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Abstract. Genetic algorithms represent a class of adaptive search techniques that 
have been intensively studied in recent years, Much of the interest in genetic al
gorithms is due to the fact that they provide a set of efficient domain-independent 
search heuristics which are a significant improvement over traditional "weak meth
ods" without the need for incorporating highly domain-specific knowledge. There 
is now considerable evidence that genetic algorithms are useful for global function 
optimization and NP-hurd problems. Recently, there has been a good deal of interest 
in using genetic algorithms for machine learning problems. This paper provides a 
brief overview of how one might use genetic algorithms as a key element in learning 
systems. 

1. Introduction 

The variety and complexity of learning systems makes it difficult to formulate 
a universally accepted definition of learning. However, a common denominator 
of most learning systems is their capability for making structural changes to 
themselves over time with the intent of improving performance on tasks de
fined by their environment, discovering and subsequently exploiting interesting 
concepts, or improving the consistency and generality of internal knowledge 
structures. 

Given this perspective, one of the most important means for understanding 
the strengths and limitations of a particular learning system is a precise char
acterization of the structural changes that are permitted and how such changes 
&ore made. In classical terms, this corresponds to a clear understanding of the 
space of possible structural changes and the legal operators for selecting and 
making changes. 

This perspective also lets one more precisely state the goal of the research 
in applying genetic algorithms to machine learning. namely, to understand 
when and how genetic algorithms can be used to explore spaces of legal struc
tural changes in a goal-directed manner. This paper summarizes our currfnt 
understanding of these issues. 
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2. Exploiting the power of genetic algorithms 

Genetic algorithms (GAs) are a family of adaptive search procedures that 
have been described and extensively analyzed in the literature (De Jong. 1980: 
Grefenstette. 1986: Holland. 1975). GAs derive their name from the fact that 
they are loosely based on models of genetic change in a population of individ
uals. These models consist of three basic elements: (1) a Darwinian notion of 
"fitness." which governs the extent to which an individual can influence future 
generations; (2) a "mating operator:' which produces offspring for the next 
generation: and (3) "genetic operators." which determine the genetic makeup 
of offspring from the genetic material of the parents. 

A key point of these models is that adaptation proceeds. not by making 
incremental changes to a single structure (e.g.. Winston. 1975: Fisher. 1987). 
but by maintaining a population (or database) of structures from which new 
structures are created using genetic operators such as crossover and mutation. 
Each structure in the population has an associated fitness (goal-oriented evalu
ation). and these scores are used in a competition to determine which structures 
are used to form new ones. 

There is a large body of both theoretical and empirical evidence showing 
that. even for very large and complex search spaces. GAs can rapidly locate 
structures with high fitness ratings using a database of 50-100 structures. Fig
ure 1 gives an abstract example of how the fitness of individuals in a population 
improves over time. Readers interested in a more detailed discussion of GAs 
should see Holland (1975). De Jong (1980). and Grefenstette (1986). 

The purpose of this paper is to understand when and how G.-\s can lead to 
goal-directed structural changes in learning systems. We are now in a position 
to make some general observations. which we will explore in more detail in 
subsequent sections. 

The key feature of GAs is their ability to exploit accumulating information 
about an initially unknown search space in order to bias subsequent search 
into useful subspaces. Clearly, if one has a strong domain theory to guide 
the process of structural change. one would be foolish not to use it. However. 
for many practical domains of application. it is very difficult to construct such 
theories. If the space of legal structural changes is not too large. one can usually 
develop an enumerative search strategy with appropriate heuristic cutoffs to 
keep the computation time under control. If the search space is large. however. 
a good deal of time and effort can be spent in developing domain-specific 
heuristics with sufficient cutoff power. It is precisely in these circumstances 
(large, complex. poorly understood search spaces) that one should consider 
exploiting the power of genetic algorithms. 

At the same time. one must understand the price to be paid for search
ing poorly understood spaces. It typically requires 500-1000 samples before 
genetic algorithms have sufficient information to strongly bias subsequent sam
ples into useful subspaces. This means that G.-\s will not be appropriate search 
procedures for learning domains ill which the evaluation of ;)00-1000 alterna
tive structural changes is illfeasible. The variety of currellt activity in usin~ 
GAs 'for machine learning suggests that many interesting l('arnitl~ problems 
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Figure 1. An abstract example of adaptive search using genetic algorithms. 

fall into this category: i.e .. involving large. complex. poorly understood search 
spaces in contexts that permit sampling rates sufficient to support GAs. 

