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Fig. 7. Expected reward rate, ELX(n).

components (hardware and software) is reflected in a mutltiple error
model. The proposed reward measure allows us to predict the
performability of the system based on the service and error rates. It is
suggested that other production systems be similarly analyzed so that
a body of realistic data on computer error and recovery models is
available.
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' Distributed and Faalt-Tolerant Computation for Retrieval
Tasks Using Distributed Associative Memories

JOIS MALATHI CHAR, VLADIMIR CHERKASSKY,
HARRY WECHSLER, axp GEORGE LEE ZIMMERMAN

Abstract—We suggest the distribmed associative memory (DAM)
model for disiributed snd fauit-tolerant computation ss relsted to
retrieval tasks. The fault tolerance is with respect 10 noise in the input key
dats and/or locsl and global faiiures in the memory itself. We have
developed working models for fault<tolerant image recognition aad
database information retrieval backed up by experimental results which
show the feasibility of sech an approsch.

Index Terms—Daiabase retrieval, distributed associstive memory
(DAM), distributed computation, fmult tolerance, neural networks,
recoguition.

I. INTRODUCTION

Artificial Intelligence (AD) deals with the types of problem solving
and decision making that humans continuously face in dealing with
the world. Such acuvity involves by its verv namre complexmy,
uncertainty, and ambiguity. all of which can distort the phenomena
being analyzed. However, following the human example, any
corresponding compuzar system should process information such that
the results are invanant to the vagaries of the daa acquisition
process. Furthermore. one would expect such computer svstems to be
fault wolerant. i.e.. to display robustmess. if and when some of their
hardware were to faii. We suggest int this paper how a particular nnpe
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of distributed and fault-tolerant computation modeled after the
distributed associative memory {DAM) [14] paradigm can be made
useful for tasks such as those encountered in object recognition and
dawubase retrieval,

One can consider intzlligent behavior as an information processing
task and then address the three levels at which such tasks must be
understood [17]. First, the basic computational theory specifies what
is the task. why is it appropriate, and what is the strategy by which it
can be carried out. Second, the representation and algorithm specify
how the computational theory can be implemented in terms of input.
output. and transformations. Third. the hardware specifies the actual
implementation. It is clear that the task determines the mixtre of
representations and algorithms. It is also clear that a good fit/match
among the three levels is highly desirable and beneficial. In our case,
we define our task as fauli-tolerant data retrieval and suggest 1o solve
it as a constraint optimization problem. The representation and
algorithms to be discussed in detail later on are characteristic of an
emerging Al trend, that of paraliel and distributed computation.
Characteristic to such a trend are neural networks (NN's) also known
as ANS/Arificial Neural Systems [7].

According to Sejnowski [16], NN's allow objects and their
relationships 10 be internally represented by amractors (i.e., fixed-
points), which makes the search for the best maich between the world
and the imemnal representation of the world (encoded through the
dynamics of the network) much more powerful than previous
1emplate matching. Another aspect which makes NN's anractive
comes from the ability to implement them as adaptive systems, able to
learn and self-organize. The lack of a meaningful learning capability
is one of the major drawbacks for Al

It is worthwhile to briefly survey the origins of NN's. The idea of a
distributed network for computational tasks like recognition was
suggested by Rosenblatt [19] in the form of the two-layer Perceptron.
Minsky and Papert [18] showed that such networks could fail on even
simple tasks like implementing the XOR function. Scienusts do not
give up. even more so when there is a theorem by Kolmogorov
stating that any continuous function of n variables can be computed
using a three-layer Perceptron with n1(2n + 1) nonlinear nodes [15].
Unfortunately. the theorem is not of the constructive type. Most
recently, connectionist models were suggested in the form of
multilayer networks with hidden units. Regarding the learning
algorithm, backpropagation learning was introduced by Rumelhar er
al. [16]. Even though such an algorithm does not enjoy proof of
convergence, it still proved very successful in a system NETuwalk
developed by Sejnowski [21] for word pronunciation. The connec-
tionist models could be implemented in parallel (SIMD) on a
Connection Machine {9] running under the **marker-passing type”
mode [4]. Using such an approach. Stanfill and Waltz [22], suggest
the idea of memory-based reasoning (similarity-based induction) and
were able to duplicate to a close approximation the results obeained by
Sejnowski. The DAM paradigm to be introduced in the next section is
a known mathematical tool. It emoys the benefit of a convergent
leamning procedure like the Widrow-Hoff algorithm [14].

