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Machine Learning

A Historical and Methodological Analysis

Jaime G. Carbonell, Ryszard S. Michalski, Tom M. Mitchell

Editors’ Note: Machine Learning has been a constant
theme throughout Al's two decades of existence. In this over-
view the authors analyze various aspects including the major
methodological approsches advocated in Machine Learning re-
search, and how they have related to major contemporary themes
in “mainstream” Al Research. In a subsequent issue we plan to
include a sequel to this rarticle which will give the suthors’ views
on current research directions in Machine Learning.

In the meanwhile, we are very anxious to get readers reactions
to this and all earlier contributions to this column. — Derek
Sleeman and Jaime Carbonell

Abstract

Machine learning has always been an integral part of artificial intel
ligence, and its methodology has evolved in concert with the major
concerns of the field. In response to the difficulties of encoding ever-
increasing volumes of knowledge in modern Al systems, many research-
ers have recently turned their attention to machine learning as a means
to overcome the knowledge scquisition bottleneck. This article presents
a taxonomic analysis of mschine learning organized primarily by learn-
ing strategies and secondarily by knowledge representation snd applics-
tion aress. A historical survey outlining the development of various ap-
proaches to machine learning is presented from early peural petworks
to present knowledge-intensive techniques.

This paper is a modified and extended version of the first chapter of
Mochine Learning, An Artificial Intellipence Approoch, with permission of
the publisher: Tioga Press (Palo Alto, CA). The research described
bmw&sspomoredinputbyu)eOﬁceoanvalRmrch(ONR)
under grant number NOOO14-70-C-0661, and in part by the National
Science Foundation grant MCS82-05168.
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LEARNING IS A MANY-FACETED PHENOMENON.
Learning processes include the acquisition of new declara-
tive knowledge, the development of motor and cognitive
skills through instruction or practice, the organization of
new knowledge into general, effective representations, and
the discovery of new facts and theories through observation
and experimentation. The study and computer modelling
of learning processes in their multiple manifestations con-
stitutes the subject matter of machine learning.

Although machine learning has been a central concern
in artificial intelligence since the early days when the idea
of “self-organizing systems” was popular, the limitations
inherent in the early neural network approaches led to a
temporary decline in research volume. More recently, new

" symbolic methods and knowledge-intensive techniques have

yielded promising results and these in turn have led to
the current revival in machine learning research. This ar-
ticle examines some basic methodological issues, proposes s
classification of machine learning techniques, and provides a
historical review of the major research directions.

The Objectives of Machine Learning . -

The field of machine learning can be organized around
three primary research foci: Co e
o Task-Oriented Studies—the development and anal-
ysis of learning systems oriented toward solving a



predetermined set of tasks (also known as the “engineer-
ing spproach™)

e Cognitive Simulation —the investigation and com-
puter simulation of human learning processes (also
known as the “cognitive modelling approach™)

o Theoretical Analysis—the theoretical exploration
of the space of possible learning methods and slgo-
rithms independent of application domain.

Although many research eflorts strive primarily towards
one of these objectives, progress in one objective often leads
to progress in another. For instance. in order to investigate
the space of possible learning methods. a reasonable start-
ing point may be to consider the only known example of
robust learning behavior, namely humans (and perhaps other
biological systems). Similarly, psychological investigations of
human learning may be helped by theoretical analysis that
may suggest various plausible learning models. The need to
acquire a particular form of knowledge in some task-oriented
study may itself spawn new theoretical analysis or pose the
question: “How do humans acquire this specific skill (or
knowledge)? The existence of these mutually supportive ob-
jectives reflects the entire field of artificial intelligence, where
expert systems research, cognitive simulation, and theoreti-
cal studies provide some cross-fertilization of problems and
idess. :

Applied Learning Systems: A Practical Necessity.
At present, instructing a computer or a computer-controlled
robot to perform a task requires one to define a complete and
correct algorithm for that task, and then laboriously pro-
gram the algorithm into a computer. These activities typi-
cally involve a tedious and time-consuming effort by specially
trained personnel.