In discussing these activities. it wil1 help to have a more concrete model 
of the architecture of a learning system that uses genetic algorithms. The 
simplest GA.-based learning systems to describe are those whose goals are per
formance oriented. In this framework. the environment defines one or more 
tasks to be performed. and the learning problem involves both skill acquisi
tion and skill refinement. It is generally useful to separate such systems (at 
least conceptually) into two subsystems as illustrated in Figure 2: a GA-based 
learning component ('har~ed with lJlakin~ appropriate stl uctural ('han~es. and 
a task component' wh()~e performance-orienu:d behavior j" to be improvpd. 
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Figure 2. A performance-oriented learning system. 

We are now in a position to describe how one might exploit the power of 
genetic algorithms in a learning system of the type depicted in Figure 2. The 
key idea is to define a space of admissible structures to be explored via GAs. 
Each point in this space represents the "genetic material" of a task subsystem 
in the sense that. when injected with this structure. its task performance is now 
well defined and can be measured. The learning strategy involves maintaining 
a population of tested structures and using GAs to generate new structures 
with better performance expectations. 

In considering the kinds of structural changes that might be made to the task 
subsystem. there are a variety of approaches of increasing sophistication and 
complexity. The simplest and most straightforward approach is for the GAs to 
alter a set of parameters that control the behavior of a predeveloped. param
eterized performance program. A second. more interesting. approach involves 
changing more complex data structures. such as "agendas." that control the 
behavior of the task subsystem. A third and even more intriguing approach 
involves changing the task program itself. The following sections explore each 
of these possibilities in more detail. 

3. Using genetic algorithms to change parameters 

A simple and intuitive approach to effecting behavioral changes in a perfor
mance system is to identify a key set of parameters that control the system's 
behavior. and to develop a strategy for changing those parameters' values to 
improve performance. The primary advantage of this approach is that it imme
diately places us on the familiar terrain of parameter optimization problems. 
for which there is considerable understanding and guidance. and for which the 
simplest forms of GAs can be used. It is easy at first glance to discard this 
approach as trivial and not at all representative of what is meant by "learn
ing." But note that significant behavioral changes can be achieved within this 
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simple framework. Samuel's (1959. 1967) checker player is a striking example 
of the power of such an approach. If one views the adjustable weights and 
thresholds as parameters of a structurally-fixed neural network, then much of 
the research on neural net learning also falls into this category. 

How can one use genetic algorithms to quickly and efficiently search for 
combinations of parameters that improve performance? The simplest and most 
intuitive approach views the parameters as genes and the genetic material of 
individuals as a fixed-length string of genes, one for each parameter. The 
crossover operator then generates new parameter combinations from existing 
good combinations in the current database (population) and mutation provides 
new para.meter val ues. 

There is considerable evidence. both experimental and theoretical. that GAs 
can home in on high-performance parameter combinations at a surprising rate 
(De Jong, 1975; Brindle. 1980: Grefenstette. 1986). Typically, even for large 
search spaces (e.g .. 1030 points), acceptable combinations are found after only 
ten simulated generations. To be fair. however. there are several issues that 
can catch a GA practitioner off guard when attacking a particular problem in 
parameter modification. 

The first issue involves the number of distinct values that genes (parameters) 
can take on. With population sizes generally in the 50-100 range. a given 
population can usually represent only a small fraction of the possible gene 
values. Since the only way of generating new gene values is via mutation. one 
can be faced with the following dilemma. If the mutation rate is too low. there 
can be insufficient global sampling to prevent premature convergence to local 
peaks. Ho\,,,·ever. significantly increasing the rate of mutation can lead to a 
form of random search that decreases the probability that new individuals will 
have high performance. Fortunately, this problem has both a theoretical and 
a practical solution. although it is not obvious to the casual reader. 

Holland (1975) provides an analysis of GAs which suggests that they are 
most effective when each gene takes on a small number of values. and that 
bina.ry (two-valued) genes are in some sense optimal for GA-style adaptive 
search. This theoretical result translates rather naturally into what has now 
become standard practice in the GA community. Rather than representing a 
20-parameter problem internally as strings of 20 genes (with each gene tak
ing on many values). one uses a binary string representation that represents 
parameters as groups of binary-valued genes. Although the two spaces are 
equivalent in that both represent the same parameter space, GAs perform sig
nificantly better on the binary representation. This effect occurs because, in 
addition to mutation. crossover now generates new parameter values each time 
it combines part of a parameter's bits from one parent with those of another. 

