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AbtItrIlCt 

The paper reports on a study into the mechanical synthesis of the 
operational knowledge needed for the expert task of electrocardiographic 
(ECG) interpretation. This knowledge-base was synthesized by means of 
qualitative simulation based on a causal model of the heart. The resultiug 
(ECG) knowledge-base was subsequently compressed by using inductive 
learning tools. 

1. INTRODUCTION 

This paper reports on a study into mechanical synthesis of the operational 
knowledge needed to perform an expert task. The particular task in 
question is the interpretation of the electrical signals generated by the 
heart muscle, known as the electrocardiographic (ECG) interpretation. The 
main contribution of this research is a qualitative model of the electrical 
activity of the heart which was the basis for mechanical derivation of the 
ECG diagnostic knowledge. 

The heart can be viewed as a mechanical device with an electrical 
control system. This electrical system works completely autonomously 
within the heart and is responsible for generating the rhythmical 
stimulation impulses that cause the contraction of the heart muscle. For 
proper functioning of the heart, the stimuli have to reach the atria (upper 
part of the heart) somewhal earlier than the ventricles (lower part of the 
heart). This is coordinated by the electrical control system which is 
shown schematically in Figure 1. The contractions of the heart muscle 
cause changes in the electrical potentials in the body. The changes of 
these potentials in time can be recorded as an electrocardiograph. 
Disturbances in the functioning of the heart are reftected in the I;cO 

curves. The interpretation of ECG signals is concerned with the question: 
if a given ECG curve is not normal, what are the disorders in the heart 
which could have caused this abnormality? 
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Figure I. A scheme of the electrical control system of Ihe hearl. TIle nodes generale 

electrical impulses. TIle dolled lines represent conduction pathways for impulses. 


Various disorders can occur in the electrical control system of the 
heart. For example, an impulse generator may become silent, or an extra 
generator may appear, or some electrical conductance may become 
blocked, etc. These disorders are called cardiac arrhythmias. There are 
about 30 basic disorders and each of them causes some characteristic 
changes in the Eca. There can be several disorders simultaneously 
present in the heart. Combined disorders are called multiple arrhythmias 
as opposed to simple arrhythmias which correspond to single, basic 
disorders. The combinatorial nature of arrhythmias complicates the Eea 
inte'1lfetation problem because of the large number of potentially 
possible combinations. In the medical literature on the cardiac ar­
rhythmias (e.g. Goldman, 1976) there is no systematic description of ECG 
features which correspond to pairs of simple arrhythmias, let alone triple 
and even more complicated arrhythmias. On the other hand, these are 
not very rare in medical practice. In addition to this, multiple ar­
rhythmias are hard to diagnose because there is no simple rule for 
combining fleas that correspond to constituent disorders. In other words, 
if we know which flcas correspond to any simple disorder, in general it is 
not clear how to 'sum' these Eeas into 'combined' Eeas corresponding to 
combinations of simple disorders. 

We approached the problem of multiple arrhythmias by constructing a 
model of the heart. Any combination of disorders can be inserted into 
the model. The model is deep in the context of the distinction between 
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deep, causal knowledge, and shallow, operational knowledge. By 
definition, the shallow·level knowledge is sufficient for pedofming the 
task itself. but typically without any understanding of the underlying 
causal mechanisms. The deep knowledge, on the other hand, captures 
this causal underlying structure and allows the system to reason from 
first principles. 

Out model also is qualitatilJe in the sense that it does not deal with 
electrical signals represented numerically as voltages in time, but 
represented by symbolic descriptions that specify qualitative features of 
signals. Such a qualitative modelling approach has several advantages 
over the conventional numerical modelling. Among the advantages are: 

1. The qualitative view is closer to the actual physiological descriptions 
of and reasoning about the processes and failures in the heart. 

2. To execute the model we do not have to know exact numerical 
values of the parameters in the model. 

3. The qualitative simulation is computationally less complex than 
numerical simulation. 

4. The qualitative simulation can be used as a basis for constructing 
explanations of the mechanism of arrhythmias. 
In respect of the qualitative approach to modelling our work is related to 
the work of Forbus (1984), de Kleer and Brown (1984), and Kuipers 
(1984). 
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Figure 2. Deep and shallow levels of cardiological knowledge and Iransformalions between 
these representations. 
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We used the model for the automatic synthesis (through simulation) of 
the shallow, operational representation of the ECG interpretation knowl­
edge (see figure 2). This representation facilitates fast ECG diagnosis, but 
is rather complex in terms of memory space (about 5 Mbytes). Therefore, 
as Figure 2 shows, we compressed this knowledge-base by means of 
inductive learning programs. The representation thus obtained is compact 
and diagnostically efficient. 

In the remainder of the paper we describe the model of the heart, the 
qualitative simulation algorithm and its efficient implementation, the 
synthesized shallow knowledge-base and its subsequent compression. 

2. THE QUALITATIVE MODEL OF THE HEART 

Our qualitative model of the electrical activity of the heart specifies 
causal relationships between objects and events in the heart. These 
include electrical impulses, ECG signals, impulse generation, impulse 
conduction and summation. The model can be thought of as an electrical 
network, as shown in Figure 3. However, signals that propagate in this 

+) .. (t) .1 

- . p 
p wove 
p- QRS r.lotion 

PR mt.rvol 

Rhythm 

QRScomplell 

Figure]. The model of the hearl as a network composed of impulse generators. conduction 
pathways. impulse summalors, and EC{i generators. 
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network are represented qualitatively by symbolic descriptions rather 
than by voltage v. time relations. 