Present-day computer systems cannot truly learn to per-
form a task through examples or by analogy to a similar,
previously-solved task. Nor can they improve significantly
on the basis of past mistakes. or acquire new abilities by
observing and imitating experts. Machine learning research
strives to open the possibility of instructing computers in
such new ways, and thereby promises to ease the burden of
hand-programming growing volumes of increasingly complex
information into the computers of tomorrow. The rapid ex-
pansion of applications and availability of computers today
makes this possibility even more attractive and desirable.

When approaching -a task-oriented knowledge acquisi-
tion task, one must be awsre that the resultant computer sys-
tems must interact with humans. and therefore should closely
parallel human abilities. The traditional argument that an
engineering approach need not reflect human or biological
performance is not truly applicable to machine learning.
Since airplanes, a successful result of an almost pure en-
gineering approach, bear little resemblance to their biological
counterparts, one may argue that applied knowledge acquisi-
tion systems could be equally divorced from any considera-
tion of human capabilities. This argument does not apply
here because airplanes need not interact with or understand
birds. Learning machines. on the other hand, will have to

interact with the people who make use of them. and con~
quently the concepts and skills they scquire— if not necew
sarily their internal mechanisms—must be understandablr
to humans.

Machine Learning as a Science. The question of
what are the genetically-endowed abilities in a biological <y =
tem (versus environmentally-acquired skills or knowledge
has fascinated biologists. psychologists. philosophers anc
artificial intelligence researchers alike. A clear candidate for
a cognitive invariant in humans is the learning mechanism
the innate ability to acquire facts. skills and more abstrac:
concepts. Therefore, understanding human learning wel.
enough to reproduce aspects of that learning behavior ir.
a computer system is, in itself. a worthy scientific goal
\oreover, the computer can render substantial assistance
to cognitive psychology, in that it may be used to test the
consistency and completeness of learning theories, and en-
force a commitment to fine-structure process-level detail that
precludes meaningless, tautological or untestable theories
(Sloman 1978, Carbonell 1981). ‘

The study of human learning processes is also of con-
siderable practical significance. Gaining insights into the
principles underlying human learning sabilities is likely to
lead to more eflective educational techniques. Thus, it is not
surprising that research into intelligent computer-assisted in-
struction, which attempts to develop computer-based tutor-
ing systems, shares many of the goals and perspectives with
machine learning research. One particularly interesting de-
velopment is that computer Lutoring systems are starting to
incorporate abilities to infer models of student competence
from observed performance. Inferring the scope of a stu-
dent’s knowledge and skills in a particular area allows muct.
more eflective and individualized tutoring of the studen:
(Sleeman 1983).

An equally basic scientific objective of machine learn-
ing is the exploration of possible learning mechanisms, in-
cluding the discovery of different induction algorithms, the
scope and theoretical limitations of certain methods, the in-
formation that must be available to the learner, the issue
of coping with imperfect training data. and the creation of
general techniques applicable in many task domains. There
is no reason to believe that human learning methods are the
only possible means of acquiring knowledge and skills. Ir
fact, common sense suggests that human learning represents
just one point in an uncharted space of possible learning
methods—a point that through the evolutionary process is
particularly well suited to cope with the general physica
environment in which we exist. Most theoretical work in
machine learning has centered on the creation, characteriza-
tion and analysis of general learning methods, with the major
emphssis on analyzing generality and performance rather
than psychologica! plausibility. ,

Whereas theoretical analysis provides a means of explor-
ing the space of possible learning methods, the task-oriented
approach provides a vehicle to test and improve the per--
formance of functional learning systems. By constructing
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and testing applied learning systems. one can determine the
cost-eflectiveness trade-ofls and limitations of particular ap-
proaches to learning. In this way. individual data points in
the space of possible learning systems are explored. and the
space itsell becomes better understood.

Knowledge Acquisition versus Skill Refinement.
There are two basic forms of learning: knowledge acquisition
and skill refinement. When we say that someone learned
physics. we mean that this person acquired concepts of
physics. understood their meaning. and their relationship to
each other as well as to the physical world. The essence of
learning in this case is the acquisition of knowledge. includ-
ing descriptions and models of physical systems and their
behaviors. incorporating a variety of representations—{rom
simple intuitive mental models. examples and images. to
completely tested mathematical equations and physical laws.
A person is said to have learned more if his knowledge ex-
plains a broader scope of situations, is more accurate. and
is better able to predict the behavior of the physical world
(Popper 1968). This form of learning is typical to a large
variety of situations and is generally termed knowledge ac-
quisition. Hence, knowledge acquisition is defined as learning
new symbolic information coupled with the ability to spply
that information in an effective manner.