The simplest way to illustrate this point is to imagine the extreme case of 
a domain in which one must adjust a single parameter that can take on 230 

distinct values. Representing this problem internally as a one-gene problem 
renders crossover useles!-i and leaves mutation as the only mechanism for gener
ating new individuals. Howev~r. a 30-gene binary representation lets crossover 
play an active and crucial role in generating new parameter values with high 
performance f>xpf>ctatiolls. 
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A second issue that arises in this context is that of convergence to a global 
optimum. Can we guarantee or expect with high probability that GAs will 
find the undisputed best combination of parameter settings for a particular 
problem? The answer is both "yes" and "no:' Theoretically. every point in 
the search space has a nonzero probability of being sampled. However. for 
most problems of interest, the search space is so large that it is impractical 
to wait long enough for guaranteed global optimums. A better view is that 
GAs constitute powerful sampling heuristics that can rapidly find high-quality 
solutions in complex spaces. 

In summary, one simple but effective approach is to restrict structural change 
to parameter modification and to use GAs to quickly locate useful combinations 
of parameter values. De Jong (1980) and Grefenstette (1986) provide more 
detailed examples of this approach. 

4. Using genetic algorithms to change data structures 

There are many problems for which the simple parameter modification ap
proach is inappropriate. in the sense that more significant structural changes 
to task programs seem to be required. Frequently in these situations. a more 
complex data structure is intimately involved in controlling the behavior of the 
task. and so the most natural approach uses GAs to alter these key structures. 
For instance, such problems occur when the task system whose behavior is to 
be modified is designed with a top-level "agenda" control mechanism. Systems 
for traveling-salesman. bin-packing, and scheduling problems are frequently or
ganized in this manner. as are systems driven by decision trees. In this context 
GAs must select data structures to be tested. evaluated. and subsequently used 
to fabricate better ones. 

At first glance, this approach may not seem to introduce any difficulties 
for genetic algorithms, since it is usually not hard to "linearize" these data 
structures, map them into a string representation that a GA can manipulate, 
and then reverse the process to produce new data structures for evaluation. 
However. again there are some subtle issues. and the designer must be familiar 
with them in order to make effective use of GA-based learning systems. 

As in the previous section on parameter spaces. these issues center around 
the way in which the space (in this case. a space of data structures) to be 
searched is represented internally for manipulation by GAs. One can eas
ily invent internal string representations for agendas and other complex data 
structures, but for many of these schemes, almost every new structure pro-
duced by the standard crossover and mutation operators represents an illegal 
data structure! 

An excellent example of this problem arises in using GAs to find good agen
das (tours) for a traveling salesman who needs to visit ,V cities exactly once 
while minimizing the distance traveled. The most straightforward approach 
would internally represent a tour as ,V genes. with the value of each gene indi
cating the name of the next city to be visited. However. notice that GAs using 
the standard crossover and mutation operators will explore the space of all 
'v-tuples of city names (most of which are illegal tours) whptl. in fact. it is the 
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space of all permutations of the N city names that is of interest. The obvious 
problem is that. as .v increases, the space of permutations becomes a vanish
ingly small subset of the space of N-tuples, and the powerful GA sampling 
heuristic has been rendered impotent by a poor choice of representation. 

Fortunately, sensitivity to this issue is usually sufficient to avoid it in one of 
several ways. One approach is to design an alternative representation of the 
same space for which the traditional genetic operators are appropriate. GA 
researchers have taken this approach on a variety of such problems, including 
the traveling-salesman problem (e.g., see Grefenstette, Gopal, Rosmaita, & 
Van Gucht. 1985). 

An equally useful alternative is to select different genetic operators that 
are more appropriate to "natural representations." For example. in t.he case 
of traveling salesman problems. a genetic. like inversion operator (which can 
be viewed as a particular kind of permutation operator) is clea.rly a more 
natural operator. Similarly, one can define representation-sensitive crossover 
and mutation operators to assure that offspring represent legal points in the 
solution space (e.g., see Goldberg & Lingle, 1985; Davis, 1985). 

The key point here is that there is nothing sacred about the traditional 
string-oriented genetic operators. The mathematical analysis of GAs indicates 
that they work best when the internal representation encourages the emergence 
of useful building blocks that can subsequently be combined with each other 
to improve performance. String representations are just one of many ways of 
achieving this goal. 