The ingredients of the model are: nodes of the network; a dictionary of 
simple arrhythmias related to heart disorders; 'legality' constraints over 
the states of the heart; 'local' rule sets; 35 'global' rules. 

These ingredients are reviewed in more detail below. 

Nod.. of the networtt 

There are four types of nodes: impulse generators, conduction pathways, 
impulse summators, and ECO generators, illustrated in Figure 4. Recall 
that the word 'impulse' in this figure refers to a symbolic description, so 
these elements arc in fact operators on descriptions. Impulse generators 
and conduction pathways can be in normal or abnormal functional states. 
For example, a generator can generate impulses or can be silent; a 
conduction pathway can conduct normally or it can be blocked or 
partially blocked in various ways: it may just cause a delay of an impulse, 
or it can suppress every second or third impulse, etc. These abnormal 
states of individual elements correspond to simple disorders of the heart. 

1. (lI.nelOlor)-----..- impulse 

2. impulH -I conduction palh u}-- impulse 

imPUIH=::::::=0-__• Impulse 
impuls. 

]. 

Impulse 

4 _ impulse --- ECG - description 

Figure 4. Building blocks (or the heart model. 

A dk:tJonery of simple errhytbmle. r'-et*, to heert dl,ord.,. 


Each simple arrhythmia is defined in terms of the functional states of the 

components of the heart. Roughly speaking, each simple arrhythmia 

corresponds to a disorder in one of the heart's components. 


'LeplIty' conltrelnts ov ... the atet.. of the h..rt 

This is a predicate on the functional states of the heart which recognizes 

certain categories of states that are rejected by the model as 'illegal'. 

These categories include: logically impossible states, physiologically 

impossible states, and 'medically uninteresting' states. 


A state is logically impossible if one of the heart's components is in two 
different states at the same time. An exaplple of a physiologically 
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impossible state is a situation in which two generators in the atria 
discharge permanent impulses. An example of a 'medically uninteresting' 
state is one in which there is no atrial activity and the atrio­
ventricular(av) conduction is blocked. In such a case the block has no 
effect on the function of the heart and also cannot be detected in the ECG. 

'Loc.Ir rule .... 

These specify the behaviour of the individual components of the heart 
(generators, summators and conduction pathways) in the presence of 
various abnormal states. 

'GloIMl' rutes 

These rules define causal relations belween impulse generators and 
conduction pathways in the heart, electrical impulses and ECG features; 
these rules also reflect the structure of the network in Figure 3. There are 
35 glohal rules in the model. 

All ihe rules in the model have the syntax of the first-order predicate 
calculus, in particular, the syntax that is accepted by PROLOG under 
Edinburgh notational conventions (Pereira el al., 1978). According to 
these conventions, the names of constant symbols and functors start with 
lower-case letters, and the names of variables start with capital letters. 

Rules are composed of subexpressions in specialized languages for 
describing the state of the heart, impulses that are conducted through the 
heart, and ECG patterns. 

For example, the term 

heart(atr_focus: permanent( regular, between_I 0(L250» 

is a partial specification of the state of the heart. It says that the atrial 
focus is discharging permanent impulses (as opposed to periodical) with a 
regular rhythm at the tachycardic rate (i.e. somewhere between 100 and 
250). Each statement about the state of the heart tells in what functional 
state a component of the heart is (the atrial focus in the example above). 

The following is an example of an ECG description: 
(rhythm = irreglarJ & 
[regular_P = abnormal) & 
[rate_oLP = between_llML250J & 
(relation_P_QRS =afteLP-some_QRS_missJ & 
[regular_PR prolonged) & 
[regular_QRS = normal) & 
[rate_oLQRS = between_60_I00 or between_lOO_25OJ 

This specification consists of values assigned to qualitative ECG attributes 
that are normally used in the cardiological literature, such as the rhythm 
and the shape and the rate of P-waves (Figure 5). Notice that the 
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QRScomple. 

T 

Normal sinus rhythm 

QRS 

Venlrlculor lochycordlo 

Figure S. Upper pari an KG curve Ihal corresponds 10 Ihe normal hcarl. Marked arc 
fealures Ihal are normally looked al by an HG diagnoslician. tower pari: En. curve Ihal 
corresponds 10 Ihe arrhYlhmia venlricular 13chycardia. 'Ibis abnormall,cG is characlerized 
by its higher rale ('tachycardia', bclween 100 and 251) beals per minule), and the 'wide' 
shape of the QRS-complnes. 

description above gives two values for the rate of QRS waves: it can be 
either normal (between_60_IOO) or tachycardia (between_UkL250). 

Impulses are described by expressions of the form illustrated by the 
following example: 

impulse( air _focus: form( unifocal, regular, between_ WtL250» 

This says that there are unifocal regular impulses with the tachycardic 
rate at the atrial focus. 

Figure 6 shows two examples of global rules and some rules that 
specify the behaviour of the individual components of the heart. The first 
global rule in Figure 6 says: 

IF 

the atrial focus discharges permanent impulses at some rhythm 
Rhythm and rate Rate 

WEN 
there will be impulses at the atrial focus characterized by Origin, 
Rhythm and Rate . 

WHERE 
Origin, Rhythm and Rate must salisfy the atr_focus relation. 

The atr_focus relation describes the behaviour of the atrial focus. This 
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% Two global rules 

(heart(atLfocus: permanent(Rhythm, Rate))) => 

(impulse(atLfocus: form(Origin, Rhythm, Rate))) & 

atLfocus(Origin, Rhythm, Rate). 