A second kind of learning is the gradual improvement of
motor. and cognitive skills through practice. such as learning
to ride a bicycle or to play the piano. Acquiring textbook
knowledge on how to perform these activities represents only
the initial, and not necessarily critical, phase in developing
the requisite skills. The bulk of the learning process con-
sists of refining the acquired skill, and improving the men-
tal or motor coordination by repeated practice and a correc-
tion of deviations from desired behavior. This form of learn-
ing, often called skill refinement, differs in many ways from
knowledge acquisition. Whereas the essence of knowledge
acquisition may be a conscious process whose result is the
crestion of new symbolic knowledge structures and mental
models, skill refinement occurs by virtue of repeated prac-
tice without concerted conscious effort. Most human learning
appears to be a mixture of both activities, with intellectual
endeavors favoring the former, and motor coordination tasks
favoring the latter.

Present machine learning research focuses on the know-
ledge acquisition aspect, although some investigations. spec-
ifically those concerned with learning in problem-solving
and transforming declarative instructions into effective ac-
tions, touch on aspects of both types of learning. Whereas
knowledge acquisition clearly belongs in the realm of artificial
intelligence research, a case could be made that skill refine-
ment comes closer to non-symbolic processes, such as those
studied in adaptive control systems. It may indeed be
the case that skill acquisition is inherently non-symbolic in
biological systems, but an interesting symbolic model capable
of simulating gradual skill improvement through practice has
been proposed by Newell ‘and Rosenbloom (1981). Hence,
perhaps both forms of learning can be captured in artificial
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intelligence modcls.

A Taxonomy of Machine Learning Research

This section present: a taxonomic road map to the
field of machine learning with a view towards presenting
useful criteria for classifving and comparing most artificial
intelligence-based machine learning investigations. lLater,
the main directions actually taken by researchers in this area
over the past twenty years are surveyed.

One may classify machine learning systems along many
different dimensions. We have chosen three dimensions as
particularly meaningful:

o Classification on the basis of the underlying learn-
ing strotegy used. The strategies are ordered by the
amount of inference the learning system performs on
the information provided to the system.

o Classification on the basis of the type of representation
of knowledge {or skill: acquired by the learner.

o Classification in terms of the application domain of
the performance system for which knowledge is ac-
quired.

Each point in the space defined by the above dimen-
sions corresponds to a system employing a particular learning
strategy, a particular knowledge representation, and applied
to a particular domain. Since many existing learning systems
employ multiple strategies and knowledge representations,
and some have been applied to more than one domain, such
learning systems are characterized by a collection of points
in the space. .

The subsections below describe explored values along
each of these dimensions. Future research may well reveal
new values on these dimensions as well as new dimensions.
Indeed, the larger space of all possible learning systems is still
only sparsely explored and partially understood. Existing
learning systems correspond to only a small portion of the
space because they represent only a small number of possible
combinations of the values.

Classification Based on the Underlying Learning
Strategy. Since we distinguish learning strategies by the
amount of inference the learner performs on the informa-
tion provided, we first consider the two extremes: perform-
ing no inference, and performing a substantial amount of
inference. If a computer system is programmed directly,
its knowledge increases. but it performs no inference what-
soever on the new information; all cognitive eflort is on the
part of the programmer. Conversely, if a system indepen-
dently discovers new theories or invents new concepts, it
must perform a very substantial amount of inference; it is
deriving organized knowledge from experiments and obser-
vations. An intermediate point in the spectrum would be a
student determining how to solve a mathematics problem by
analogy to worked-out examples in the textbook-—a process
that requires inference, but much less than discovering a new
branch of mathematics without guidance from teacher or
textbook. ‘



A« the amount of inference that the learner is capable
of performing increases, the burden placed on the teacher or
external environment decreascs. It is much more difficult to
reach a person hy explaining each step in a complex task than
by showing that person the way that similar tasks are usually
handled. It is more difficult yet to program & computer o
perform a complex task than to instruct 8 person to perlorm
the task: as programming requires explicit specification of
all requisite detail. whereas a person receiving instruction
can use prior knowledge and common sense Lo fill in most
mundane details. The taxonomy below captures this notion
of trade-offs in the amount of effort required of the learner
and of the teacher.