5. Using genetic algorithms to change executable code 

So far we have explored two approaches to using GAs to effect structural 
changes to task subsystems: (1) by changing critical parameter values, and 
(2) by changing key data structures. In this section we discuss a third possi· 
bility: effecting behavioral changes in a task subsystem by changing the task 
program itself. Although there is nothing fundamentally different between a 
task program that interprets an agenda data structure and one that executes 
a LISP program, generally the space of structural changes to executable code 
is considerably larger and very complex. In any case. there is a good deal of 
interest in systems that learn at this level, and the remainder of the paper will 
discuss how GAs can be used in such systems. 

5.1 Choosing a programming language 

Since our goal is to use genetic algorithms to evolve entire task programs. 
it is important to choose a task programming language that is well suited to 
manipulation by genetic operators. At first glance, this does not seem to be 
much of an issue. since programs wr;tten in conventional languages like FOR
TRA~ and PASCAL (or even less conventional ones like LISP and PROLOG) 
can be viewed as linear strings of symbols. This is certainly the way they 
are treated by editors and compilers in current program development environ
ments. However. it is also clear that this "natural" representation is disastrous 
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for traditional GAs, since standard operators like crossover and mutation pro
duce few syntactically correct programs and even fewer that are semantically 
correct. 

One alternative is to devise new language-specific genetic operators that 
preserve at least the syntactic (and hopefully, the semantic) integrity of the 
programs being manipulated. Unfortunately. the syntactic and semantic com
plexity of traditional languages makes it difficult to develop such operators. 
An obvious next step would be to focus on less traditional languages with sim
pler syntax and semantics (e.g .. "pure" LISP). thus having the potential for 
reasonable genetic operators with the required properties. There have been a 
number of activities in this area (e.g., see Fujiki & Dickinson. 1987). 

However, pure LISP shares an important feature with more traditional lan
guages: it is procedural in nature. and procedural representations have prop
erties that cause difficulty for GA applications. One obvious problem involves 
order dependencies; interchanging two lines of code can render a program 
meaningless. Another is the occurrence of context-sensitive interpretations: 
minor changes to a section of code. such as the insertion or deletion of a punc
tuation symbol, can change the entire meaning of the succeeding code. De Jong 
(1985) presents a more detailed discussion of these representation problems. 

These representational issues are not new. Holland (1975) anticipated them 
and proposed a family of languages (called broadcast languages) that were de
signed to overcome the problems described above. It is now clear that broad
cast languages are a subset of a more general class of languages known as 
production systems (Newell. 1973: Neches. Langley. & Klahr. 1987). Produc
tion systems (PSs) continue to reassert their usefulness across a wide range of 
activities, from compiler design to expert systems: thus. a good deal of time 
and effort has gone into studying their use in evolving task programs with 
genetic algorithms. 

5.2 Learning production-system programs 

One reason that production systems have emerged as a favorite programming 
paradigm in both the expert system and machine learning communities is that 
they provide a representation of knowledge that can simultaneously support 
two kinds of activities: (1) treating knowledge as data to be manipulated 
as part of a knowledge-acquisition and refinement process. and (2) treating 
knowledge as an executable entity to be used in performing a particular task 
(Buchanan & Mitchell, 1978; Hedrick. 1976). This is particularly true of data
driven PSs such as OPS5 (Forgy. 1981), in which the production rules making 
up a program are treated as an unordered set of rules whose left-hand sides 
independently and in parallel monitor changes in the environment. 

It should be obvious that this same programming paradigm offers significant 
advantages for GA applications. In fact. it has precisely the same character
istics as Holland's early broadcast languages. As a consequence. we will focus 
on PSs whose programs consist of unordered rules, and describe how GAs can 
be used to search the space of PS programs for useful rule sets. 
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To anyone who has read Holland (1975). a natural way to proceed is to 
represent an entire rule set as a string (an individual), maintain a population 
of candidate rule sets. and use selection and genetic operators to produce new 
generations of rule sets. Historically, this was the approach taken by De Jong 
and his students while at the University of Pittsburgh (e.g., see Smith, 1980, 
1983). which gave rise to the phrase "the Pitt approach." 

However. during the same time period. Holland developed a model of cogni
tion (classifier systems) in which the members of the population are individual 
rules and a rule set is represented by the entire population (e.g., see Holland 
& Reitman, 1978; Booker. 1982). This quickly became known as "the Michi
gan approach" and initiated a friendly but provocative series of discussions 
concerning the strengths and weaknesses of the two approaches. Below we 
consider each framework in more detail. 