(impulse(atria: form(_, RhythmO, RateO», heart(aLconduct: State)] => 
(impulse(aLconduct: form(State, Rhythml, Ratel))) & 
aLconduct(State, RhythmO, Rhythml, RatcO, Ratel). 

% Some local relations 

atLfocus(unifocal, quiet, zero). 

atr _focus(unifocal, regular, between_60_l(0). 

atLfocus(unifocal, regular, bctween_lOO_250). 

atr _focus(wandering, irregular, between_60_IOO). 

atr_focus(wandering, irregular, between_lOO_250). 

atLfocus(circulating, regular, bctween_250_350). 


aLconduct(normal, Rhythm, Rhythm, Rate, Rate): ­

below(Rate,oveL350). 


av -':'conduct(progresLdelayed, regular, irregular, RateO, Rate I) :_ 

reduced( RateO, Ratel). 


aLconduct(progresLdelayed, irregular, irregular, RateO, Ratel): ­

reduced(RateO, Ratel). 


reduced(Rate, Rate). 

reduced(Rate, Ratel): ­
succ(Ratel, Rate). 


succ(zero, under _60). 

succ(undeL60, hetween_60_l(0). 

succ(betwee"-60_IOO, between_ J()(L250). 


Figure 6 Two global rules and some tocal rules of Ihe hear! model. Global rules are, from 

Ihe poinl of view of PROI.OG, unil clauses of Ihe form: A ~ B & C, which can in Ihe model 

be read: if A Ihen B where C. A special rule·inlerpreler in PROLOG uses rules of Ihis Iype. 

Local rules specify Ihe behaviour of individual componenls of Ihe heart and are direclly 

execuled by Ihe PROI.<>G syslem as rules of a PROI.<>G program. 


relation is partially specified in Figure 6 by 'local rules'. It tells that the 
atrial focus can be quiet, it can behave 'unifocally' discharging impulses 
at a normal or tachycardic rate with regular rhythm, or it can be 
'wandering' discharging impulses with irregular rhythm at normal or 
tachycardic rate, etc. 
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The second global rule in Figure 6 can be read: 

IF 

in the atria there are permanent impulses of some rhythm RhythmO 
and rate RateO, and the state of the av-conductance is State 

THEN 

there are impulses of type State, rhythm Rhythml and rate Ratel at 
the exit from the av-conductance 

WIIERE 

State, RhythmO, Rhythml, RateO and Rate I have to satisfy the 
relation' av_conduct'. 

The aLconduct relation is specified by a set of local rules, as a directly 
executable PROLOG procedure. This procedure qualitatively defines the 
physiology of the av_conductance pathway. As can be seen from the 
definition of this relation in Figure 6, the components of the heart often 
behave 'non-deterministically' in the sense that they can react to the same 
input with different responses at the output. 

Complete details of the model can be found in Mozetic el aJ. (19M). 

3. THE QUALITATIVE SIMULATION ALGORITHM 

Formally, the qualitative simulation consists of theorem proving and 
theorem generation. Although the 35 global rules have the syntax of 
PROLOG they are not directly executed by PROLOG'S own interpreting 
mechanism, the main reason being the necessity for additional control in 
order to improve the execution efficiency. Thus the qualitative simulation 
is done by a special rule-interpreter implemented in PROLOG. 

Each simulation run consists of the following steps: 
l. Instantiate the model by a given arrhythmia, using the definitions of 

arrhythmias in terms of the heart disorders. 
2. Check the resulting functional state of the heart against the legality 

constraints (logical, physiological, etc.) 
3. Execute the model by triggering the rules until no more rules fire 

(this process is combinatorial due to the non-deterministic nature of the 
heart's components). 

4. Collect the proved assertions about ECG signals and then construct 
an ECG description that corresponds to the given arrhythmia. 
The complex part above is step 3. It is based on the forward chaining of 
global rules in the model. The simulator starts with some initial data base 
of facts (initially these just specify the state of the heart) and keeps firing 
the global rules until no more can fire. The constraint here is that no rule 
is repeatedly executed on the same piece of information. Execution of 
rules generates new assertions that are added into the data base. These 
new assertions are regarded as hypotheses that can later be proved false. 
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I. 	By the definition of latriaLtachycardia. wenckebach] instantiate the 
state of the heart to: 

heart(sLnode: permanent(quiet, zero» & 
heart(atriaLfocus: permanent(regular. between_I(XL250» & 
heart(av_conduct: progresLdelayed) & 

2. 	 The assertion 

heart(atriaLfocus: permanent(regular, between_lOO_250» 

triggers the first global rule in Figure 6. The goal 

atLfocus(Origin, regular, between_lOO_250) 

is evaluated, using the local relation atLfocus. This succeeds and the 

new assertion is added to the database: 


impulse(atLfocus: form(unifocal, regular, between_lOO_250» 


3. 	 After summing together the atrial impulses we get the asertion: 

impulse(atria: form(unifocal, regular, between_IOO_250» 

4. 	 This assertion triggers the second global rule in Figure 6. The Prolog 
goal to be evaluated is now: 

av_conduct(progresLdelayed, regular, Rhythm I, between_lOO_250, 
Ratel) 

This can be satisfied in two ways, either by Rate 1 = between_ IClO_ 
250 or by Rate I = between_6O_ HlO. So two hypotheses are indi­
cated: 

impulse( av _conduct: form(progresLdelaycd, irregular, between_ 
HlO_250» 

or 

impulse( av _conduct: form(progresLdelayed, irregular, between_ 
60_100» 

Depending on the search strategy used, the system may now assert 
one of the above hypotheses into the database, and consider the 
second one on backtracking which corresponds to a depth-first style 
search; or, it may assert both which corresponds to a breadth-first 
style search. 

