Hierarchal
Model-Based Diagnosis

Igor Mozetic

MLI 89-1

HIERARCHICAL MODEL-BASED DIAGNOSIS

Igor Mozetic

Department of Computer Science and
Center for Artificial Intelligence
George Mason University
4400 University Drive
Fairfax, VA 22030

MLI 89-1
TR 3-89

April 1989

HIERARCHICAL MODEL-BASED DIAGNOSIS

Abstract

Model-based reasoning about a system requires an explicit representation of the system’s
components and their connections. Diagnosing such a system consists of locating those
components whose abnormal behavior accounts for the faulty system behavior. In order to
increase the efficiency of model-based diagnosis, we propose a model representation at
several levels of detail, and define three refinement (abstraction) principles. We specify for-
mal conditions that have to be satisfied by the hierarchical representation, and emphasize that
the multi-level scheme is independent of any particular single-level model representation.
The hierarchical diagnostic algorithm which we define turns out to be very general. We
show that it emulates the bisection method, and can be used for hierarchical constraint satis-
faction. -
We apply the hierarchical modeling principle and diagnostic algorithm to a medium-scale
medical problem. The performance of a four-level qualitative model of the heart is com-
pared to other representations in terms of diagnostic efficiency and space requirements.
Despite the fact that the hierarchical model does not reach the time/space performance of
dedicated diagnostic rules, it speeds up the diagnostic efficiency of one-level model for a fac-
tor of 20. Further, hierarchical model representation allows for varying the level of detail at
explanation and reasoning under time constraints.

Acknowledgments

The author wishes to thank Claudio Carpineto, Heedong Ko, and Jan Zytkow for valuable
discussions and comments.

This research was conducted in the Center for Artificial Intelligence at George Mason
University. Research of the Center for Artificial Intelligence is supported in part by the
Defense Advanced Research Project Agency under grant, administered by the Office of
Naval Research, No. N00014-87-K-0874, in part by the Office of Naval Research under
grant No. N00014-88-K-0226, and in part by the Office of Naval Research under grant No.
N00014-88-K-0397.

Table of contents

Abstract

1 TEUEEOAUCHON 1nveveeneeeneeressssensessesesesstonsrnsssasastesssncstonsontusessasasssstesssassstnsstentonsassuinses

2 ApPTOAChEs t0 QIAZNOSIS «.vvurreuscusssrimnesmssssssssenssssimsssimnss s sins s sscesee
2.1 AN EXAMPIE ..ocvvereeeecrecniisiremssnstistssstenssss st st ss st st
2.2 Related TESEATCHcivieiiereereeieieiiirerrsrssiesitsssssissstnessssesessstostsnssnsasansens

3 Hierarchical diagnostic algOrthimc.cvuceeeuiuriismnsminismcnsssiniinsnnsesecesincnses
3.1 Diagnostic PrODIEIMcvvveeeeicuecssuscssisreriststssississsesssin i snsssiensissss
3.2 Three refinement/abstraction PrinCiplescccccemviiiiienienansiiicisiinns
3.3 Formal requirements for hierarchical representationccecoeeseueeiuenses
3.4 Diagnostic algorithm

4 Three case StUdIEscocveveereenierieesananenns
4.1 Numerical equation solving: the bisection methodccoeeieririsensuees
42 Hierarchical constraint satisfaction: the eight queens problem
4.3 Hierarchical qualitative modeling: the heartcccciiiiiinnniieniiienene.

5 Experiments and TESULLScoiuiuimiiernuemeenisiencsisiiiiistiisseiaasissssssssssssssssasasisnaes
5.1 Knowledge transformations in KARDIOcccocoinencciniiiiniarinnnnnsnns
5.2 Time/space tradeoffcovimmiiininieicntt e

6 CONCIUSION uvverviriieieeieresseesensessassessessesasssesonsssssesstosesssessansessassasnasstsasssntosssnssssssns

References

...

—_ O O AN P =

16
19
19
20
23
26

26

30
33
35

1 Introduction

The diagnosis of a system that behaves abnormally consists of locating those subsystems
whose abnormal behavior accounts for the observed behavior. For example, a system being
diagnosed might be a mechanical device exhibiting malfunction, or a human patient. There
are two fundamentally different approaches to diagnostic reasoning.

In the first, heuristic approach, one attempts to codify diagnostic rules of thumb and past
experience of human experts in a given domain. Representatives of this approach are diag-
nostic expert systems of the first generation, such as MYCIN (Shortliffe 1976). Here, diag-
nostic reasoning of human experts is being modeled, and diagnostic accuracy depends on the
successful encoding of human experience. The structure of the real-world system being
diagnosed is not explicitly represented, nor is its behavior being modeled.