5.2.1 The Pitt approach 

If we adopt the view that each individual in a GA population represents 
an entire PS program. there are several issues that must be addressed. The 
first is the (by now familiar) choice of representation. The most immediate 
representation that comes to mind is to regard individual rules as genes and to 
view entire programs as strings of these genes. Crossover then serves to provide 
new combinations of rules and mutation provides new rules. However, notice 
that we have chosen a representation in which genes can take on many values. 
As discussed in the previous section on parameter modification. this can result 
in premature convergence when population sizes are typically 50-100. Since 
individuals represent entire PS programs. it is unlikely that one can afford to 
significantly increase the size of the population. Nor, as we have seen, does 
it help to increase the rate of mutation. Rather. we need to move toward an 
internal binary representation of the space of PS programs so that crossover is 
also involved in constructing new rules from parts of existing rules. 

If we go directly to a binary representation. we must now exercise care that 
crossover and mutation are appropriate operators in the sense in that they 
produce new high-potential individuals from existing ones. The simplest way 
to guarantee this is to assume that all rules have a fixed-length, fixed-field 
format. Although this may seem restrictive in comparison with the flexibility 
and variability of OPS5 (Forgy, 1981) or MYClN (Buchanan & Shortliffe, 1984) 
rules. it has proven to be quite adequate when working at a lower sensory level. 
At this leveL one typically has a fixed number of detectors and effectors, so 
that condition-action rules quite naturally take the form of a fixed number of 
detector patterns to be matched, together with an action appropriate for those 
conditions. Many of the successful classifier systems rely on this assumption 
(Wilson, 1985: Goldberg, 1985). 

However, it is not difficult to relax this assumption and allow more flexible 
rule sets without subverting the power of the genetic operators. One can 
achieve this by making the operators "representation sensitive." in the sense 
that they no longer make arbitrary changes to linear bit strings. Rather. one 
extends the internal representation to provide punctuation marks so that only 
meaningful changes occur, For example. if the crossover operator chooses to 
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break one parent on a rule boundary. it also breaks the other parent on a 
rule boundary. Smith (1983) and Schaffer (1985) have used this approach 
successfully in their LS systems. 

A second representation-related issue that arises in the Pitt approach in
volves the number of rules in each set. If we think of rule sets as programs or 
knowledge bases, it seems rather artificial to demand that all rule sets be the 
same size. Historically, however. all of the analytical results and most of the 
experimental work has assumed GAs that maintain populations of fixed-length 
strings. 

One can adopt the same view using the Pitt approach and require all rule 
sets (strings) to have the same fixed length. This can be justified in terms 
of the advantages of having redundant copies of rules and having workspace 
within a rule set for new experimental building blocks without necessarily hav
ing to replace existing ones. However, Smith (1980) has extended many of the 
formal results on genetic algorithms to variable-length strings. He comple
mented these results with a GA implementation that maintained a population 
of variable-length strings and that efficiently generated variable-length rule sets 
for a variety of tasks. One interesting contribution of this work was a method 
for keeping down the size of the rule sets. based on a bonus for achieving the 
same level of performance with a shorter string. 

With these issues resolved. GAs have been shown to be surprisingly effective 
in producing nontrivial rule sets for such diverse tasks as solving maze prob
lems. playing poker, and classifying gaits. We direct the interested reader to 
Smith (1983) and Schaffer (1985) for more details. 

5.2.2 The ;\.fichigan approach 

Holland and his colleagues developed a quite different approach to learning 
production-system programs while working on computational models of cogni
tion. In this context. it seemed natural to view the knowledge (experience) of 
a particular person (cognitive entity) as a collection of rules that are modified 
Over time via interaction with the environment. ('nlike genetic material. this 
kind of knowledge does not evolve over generations via selection and mating. 
Rather, it accumulates in real time as the individual struggles to cope with his 
environment. Out of this perspective carne a family of cognitive models called 
classifier systems, in which rules rather than rules sets are the internal entities 
manipulated by genetic algorithms. 