Figure 7. Fragmenls or Ihe qualilalive simulalion Irace ror Ihe combinalion or arrhylhmias 
alrial_lachycardia and wenckebach. Some sleps were omilled rrom Ihe aCluallrace. 
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Backtracking to a previous point occurs when the current content of the 
data base is found inconsistent, i.e. some assertion has been generated 
which leads to contradiction. Roughly, the rule triggerillg process is as 
follows. 

Assume that there is a hypothesis A in the data base. Then apply a 
global rule of the form 

A~'B & C 

In general, in such rules A and B are PROLOG terms and C is a PROLOG 
goal which can directly be executed by PROLOG. The precondition 
matching is simply the logic unification. Normally, C is a can to evaluate 
a local relation. Thus, to apply a rule of the above form, do: 

Evaluate C; if C is false then A must be false a"d discard it; otherwise if 
C is true, assert a lIew hypothesis Band co"tinue firing rules. 

In the case that C is false a contradiction has been detected and 
backtracking is indicated. This process terminates when there arc no 
more rules to fire. At that stage, all the remaining hypotheses in the data 
base are accepted as true since there is now no way of showing a 
contradiction. Among these facts there are also statements about the 
ECG. The simulator collects those statements and forms an ECG descrip­
tion which corresponds to the arrhythmia with which the simulation 
process was started. 

As an example, Figure 7 shows part of a simulation run when the state 
of the heart is a combination of two simple arrhythmias: atriaL 
tachycardia and wenckebach. 

4. IMPLEMENTATION OF THE SIMULATION ALGORITHM 

The easiest way of implementing the simulation algorithm outlined ahove 
is to use the depth-first search strategy. This is straightforward and 
suitable for single simulation runs, that is for answering questions of the 
prediction type: given an arrhythmia, what are its corresponding lOCGS. 
Different possible ECGS are simply generated through backtracking. Also, 
an execution trace obtained in such a simulation run can be used as the 
basis for generating a user-oriented explanation of what is going on in the 
heart. This is suitable since the simulation steps follow the causal chains 
of events in the heart, according to the global rules of the model. These 
rules essentially describe the causal relations between events in the heart. 

In a PROLOG implementation of depth-first simulation on the DEC-lU 

(Edinburgh implementation of PROLOli; Pereira 1(78), each simulation 
run takes a few c.p.u. seconds, producing all alternative ECliS. 

Diagnostic-type questions as opposed to prediction-type questions, are 
of the form: given an ECG, what arrhythmias could have caused il'! To 
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answer such questions, we could run the model in the opposite direction. 
Start with a given ECG and end with the possible functional states of the 
heart that might cause this ECG. 

We can in fact run the model in this direction by the backward chaining 
of the rules in the modd In order to do that we reversed the global rules 
and used the simple depth-first search. However, the practical problem of 
efficiency now arises because the branching factor ('non-determinism') in 
the backward direction is much higher than that in the forward direction. 
This entails much more backtracking and rather complex search, thus 
rendering this approach to diagnosis impractical. Efficiency can be 
improved by re-writing the model so as to introduce more constraints into 
the rules, which helps the system recognize contradictory branches at an 
earlier stage. An attempt at re-formulating rules, however, revealed two 
drawbacks. The size of the model increases considerably, and the 
transparency is greatly affected. This, in turn, mars the explanation of the 
heart's behaviour based on the execution trace. 

An alternative way to achieve efficient diagnosis is to generate from the 
deep model of the heart a complete shallow-level representation of the 
arrhythmia-EcG relation as a set of pairs of the form: 

(Arrhythmia, Ecu-description) 

In principle this can be done by executing the depth-first simulation 
(forward chaining) for each possible combined arrhythmia, and storing all 
its ECG manifestations. It would be necessary to repeat this for all possible 
alternative execution paths in order to obtain all possible lOCOS for each 
arrhythmia. This is again rather inefficient for two reasons. First, for each 
disjunctive solution the simulator has to backtrack to some previously 
used rule in the model and restore its previous state. Second, the final 
resulting ECG descriptions have the form of disjunctions of ECG patterns. 
These disjunctive expressions can be more complex than necessary and 
can be later simplified. This posterior simplification, however, is again a 
complex operation. Each disjunct is the result of an alternative execution 
path. The simplification can be carried out much more economically at 
tht very moment that a disjunct (or, typically part of it) is generated, 
before it is further expanded and mixed in the expression with other not 
closely related terms. 

These two factors (saving the restoration of previous states, and 
immediate simplification of disjunctive expressions) motivated the im­
plementation of another type of simulation algorithm which handles 
alternative execution paths in a breadth-first fashion. This algorithm 
develops alternatives essentially in parallel and currently simplifies 
disjunctions. The simplification rules actually used are rather model 
dependent in the sense that they do not preserve logical equivalence in 
general but only in the special case of the properties of the heart model. 
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So the 'breadth-first' simulation is not general and we would possibly 
have to modify the simplification rules in the case of a change in the 
model. 

