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components (hardware and software) is reflected in a multiple error 
model. The proposed reward measure allows us to predict the 
perfonnability of the system based on the service and error rates. It is 
suggested that other production systems be similarly analyzed so that 
a body of realistic data on computer error and recovery models is 
available. 
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Distributed and F ••II-Tolerant Computation for Retrieval 
Tasks Usial Distributed Associative Memories 

JOIS MAUnu CHAR. VLADIMIR CHERKASSKY. 
HARRY WECHSLER. ,.,." GEORGE LEE ZIMMERMAN 

AbstNet-We sa... abe dlstri~ usodatl.e memo,", (DA.t,f) 
modd for distributed ad fauJH"""nt computation as related 10 

l'etritvaltuks. Tbe falllt tolerance is with resped to noise in tbe Inpnr U, 
dati and/or Ioal aad lIobl' flilures in tilt memory iuelf. We we 
dt"doped working modeb for 'a"...olerallt Imlge recognition ad 
database information reme"aI blcked .p by n.perimental miull$ wllidl 
sbow the feasibility of web In IpprOlldl. 

Ind#z Tmns-DatalnlR retrie"aI. distributed associati"t melllOfJ 
(DAM). distributed computltion. fult lolerance. ntural IHfWorU. 
recognitioll, 

l. INTROOt.:Cl10N 

Anificiallntelligence CAD deals .ith the types of problem sohing 
and decision making mat humans continuously face in dealing 1IiIh 
the world. Such acri\lty involves by its very nature compleXItY. 
uncertainty. and ambxguity. all of lI..hich can di!.(on the phenomena 
being analyzed. Ho"-ever. follov.ing the human example. any 
corresponding compu:er system should process information such Ihat 
the results are invanant to the vagaries of the data acqUisition 
process. Furthermore. one would eltpCCt such computer systems 10 be 
fault tolerant. i.e.• to display robustness. if and when some of their 
hardware were to fail. We suggest in this paper how a particular type 
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of distributed and fault-tolerant computation modeled after the 
distributed associative memory (DAM) [14] pltlldiam can be made 
useful for wks such as those encountered in object I'CCOJIlition and 
database retrieval. 

One can consider intelligent behavior as an information processing 
wk and men address the three levels as which such taSks must be 
understood [17). First. the basic computational theory specifies what 
is me Wk. why is it appropriate. and what is me strategy by which it 
can be carried out. Second. the Rpresentation and algorithm specify 
how the computational theory can be implemented in terms of input. 
output, and transformations. Third, the hardwan: specifies ~ acrual 
implementation. It is clear that the wk determines the IlWttuR of 
Rpn:sentations and algorithms. It is also clear that a good fit/match 
among the three levels is highly desirable and beneficial. In our case, 
we define our task as fault-tolerant data n:ttieval and suggs to solve 
it as a constraint optimization problem. The, represellWion and 
algorithms to be discussed in detail later on an: characteristic of an 
emerging AI trend, that of parallel and distributed computation. 
Characteristic to such a trend aR neural networks (NN's) also known 
as ANSIArtificial Neural Systems [7). 

According to Sejnowski (16). NN's allow objects and their 
Rlationships to be internally Rpresented by attractors (i.e .• fixed· 
points), which makes the search for the beSt match between the world 
and the internal RpRsentation of the world (encoded through the 
dynamics of the network.) much more powerful than pRvious 
template matching. Another aspect which makes NN's attractive 
comes from the ability to implement them as adaptive systems. able to 
learn and self-organize. The lack of a meaningfulleaming capability 
is one of the major drawbacks for AI. 