Neural networks were developed originally to account for biologi-
cal memory systems. They implement a type of distributed represen-
tation and computation, where 2 large number of highly intercon-
nected “'simple’” processing elements (PE) operate in paraliel. NN's
can be structured both hierarchically and heterarchically, and through
the use of efferent. afferent. lateral connections. and/or hidden
layers. the limitations due to local processing and lack of feedback
could be removed [7]. {10]. NN’s provide 2 good fit among the three
levels at which recognition tasks should be understood. Through the
NN's collective dynamics. the emergent behavior which is che result
of both competition and cooperation between neighboring PE’s yields
the optimal solution subject to contextual constraints mplicitly
embedded in the net of interconnections. Such an approach 1s akin to
relaxation [17].

The genenc recognition process matches a derived (invariant)
input representation of the short-term memory (STM) type against
LTM (long-term memory). A synergetic approach suggests the LTM
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organization in terms of DAM’s, Specifically, the DAM's are reixed
to GMF (generalized match filters) {2] and SDF {(synthetic discremi-
nant functions) [B). Like them. the DAM’s attempt 10 capure a2
distributed representanon which sverages over the variations belorg-
ing to the same class. A parallel and dustributed mode of computanon
for visual tasks is furmer suggested by the reunotopic and paraiel
cytwoarchitecture characteristic to the visual corex [11]. Such
distributed representanons are also consistent with Gestalt (holisuc)
recognition. where the holistic organization can be imposed over
space and/or ume. The DAM’s allow for the implicit representanon
of structural relationships and coatextual information. Finaliy,
because information is distributed in the memory, the overall funcoon
of the memory becomes resistant to noise, faults in memory, and
degraded stimulus key vectors. A pardcular analogy might be useful.
The difference betweer addressed computer memories and DAM s is
similar to the difference between a photograph and a hologram. If a
photograph is cut in ha!f and one half is thrown away, fifty percent of
the information is lost. and the information lost is that from the haif
thrown away. In a simiar manner, if haif of the address for a normal
computer memory is thrown away, it would be very had to find thar
memory location. On the other hand, if a hologram is cut in half.
again fifty percent of the information beld by the whole hologram will
be lost, but the whole image can be reconstructed. although the
reconstructed image will be noisier. This, in essence, is the way the
DAM behaves.

II. DAM BACXGROUND

We describe first the DAM modeling in terms of representation
and algorithms and then we discuss the mathematics involved in
computing the generalized inverse as required by such modeling.
There are two main phases in the operation of DAM’s:

1) Memory Construction Phase: when the memory matrix is
created from a given set of associanons.

2) Recall Phase: (i.e., memory indexing and retrieval), when a
noisy (or perfect) version of a stimulus vector that is par of a stored
association is used to retnieve its associated vector (or a close
approximation of it).

Specifically the DAM allows for memory to be reconstructive.
i.e., it yields the entire output vector (or a closed approximation of it}
even if the input is noisy. partially present, or if there is noise in the
memory itself (computer components like neurons are not always
reliable and may fail wo!).

The memory matrix for the autoassociative case is evaluated using
the equation given below

M=55"

where M is the memory matrix and S~ is the generalized inverse of
the input matrix S (cach column of S corresponds to one stimulus
vector). The generalzed inverse of a nonsquare matrix is a
generalization of the ordinary inverse for square nonsingular matrices
[20]. A heteroassociative model can be easily developed assurming a
memory of type M = RS™ where § # R. § and R are called the
forcing (stimulus matnx; and coupling (response matrix) functions,
respectively.

The retrieval operatioa for an autoassociative case. i.e, the atemm
1o recall memory conteats for an inpn key £ is shown below.

§=M:

where § is the recalled approximation of the association. The recall
operation for the heteroassociative case can retrieve either the forcing
(stimulus) function s or the coupling (response! 7. Specifically if the
corresponding rnatrices are § and R, respectively, then

a) ift € {rithenM = SR, § = M1,
b} ifr € {s}thenM = RS",F = M.

