

images and allowing multiple related images (such as stereo images) to be input into the

system would provide much more information to the learning algorithm, which would most

likely result in more powerful and meaningful rules.

5.3. Final Remarks

This chapter has described the power and problems of using similarity-based learning

methods to solve texture recognition and image segmentation problems in digital images.

54

Directions of research to alleviate the problems have been discussed and potential new

applications have been suggested. Although promise has been demonstrated, much work

remains to be done. Nevertheless, a synthesis of machine learning and computer vision does

appear to offer practical insights into the very difficult problem of enabling computers to

"see."

55

APPENDIX A.

Experiment Rule Output

A.1. Iterative Learning

This section contains the AQ15 output for the iterative learning experiment. Two sets

of rules are shown: the first set consists of the rules derived from the raw image, the second

set consists of the rules derived from the image which was regenerated from the application

classO-outhypo
'if cpx
1 x2&:x3 <> 2][x4 = 0 v 1 v 4.!lx5&:x7 = 0 v 1 v 31
2 x2 = 0 v 11[x5&:x9 <> 21[x7 = 0 v 1 v 41
3 xl=Ov2v41[x3011!x4 Ov2v31lx5 Ovlv4![x6 o v 1 v 3]
4 xl <> l11x6 = 0 v Ii [x7 = 0 v 2 v 41 [x9 <> 2]

classl outhypo
1F cpx
1 [x6 2 v 4] (x7 2)
2 Ix5 = 2) [x 7 = 1 v 31
3 [xl = 1 v 3) [x4 2 v 31 I x 9 = 2]
4 : x3 = I] [x 7 = 2 v 4] ! x9 = 21
5 [X4&:x5 = 2 v 3] I x 9 = 2]
6 Ix2&:x6 >= 2]lx4&:x5 = 2 v 31
7 x2 >= 2) [x 5 &:x 6 2 v 4]
8 xl = l' [x7 = 21
9 x2&:x6 >= 211 x3 = 21 I x4 = 1 v 41
10 x2&:x6 >= 2 I [x4 = 1 v 4) I x 7 2 v 4i
11 x2 2] I x6 = 2 v 41
12 x3 = 11 !x4 = 2 v 3] [x7 = 3]
13 xi = 1 v 4] [x 5 2 v .. ! [x 7 = 31

Th i 5 learning used (milliseconds of CPU time) :
System time: 31683
User time 1901850

Rules From Raw Image

58

of the first set of rules to the image.

The first set of rules may appear difficult to understand because of the nature of the

attributes. If one bears in mind that the x5 attribute represents the value of the pixel itself,

the rules can be interpreted as specializations of the condition that a pixel belongs in classO if

its value is 0 or 1 or 3 (or sometimes 4) and belongs in class1 if its value is 2.

The second set of rules use special values 14 and 15 for pixels which were correctly

classified into classO and class1, respectively. These rules are much simpler to understand

and essentially give a single condition for those pixels already classified correctly, and then

extend these conditions for misclassified pixels in the vicinity of correctly classified pixels.

c1assO-outhypo
#- cpx
1 !xS<>lv15]
2 [x S <= 1 4] [x T <> 1 4 I
3 [x4&x6 <> 1 v IS]

cla.ssl-outhypo
#- c p x
I [xS=151[x6=lvI51
2 [x4=lvlSllxS=15]
3 Ix 5&x 6 = 1 v 1 5] [xT = 1 4 I
4 !x4&x5 = 1 v 1511xT = 14]

This learning used Imi Iliseconds or CPU time);
System time: 10784
User time 288833