The second approach is often called diagnosis from the first principles, or model-based diag-
nosis, where one starts with a description (a model) of a real-world system, e.g., de Kleer
(1976), Genesereth (1984), Reiter (1987). A model explicitly represents the structure of the
system, i.e., its constituent components and their connections. The diagnostic problem arises
when an observation of the system’s actual behavior conflicts with the system’s expected
behavior. The diagnostic task is to identify those system components which, when assumed
to function abnormally, will account for the difference between the observed and expected
system behavior. To solve the problem, model-based diagnosis relies solely on the system
description and observations of its behavior. In particular, it does not use any heuristic infor-
mation about the system failures.

This paper deals with model-based diagnosis only. Originality of this research is based on
the idea of representing and effectively using a model of the system at several levels of
detail, or abstraction (Mozetic, Bratko & Urbancic 1989). The proposed multi-level scheme
is independent of any particular single-level model representation. However, certain model
design principles have to be followed, and adjacent abstraction levels of the model have to
satisfy formal consistency requirements.

In section 2 we relate our approach to model-based diagnosis to other model-based
approaches. Usually, diagnostic reasoning is regarded as a form of nonmonotonic (Reiter
1987) or abductive reasoning (Cox & Pietrzykowski 1987). A model entails assumptions
about normal states of components, and possible diagnoses are those minimal sets of

assumptions which, if removed, render the model behavior consistent with the observed
behavior. In our approach, we treat every component’s state as a variable, and the model as
defining a mapping from any state (normal or abnormal) to corresponding observations. The
diagnostic problem is then to find the inverse mapping, from given observations to possible

states.

In section 3 we propose a solution to the reformulated diagnostic problem by representing a
model at several levels of detail. Three refinement (abstraction) principles which can be
used in the top-down or bottom-up model development are defined. We state formal condi-
tions that must be satisfied by any pair of adjacent abstraction levels in the model representa-
tion. These conditions lead to the formulation of the hierarchical diagnostic algorithm,
which exploits the hierarchical model representation. With the appropriate hierarchical
model representation, the time complexity of the diagnostic algorithm is O(log n), as
opposed to O(n) for the generate-and-test method, where n is the number of possible states of
the model. A similar reduction of complexity, from linear to logarithmic, when using

abstraction hierarchies in planning was reported by Korf (1987).

It turns out that the algorithm is very general and that it can be used to solve a variety of
problems. In section 4 we show how the algorithm emulates the well-known bisection
method for numerical equation solving, and how the search space in a typical constraint
satisfaction problem (the eight queens) can be reduced. Finally, we apply the hierarchical
modeling principle and diagnostic algorithm to a nontrivial medical problem, originating
from the KARDIO project (Bratko, Mozetic & Lavrac 1988, 1989). A qualitative model of
the heart that simulates its electrical activity is represented at four levels of detail. The diag-
nostic algorithm is then used to efficiently solve the ECG interpretation problem, i.e., to
locate possible heart failures based on symbolic description of electrocardiographic (ECG)
data. The most detailed heart model relates 943 heart failures (both single and multiple) to
5240 ECG descriptions altogether.

Experiments and results are described in section 5. First, we outline several attempts at solv-
ing the ECG interpretation problem in KARDIO. The detailed level model of the heart was
automatically transformed into different types of representation, using deductive and induc-
tive inference techniques. We compare diagnostic efficiency and space requirements of dif-
ferent representations. Four-level hierarchical model falls short of being the best on the
time/space tradeoff scale, but the diagnostic efficiency over one-level model is improved by
a factor of 20. The hierarchical model also achieves satisfactory performance from the

practical point of view, with the average diagnostic time below 3 seconds. Its performance is
very close to the compressed diagnostic rules which appear to be the optimal representation
for the ECG interpretation task. Furthermore, hierarchical model representation allows for a
focused explanation, and enables a tradeoff between diagnostic certainty and specificity
when reasoning under time constraints.

We conclude the paper in section 6 by giving some guidelines for multi-level model
representation in order to improve the diagnostic efficiency. Possible directions of further
research are discussed, too.

2 Approaches to diagnosis

In order to relate our approach to model-based diagnosis to the work of others, we start this
section with an example. Throughout the paper, we define models and algorithms by logic
programs. We use standard Edinburgh Prolog syntax, where variables start with capital
letters or underscores, and constants start with lowercase letters. All variables are implicitly
universally quantified.

2.1 An example

Figure 1 depicts a binary adder, taken from Reiter (1987) and originally used by Genesereth
(1984) as an example.

Inl —;)D R

In2 >/ J): S>—Oml
/.