The memory matrix M defines the space spanned by the inpwt
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Fig. 1.

representations. The recall operation is implemented through the use
of M as a projection operator. The retrieved data § (for case b) obeys
the relationship

t=§+5%

where § plays the role of an optimal associative recollection/linear
regression in terms of M. The residual § is orthogonal to the space
spanned by M and represents the novelty in ¢ with respect 1o the
stored data in M. It is the decomposition of ¢ in terms of (5, §) thatcan
be used to facilitate the learning of new things.

The computationally intensive module needed to compute the
generalized inverse of a matnix [20] implements a least square
solution of the Gram-Schmidt orthogonalization process. Our simu-
lation experiments implement such an approach and are described in
the next two sections.

1. INVARIANT IMAGE RECOGNITION

The challenge of the visual recognition problem stems from the
fact that the projection of an object onto an image can be confounded
by several dimensions of variability such as uncertain perspective,
changing orientation and scale, sensor noise. occlusion. and nonuni-
form illumination. A vision system must not only be able to sense the
identity of an object despite this variability, but must also be able to
characterize such vanability-—because the variability inherenty
carries much of the valuable information about the world. Our goal is
to derive the functional charactenstics of image representations
suitable for invariant recognition using a distributed associative
memory. The main question is that of finding appropriate transforma-
tions such that interactions between the internal structure of the
resulting representations and the distributed associative memory yield
invariant recognition. This should be contrasted to eariier attempts to
use DAM’s direcily on raw input data [14].

We approach the problem of object recognition with three
requiremnents: classification, reconstruction. and characterization.
Classification implics the ability to distinguish objects that were
previously encountered. Reconstruction is the process by which
memorized images can be drawn from memory given a distoried
version exists at the input. Characterization involves extracting
information about how the object has changed from the way in which
it was memorized. Our goal is to discuss a system which is able 10
recognize memorized two-dimensional objects regardless of geomet-
ric distortions like changes in scale and oricntation, and can
characterize those transtormations. The svstem {25] also allows for
noise and occlusion and is tolerant of memory faults.

We shortly examine the various components used to produce the
vectors which are associated in the distnbuted associative memory,
The block diagram which describes the vanous functional umits
involved in obtaining an invaniant image representation is shown in
Fig. 1. The image is complex-log conformally mapped. This
transformation maps the Canesian space into the log-polar domain
such that rowtion and scale changes become translation in the
transform domain. Along with the conformal mapping, the image is
also filiered by a space variant filter to reduce the effects of aliasing.

Block diagram of the system.

The conformally mapped image is then processed through a
Laplacian in order to solve some problems associated with the
conformal mapping. The Fourier transform of both the conformally
mapped image and the Laplacian processed image produce the four
output vectors. The magnirude output vector |®|; is invariant 1o
linear transformations (scale and rotation) of the object in the input
image.

We now discuss the result of computer simulations of our system.
Images of objects are first preprocessed through the system outlined
in Fig. 1. The output of such a subsystem is four vectors | @}, ¢,,
|®],, and #,. We construct the memory by associating the stimulus
vector | @[, with the response vector $, for each object in the
database. To perform a recall from the memory, the unknown image
is preprocessed by the same subsystem to produce the vectors |8,
$,.18|;, and &;. The resulting stimulus vector |#], is projected
onto the memory matrix to produce a response vector which is an
estimate of the memorized phase €;. The estimated phase vector &,
and the magnirude | |, are used to reconstruct the memorized object.
The difference between the estimated phase &, and the unknown
phase &, is used to estimate the amount of rotation and scale
experienced by the object.

The database of images consists of 12 objects: four keys, four
mechanical parts, and four leaves. The objects were chosen for their
essentially two-dimensional structure. Each object was photographed
using a digitizing video camera against a dark background. We
emphasize that all of the images used in creating and testing the
recognition system were taken at different times using various camera
rotations and distances. The images are digitized to 256 x 256, 8-bit
quantized pixels. and each object covers an area of about 40 x 40
pixels. This small object size relative to the background is necessary
duc to the nonlinear sampling of the complex-log mapping. The
objects were centered within the frame by hand. This is the source of
much of the noise and could have been done automatically using the
object’s cemer of mass or some other criteria determined by the task.
The orientation of each memorized object was arbitrarily chosen such
that their major axis was vertical. The two-dimensional images that
are the output from the invariant representation subsystem are
scanned horizonially to form the vectors for memorization.