It is wormwhile to briefly survey the origins of NN's. The idea of a 
distributed network for computational tasks like recognition was 
suggested by Rosenblatt (19) in the form of the two-layer Perceptron. 
Minsky and Papert [18) showed that such networks could fail on even 
simple wks like implementing the XOR function. Scientists do not 
give up. even more so when there is a theoRm by Kolmogorov 
stating that any continuous function of n variables can be computed 
using a three-layer Perceptron with n{ln + I) nonlinear nodes [15). 
Unfortunately. the theorem is not of the constructive type. Most 
recently, COMectiOniSt models were suggested in the form of 
multilayer networks with hidden units. Regarding the learning 
algorithm. backpropagation learning was introduced by Rumelhart et 
Ill. (16). Even though such an algorithm does DOt enjoy proof of 
convergence. it still proved very successful in a SYStem NETtalk 
developed by Sejnowski (21) for word pronunciation. The COMeC

lionist models could be implemented in parallel (SIMD) on a 
Connection Machine (9) ruMing under the "marker-passing type" 
mode (4). Using such an approach. Stanfill and Waltz [22]. suggest 
the idea of memory-based reasoning (sirnilarity-based induaion) and 
were able to duplicate to a close approximation the results obtained by 
Sejnowsk..i. The DAM paradigm to be introduced in the next section is 
a known mathematical tool. It enjoys the benefit of a convergeD! 
learning procedure like the Widrow-Hoff algorithm [14]. 

Neural networks were developed originally to account for biologi
cal memory systems. They implement a type of distributed represen· 
tation and computation. where a large number of highl) intercon· 
nected "simple" processing elements (PE) operate in parallel. NN's 
can be structured both hierarchically and heterarchically, aDd through 
the use of efferent, affereD!. lateral connections. andJor hidden 
layers. the limitations doe to local processlDg and lack of feedback 
could be n:moved (7]. [10]. NN's provide a good fit among the three 
levels at which recognition tasks should be understood. Through the 
NN's collective dynamics. the emergent behavior which is die result 
of both competition and cooperation between neighboring PE's yields 
the optimal solution subject to contextual constraints implicitly 
embedded in the net of interCOMections. Such an approach is akin to 
Rlaxation [17}. 

The generic recognition process matches a derived (invariant) 
input representation of the shon-term memory (STM) type against 
LTM (long-term memory). A synergetic approach suggests me LTM 

OfJaniZation in tenrl$ rr. DAM·s. Spccifieally, the DAM's an: n:J.&cc: 
to GMF (generalized a:au:h mters) r.] and SDF (synthcnc ctisc:rm:i. 
nant functions) (8). Li.i:e them. t:be DAM's attempt to c:apllIn a 
distributed RpresenWJOn which averages over the variations beiOOi' 
ing to the same class, A parallel and chslributed mode of compulDXl 
for visual tasks is fun:ler suggested by the Rtinotopic and parLiel 
C)1oarchitecrure characteristic to 1he visual cortex (11]. Such 
distributed representatlOns an: also consistent with Gestalt (holisoc) 
recognition, where tb= holistic organization can be imposed O'Ver 
space and/or lime. Tbre DAM's allOw. for the implicit RPRsentaOoll 
of structural Rlationsrups and cootextual information. Finali), 
because information is chstributed in the memory, the overall fImcboa 
of the memory becomc::s Rsistant to noise, faults in memory. m:I 
degraded stimulus key vectors. A particular analogy might be useful. 
The diffeRnce betweel:: addressed computer memories and DAM's is 
similar to the difference between a photograph and a hologram. If a 
photograph is cut in hi.!! and one half is thrown away. fifty percem of 
the information is lost. and the information lost is that from the hilf 
thrown away. In a sirni:M manner. ifhalf of the address for a normal 
computer memory is mrown away, it would be very had to find thaI 
memory location. On me other hand, if a hologram is cut in balf. 
again fifty percent of the information held by the whole hologram .il1 
be lost. but the whole image can be n:cODStr\lcted. although the 
reconstructed image will be noisier. This. in essence, is the way the 
DAM behaves. 

n. DAM BACKGROUND 

We describe first the DAM modeling in terms of represeDlabon 
and algorithms and tbcI we discuss the mathematics involved in 
computing the generalized inverse as required by such modeling. 
There an: two main phases in the operation of DAM's: 

1) Memory Constf1iCtion Phas~ when the memory anauU. is 
created from a given set of associations. 