This specialized simplification method proved to be rather powerful. 
As a typical example of the reduction effect, consider the combined 
arrhythmia atriaLjibrillalion and ventricular _ectopic_beats. The depth­
first simulation generates 72 lOCG descriptions which corresponds to an 
ECG expression with 72 disjunctive terms. The breadth-first simulation 
results in a description comprising four disjunctive terms. There was a 
similar factor of improvement in general, which can be seen from the 
results of generating the complete arrhythmia-ECG relation. 

5. GENERATION OF A COMPLETE ARRHYTHMIA-ECG KNOWLEDGE­
BASE 

The breadth-first simulation algorithm was executed on all mathemati­
cally possible combinations of simple arrhythmias. The majority of these 
combined arrhythmias were eliminated by the legality constraints over 
the states of the heart. The complete arrhythmia-I:TG knowledge-base 
was thus automatically generated. Results of the generation are depicted 
in Figure 8. 

Figure 8 reveals some interesting points. Of all possible arrhythmias, 
the combinations of four simple arrhythmias are the largest subset. Note 
the large number (140,966) of generated ECG patterns. Thi!> is indicative 
of the difficulty in ECG diagnosis of cardiac arrhythmias. On average, each 
arrhythmia has almost 60 different corresponding H'G manifestations. 
There are altogether 2419 'legal' combined arrhythmia within the level of 

Numbers of generated 
Number of Mathematically 
disorders possible Multiple Prolog ECG 
in the heart combinations arrhylhmias clauses descriptions 

1 30 18 27 63 
2 435 lIB 2H6 2,872 
3 4,060 407 1,207 17,551 
4 27,405 759 2,679 45,939 
5 142,5116 717 2,H67 52,?!)7 
6 59J,775 340 1,164 20,322 
7 2,035,800 60 H4 1,512 

1: 2,804,01 1 2,419 8,314 140,966 

Figure 8. Resutls of generaling Ihe arrhythmia knowledge·base. The number of generated 
arrhylhmias for 'combinations' of simple arrhythmias is III which is less than the number of 
all simple arrhYlhmias (30). The reason IS that some simple arrhythmias (conduction 
dislurbances and ectopic heats) cannot occur alone, but only III comhinallon Wllh other 
arrhythmias (e.g. with sinus rhythm). 
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detail of the heart model. The relation to their KG manifestations is 
represented by 8314 PROLOG clauses. Each clause represents a pair: 
arrhythmia-l:.cG expression. Each EeG expression specifies a number of 
possible ECGS, about 20 on average. This is the reduction factor due to 
the simplification technique used in the breadth-first simulation. 

The set of 140,966 ECG patterns (the right-hand sides of the 
arrhythmia-EcG rules) are not unique. The same ECG patterns can OCCur 
at several places which means that several arrhythmias can have the 
same liCG manifestation. Consequently, arrhythmias cannot be unam­
bigously diagnosetJ from a given ECG. Empirical probing showed that for 
a given ECG there are typically between two and four possible combined 
arrhythmias in the arrhythmia knowledge-base. From the medical point 
of view, however, these alternative diagnoses are not significantly 
different in the view of treatment. They would typically all require the 
same treatment. 

The arrhythmia-EcG base generated from the model is complete in two 
ways. First, it comprises all physiologically possible arrhythmias at the 
level of detail of the model. Second, each arrhythmia is associated with 
all its possible ECG manifestations. In principle. the problem of diagnos­
ing is now simple. As the rules in the knowledge-base are logical 
implications. we can apply modus tollens rule of inference on them. 
Consider a rule of the form 

Arrhythmia::} ECG_description 

where ECG_description is the disjunction of all possible ErGS that 

Arrhythmia can cause. Then, if a given ECG does not match ECG_ 

description it follows that Arrhythmia is eliminated as a diagnostic 

possibility. All arrhythmias that are not thus eliminated form the set of 

possible diagnoses with respect to the given ECG data. Any further 

discrimination between the set of arrhythmias thus obtained can be done 

only on the basis of some additional evidence (e.g. clinical data). Also, as 
the knowledge-base is complete the empty set of possible arrhythmias 
would imply that the given ECG is physiologically impossible. 

•. COMPRESSION OF THE ARRHYTHMIA-ECG BASE USING 
INDUCTIVE LEARNING TOOLS 

The main motivation for having the arrhythmia-EcG base is that it can be 
used for ECG diagnosis based on a simple pattern-matching rule. 
However, it is rather bulky for some practical application requirement. If 
stored as a text file, the 8314 PROLOG clauses that represent the 
arrhythmia-ECG relation. occupy 5.1 Mbytes of store. Also its complexity 
renders this knowledge-base difficult to compare with the conventional 
medical codifications of electrocardiographic knowledge. Therefore an 
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attempt has been made to find a more compact repre!>entation of the 
arrhythmia-EcG base that would still allow efficient ECG diagnosis. 

The main idea was to use the knowledge-base as a source of examples 
of particular features (heart disorders or EeG features) and to use an 
inductive learning algorithm to obtain their compact descriptions. The 
inductive learning programs used were GEM (Reinke, 19tw) and EXCEL 
(Becker. 191-15); Taking the complete arrhythmia-EcG base as the set of 
examples, the number of examples for these two learning programs 
would be too high. Therefore we had first to generate a subset of the 
knowletJge-base that would retain its completeness to the greatest 
possible extent. The following domain-specific factorization properties 
facilitated the selection of a considerably reduced subset for learning, 
whereby the information thus lost can be recover~d by a small set of 
additional rules. 