Fig. 2 displays the significant improvement observed when the
input is highly corrupted by noise. Specifically, the recall operation
recovers a key embedded in heavy noise (SNR = -3 dB) and the
recall’s SNR is equai 10 8.2 dB.

Fig. 3 is an example of occiusion. The unknown object in this case
is an ""§'" like part which is larger and slightly tilted from the
memorized **S.”" A portion of the bottom curve was occluded. The
resulting reconstruction is very noisy but has filled in the missing part
of the bottom curve. The noisy recall is reflected in both the SNR and
the interplay between the memorized objects as shown by the
histogram. The histogram shows the interplay between the memo-
rized image and the unknown input. The **4’" on the bargraph
indicates thar the correct class the input belongs to has been indeed
idennfied.

Fig. 4 displays the result of locally setting a fraction of the memory
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Fig. 2. Recall improves the SNR.

Origins!

Recall
Fig. 3. Recall using scaled and rotated **S™ with occlusion.

Unknown

matrix elements to zero. The damage is done locally and it is present
in a local sense in the recall. The warping to the complex-log
mapping makes the objects of the size that were memorized tolerant
to local faults in the memory. (For invariance reasons the input
images were complex-logged mapped before the memory matrix is
built.) The upper left image is the ideal reconstructed recall with no
damage 1o the memory matrix. The upper right image is the recall

when 30 percent of the memory is set to zero. The lower image is the -

recall for 50 percent local damage.

Fig. S is the result of randomly setting the elements of the memory
to zero. The effect of this kind of damage is not nearly as critical as in
the case of the local damage. The upper left image is the ideal recall.
The upper right image is the recall after 30 percent of the memory has
been set to zero. The lower left and right recalls correspond to 50 and
75 percent random damage. respectively. Even when 90 percent of
the memory matrix has been set to zero (not shown in the figure) a
faint outline of the pin could be seen in the recall. This is evidence
that not all the connections in this network are necessary and as a
consequence one could and should look for finding a data compres-
sion scheme for the memory matrix.
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IV. DATABASE RETRIEVAL

We have developed and implemented the DAM-based modei for
fault-tolerant information retneval. Efficiem index (key) retrieval
capability is essentiai for querying large dasabases [3]. [24].
Furthermore, our model allows us to retrieve information in the
presence of noise (errors) in the input key (index) and/or memory
itself. Our results are outlined below.

A. DAM Mode! for Database Retrieval

We created a datsbase of names from a student directory. The
DAM model thus appears like an autoassociative memory where
prestored names can be recalied using noisy inputs. There are two
phases in the operation of the standard sutoassociative DAM as
described in Section II.

During the memory construction phase every name is encoded by 2
hash function (see Section IV-B) imo a stimulus vector of a fixed
length. Let IV be the name matrix with / rows and k columns where k
is the number of names in the database and / is the maximum size of
any name in the database. Let 5 be & matrix with m rows and k
columns. Each column of S corresponds to the hash vector
(dimension m) of one name in the database. Instead of evaluating the
memory marrix NS during the database creation phase (as discussed
in Section I, we only dewermine the generalized inverse (5*), and
store both NV and S for use during retrieval. During the recall phase,
the input key is convened to its hash vector ‘. We multiply $* by *
10 obtain & vector *¢’. This vector ‘¢’ is treated like a histogram that
indicates bow close the vector °f" is to each of the stored hash vectors.
If ¢[#] is the maximum element in vector ‘¢’ then the ith hash vector is
closest 1o *1°. The system, therefore, returns the fth name in the name
matrix NV as the output of the recall phase. In simuations where more
than one element in ‘¢’ is very close in value (¢.g., 1 percent) 10 the
maximum element, the systermn makes a note of all those elements and
retumns the names corresponding 10 all those elements. Note that in
our DAM model for retrieval the recalled name is one of the
prestored names *‘closest’ to the noisy input whereas in image
recognition applications, the recalled image is usually a weighted
linear combination of prestored images.

B. Hashing Methods

A hashing function used to encode names should satisfy the
following requirements.