2) Recall Phase: (i.e., memory iDdexing and retrieval), wheu a 
noisy (or perfect) version of a stimulus vector that is pan of a ston:d 
association is used to retrieve its associated vector (or a dose 
approximation of it). 

Specifically the DA..\f allows for memory to be n:consrrucrille. 
i.e., it yields the entire ourput vector (or a closed approximation of it) 
even if the input is nois}, panially pnesem, or if there is noise in the 
memory itself (comput.."'r componems like neurons an: not always 
Rliable and may fail too!). 

The memory matrix for the autoassociative case is evaluated using 
the equation given below 

M=SS

where M is the memory matrix and S- is the generalized inverse of 
the input matrix S (eadl column of S corresponds to one stimulus 
vector). The generalized inverse of a nonsquare matrix is a 
generalization of the on!inary inverse for square oonsingular matrices 
(20). A heteroassociati"e model can be easily developed assuming a 
memory of type M =RS· where S :;: R. S and R are called the 
forcing {stimulus maum and coupling (RSponse matrix) functions. 
respectively. 

The Rtrieval operati~ for an autoassociative case. i.e. the anempt 
10 Rcall memory conte:!tS for an input key I is shown below. 

s=Mt 

where i is the recalled approximation of the association. The recall 
operation for the heteroassociative case can Rtrieve either the forcing 
(stimulus) function s or the coupling (Rsponse I r. Specifically if the 
cOrRsponding matrices are S and R. respectively. then 

a) if Ie {r} then.\{ = SR", f '"' MI. 

b) if Ie {s} thenM ., RS·.; = MI. 


The memory matrix M defines the space spanned by the input 
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represenwions. The recaH operation is. implemen~ through the use 
of M as a projection operator. The retneved data s (for case b) obeys 
the relationship 

I=S+S 

where i plays the role of an optima! associative recollectionllinear 
regression in terms of M. The residual S is orthogonal to the space 
spanned by M and represents the novelty in I with respect to the 
Stored data in M. It is the decomposition of I in terms of (s. i) that can 
be used to facilitate the learning of new things. 

The computationally intensive module needed to compute the 
generalized inverse of a matrix [20) implements a least square 
solution of the Gram-Schmidt orthogonalization process. Our simu
lation experiments implement such an approach and are described in 
the next two sections. 

In, [NV AJUANT IMAGE RECOGNrnON 

The challenge of the visual recognition problem stems from the 
fact that the projection of an object onto an image can be confounded 
by several dimensions of variability such as uncertain perspective. 
changing orientation and scale. sensor noise. ocdLlSion. and nonuni
form illumination. A vision system mLlSt not only be able to sense the 
identity of an object despite this variability. but must also be able to 
characterize such variability-because the variability inherently 
carries much of the valuable information about the world. Our goal is 
to derive the functional characteristics of image representations 
suitable for invariant recognition using a distributed associative 
memory. The main question is that of finding appropriate transforma
tions such that interaCtions between the internal structure of the 
resulting representations and the distributed associative memory yield 
invariam recognition. This should be contrasted to earlier attempts to 
use DAM's directly on raw input data [14]. 

We approach the problem of object recognition with Ihree 
requirements: classification. reconstruction. and characterization. 
Classification implies the ability to distinguish objects that were 
previously encountered. Reconstruction is the process by which 
memorized images can be drawn from memory given a distorted 
version exists at the input. Characterization involves extracting 
infonnanon about how the object has changed from the way in which 
it was memorized. Our goal is to discuss a ~ystem which is able to 
recognize memorized two-dimensional objects regardless of geomet
ric distonions like changes in scale and orientation, and can 
characterize those transformations. The system (2S] also allows for 
noise and occlusion and is tolerant of memory faults. 

We shonly examine Ihe various components used to produce the 
vectors which are associated in the distributed associative memory. 
The block diagram which describes the vanous functional units 
involved in obtaining an invariant image representation is shown in 
Fig. l. The image is complex-log confonnally mapped. This 
transformation maps the Cartesian space into the log-polar domain 
such that rotation and scale changes become translation in the 
transform domain. Along with the confonnal mapping. the image is 
also flltered by a space variant filter to reduce the: effects of aliasing. 