Rules From Regenerated Image

57

A.2. Incremental Learning

This section consists of the two sets of rules derived during the incremental learning

experiment. The first set of rules is best understood by focusing on the xll attribute in

complex (cpx) #1 in both rules. xli IS the maximum value of all pixels immediately

surrounding the pixel to be classified. With the specializations provided by the other

conditions in the complex, pixels with surrounding maximum value equal to zero through

three inclusive or equal to ten belong to classO, otherwise they belong to classl. This

classO-outhypo
c px

xl <> S v 7 v 10] iX4 <> 3 v 7 v 8 viol [x6 = 0 .. 2 v S v 8 v 11.13 1

xl! = 0 .. 3 viol
2 xl = 0 .. 4 v 6 v 7 v 13][x2 <> 2 v 4, v 101[x3 <> 9 v 10 v 121

x6 <> 4, v 6 .. 81[x7 0 .. 3 v 8 v 9 v 11 v 131
x9 = 0 v 1 v 4 v 6 .. 8 v 10 v 121

c lassl-outhypo
cpx
1 x7 4. .7 v 10 v 121 [xli = 4. .9 v 11 . . 13 !

2
 x4 3 v 7 v 8 v 10! [x6 = 4 v 6 .. 81
3 x6 9 v 101 [x 7 = 10 v 121 [xl0 = 6 v 8 v 91

4
 x2 2 v 4 v 10] [xII = 4. .9 v 11 . 13 [
S x4 = 8 v 10 .. 13][x7 = 10 v 12] [xlI >= 11 I
6 xl 8 v 9 v 11 v 121 [xi = 8 v 10 .. 13] [XII >= 1 1 I
7 xl 5 v 8 .. 121 [x6 3 v 4 v 6 v 7 v 9 v 10 1=
8 xl&x2 = 10] I x4 = 8 v 10 .. 131
9 xl 8 v 9 v 1 1 v 121 [x 6 91

10
 x9 9 v 11 v 13] [xl0 = 6 v 8 v 91 [xiI >= 11]

11
 x6 8 v 9 v II] Ix9 9 v 11 v 131 [xlI >= 11]

12
 x2 2 v 4 v 10] [x 4 = 3 v 7 v 8 v 10 1

13
 x6 81 [x 11 >= 11]

14 x6 4 v 6 v 7]

1 5 x9 2 v 3 v 5 v 9 v 1 1 v 131 :xll = 4. .9 v 11 .. 131

16 xl = 5 v 8 .. 12][x4 3 v 7 v 8 v 101

This learning used (milliseconds of CPU time):

System time: 77534

User time 4833467

Rules From First Learning Area

58

generalization performs well in the first testing area but poorly in the second because the

maximum value of neighboring pixels varies more among classO pixels in the second testing

area.

The second set of rules shows how the maXImum value attribute was appropriately

modified to more correctly distinguish classO and class! pixels in the second testing area.

cla.ssO-out;hypo
c px

x4 <> 3 v 9 v 12 v 13)Ix6 <> 2 v 9 v 10]ix7 <> 8 .. 10]
xl0 <> 2 v 3 v 5 v 11] [xlI <> 4 v 5 v 11 v 12]

2 xl <> 9 v 11 v 12i [x2 = 0 v 1 v 4 v 7 v 8 vII .. 13]
x7 0 .. 4 v 7 v 8 v 12]ix9 0 .. 2 v 4 v 6 .. 8 v 10 v 13)[xl0 <> 2 v 5i

3 xl=0 .. 3v1][x2 Ov4v9 .. 13]

classl-outhypo
cpx"*

xl 4. .6 v 8 .. 13] x9 3 v 5 v 11 v 11 v 12] [XII 4 v 5 v 1 1 v 12]1 =
xl 4. .6 v 8 .. 13] x7 11 v 101

3
2

x2 2 v 3 v 5 v 6 Ixl0 2 v 3 v 5 v 11]=
xl 4 .. I} v 8 .. 13 x2 2 v 3 v 5 v 6 v 11 v 101 [x I} = 2 v 9 v 101