Classifier systems consist of a set of rules (classifiers) that manipulate an 
internal message list. The left-hand side of each classifier consists of a pattern 
that matches messages on the message list. The right-hand side of each clas
sifier specifies a message to be posted on the message list if that classifier is 
allowed to fire. Interaction with the environment is achieved via a task-specific 
set of detectors that post detector messages on the message list. along with 
a set of task-specific effectors that generate external actions in response to 
posted messages. A classifier system is "perturbed" by the arrival of one or 
more detector messages indicating a change in the environment. This results 
in a sequence of rule firin~s as the contents of the messao:;e lise cham~·es. and it 
may result in one or more responses in the form of effector actions. 
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Learning in classifier systems is achieved by requiring that the environment 
provide intelligent feedback to the classifier system in the form of reward (pun
ishment) whenever favorable (unfavorable) states are reached. Since an arbi
trary number of rules can fire during the interval between two successive pay
offs. a significa.nt credit assignment problem arises in determining how payoff 
should be distributed. Holland (1986) has developed a "bucket brigade" mech
anism for solving this problem. Based on a strong "service economy" metaphor. 
the bucket brigade distributes payoff (wealth) to those rules actively involved 
in sequences that result in rewards. Over time. wealthier rules become more 
likely to fire. since they are favored by the conflict-resolution mechanism. 

As described. classifier systems are able to select useful subsets of rules 
from an existing rule set. However. additional beha\'ioral improvements can 
be obtained by making changes to the rules as well. As the reader may have 
guessed. this is achieved by interpreting the wealth of individual rules as a 
measure of "fitness." and using genetic algorithms to select. recombine, and 
replace rules on the basis of their fitness. 

There are a number of impressive examples of classifier systems that regulate 
gas flow through pipelines (Goldberg. 1985). control vision systems (Wilson. 
1985). and infer Boolean functions (Wilson. 198i). Which approach is better. 
the Pitt or ~lichigan approach. in the sense of being more effective in evolving 
task programs? It is too early to answer this question or even to determine if 
the question is valid. The current popular view is that the classifier approach 
will prove to be most useful in an on-line. real-time environment in which 
radical changes in behavior cannot be tolerated. whereas the Pitt approach 
will be more useful for off-line environments in which more leisurely exploration 
and more radical behavioral changes are acceptable. 

5.3 Architectural issues for production systems 

So far we have focused on representation issues in an attempt to under
stand how GAs can be used to learn PS programs. The only constraint on 
production-system architectures that has emerged is that GAs are much more 
effective on PS programs that consist of unordered rules. In this section we 
summarize some additional implications that the use of GAs might have on 
the design of PS architectures. 

5 . .1.1 The left-hand side of rules 

\lany of the rule-based expert system paradigms (e.g .. ~1YcI~-like shells) 
and most traditional programming languages provide an IF·THE),! format in 
which the left-hand side is a Boolean expression to be evaluated. This Boolean 
sublanguage can itself become quite syntactically complex and can raise many 
of the representational issues discussed earlier. In particular. variable-length 
expressions. varying types of operators and operands. and function invocations 
make it difficult to choose a representation ami!or a set of genetic operators 
that produce useful offspring easily and efficiently. 

Languages like OPS.) and SNOBOL take an alternative approach. assuming 
the left-hand siue is a pattern to be matched. Cnfortuna.tely. the pattern 
Janguct!!;f' can hI' as complex as Boolean expressions anu in some Ca5es is even 
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more complex. due to the additional need to save matched objects for later 
use in the pattern or in the right-hand side. 

Consequently. the GA implementor must temper the style and complexity 
of the left-hand side with the need for an effective internal representation. As 
a consequence. many implementations have followed Holland's lead and have 
chosen the simple {O. 1, #} fixed-length pattern language. permitting a direct 
application of traditional genetic operators, which were designed to manipulate 
fixed-length binary strings. When combined with internal working memory. 
such languages can be shown to be computationally complete. However. this 
choice is not without problems. The rigid fixed-length nature of the patterns 
can require complex and creative representations of the objects to be matched. 
Simple relationships like "speed> 200" may require multiple rule firings and 
the use of internal memory to ensure correct evaluation. As discussed earlier. 
some of this rigidity can be alleviated by the use of context-sensitive genetic 
operators (Smith 1983). However. finding a better compromise between sim
plicity and expressive power of the left-hand sides is an active area of research. 

A favorite psychological motivation for preferring pattern matching rather 
than Boolean expressions is the intuition that humans use the powerful mech
anism of partial matching to deal with the enormous variety of every day life. 
Seldom are humans in precisely the same situation twice. but they manage to 
function reasonably well by noting the current situation's similarity to previous 
experience. 