Rote Learning and Direct lmplanting of New
Knowledge. In rote learning no inference or other trans-
formation of the knowledge is petformed by the learner.
Variants of this strategy of knowledge acquisition method
include:

o Learning by being programmed. constructed. or modi-
fied by an external entity. (for example. the usual
style of computer programming).

e Learning by memorization of given facts and data
with no inferences drawn from the incoming informs-
tion (for example. as performed by existing database
systems). The term “rote learning™ is used primarily
in this context.

Learning from Instruction. Acquiring knowledge
from a teacher or other organized source. such as a textbook.
requires that the learner transform the knowledge from the
input language to an internally-usable representation. and
that the new information be integrated with prior knowledge
for effective use. Hence. the learner is required to perform
some inference. but a large fraction of the burden remains
with the teacher. who must present and organize knowledge

" in a way that incrementally augments the student’s existing
knowledge. Learning {rom instruction. also termed “learning
by being told.” parallels most formal education methods.
Therefore, the machine learning task is one of building a
system that can accepl instruction or advice and can store

and apply this learned knowledge eflectively.

Learning by Analogy. Learning by analogy is the
process of transforming and augmenting existing knowledge
{or skills) applicable in one domain to perform a similar
task in a related domain. For instance, a person who has
never driven a small truck. but drives automobiles. may
well transform his existing skill (perhaps imperfectly) to the
new task. Similarly, a learning-by-analogy system might be
applied to convert an existing computer program into one
that performs a closely-related function for which it was
not originally designed. Learning by analogy requires more
inference on the part of the learner than does rote learning
or learning from instruction. A fact or skill analogous in
relevant parameters must be retrieved from memory: then
the retrieved knowledge must be appropriately transformed.
applied to the new situation, and stored for future use.

Learning from examples. Learning from examples

is a special case of inductive learning. Giiven 8 st of ex-
amples and countercxamples of a concept. the learner in-
duces a gencral concept description that describes all of the
positive examples and none of the countercxamples. Learn-
ing from examples is 8 method that has been heavily inve=
tigated in artificial intelligence. The amount of inference
petformed by the learner is much greater than in learning
from instruction. as no general concepts are provided by 2
teacher. and is somewhat greater than in learning by ansl
ogy. as no similar concepts are provided as “seed” from which
the new concept may be grown. Learning from examples can
be subcategorized according to the source of the examples:

o The source is 8 teacher who knows the concept and
generates examples of the concept that are meant to
be as helpful as possible. If the teacher also knows
{or. more typically, infers) the knowledge state of the
learner, the examples can be generated to optimize
convergence on the desired concept (as in Winston's
(1975) near-miss analysis).

e The source is the learner itself. The learner typi-

cally knows its own knowledge state, but clearly does
not know the concept to be acquired. Therefore,
the learner can generate instances {and have an ex-
ternal entity such as the environment or 3 teacher
classify them as positive or negative examples) on
the basis of the information it believes necessary to
discriminate among contending concept descriptions.
For instance. a learner trying to acquire the concept
of “ferromagnetic substance,” may generate as a pos-
sible candidate “sll metals.” Upon testing copper and
other metals with a magnet, the learner will then
discover that copper is a countercxample, and there-
fore the concept of ferromagnetic substance should
not be generalized to include all metals. Mitchell’s
LEX system (1983) and Carbonell’s plan generaliza-
tion method (1983) illustrate the process of internal
instance generation.
The source is the exernal environment. In this case the
example generation process is operationally random,
as the learner must rely on relatively uncontrolled ob-
servations. For example, an astronomer attempting
to infer precursors o supernovas must rely mainly
upon unstructured data presentation. Although the
astronomer knows the concept of a supernova. he
cannot know a priori where and when 8 supernova
will occur. nor can he esuse one to exist. Michalski's
STAR methodology (1983) exemplifies this type of
learning. '