5
4

xl 4 .. 6 v 8 .. 13 x4 = 3 v 9 v 12 v 131 1 x 9 = 3 v 5 v 9 v 1 1 v 12]
6 xl 4. .6 v 8 .. 13 x9 3 v 5 v 9 v 11 v 1 2 1[xl0 = 2 v 3 v 5 v IIi
7 x2 1 .. 3 v 5 .. 8 . 3 v 9 v 12 v 131 1 x 7 5 v I} v 9 .. 11 v 13]
8 xl 4. I} v 8 .. 13 lx2 = 2 v 3 v 5 v 6 v 9 v 10] [xll = 4 v 5 v 11 v 121=
9 x2 2 v 3 v 5 v I} j [x 7 = 8 .. 101
10 x2 = 1 .. 3 v 5 .. 8 Ix6 2 v 9 v 101 [x 9 3 v 5 v 9 v 11 v 121
1 1 x2 = 1. .3 v 5 .. 8 Ix9 = 3 v 5 v 9 v 11 v 121 [xlI 4 v 5 v 11 v 12]

12
 xl 9 v I 1 v 12 [x4 3 v 9 v 12 v 13)

13
 x2 = I .. 3 v 5 .. 8 [x7 9 v 10]

14 x2 1. .3 v 5 .. 8 Ix6 2 v 9 v 10] [x 7 5 v 6 v 9 .. 11 v 131

15 xl = 4. .6 v 8 .. 13[lxl0 2 v 5i

16
 x2 2 v 3 v 5 v 61 I xIl = 4 v 5 v 1 1 v 12[

11
 xl 4 .. 6 v 8 .. 13[[x2 = 2 v 3 v 5 v 6 v 9 v 10 j [x 4 3 v 9 v 12 v 13]

18 xl 9 v 11 v 12] [xli = 4 v 5 v 11 v 12[

19
 x2 2 v 3 v 5 v 6 J [x4 = 3 v 9 v 12 v 13]

20 x2 1 .. 3 v 5 .. 811xl0 = 2 v 51

21 x2 1 .. 3 v 5 .. 8[lx1 = 5 v 6 v 9 .. 11 v 13r Ixl1 = 4 v 5 v 1 1 v 121

22 xl 4 .. 6 v 8 .. 13]lx4 = 3 v 9 v 12 v 13] ; x 7 = 5 v 6 v 9 . . I 1 v 131
Tn!s learning used (mi II iseconds of CPU time)

Syst;em time: 12500
Use r time 4035117

Rules From Second Learning Area

59

When the maximum value attribute is considered (and this is true for a large number of

events since the complexes are ordered according to the number of learning events which

satisfy the complex), classO pixels can take on a significantly -.vider range of values, whereas

the class! pixels can take on fewer values.

80

REFERENCES

[1] 	 Michalski, R. S., "AQVAL/I-Computer Implementation of A Variable­
Valued Logic System VLl and Examples of Its Application to Pattern
Recognition", Proceedings of the First International Joint Conference on
Pattern Recognition, pp. 3-17, Washington, DC, 1973.

[2] 	 Reinke, R.E., "Knowledge Acquisition and Refinement Tools for the ADVISE
Meta-Expert System", M.S Thesis, Department of Computer Science,
University of Illinois, Urbana, IL, 1984.

[3] 	 Julesz, Bela, "Experiments in the Visual Perception of Texture", Scientific
American, 292, pp. 34-43, April 1975.

[4] 	 Julesz, Bela, "Textons, the Elements of Texture Perception, and their
Interactions", Nature, 290, pp. 91-97, March 1981.

[5] 	 Marr, David, Vision, W. H. Freeman and Company, New York, 1982.

l'6] 	 Ballard, D.H., Brown, C.M., Computer Vision, Prentice-Hall, Englewood
Cliffs, N.J., 1982.

[7] 	 Channic, T.D., "Editing Network-Structured Knowledge Bases in the
ADVISE System", Report No. UUCDCS-F-85-934, Department of Computer
Science, University of Illinois, Urbana, IL, 1985.

[8] 	 Holder, L., "Discovering Substructure in Examples," M.S. Thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, 1986.