D) ‘%—» Ou2

Figure 1. A full binary adder. X1 and X2 denote exclusive-or gates, Al and A2 are and
gates, and O1 is an or gate.

In our approach a model relates any state (normal or abnormal) to corresponding input-
output observations. The model is specified by its structure (a set of components and their
connections) and functions of its components. In the case of a binary adder, its components
are and, exclusive-or and or gates, and their functions are defined by Boolean algebra over
{0, 1}. In a logic program, the model structure may be defined by a single clause. The head
of the clause relates the state of the model to its input and output. Atoms in the body
represent constituent components, and shared variables denote connections between com-
ponents. The following clause defines the structure of the adder from Figure 1:

adder(state(X1,X2, Al, A2, Ol), in(Inl, In2, In3), out(Outl, Out2)) «
xorg(X1,Inl, In2, OutX1),
xorg(X2, In3, OutX1, Outl),
andg(Al, Inl, In2, OwAl),
andg(A2, In3, OuiX1, OutA2),
org(01, OutAl, OutA2, Out2).

Normal behavior of the gates is defined by the corresponding Boolean functions:

xorg(normal, Inl, In2, Out) « xor(Inl,In2, Out).
andg(normal, Inl, In2, Out) « and(Inl, In2, Out).
org(normal, Inl, In2, Out) « or(Inl, In2, Out).

xor(1,1,0). and(1,1,1). or(1,1,1).
xor(1,0,1). and(1,0,0). or(1,0,1).
xor(0,1,1). and(0,1,0). or(0,1,1).
xor(0,0,0). and(0,0,0). or(0,0,0).

However, in our approach abnormal behavior has to be defined as well. In the most general
case, we may specify as abnormal any behavior that is not normal:

xorg(abnormal, Inl, In2, Out) « —xor(Inl, In2, Out).
andg(abnormal, Inl, In2, Out) « —and(Inl, In2, Out).
org(abnormal, Inl, In2, Out) « =—or(Inl,In2, Out).

Here, — denotes the negation-as-failure operator. We will assume that the logic program
interpreter correctly handles negation-as-failure, either by delaying negative goals, or by
making them ground (in our example, the latter can always be done, since all variables are
binary valued).

In many domains, especially in medicine, it is interesting and helpful to distinguish between
different kinds of abnormal behavior. In our case, for example, we may alternatively define
a faulty gate as either open (the output is always 0), or shorted (the output is I for any
nonzero input):

xorg(open, 1,0,0).
xorg(open,0,1,0).
xorg(shorted, 1,1, 1).

andg(open, 1, 1,0).
andg(shorted, 1,0, 1).

andg(shorted, 0,1, 1).

org(open,1,1,0).
org(open, 1,0,0).
org(open,0,1,0).

Note that the above specification, in contrast to the original definition, does not account for
all possible behaviors. In particular, there is no gate state that produces the output Qut=1 for
the inputs Inl=0, In2=0. In medicine, this would correspond to a physiologically impossible
state of a patient that does not need to be considered as a possible diagnosis.

Suppose that a real adder is given the inputs Inl=1, In2=0, In3=1, and it produces the out-
puts Outl=1, Our2=0 in response. Since both outputs are wrong (correct outputs are
Outl=0, Ou2=1), this observation indicates that the adder is faulty. The diagnostic task is
to locate components in the adder which, when assumed to behave abnormally, produce the
observed outputs. To solve the problem, the model of the adder is used, by submitting the
following query to the interpreter:

?— adder(State, in(1, 0, 1), out(1,0)).

The query asks whether there exists a state of the adder (defined by states of its components)
that produces the given input-output observation. Since several such states exist, the inter-
preter returns (through backtracking) the following set of answers:

% X1 X2 Al A2 (0]

State = state(normal, abnormal, normal, normal, abnormal);
State = state(normal, abnormal, normal, abnormal, normal);
State = state(normal, abnormal, abnormal, normal, abnormal);
State = state(normal, abnormal, abnormal, abnormal, abnormal);
State = state(abnormal, normal, normal, normal, normal);
State = state(abnormal, normal, normal, abnormal, abnormal);
State = state(abnormal, normal, abnormal, normal, abnormal);
State = state(abnormal, normal, abnormal, abnormal, abnormal)

The query, with any of the above answer substitutions is a logical consequence of the model
definition, and any answer can be considered as a possible diagnosis.