One can also classify learning from examples by the type
of examples available to the learner:

o Only positive ezomples available. Whereas positive ex-
amples provide instances of the concept to be ac-
quired, they do not provide information for prevent-
ing overgeneralization of the inferred concept. In
this kind of learning situation, overgeneralization
might be avoided by considering only the minimal
generalizations necessary, of by relying on a priori
domain knowledge to-constrain the concept to be in-
ferred. S
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o Positive and negotive ezomples avaadle. In this kind
of situation. positive examples force generslization
whereas negative examples prevent overgeneralizs-
tion (the induced concept should never be 0 general
as to include any of the negstive examples). This is
the most typical form of learning from examples.

Learning from examples may be one-trial or incremental.
In the former case, all examples are presented at once. In the
latter csse, the system must form one or more hypotheses
of the concept (or range of concepts) consistent with the
available data. and subsequently refine the hypotheses after
considering additional examples. The incremental approach
more closely parallels human learning, sllows the learner to
use partially learned concepts (for performance, or to guide
the example generation process), and enables a teacher to
focus on the basic aspects of a new concept before attempting
to impart less central details. On the other hand, the one-
step approach is less apt to lead one down garden paths by
an injudicious choice of initial examples in formulating the
kernel of the new concept.

Learning from Observation and Discovery. This
“unsupervised learning™ approach is a very general form of
inductive learning that includes discovery systems, theory-
formation tasks, the creation of classification criteria to form
taxonomic hierarchies, and similar tasks to be performed
without benefit of an external teacher. Unsupervised learn-
ing requires the learner to perform more inference than any
approsch thus far discussed. . The learner is not provided
with a set of instances of a particular concept, nor is it given
sccess to an oracle that can classify internally-generated in-
stances as positive or negative examples of any given concept.
Moreover, rather than focusing on 8 single concept at a time,
the observations may span several concepts that need to be
acquired, thus introducing 8 severe focus-of-attention prob-
lem. One may subclassify learning from observation accord-
ing to the degree of interaction with an external environment.
The extreme points in this dimension are:

e Passive observation, where the learner classifies and
taxonomizes observations of multiple aspects of the
environment (as in Michalski and Stepp’s (1983) coo-
ceptusal clustering.)

e Active experimentotion, where the learner perturbs the
environment to observe the results of its perturbs-
tions. Experimentation may be random, dynsmi-
cally focused according to genera! criteria of inter-
estingness, or strongly guided by theoretical con-
straints. As a system acquires knowledge, and
hypothesizes theories it may be driven to confirm or
disconfirm its theories, and hence explore its environ-
ment applying different observation and experimen-
tation strategies as the need arises. Often this
form of learning involves the generation of examples
to test hypothesized or partially scquired concepts.
This type of learning is exemplified in Lenat's AM
and EURISKO #ystems (Lenat 1976, 1983). book-
lena82).)

An Intermediate point in this dimension is the BACON
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system (Langley, Simon & Bradshaw, 1983), attention but
does not design new experiments.

The above classification of learning strategies should help
one to compare various learning systems in terms of their
underlying mechanisms, in terms of the available external
source of information. and in terms of the degree to which
they rely on pre-organized knowledge.

Classification According to Type of Knowledge
Acquired. A learning system may acquire rules of behavior,
descriptions of physical objects, problem-solving heuristics,
classification taxonomies over 8 sample space, and many
other types of knowledge useful in the performance of a wide
variety of tasks. The list below spans types of knowledge ac-
quired. primarily as a function of the representation of that
knowledge.

1. Parameters in algebraic expressions—Learning
in this context consists of adjusting numerical para-
meters or coefficients in algebraic expressions of 8
fixed functional form so as to obtain desired perfor-
mance. For instance, perceptrons adjust weighting
coefficients for threshold logic elements when learning
to recognize two-dimensional patterns (Rosenblatt
1958, Minsky & Papert 1969). )

2. Decision trees—Some systems acquire decision trees
to discriminate among classes of objects. The nodes
in 8 decision tree correspond o selected object at-
tributes, and the edges correspond to predetermined
alternative values for these attributes. Leaves of the
tree correspond to sets of objects with an identical
classification. Feigenbsum's EPAM exemplifies this
discrimination-based learning spproach (Feigenbaum,
1963).