Some disorders in the heart are of a permanent nature while some do 
not occur regularly; the latter are called ectopic beats. A large number of 
combined arrhythmias and in particular ECO descriptions are due to the 
unconstrained combinatorial nature of ectopic beats. If we disregard 
mutual combinations of different types of ectoptic beats we can 
substantially reduce the number of generated multiple arrhythmias and 
ECG descriptions. The information thus lost can easily be reconstructed 
from the remaining rules in the knowledge-base. Namely, different types 
of ectopic beats are both mutually independent and independent of 
permanent disorders. The presence or absence of an ectopic beat does 
not allect the part of the ECG description produced by other disorders. 
The learning subset of the knowledge-base was further reduced by 
disregarding three simple arrhythmias whose ECGS can easily be deduced 
from the behaviour of other similar arrhythmias. 

To summarize-the learning subset was constructed from the original 
arrhythmia-EcG base by the following reductions: 

I. The subset only deals with 27 simple arrhythmias instead of the 
original repertoire of 30. We omitted sinuLarrhythmia, righLbundlt­
branch _block, and multLventricular _ectopic _bealS whose ECG descrip­
tion can be constructed from the descriptions of sinus-node_disorders, 
lefLbundle_branch_block, and ventriculaLectopicbeats respectively . 

2. We discarded mutual combinations of different types of ectopiC 
beats (atriaLectopic-beats, junctionaLectopic-beats, and ventriculaL 
ectopic_beats). 
The subset thus obtained was substantially smaller than the original 
arrhythmia-Eco base. There are 586 combined arrhythmias and 2405 
ECGS in the subset compared with 2419 arrhythmias and 140,966 ECGS in 
the complete knowledge-base. 

Roughly, the procedure for compressing the knowledge now proceeded 
as follows. The learning subset of the arrhythmia-KG base comprised 
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586 rules (corresponding to 586 combined arrhythmias) of the form: 

Combined_arrhythmia ~ ECG_description. 

The goal of learning was to convert this information into rules of two 
forms: 

1. Compressed prediction rules which answer the question: what ECGS 
may be caused by a given disorder in a heart's component? 

2. Compressed diagnostic rules which answer the question: what heart 
disorders are indicated by a given isolated ECG feature? 
Compressed prediction rules were synthesized by the GEM inductive 
learning program, and compressed diagnostic rules were synthesized by 
the EXCEL program. Both programs are based on the AQII learning 
algorithm (Michalski, 1983) and both generate class descriptions as APe 

expressions (Annolaled Predicate Calculus; Michalski, 1983). Before the 
programs could be used, the learning subset had to be converted into 
rules of yet two olher forms in order to obtain the right input for the 
leaulmg programs required. i.e. examples of objects that belong to 
classes being learned. The principle of how to do that in general is 
described in Mozetic (1986). For synthesizing prediction rules, the proper 
starting form was: 

Isolated_disorder ~ EC(Ldescription 

where an 'isolated disorder' is. for example, the atrial focus being in the 
tachycardic state. The starting point for the synthesis of diagnostic rules 
were rules of the form: 

Isolated_ECG_feature ~ Heart_state_description 

where an 'isolated ECG feature' is, for example, P-wave having abnormal 
shape. In general, rules of these forms are not completely logically 
equivalent to the original rules, so they have to be used with care. 
Mozelic (1986) states the conditions under which both the original rules 

Total 
number of 

Original arrhythmia 
knowledge-base 

Subset of the 
knowledge-base 

Arrhythmias 
combined 

Diagnostic 
rules 

rules 
con junctions 
attributes 

2,419 
8,314 

58,197 

586 
957 

6,699 

45 
75 

248 

49 
144 
371 

Kbytes 5,11'" 400 10 13 

Figure 9. Comparison between the original arrhythmia-ECG base, the selected subset for 
learning, and the derived compressed rules of both types (prediction and diagnosis). A 
'rule' above corresponds to a combined arrhythmia, a 'conjunction' corresponds to a 
PROL.O(l clause. 'Auributes' mean aJlthe references to attributes in a whole rule set. The 
lasl row gives the siles of these representations if stored as tellt liles. 

and the transformed ones are in fact logically equivalent. So this 
additional request had to be verified in our case as well. 

Figure 9 shows the compression effects achieved in terms of the 
number and complexity of rules, and in terms of storage space needed 
when storing different representations simply as text files. 

Figure 10 shows some prediction and some diagnostic rules generated 

combined(wenckebach)~lav_conduci =wen) ~ 

Irelation_P _.QRS =afteLP_some_QRS_miss) & 


(regular_PR = prolonged) 


combined(atriaLtachycardia)~(atLfocus = at) ~ 

[regulaLP = abnormal) & 

[ratLoLP =between_IlXL250) & 

[regulaLPR = meaningless v normal v prolonged) 


v 

[regulaLP = abnormal) & 

IregulaLPR = shortened v normal v prolonged) & 

LregulaLQRS = wide_LBBS_RBBB v delta_LBBB v delta_RBBB) 


v 
[regulaLP =abnormal) & 
[rate_oLP = between_l()(L250) & 
[regular_PR:: shortened) & 
IregulaLQRS = normal v wide_LBBB v widLRBBB) 

[regular_P =abnormal] ~ 
[sa_node == quiet) & 
[atLfOCus = quiet v at v aft v af v aeb) & 
{reg...vent-focus= quiet v vr v avr v vt] 