The confonnally mapped image is then. processed through a 
Laplacian in order to solve some problems associated "'ith the 
confonnal mapping. The Fourier transform of both the confonnally 
mapped image and the Laplacian processed image produce the four 
output vectors. The magnitude output vector I-Ii is invariant to 
linear transformations (scale and rotation) of the object in Ihe input 
image. 

We now discuss the result of computer simulations of our system. 
Images of objel:ts are first preprocessed through the system outlined 
in Fig. 1. The output of such a subsystem is four vectors ,e". +It,e h. and +1. We construct the memory by associating the stimulus 
vector ,e'l with the response vector +2 for each object in the 
database. To perform a recaU from the memory. the unknown in?ge 
is preerocessed by the same subsystem to produce ~e veaors I-I It 

+" '-'I, and +1. The resulting stimulLlS vector 1-'1 is projected 
Onto the memory matrix to produce a response vector which is an 
estimate of the memorized phase +2. The estimated phase vector .2 
and the magnitude' i II are used to reconstruCt the memorized object. 
The difference between the estimated phase .1 and the unknown 
phase +2 is used to estimate the amount of rotation and scale 
experienced by the object. 

The database of images consists of 12 objects: four lceys. four 
mechanical parts. and four leaves. The objects were chosen for their 
essentially two-dimensional struCtUre. Each objeCt was phorographed 
using a digitizing video camera against a dark background. We 
emphasize that all of the images used in creating and IeSting Ihe 
recognition system were taken at different times using various camera 
rotations and distances. The images are digitized to 256 x 156. 8-bit 
quantized pixels. and each object covers an area of about 40 x 40 
pixels. This sma!l object size relative to the background is oecessary 
due to the nonlinear sampling of the complex-log mapping. The 
objects were centered within the frame by hand. This is the source of 
much of the noise and could have been done automatically using the 
object's center of mass or some other criteria detennined by Ihe task. 
The orientation of each memorized object was arbitrarily chosen such 
that their major axis was venical. The two-dimensional image:s that 
are the output from the invariant representation subsystem are 
scanned horizontally to form the vectors for memorization. 

Fig. 2 displays the Significant improvement observed when the: 
input is highly corrupted by noise. Specifically. the recall operation 
recovers a key embedded in heavy noise (SNR '" - 3 dB) and the 
recall's SNR is equal to 8.2 dB. 

Fig. 3 is an example of occ\LlSion. The unknown object in this case 
is an ,.S" like pan which is larger and slightly tilted from the 
memorized ..S." A ponion of the boaom curve was occluded. The 
resulting reconstruCtion is very noisy but has filled in the missing pan 
of the boaom curve. The noisy recall is reflected in both the SNR and 
the interplay between the memorized objects as shown by the 
histogram. The histogram shows the inte11'lay between 1bc: memo
rized image and the Unknown input. The "4" on the bargraph 
indicates that the correCt class the input belongs to has been indc:c:d 
identified. 

Fig. 4 displays Ibe result of loc:aJly serling a fraetion of the memory 
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matrix elements to zero. The damage is done locally and it is present 
in a local sense in the recall. The warping to the complex-log 
mapping makes the objects of the size that were memorized tolerant 
to local faults in the memory. (For invariance reasons the input 
images were complex-logged mapped before the memory matrix is 
built.) The upper left image is the ideal reconstructed recall with no 
damage to the memory matrix. The upper right image is the null 
when 30 percent of the memory is set to zero. The lower image is the 
recall for SO percent local damage. 

Fig. 5 is the result of randomly setting the elements of abe memory 
to zero. The effect of this kind of damage is not nearly as critic:al as in 
the case of the local damage. The upper left image is the ideal recall. 
The upper right image is the recall after 30 percent of the memory has 
been set to zero. The lower left and right recalls correspond to ~ and 
75 percent random damage. respectively. Even when 90 pen:ent of 
the memory matrix has been set to zero (not shown in the fisure) a 
faint outline of the pin could be seen in the recall. This is ~ 
that not all the connections in this network arc ncccssary and as a 
consequence one could and should look for finding a dat.a compres
sion scheme for the memory matrix. 