3. Formal grammars—In learning to recognize a par-
ticular (usually artificial) langusage. formal grammars
are induced from sequences of expressions in the lan-
gusge. These grammars are typically represented as
regular expressions, finite-state automats, context-

_free grammar rules, of transformation rules.

4. Production rules—A production rule is 8 condition-
action pair C — A, where C is a set of conditions and
A is & sequence of sctions. If alt the conditions in
a production rule are satisfied, then the sequence of
sctions is executed. Due to their simplicity and ease
of interpretation, production rules are a widely-used
knowledge representation in learning systems. The
four basic operations whereby production rules may
be scquired and refined are:

1. Creation: A new rule is constructed by the system
or acquired from an external entity.

9. Generalization: Conditions are dropped or made
less restrictive, 5o that the rule applies in s larger
number of situations. )

3. Speciolization: Additional conditions are added to
the condition set, or existing conditions made
more restrictive, s0 that the rule applies to &
smaller number of specific situations.

4. Composition: Two or more rules that were applied
in sequence are composed into a single larger rule,



thus forming & “compiled” process and eliminst-
ing any redundant conditions or actions.

5. Formal logic-based expressions and related
formalisms— These general-purpose representstions
have been used to formulate descriptions of individual
objects (that are input to s learning system) and
to formulate resultant concept descriptions {that are
output from a learning system). They take the form
of formal logic expressions whose components sre
propositions, arbitrary predicates, finite-valued vari-
sbles, statements restricting ranges of variables (such
as “a number between 1 and 97), or embedded logical
expressions.

6. Graphs and Networks—In many domains graphs
and networks provide a more convenient and efficient
representation than logical expressions, although the
expressive power of network representations is com-
parable to that of formal logic expressions. Some
learning techniques exploit graph-matching and graph-
transformation schemes to compare md index know-
ledge efficiently.

7. Frames and schemas—These provide larger or-
ganizational units than single logical expressions or
production rules. Frames and schemas can be viewed
as collections of labeled entities {“slots™), each slot
playing a certain prescribed role in the representation.
They have proven quite useful in many artificial intel-
ligence applications. For instance, s system that ac-
quires generalized plans must be able to represent and
manipulate such plans as units, although their inter-
nal structure may be arbitrarily complex. Moreover,
in experiential learning, past successes, untested al-
ternstives, causes of failure, and other information
must be recorded and compared in inducing and
refining various rules of behavior (or entire plans).
Schema representations provide an appropriate for-
malism.

8. Computer programs and other procedural en-
codings—The objective of several learning systems
is to acquire an ability to carry out a specific process
efficiently, rather than to reason sbout the inter-
nal structure of the process. Most automatic pro-
gramming systems fall in this general category. In
addition to computer programs, procedural encod-
ings include human motor skills (such as know-
ing how to ride a bicycle), instruction sequences to
robot manipulators, and other “compiled™ human or
machine skills. Unlike logical descriptions, networks
or frames, the detailed internal structure of the resul-
tant procedural encodings need not be compreben-
sible to humans, or to automated ressoning systems.
Obnly the external behavior of acquired procedural
skills become directly available to the reasoning sys-
tem. :

9. Taxonomies—Learning from observation may result
in global structuring of domain objects into & hierar-
chy or taxonomy. Clustering object descriptions
into newly-proposed categories and forming hierar-
chical classifications require that the system formu-
late relevant criteria for classification.

10. Multiple representations—Some knowledge ac.
quisition systems use several representation schemes
for the newly-scquired knowledge. Most notably,
some discovery and theory-formation systems ac-
quire concepts, operations on those concepts, and
heuristic rules for new domains. These learning sys-
terns must select appropriste combinstions of repre-
sentation schemes applicable to the different forms of
knowledge acquired.