1) The DAM model expects all stored vectors to be of the same
size. Therefore, 2 name to be stored in the database is transformed
into a real-valued vector of fixed length using some hashing function.
This fixed length vector then serves as a stimulus to the model.

2) The hashing function must have the property that a typical error
(e.g., mispelled/omitted/additional letter) in the input key at the time
of retrieval will produce a hash vector that is close to the hash vector
corresponding to an error-free name. This implies, for example. that
the standard ASCII encoding for lenters would not work because an
insertion error (additional letter) or deletion error (missing lerter) in
the input key will result in a stimulus vector totally different from the
stimulus of an error-free name. We worked with three kinds of hash
functions known as: n-gram extraction methods (1 € n € 3).

The hash function creates a vector that is 26**n elements long.
Each ciement represents an m-gram corresponding to a set of n
adjacent lemers. An clement has the vaiue one if the 7 gram to which
it corresponds appears at least once in the name. For every a1 gram
that is absemt in the name. the corresponding element in the vector is
set to zero. We shall also refer to these methods as alphabet
extraction, bigram extraction, or trigram extraction. depending on
the value of parameter n.

Using the frequency of occurrence of n-grams trigrams in the
English language should improve the performance of this model. We,
however, obtxained very good results even without the use of
frequencies.

C. Experimental Resulis

_ The algorithms for the model discussed in Section IV-A were
implemented in a **Unix"" environment on a Sun 3/75 workstation.
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1deal Recall

30% of Memory Set to Zero

¥
. .

50% of Memory Set to Zero

Fig. 4. Recall for memory matrix locally set to zero.

Ideal Recall

50% of Memory Set to Zero
Fig. §.

A small database was created with names taken from a student
directory. Each name consisted of up to L1 lernters and we considered
the following two types of data:

¢ random (noncorrelated) data, i.e.. names were extracted ran-
domly from the student directory

* highly correlated data, i.c., names were taken from the same
page of the student directory.

Fault-tolerant retrieval is analyzed with respect to the following
common types of input errors:

* Single letter deletion errors;

» single lenter substitution errors.

As a measure of fault-tolerant retrieval, we consider the percentage
of correct retrievals with respect 1o a particular type of error in the
input key. In our experiments. we consider the following factors
which affect fault-tolerant retricval:

30% of Memory Set to Zero

75% of Memory Set to Zero

Recall for memory matrix randomly set to zero.

® type of data stored. i.c.. random versus correlated:

¢ database size. or the number of names stored:

® type of hashing function used (alphabet. bigram, trigram
extraction);

* type of input errors.

Results are presented in the form of tables showing the percentage
of correct retrievals as a function of database size. Fig. 6 shows the
performance of fault-tolerant rerneval for random data. As expected.
the performance degrades with increase in database size for all three
hashing methods. The results obrained with the alphabet extraction
method [Fig. 6(a)] also exhibit the same trend except for a quirk ata
database size of 28 that we have not been able to explain. For
correlated data. experimental results obtained with alphabet extrac-
tion and bigram extraction are slightly worse than for random dat.
However, the trigram method vields perfect retnieval even with
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Fig. 6. Fauli-tolerant retrieval for random data. (a) Perforrmance of the
alphabet extraction method on random data. (b} Performance of the bigram
method on random data. {c) Performance of the tngram methad on random
dawa.

correlated data. Fig. 7 shows the elemems of the recalled histogram
vector "¢’ obtained when recalling a name from a correlated database
(bigram method) of size 8. As expected. the trigram method shows
better fault tolerance than the bigram method which in tumn shows
bener results than a simpler method based on aiphabet extraction.
Although we did not gather any statistics about other kinds of errors
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(e.g.. insertion errors, multiple letter deletion and substitution), we
found that the system handles them very well.

Our experimental results can be explained qualitatively using the
general DAM analysis. Namely, according to [23] when a noisy
version of a memorized input vector is applied to the memory, the
recall is improved by a factor correspording to the ratio of the
dimension of the vectors to the ratio of the number of memorized
Vectors.