(regular_PR == shortened) ~ 

(atr_focus == quiet v wp v at v mat v aeb) & 

lay-conduct =wpw vigil 
v 
lay-conduct == normal) & 
(ay-junction:: jb v jr v jt) 

v 
[atr_focus:: at) & 
lay_conduct = normal v wpw v Igl} 

[regulaLQRS == normal) ~ 
{av_conduct:: normal v avbl v wen v mob2 v avb3 v 19l} & 

[bundle_branches == normal} & 
(reg...vent-focus == quiet) 

Fillure 10. Examples of prediction and diagnostic rules generaled by the mductive learning 

propams. 
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by the induction algorithms. Some of these descriptions correspond very 
well to the definitions in the medical literature. For example, the 
descriptions of the wenckebach disorder corresponds precisely to the 
conventional medical descriptions. On the other hand, some of the 
synthesized descriptions were considerably more complex than those in 
the medical literature. The computer-generated descriptions in such cases 
give much more detailed specification than may be necessary for an 
intelligent reader with a physiological background. Such a reader can 
usually infer the missing detail from his background knowledge. The 
additional details must still be made explicit in case of a computer 
application in the form of a diagnostic expert system, otherwise a lot of 
background knowledge and inference would have to be added which 
would be extremely difficult and its correctness hard to verify. Mozetit 
(1986) describes in detail how the knowledge compression was done. 

7. CONCLUSIONS 

Various representations of the EeG knowledge and transformations 
between these representations were described. The main three repre­
sentations are at different knowledge-levels in the sense of a distinction 
between 'deep knowledge' (causal, first principles) and 'shallow knowl­
edge' (operational knowledge). These three representations are: deep 
level (the qualitative causal model of the heart); shallow level (the 
complete arrhythmia-ECG base); and shallow level compressed (compact 
diagnostic and prediction rules). 

Figure II compares these representations from the points of view of: 
nature of knowledge, method of construction, representational formal­
ism, size as text file (in kilobytes), direction of inference the repre­
sentation supports, functional role. 

The size of the compressed diagnostic knowledge of 25 kbytes ap­
parently contradicts the size of compressed diagnostic rules in Figure 9. 
The difference stems from the fact that the compressed rules themselves 
are not sufficient for the diagnosis because of the loss of information in 
the selection of the learning subset of the arrhythmia-EeG base. To attain 
the full diagnostic equivalence with the complete shallow knowledge­
base, we have to add descriptions of arrhythmias and EeG features that 
were eliminated when reducing the complete knowledge-base into the 
learning subset. Furthermore, 'legality' constraints and related testing 
procedures must also be included. After adding all of these, the size of 
the compressed diagnostic knowledge increases to 25 kbytes. 

The ECG knowledge of this study is used in various forms in the KARDIO 

expert system for ECG interpretation (Lavrac et al., 1985). The automati­
cally synthesized shalIow-levcl electrocardiographical knowledge-base is 
complete with respect to the level of detail of the model. In an 
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II III 
causal model arrhythmia compressed 
of the heart knowledge-base diagnostic knowledge 

Nature of deep shallow shallow 
knowledge causal operational operational 

Method of manual automatic automatic 
construction synthesis from I compression from II 

Representational first ·orde r propositional propositional 
formalism logic logic logic 

Size in 
kbytes 27 5,100 25 

Direction of ARR-+ECG ARR ..... ECG ARR ..... ECG 
inference forward both backward 

qualitative diagnosis, 
Role simulation provide diagnosis 

generate II examples for III 

Figure II. Comparison uf dillerenl representations uf electrocardiological knowledge. 

assessment study of KARDIO (Grad and Cercek, 1984), cardiologists made 
the folIowing estimates: the knowledge-base covers 90-95% of a 'non­
selected' patient population suffering from cardiac arrhythmias (non­
selected in the sense that these patients would not be referred to a 
specialist cardiologist on the account of previous examinations). In a 
selected population KARUlO·E (the version of KARDIO used in this 
assessment study) would correctly handle 75% of arrhythmia cases. In an 
actual test on 36 randomly selected arrhythmia cases from internal 
medical practice the arrhythmia knowledge-base was sufficient in 34 cases 
(94%). The failed cases are due to some incompleteness of the deep 
model, such as the present model's incapability to handle artificial 
pacemakers. 

The main vehicles for implementing various knowledge representations 
and transformations were the following tools and techniques of Artificial 
Intelligence: logic programming (PROLOG in particular), qualitative mod­
elling, and inductive learning tools. 11 should be noted, of course, that 
the inductive programs were used in this work as tools for compression of 
a representation and not for actual learning. Since the inpm information 
to the learning programs was complete no generalization could have 
occurred. 

Further work can be directed along various lines including: elaboration 
of explanation capabilities based on the qualitative simulation; extending 
the model of the heart with treatment of mechanical failures; and 
stratifying the model by introducing several levels of abstraction. This 
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could be based on hierarchical relations between components of the heart 
and attribute values. Such a hierarchy would have an important role in 
generating a good and concise explanation of the heart to provide a 
means of Oexibly concentrating the explanation on points selected by the 
user. 

Acknowledgements 

The authors would like to thank the cardiologists: Professor M. Horvat, 8. Cercek, A. 
Grad, and P. Rode of the University Medical Centre. Ljubljana, for their consultations as 
domain specialists in Ihis research. 