This has led to interesting discussions as to how GAs might capture similar
ity computationally in a natural and efficient way. Holland and other advocates 
of the {O. 1. #} paradigm argue that this is precisely the role that the wild-card 
symbol "#" plays as patterns evolve to their appropriate level of generality. 
Booker (1982. 1985) and others have suggested that requiring perfect matches 
even with the {O. 1. #} pattern language is still too rigid a requirement. par
ticularly as the length of the left-hand side pattern increases. Rather than 
returning simply success or failure, they feel that the pattern matcher should 
return a score indicating how close the pattern came to matching. This is 
an important issue, and we need more work on methods for computing match 
scores in a reasonably general but computationally efficient manner. \Ve direct 
the interested reader to Booker (1985) for more details. 

5.3.2 Working memory 

Another PS architectural issue revolves around the decision about whether 
to use "stimulus· response" production systems. in which left-hand sides only 
attend to external events and right-hand sides consist only of invocations of 
external effectors. or whether to llse the more general OPS modeL in which 
rules can also attend to elements in an internal working memory and make 
changes to that memory. 

Arguments in favor of the latter approach observe that the addition of 
working memory provides a more powerful computational engine. which is 
frequently required with fixed-length rule formats. The stren~th of this afl~ll
ment can be wl'akened somewhat by notin~ that in ::iomc cas!':; the external 
environment Itself can he used a.s a workin~ memory. 
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Arguments against including working memory generally fall along three 
lines: (1) the application does not need the additional gel;erality and com
plexity; (2) concerns about bounding the number of internal actions before 
generating the next external action (Le .. the halting problem): or (3) the fact 
that most of the more traditional concept-learning work (e.g .. Winston. 19i5: 
Michalski. 1983) has focused on stimulus-response approaches. 

Most GA implementations of working memory pro\·ic!e a restricted form 
of internal memory. namely. a fixed-format, bounded-cd.pacity message list 
(Holland & Reitman. 19i8; Booker. 1982). However. it is clear that there are 
many uses for both classes of architecture. The important point here is that 
this choice is not imposed by GAs themselves. 

5.3.3 Parallelism in production systems 

Another side benefit of PSs with working memory is that they can be easily 
extended to allow parallel rule firings (Thibadeau. Just. & Carpenter. 1982: 
Rosenbloom & Newell. 198i). In principle. the only time that serialization 
must occur is when an external effector is activated. Hence. permitting par
allel firing of rules that invoke internal actions is a natural way to extend 
PS architectures in order to exploit the power of parallelism. Of course. the 
implementor must decide whether this power is appropriate for a particular 
application. What should be clear is that GAs can be applied equally well to 
parallel PS architectures. leaving the choice to the designer. 

5.4 The role of feedback 

In attempting to understand how GAs can be used to learn PS programs. 
we have discussed how such programs can be represented and what kinds of 
architectures can be used to exploit the power of GAs. In this section we focus 
on a third issue: the role of feedback. 

Recall that one can view G As as using an adaptive sampling strategy to 
search large. complex spaces. This sampling scheme is adaptive in the sense 
that feedback from current samples is used to bias subsequent sampling into 
regions with high expected performance. This means that. even if one has 
chosen a good representation and has selected an appropriate PS architecture. 
the effectiveness of GAs in learning PS programs will also depend on the use
fulness of the information obtained via feedback. Since the designer typically 
has a good deal of freedom on this dimension. it is important that he select a 
feedback mechanism that facilitates this adaptive search strategy. 

Fortunately. there is a family of feedback mechanisms which are both simple 
to use and which experience has shown to be very effective: payoff functIOns. 
This form of feedback uses a classical "reward and punishment" s,hprne. in 
which performance evaluation is expressed in terms of a payoff value. GAs call 
employ this information (almost) direct ly to bias the selection of parents used 
to produce new samples (offspring). Of course. not all payoff funnions are 
equallv suited for this role. A good function will provide u::;eful information 
early in the search process to help foctls attention. For example. a pavon 
function that is nearly ~dways zpro provides almost llO information for dirpnin!.!; 
the spar('h pro('p~~. 
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The ~[ichigan and Pitt approaches differ somewhat in the wav the\' obtain 
payoff. In classifier systems. the bucket brigade mechanism st~nds ~ead\' to 
distribute payoff to those rules which are deemed responsible for achie~ing 
that payoff. Because payoff is the currency of the bucket brigade economy. a 
good feedback mechanism will provide a relatively steady flow of payoff. rather 
than having long "dry spells." \Yilson's (1985) "animat .. environment is an 
excellent example of this style of payoff. 