IV. DATABASE REnuEvAl. 
We have developed and implemented the DAM-based model for 

flUlt-tolerant information retrieval. Effic:iem index (key) retrieval 
capability is essential for queryin& lU1e databases [3], (24). 
Funhermore. our model allows us to retrieve information in the 
preseDCe of noise (errors) in the input key (index) tild/or memory 
itself. Our resu.lts In outlined below. 

A. DAM Model lor /)Qtabase Retrieval 

We created a database of names from a student directory. The 
DAM anodcl thus appears like an autoassociative memory where 
prestOred names can be recalled using noisy inputs. There In two 
phases in the operation of the standard autoassociative DAM as 
described i:D Section n. 

During the memory consuucnon phase every name is encoded by iI 
bash function (see Section IV·B) into a stimulus vectOr of a fixed 
leqtb. La N be the name matrix with I rows and Ie columns where Ie 
is the number of rwnes in the database and I is the maximum size of 
any name in the database. La S be a matrix with m rows and Ie 
columns. Each COlwnD of S corresponds to the hash vector 
(dimensioo m) of one DIme in the database. Instead of evaluating the 
memory matrix NS· duriDJ the database creation phase (as discussed 
in Section m. we only determine the generalized inverse (S·). tiId 
store both Nand S .. for use during retrieval. During the recall phase. 
the input key is convened to its ba.sb vector ','. We multiply S.. by ',. 
10 obr.ain a vector 'c'. This vectOr 'c' is treated like a histogram that 
indicares bow close the veaor ',' is 10 each of the stored hash vectors. 
Ifcli] is the maximum element in vc:aor 'c' dlen the ith bash vector is 
closest to 'I'. The system, therefore, retUrns the ith name in the aame 
matrix N as the oulpUt of the recall phase. In situations where more 
than one element in 'c' is very close in value (e.g., 1 pen:em) 10 the 
maximum element, the system makes a note of alIlbose elements and 
retUrns the names corresponding 10 all those elements. NOle that in 
our DAM model for mrieval die recalled name is one of the 
prestored DameS "closest" 10 die noisy input whereas in image 
rcc:ogn.ition applications, the recalled image is usually a weighted 
linear combination of prestored images. 

B. Hashing Methods 

A hasbiDg function used to encode names should satisfy the 
following requirements. 

1) The DAM model expects all stored vectOrs to be of the same 
size. Therefore. a aame to be stored in the dalabase is transformed 
into a real-valued vector of fixed length using some hashing function. 
This fixed length vector then serves as a stimu.lus to the model. 

2) The hashing function must have the propeny dlat a typical error 
(e.g .• mispeUcdlomiaedJadditionallener) in the input key at the time 
of retrieval will produce a hash vectOr that is close to the bash vectOr 
corresponding to an error-free name. This implies. for example. that 
die standard ASen encoding for leners would DOl work because an 
insertion error (additionallener) or deletion error (missing letter) in 
the input key will result in a stimulus vector totally different from the 
stimulus of an error-free name. We worked with three kinds of hash 
functions known as: "-grtlm utraction methods (1 ~ n ~ 3). 

The hash function createS a vector that is 26**n elements long. 
Each element represents an n-gram corresponding 10 a set of n 
adjacent leaers. An element has the value one if the n gram to which 
it corresponds appears at least once in the name. For every n gram 
thai is·absem in the name. the corresponding element in the vector is 
set to zero. We shall also refer to these merhods as alphabet 
extraction, bigram extraction. or trigram extraction. depending on 
the value of parameter n. 

Using the frequency of occurrence of ,,-grams trigrams in the 
English language should improve the performance of this model. We. 
however, obtained very good results even without the use of 
frequencies . 

C. Experimental Results 

The algorithms for the model discussed in Section lV·A were 
implemented in a "Unix" environment on a Sun 3175 workstation. 
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A small database was created with names taken from a srudent 
directory. Each name consisted of up to II leners and we considered 
the following twO types of data: 

• random (noncorrelated) data. i.e .. names were extracted ran
domly from the student directory 

• highly correlated data. i.e .• names were taken from the same 
page of the student directory. 