We performed many experiments to analyze how robust retrieval is
affected by the size of memory (DAM saturation effect). Fig. 8 shows
the maximum database size for which the percentage of correct
retrievals (assuming delenon errors) exceeds a cenain value. The
table shows that when the database size exceeds 20, the alphabet
extraction method s retrieval rate falls below 66 percent, while that of
the bigrams deteriorates below 66 percent only when the number of
names stored exceeds 200. The trigram method yields good results
even when more than 300 names are stored. This illustrates the
saturation effect typical of DAM-based models. We did not continue
10 experiment with larger databases, 1o determine when the trigram
method will saturate. because the computation time for the trigram
method is quite large. Samration is a consequence of the crosstalk
effect caused by the memory being nonorthogonal due to similarity
among the stored sumuli. This explains why the alphabet extraction
method with a vector size of 26 saturates faster than the bigram
method with a vector size of 26° which in turn saturates faster than
the trigram method with a vector size of 26°.

The absolute upper bound on the number of vectors that can be
stored in the database is the dimension of the hash vector. In practice,
however, this limit is mever achieved because one does not have
control over the orthogonality of hash vectors of prestored names.
Moreover, some of the names must have hash vectors that are linearly
dependent on the previous vectors and thus prevent retrieval of that
name altogether. This never happened with the trigram method. it
happened for one of the 300 correlated names stored in the bigram
method and for four of the 26 correlated names stored in the alphabet
extraction method. This rare condition is detected during memory
construction.

The DAM database is a distributed memory. Therefore, when 2
portion of the memory is corrupted, the system does not lose its
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retrieval capabilities altogether but degrades gracefully. Portions of
the memory were randomly selected and set to 0.5. The results are
shown in Fig. 9. Initially, we had set portions of the memory to zero,
but this did not seem to affect the performance of the system at all
because the original (error-free) memory is sparse. This experiment
was performed on a database of 28 correlated names that used the
bigram hashing method. Overall we have shown that the DAM
database is very resilient to corruption in the memory itself.

V. HARDWARE AND SOFTWARE IMPLEMENTATIONS

The computationally intensive part of the algorithm for computing
the generalized inverse of & matrix [20] is the Gram-Schmidt
orthogonalization process, or matrix triangularization. Triangulariza-
tion on a sequential computer is computationally expensive since it
requires O(n*) operations for an 1 x n matrix. Fortunately, one can
use systolic arrays for the implementation of matrix operations in
VLSI. At least two systolic array designs have been proposed to
perform triangularization for general (dense) matrices [1], [6]. Both
designs usc triangular systolic array and are based on Givens
rotations to guarantee numerical convergence and stability. The
difference essentially being that in [6] the input matrix is entered one
row per step and in {1] it is entered one-column per step. Matrices
that are too large for a given systolic array can be triangularized by
first splitting them imo blocks [1]: in this case, the triangularization
would require O(n3/p®) time where n is the matrix dimensionality
and p? is the number of processors in systolic array, p < n.

Matrix-vector multiplication for the recall operation and/or the
gradient descent learning technique can be also implemented using
VLS! systolic amays [12]. Since the matrix M is very large. we
cannot expect 10 fabricate a systolic array of a corresponding (large)
size on a monolithic chip due to I/O bandwidth limitations. An
approach based on partitioned matrix algorithms [13] has been
proposed to overcome this problem by using smaller VLSI array
modules which perform computations on p X p submatrices and p X
1 subvectors.

We are currently trying to implement the DAM on an NCUBE
parallel computer. Since the DAM model involves large-scale matrix
operations, we can achieve significant specdup using a paraliel
NCUBE machioe where a large matrix is partitioned into several
block submatrices. which are stored and manipulated in different
nodes of the hypercube.

V1. CONCLUSIONS

We describe in this paper the distributed associative memory
(DAM) model for distributed and fauli-tolerant computation as
related 1o image recognition and database retrieval tasks. Our

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4, APRIL 1983

experiments, &s reported in this paper, show the feasibility of our
approach and prove the strong connection between pattern recogni-
tion (cluster analysis) and database rescarch.

The fault-tolerant aspect relates to the robust performance DAM's
exhibit in the presence of noisy inputs and/or memory faults.
Experiments which included both local and global faults in the
memory showed that the retrieval is still acceptable. We are presently
concerned with the possibility of regenerating a faulty memory to its
original condition and with developing alternative hashing methods
for improving on the capacity of the memory (i.¢., to decrease the
saturation effect).
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