Classification by Domain of Apphcatlon Another
useful dimension for classifying learning systems is their ares
of application. The list below specifies application areas to
which various existing learning systems have been applied.
Application areas are presented in alphabetical order, not
reflecting the relative eflort or significance of the resultant
machine learning system.

1. Agriculture
. Chemistry
. Cognitive Modeling (simulating human learning processes)
. Computer Programming
. Education

[- I B U X ]

. Expert Systems (h:gh—performance. domain-specific
Al programs)

7. Game Playing (chess, checkers, poker, and so on)

8. General Methods (no specific domain)

9. Imsge Recognition

10. Mathematics

11. Medica! Diagnosis

12. Musie

13. Natural Langusge Processing

14. Physical Object Characterizations

15. Physics

16. Planning and Problem-solving

17. Robotics

18. Sequence Extrapolation

19. Speech Reeogniﬁon

Now that we have a basis for classifying and comparing

learning systems, we turn to s brief historical outline of
machine learning.

A Historical Sketch of Machine Learning

Over the years, research in machine learning has been
pursued with varying degrees of intensity, using different ap-
proaches and placing emphasis on different aspects and goals.
Within the relatively short history of this discipline, one
may distinguish three major periods, each centered around
a different paradigm:

¢ neural modeling and decision-theoretic techniques

e symbolic concept-oriented learning

¢ knowledge-intensive approaches combining various
learning strategies

CARBONELL, etal. 405



The Neural Modelling Paradigm. The distinguish-
ing feature of the first paradigm was the interest in build-
ing general purpase learning systems that start with little
or no initial structure or task-oriented knowledge. The
major thrust of research based on this tabula rasa ap-
proach involved constructing a variety of neura! model-based
machines, with random or partially random initial structure.
These systems were generally referred to as neural nets or
self-organizing systems. Learning in such systems consisted
of incremental changes in the probabilities that neuron-like
elements (typically threshold logic units) would transmit a
signal.

Due to the primitive nature of computer technology
at that time, most of the research under this paradigm
was either theoretical or involved the construction of spe-
cial purpose experimental hardware systems, such as per-
ceptrons (Rosenblatt 1958), pandemonium (Selfridge 1959)
and adelaine (Widrow 1962). The groundwork for this
paradigm was laid in the forties by Rashevsky and his
followers working in the area of mathematical biophysics
(Rashevsky 1948), and by McCulloch and Pitts (1943). who
discovered the applicability of symbolic logic to modeling
nervous system activities. Among the large number of re-
search efforts in this area, one may mention many works such
as Ashby (1960). Rosenblatt (1958, 1962), Minsky & Papert
(1969), Block (1961), Yovits (1962), Widrow (1962), Culber-
son (1963), Kazmierczak (1963). Related research involved
the simulation of evolutionary processes, that through ran-
dom mutation and “natural” selection might create a system
capable of some intelligent behavior (for example. Friedberg
1958, 1959; Holland 1980).

Experience in the above areas spawned the new dis-
cipline of pattern recognition and led to the development
of a decision-theoretic approach to machine learning. In
this approach, learning is equated with the acquisition of
linear, polynomial, or related discriminant functions from
a given set of training examples. Example include Nilsson
(1965), Koford (1966), Uhr (1966), and Highleyman (1967).
One of the best known successful learning systems utiliz-
ing such techniques (as well as some original new ideas in-
volving non-linear transformations) was Samuel’s checkers
program (Samuel, 1959, 1963). Through repeated training,
this program acquired master-level performance. Somewhat
diflerent, but closely related, techniques utilized methods of
statistical decision theory for learning pattern recognition
rules {for example, Sebestyen 1962, Fu 1968, Watanabe 1960,
Arkadev 1971, Fukananga 1972, Duda & Hart 1973, Kanal
1974).

In parallel to research on neural modeling and decision-

theoretic techniques, researchers in control theory developed

adaptive control systems able to adjust automatically their
parameters in order to maintain stable performance in the
presence of various disturbances. for example, Truxal (1955);
Davies (1970); Mendel (1970); Tsypkin (1968, 1971, 1973);
and Fu (1971, 1974). :

Practical results sought by the neural modeling and deci-
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sion theoretic approaches met with limited success. High ex.
pectations articulated in various early works were not rea).
ized, and research under this paradigm began to decline.
Theoretical studies have revealed strong limitations of the
“knowledge-free” perceptron-type learning systems.