Fault-tolerant retrieval is analyzed with respect to the following 
common types of input errors: 

• Single letter deletion errors: 
• single letter substitution errors. 
As a measure of fault-tolerant retrieval. we consider the percentage 

of correct retrievals with respect to a particular type of error in the 
input key. In our experiments. we consider the following factors 
which affect fault-tolerant retrieval: 

• type of data stored. i.e .. random versus correlated: 
• database size. or the number of aames stored: 
• type of hashing function used (alphabet. bigram. trigram 

extraction): 
• type of input errors. 
Results are presented in the form of tables showing the percentage 

of correct retrievals as a function of database size. Fig. 6 shows die 
performance of fault-tolerant remeval for random data. As expected. 
the performance degrades with increase in database size for all three 
hashing methods. The results obtained with the alphabet extracnon 
medtod [Fig. 6(al) also exhiDit the same trend exc:ep for a quirk at a 
database size of 28 that we have not been able to explain. For 
correlated data. experimental results obtained with alphabet extrac
tion and bigram extraction are slighdy worse than for random data. 
However. the trigram method yields perfect retrieval even with 
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FiC. 6. Faull-tolerant reeneval for random data. la) PerfOrrnarlCe of the 
alphabet extraction method on random data. lb, Perform.ance of the bigram 
method on random data. eel Performance of the tngram method on random 
dala. 

correlated data. Fig, 7 shows the elements of the recalled histogram 
vector'c· obtained when m:alling a name from a correlated database 
Cbigram method) of size 8. As expected. the trigram mcd'Iod shows 
bener fault tolerance than the bigram method which in IUm shows 
bener results than a simpler method based on alphabet extraction. 
Although we did nOl gather any statistics about other kinds of errors 

KutunIMaMd I'FIIC McdIod. 
S... OfDuaDuc 
T)"IIIOfDala •C'.anu.td 
L.IIlOfN_ CII::1 

~IU 
--.u-.... 
CliII:lOI 
=aa: 
~ 
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Input Key : c:es:..i: 

1) Input Key :cewk 
ConICftIl Of ~ VCC'IO'I' 'c: [ 0.0.0.1.0..0.0.0.0] 

2) JIll!!?:ctsnk 
II Of ~ Vec:t.OI' 'c:' [.15• .1 ..01. 0,9'. O..02 .. 0.0.1J 

FiC. 7. Conteua of the recalled hislOJT&lll vector 'c'. 

..I~ :zo I 
66'10 200:zo -

FiC... SatllI'lmClll e((cct.5 observed on CGn'C11lCd data. 

(e,g., insenion errors. multiple lener deletioD and substitution). we 
found that the system handles them very wen. 

Our experimental results can be explained qualitatively wing the 
general DAM analysis, Namely. acconiing to [23) when a noisy 
version of a memorized input vector is applied to the memory. the 
recall is improved by a factor corresponding to the ratio of the 
dimension of the vectors to the ratio of the Dumber of memorized 
vectors. 

We perfonned many experiments to analyze how robwt retrieval is 
affected by the size ofmemory (DAM saturation effect). Fig. 8 shows 
the maximum database size for which the percentage of correct 
retrievals (assuming deletion errors) exceeds a cenain value. The 
table shows that when die database size exceeds 20, the alphabet 
extraction method's retrieval rate falls below 66 percent. while that of 
the bigrams deteriorates below 66 percent only when the number of 
names stored exceeds 200. The trigram method yields good results 
even when more than 300 names are stored. This illustrates the 
saturation effect typical of DAM·based models. We did not continue 
to experiment with larger databases. to determine when the trigram 
method will saturate. bec3use the computation time for the trigram 
method is quite large. Saturation is a consequence of the crosstalk 
effect caused by the memory being nononhogonal due to similarity 
among the stored stimuli. This explains why the alphabet extraction 
method with a vector SLZe of 26 saturates faster than the bigram 
method with a vector size of 26: which in tum saturates faster than 
the trigram method with a vector size of 263• 