The situation is somewhat different in the Pitt approach. since the usual 
view of evaluation consists of injecting an individual PS program into the task 
subsystem and evaluating how well that program as a whole performs. This 
view leads to some interesting issues. such as whether to reward a program 
that performs a task as well as others but uses less spa,'e (rules) or time (rule 
firings). Smith (1980) found it useful to break up the payoff function into 
two components; a task-specific evaluation and a task-independent measure of 
the program itself. Although he combined these two components into a single 
payoff value. recent work by Schaffer (1985) suggests that it might be more 
effective to use a vector-valued payoff function in such situations. 

\Ve still have much to learn about the role of feedback. from both an analvt
ical and an empirical point of view. Bethke (1980) has used Walsh transforms 
in formally analyzing the types of feedback information that are best suited for 
GA-style adaptive search. Recent experimental work by Grefenstette (1988) 
suggests one way to combine aspects of both the ~Iichigan and Pitt approaches. 
employing a multilevel credit assignment strategy that assigns payoff to both 
rule sets and individual rules. This is an interesting idea that promises to 
generate a good deal of discussion. and it merits further attention. 

5.5 The use of domain knowledge 

Genetic algorithms are conventionally viewed as domain-independent search 
methods in that they can be applied with no knowledge of the space being 
searched. However. although no domain knowledge is required. there are ample 
opportunities to exploit domain knowledge if it is available. We have already 
seen some examples of how domain knowledge can be incorporated. A designer 
must select the space to be searched and the internal representation to be used 
by GAs. As discussed in the previous sections. such decisions require knowledge 
about both the problem domain and the characteristics of GAs. The choice of 
genetic operators is closely related to representation decisions. and a significant 
domain knowledge can also enter into their selection. Grefenstette et aL (1985) 
provide an excellent discussion of these issues. 

A more direct example of domain knowledge involves the choice of the initial 
population used to start the search process. Although we have described the 
initial population as randomly selected. there is no reason to start with an 
empty slate if one has a priort information available that permits seeding the 
initia.l popUlation with individuals known to have certain performance levels. 

A third and more obviolls way to exploit uomain knowlPdge is by means of 
the feedback mechanism. As we have seen. the effectivpnes" of G A:s depends on 
the usefulness of the f('('([back information provided. Even the simplest form of 
fcpdback i the payoff-olll\' method) can and frpqtlcnrly dop:; incnrporatc domain 
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knowledge into an effective payoff function. More elaborate forms of feedback. 
such as the vector-valued strategies and multi-level feedback mechanisms dis
cussed abo\'e. provide additional opportunities to incorporate domain-specific 
knowledge. Thus. in practice we see a variety of scenarios. ratlging from the 
use of "vanilla" GAs with little or no domain-specific modifications to highly 
creative applications that incorporate a good deal of domain knowledge, 

6. Summary and conclusions 

We started this paper with the goal of understanding how genetic algo
rithms might be applied to machine learning problems. \Ve suggested that a 
good way to answer this question was to visualize a system as consisting of two 
components: a task subsystem whose behavior is to be modified over time via 
teaming. and a learning subsystem responsible for observing the task subsys
tem over time and effecting the desired behavioral changes. This perspective 
let us focus on til" kinds of structural changes a learning subsystem might make 
to a task subsystem in order to effect behat'ioral changes. We identified three 
classes of structural changes of increasing complexity: parameter modification. 
data structure manipUlation. and changes to executable code. 

Having characterized learning in this way. we restated the problem in terms 
of searching the space of legal structural changes for instances that achieve 
the desired behavioral changes. If one is working in a domain for which there 
is a strong theory to guide this search. it would be silly not to exploit such 
knowledge. However. there are many domains in which uncertainty and igno
rance preclude such approaches and require the learning algorithm to discover 
(infer) the important characteristics of the search space u:hzle the search is 
in progress. This is the context in which GAs are most effective. Without 
requiring significant amounts of domain knowledge. GAs have been used to 
effectively search spaces from each of the categories listed above. 

At the same time. it is important to understand the limitations of this 
approach. We have seen that in most cases 500-1000 samples must be taken 
from the search space before high-quality solutions are found. Clearly. there are 
many domains in which such a large number of samples is out of the question. 
We have also seen that the difficulty of choosing a good internal representation 
for the space increases with the complexity of the search space. Similarly. care 
must be taken to provide an effective feedback mechanism. 

Thus. genetic algorithms are best viewed as another tool for the designer of 
learning systems. Like the more familiar inductive techniques and explanation
based methods. GA is not the answer to all learning problems. but it provides 
an effective strategy for specific types of situations. 
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