The Symbolic Concept-Acquisition Paradigm. A
second major paradigm started to emerge in the early sixties
stemming from the work of psychologists and early Al re.
searchers on models of human learning (Hunt et al, 1963,
1966). The paradigm utilized logic or graph structure rep.
resentations rather than numerical or statistical methods.
Systems learned symbolic descriptions representing higher
level knowledge and made strong structural assumptions
about the concepts to be acquired. Examples of work in
this paradigm include research on human concept acquisition
(Hunt & Hovland 1963, Feigenbaum 1963. Hunt et al. 1966,
Hilgard 1966, Simon & Lea 1974) and various applied pattern
recognition systems (Bongard 1970, Uhr 1966, Karpinski &
Michalski 1966).

Some researchers constructed task-oriented specialized
systems that would acquire knowledge in the context of a
practical problem. For instance, the META-DENDRAL pro-
gram (Buchanan & Feigenbaum 1978) generates rules ex-
plaining mass spectrometry data for use in the DENDRAL
system (Buchanan et al. 1971).

Winston's (1975) structuraly learning system was an
influential development in this paradigm. In parallel with
Winston's work, different approaches to learning structural
concepts from examples emerged, including a family of logic-
based inductive learning programs, AQVAL (Michalski 1972,
1973, 1978), and related work (Hayes-Roth 1974, Hayes-Roth
& McDermott 1978, Vere 1975, Mitchell 1978). See Diet-
terich and Michalski (1983) and Michie (1982) for additional
discussion of this paradigm.)

The Modern Knowledge-Intensive Paradigm. The
third paradigm represents the most recent period of research
starting in the mid-seventies. Researchers have broadened
their interest beyond learning isolated concepts from ex-
amples, and have begun investigating a wide spectrum of
learning methods, most based upon knowledge-rich systems.
Specifically, this paradigm can be characterized by several
new trends, including:

1. Knowledge-Intensive Approaches: Researchers
are strongly emphasizing the use of task-oriented
knowledge and the constraints it provides in guiding
the learning process. One lesson from the [ailures of
earlier tabula rasa and knowledge-poor learning sys-
tems is that to acquire new knowledge a system must
already possess a great deal of initial knowledge.

2. Exploration of alternative methods of learn-
ing: In addition to the earlier research emphasis on
learning from examples, researchers are now inves-
tigating a wider variety of learning methods such as
learning from instruction {e.g., Mostow 1983, Haas &
Hendrix 1983, Rychener 1983), learning by analogy
(e-g., Winston 1979, Carbonell 1983, Anderson 1983),
and discovery of concepts and classifications (eg.,
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Lenat 1876, Langley, et o/ 1983. Michalski 19%¥3.
\fichalski & Stepp 1983, Hayes-Roth 1883, Quinlan
1983).

3. Incorporating abilities to generate and select
learning tasks: In contrast to previous efforts. s
number of current systems incorporate heuristics to
control their focus of attention by generating learning
tasks. proposing experiments to gather training data.
and choosing concepts Lo acquire (e.g., Lenat 1976,
Mitchell et ol 1983. Carbonell 1983).

In contrast with the knowledge-free parametric learn-
ing methods used in the neural networks. and in con-
trast with the early symbolic methods that learned isolated,
-disembodied™ concepts, the current approaches use a wealth
of general and domain-specific knowledge. However. the
availability of large volumes of knowledge does not mean
that the inductive inference processes are themselves domain
dependent and non-generalizable. The generality lies in
the inductive inference methods and the power is derived
from their ability to use domain knowledge to focus atten-
tion and structure new concepts. The current methodologi-
cal assumption is that machine learning systems, much
like humans, must learn incrementally, slowly expanding a
highly-organized knowledge base, rather than by some ges-
talt self-organization process. A recently published book on
machine learning (Michalski, Carbonell & Mitchell, 1983)
presents some of the major research directions in this general
approach.
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