REFERENCES 

8ecker, J. (1985) Inductive learning of decision rules with exceptions. M.Sc. thesis. 
University of Illinois at Urhana-Champaign. 

rurbus, K. D. (19114) Qualitative process theory. ArtijiciQllntt!lligence lit, 85-1611. 
Grad, A. and Cercek, B. (1984) EI'IJlulJtion 01 the QPplicability 01 the KARDlQ·E upert 

system. Issek Workshop 84, Bled, Yugoslavia. 
Goldman, M. J. (1976) Principles 01 clinical electrocardiography. Lange Medical Publica· 

tions, Los Altos. 
Kleer, J. de and 8rown. J. S. (1984) A qualitative physics based on conHuences. ArtificiQI 

Imelligence lit, 7-84. 
Kuipers, B. (1984) Commonsense reasoning about causality; deriving behaviour from 

S!ructure. Artificiallmelligenu lit, 169-204. 
Lavrac, N., Bratko, I. Mozelle, I., Cercek, B, Horvat, M. and Grad, A. (1985) 

KARlllo·E-an expert system for electrocardiographic diagnosis of I:ardiac arrhythmias. 
Ex:pert Systems Z, 46-50. 

Michalski, R S. (1983) A theory and methodOlogy of inductive learning In MIJchine 
learning~ artijjciQl imelligence approach (eds R. S. Michalski, J. G. Carbonell and T. 
M.MitcheU) pp. 83-134. Tioga, Palo Alto. 

Mozetic, I. (1'J1l6) Compression of the liCG knowledge·base using the AQ inductive learning 
algorithm. Report no. UIUCD(''S-F-85-943, Department of Compuler Science, University 
of Illinois at Urbana-Champaign. 

Mozelic, I. (1986) Knowledge ex:traction through learning Irom examples. In Machine 
learning; a guide to current research (eds T. M. Mitchell, 1. G. Carbonell, and R. S. 
Michalski) pp. 227-31. Kluwer, 8oston. 

Mozetie, I., Bratko, I. and I..avrac. N. (19114) The derivation 01 medical knowledge Irom a 
qlUllitative model 01 the heart. ISSEK Workshop 84, Bled. Yugoslavia. Updated version to 
appear as KARDIO: a study in deep and qualitative Knowledge lor expt:rt systems. MIT 
Press, Cambridge. Mass. 

Pereira. F., Pereira, L M., and Warren. D. H. D. (1978) DecSystem·/O Prolog user guidl!. 
Departmenl of Arliliciallntelligena:. University of Edinburgh, Edinburgh. 

Reinke. R. E. (1984) Knowledge-acquisition and relinementtools (or the AOVISE 
MUA·EXPERT system. M.Sc. thesis. University of Illinois at Urbana-Champaign. Also 
appeared as UIUCDCS-F-84-921, 

454 


Index 

ART 149, 150.151. 153. 154 

"us 307,319,423-33 


description of 425-8 

intelligibility o( solutions 424. 432 

petformance o( 423-5.429-32.432-3 

terminalion rules 4211. 433 


Ada 157.160.161.162,163.164 
advice generation 132-3, 142. 149-54 

All 375-6 

J\nna 157, 158, 160-4 

annOiatioos (of programs) IW, 161, 162 

AUCOl. 289.290.291.298,301-2.303 

APES 209.213-16,231,233.234,256 

AQ algorithm 267-70, 272 

arc consistency 134, 135-9,140.144 

arrythmia-EC(; knowledge bases 447-53 

anythmias. cardiac 436. 439. 447. 449 

assertions 24. 160, 1%-200.202 

assignment 33, 46 

ASSISTANT 308.309,310 

assumptions, non-negative III 

assumptions, teneative 243.244,258 

ATEST 273 

atoms 169. 188 

attributes 265.291.292.306.319.320 


binary 309,315 

class 322 

compound 328 

decider.status of 292-4,298 

domains or 265.272.328 

external 325, 326 

integer 425 

linear 265 

multi-valued 290,308-9,311.317 

nominal 265 

primitive 319.320,324.325. 326 

redundant 305.314-16.3111 

weights of 324 


Backlrack. Advised, see ABT 

Backtrack. Regular. s« 1181 


Backtrack algorithm 126. 129-32. 13:\ 

backtrack.free solutions 1 n, ns. 137 

backtracking 33.14.18.12.... 11IHI.445 

bindings 69.70.74.78 

biological systems 333-4.336 

8ritish Nationality Act program 228-34. 


235,245.246.247. H9-51 

C 320,325.326 

case law 217, 211i. 226: 244. 249. 250 

eHIAS (coverage bias) 404 

a:lIs 193,194, 195.204,205-7 

certainties 167. 174. 175-6, 187, 188. 189. 


190 

calculus of 176, 177 


chess endgames 290 

KBBK" (or B8N) 347-72, 371HW 


automata after IIn·like induction 388-9 

'box' in 362- 4, 365 

example move sequences 381.382, 


384-7 

five phases of 350-1 

in master practice 369-72 

pallernsin 365-8 

·pseudo.fortress' in 360- I, 362,363 

result of S('quence induction 388 

results of lests 352-3, 368-9 

'squinting' bishops in 364 

strategies of domam specialisl 353, 


358-64 

sub-strategy selection 379-110 

sub·strategy solution 381-2 

task of domain specialist 341\-9 

see also Kling and Horwitz position 


KPa7KR 321. 328-31, 3112 

KPK 271.275-6.278,279, 2!11-2. 376 


chess research. computer 375-6 

choice points 170 

chromosome clas.~ification 423-5.429-33 

circumscnption 4.8-9. 12. 13 


455 


http:69.70.74.78
http:33.14.18.12