[9] 	 Uhrik, C.T., "A Rule Exerciser for Knowledge Base Enhancement in Expert
Systems," M.S. Thesis, Department of Computer Science, University of
Illinois, 1985.

[10] 	 Michalski, R.S., Larson, J.B., "Selection of Most Representative Training
Examples and Incremental Generation of VL Hypotheses," Report No.

1

UIUCDCS-R-78-867, Department of Computer Science, University of Illinois
at Urbana-Champaign, May, 1978.

[Il] 	 Gonzales, R.C., Wintz, P., Digital Image Processing, Addison-Wesley,
Reading, MA, 1977.

[12] 	 Rosenfeld, A., Kak, A.C., Digital Picture Processing, Academic Press, New
York, NY, 1976.

61

[13] Nagin, P .A., Hanson, A.R., Riseman, M., "Region Relaxation in a Parallel
Hierarchical Architecture", Real-Time/Parallel Computing, Onoe, Preston,
Rosenfeld, eds., pp 37~61, Plenum Press, N'Y 1981.

[14] Kodaira, N., Kato, K., Hamada, T., "Man-Machine Interactive Processing for
Extracting Meteorological Information from GMS Images," Real­
Time/Parallel Computing, Onoe, Preston, Rosenfeld, eds., pp 297-324, Plenum
Press, NY 1981.

[15] Hanaki, S., "An Interactive Image Processing and Analysis System," Real­
Time/Parallel Computing, Onoe, Preston, Rosenfeld, eds., pp 219-226, Plenum
Press, NY 1981.

[16] Michalski, R.S., Baskin, A.B., Uhrik, C., and Channic, T., "The ADVISE.l
Meta-Expert System: The General Design and a Technical Description,"
Intelligent Systems Group Reports, Department of Computer Science,
University of Illinois, January 1987.

[17] Bairn, P.W., "The Promise Method for Selecting Most Relevant Attributes for
Inductive Learning Systems," Report No. UIUCDCS-F -82-898, Department
of Computer Science, University of Illinois at Urbana-Champaign, September,
1982.

[18] Laws, K.I., "Textured Image Segmentation", PhD dissertation, Department of
Engineering, University of Southern California, 1980.

[19] Tou, J.T., Gonzales, R.C., Pattern Recognition Principles, Addison-Wesley,
Reading, MA, 1974.

[20] Fukunga, K., Introduction to Statistical Pattern Recognition, Academic Press,
NY,1972.

[21] Michalski, R.S., Chilausky, R.L., "Knowledge Acquisition by Encoding Expert
Rules Versus Computer Induction From Examples: A Case Study Involving
Soybean Pathology," International Journal of Man-Machine Studies, 12, pp.
63-87, 1980.

[221
, J

Silverman, J., Cooper, D., "Bayesian Clustering for Unsupervised Estimation
of Surface and Texture Models," IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10, 4"PP. 482-495, July 1988.

[23] Michalski, R.S., "A Theory and Methodology of Inductive Learning," Machine
Learning, Michalski, R.S., Carbonell, J. and Mitchell, T. (eds.) pp. 83-134,
Tioga Press, Palo Alto, CA, 1983.

[24] Michie, D., "Experiments on the ,Mechanization of Game Learning," Computer
Journal, 25, 1, pp. 105-112, 1982.

62

[25] 	 Michalski, R.S., Mozetic, 1., Hong, J.R., Lavrac, N., "The AQ15 Inductive
Learning System," Report No. UIUCDCS-R-86-1260, Department of
Computer Science, University of Illinois at Urbana-Champaign, July, 1986.

[26] 	 Hong, J.R., Mozetic, I., Michalski, R.S., "AQI5: Incremental Learning of
Attribute-Based Descriptions from Examples," Report No. UIUCDCS-F -86­
949, Department of Computer Science, University of Illinois at Urbana­
Champaign, May, 1986.