The absolute upper bound on the number of vectors that can be 
Stored in the database is the dimension of the hash vector. In practice. 
however. this limit is never achieved because one does not have 
control over the onhogonality of hash vectors of prestored names. 
Moreover. some of the names must have hash vectors that are linearly 
dependent on the previous vectors and thus prt.'vent retrieval of that 
name altogether. This never happened with the trigram method. it 
happened for one of the 300 correlated names Stored in the bigram 
method and for four of the 26 correlated names Stored in the alphabet 
extraction method. This rare condition is dclected during memory 
construction, 

The DAM database is a distributed memorv. Therefore. when a 
ponion of the memo!') is corrupted. the system does not lose its 

http:Vec:t.OI
http:C'.anu.td
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FiB. 9. Graceful ~tion in die cue of memory corruption. 

retrieval capabilities altogether but degrades gracefully. Ponions of 
the memory were randomly selected and set to O.S. The resulu an: 
shown in Fig. 9. Initially. we had set ponions of the memory to zero. 
but this did not seem to affect the performance of the system at all 
because the original (error-free) memory is sparse. This el{periment 
was perfonned on a database of 28 correlated names that used the 
bigram hashing method. Overall we have shown that the DAM 
database is very resilient to corruption in the memory itself. 

V. HARDWARE AND SoFTWAIlE IMPLEMENTAnONS 

The computationally intensive pan of the algorithm for computing 
the generalized inverse of a matrix (20) is the Gram-Schmidt 
onhogonalization process, or matrix triangularization. Triangulariz.a
tion on a sequential computer is computationally expensive since it 
requires 0(n 3) operations for an n x n matrix. Fonunately. one can 
use systolic arrays for the implementation of matrix operations in 
VLSI. At least two systolic array designs have been proposed to 
perfonn triangularization for general (dense) matrices II). (6). Both 
designs use triaogular systolic array and are based on Givens 
rotations to guarantee numerical convergence and stability. The 
difference essentially being that in (6) the input matrix is entered one 
row per step and in (I) it is entered one-c:olumn per step. Matrices 
that are too large for a given systol ic array can be triangularized by 
first splitting them iroo blocks II]: in this case, the triangularization 
would require O(n'/p%) time where n is the matrix dimensionality 
and p2 is the number of processors in systolic array. p < II. 

Matrix-vector multiplication for the recall operation and/or the 
Jradient descent kaming technique can be also implemented using 
VLSI systolic arrays (12]. Since the matrix M is very large. we 
cannot expect to fabricate a systolic array of a corresponding (large) 
size 	ona monolithic chip due to 1(0 bandwidth limitations. An 
approach based on partitioned matrix algorithms (13] has been 
proposed to overcome this problem by using smaller VLSI amy 
modules which perform computations on p x p submatrices and p x 
1 subvectors. 

We are curremly trying to implement the DAM on an NCUBE 
parallel computer. Since the DAM model involves large-scale mauix 
operations. we can achieve significant speedup using a parallel 
NCUBE machiae where a large matrix is panitioned into SC'\'eral 
block submatrm. which are stored and manipulated in different 
nodes of the hypemsbe. 

VI. CONCLUSIONS 

We describe in this paper the distributed associative memory 
(DAM) model for distributed and fault-tolerant computation as 
related to i~ recognition and database retrieval tasks. Our 

Cl{perimenu. as reponed in this. paper. show the feasibility of our 
app1'Olch and prove the strong connection between panem recogni
tion (duster analysis) and database research. 

The fault-tolerant aspect relates to the robust performance DAM', 
exhibit in the presence of noisy inputs and/or memory faulu. 
E~perimenu which included both local and Ilobel faulu in the 
memory showed that the retrieval is still acceptable. We are presently 
concerned with the possibility of regenerating a faulty memory to iu 
original condition and with developing alternative hashini methods 
for improving on the capacity of the memory (i.e .• to decrease the 
saturation effect). 
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