2.2 Related research

Reiter (1987) defines a system (a model in our terminology) as a pair (SD, COMPONENTS),

where sD is the system description, and COMPONENTS, the system components, is a finite set of
constants. A system description is a set of first-order sentences defining how the system
components are connected and how they normally behave. A distinguished unary predicate
AB whose intended meaning is ‘abnormal’ is used in a system description. An observation
oBs of a system is a finite set of first-order sentences. A diagnosis A for (SD, COMPONENTS,
0BS) is a minimal subset A C COMPONENTS such that

sD U 0BS U {AB(c) lce A} U {—aB(c)Ice COMPONENTS — A}

is consistent. Direct generate-and-test mechanism that systematically generates subsets of
COMPONENTS, with minimal cardinality first, is too inefficient for systems with large numbers
of components. Instead, Reiter (1987) proposes a diagnostic method based on the concept of
a conflict set, originally due to de Kleer (1976).

Corresponding to Reiter’s definition, there are three diagnoses for the faulty adder: {XI},
{X2, 01}, {X2, A2}. In our notation, the last diagnosis {X2, A2} corresponds to the following
state of the adder: state(normal, abnormal, normal, abnormal, normal). In our representa-
tion, a diagnosis is a term, while in Reiter’s representation, a diagnosis is essentially a con-
junctive statement of the form: AB(X2) A AB(A2). More importantly, his system description
models only normal behavior of the components, while we model both normal and abnormal
behavior. Final distinction concerns the definition of a diagnosis. According to Reiter, a
diagnosis is a conjecture that some minimal set of components are faulty, such that the con-
sistency to sD and OBS is restored. Our definition is broader, since a diagnosis is any correct
answer substitution for the state of the model which is a logical consequence of the model
definition, given input-output observations. Notice, for example, that a conjecture where all
gates are simultaneously abnormal: {XI, X2, Al, A2, O1} always restores the consistency to
sD and OBS in Reiter’s approach. The corresponding state(abnormal, abnormal, abnormal,
abnormal, abnormal), however, is not a logical consequence of our model definition for the
given input-output observation.

Cox and Pietrzykowski (1987) regard diagnostic reasoning as a form of abductive inference.
They extend the notion of diagnoses to causes, and define a cause as fundamental iff it is
minimal, acceptable, nontrivial, and basic. The minimality criterion eliminates overly gen-
eral causes, acceptability eliminates causes unrelated to the observation, nontriviality elim-
inates causes which directly imply the observation, and basicness eliminates intermediate
causes. They show that for closed diagnostic problems where all gate connections and

observations are uniquely specified, their causes are equivalent to Reiter’s diagnoses. How-
ever, for extended problems in which some gate inputs or identities of some gates are unk-
nown, their causes contain more useful information than Reiter’s diagnoses. Consider, for
example, a single and gate A, with only one specified input /n/=1 and the output Out=0.
There are two fundamental causes: In2=0 and AB(A) A In2=1. In Reiter’s terms, however,
the diagnosis is empty. Our definition also yields as possible corresponding diagnoses
andg(normal,1,0,0) and andg(abnormal,1,1,0), since they both logically follow from the and
gate definition. However, we do not address the problem of finding fundamental causes. We
are satisfied, instead, with any logical consequence of the model that satisfies the input-
output requirements.

Geffner and Pearl (1987) present an improved constraint-propagation algorithm for diag-
nosis, based on a probabilistic approach. They propose a diagnostic scheme where every
component’s state is treated as a variable. As a consequence, normal and abnormal behavior
are considered on the same basis, and predictions for any possible behavior of the system can
be generated. We take a non-probabilistic approach, but similarly require that the model
entails both normal and abnormal (or different kinds of abnormal) behavior. Since we do not
make any distinction between what is normal and abnormal, it also does not make sense to
define a diagnosis as a minimal or fundamental with respect to abnormal states of com-
ponents. Treatment of normal and abnormal behavior on the same basis is common in medi-
cine, for example, since a behavior that is considered abnormal under some conditions may
be a normal reaction of the body under different, unusual conditions.

3 Hierachical diagnostic algorithm

In this section we define the diagnostic problem and propose a solution by representing a
model at several levels of detail. Three refinement or abstraction principles that may be used
in the model development are defined, and a formal condition that must be satisfied by the
hierarchical model representation is formulated. Finally, we specify a general purpose
hierarchical diagnostic algorithm.

3.1 Diagnostic problem

Many approaches to model-based diagnosis rely on a model of the system which describes
only normal behavior of its components (de Kleer 1976, Genesereth 1984, Reiter 1987). One
may regard such a model as defining a mapping from the input to the output, under the
assumption that the system is in a normal state:

normal: in — out - T

In contrast, we consider normal and abnormal states of the system on the same basis, and
require that the model describes behavior of the system for any state:

state;: in — out
state,: in — out

Consequently, such a model may be regarded as defining a mapping from any state of the
system to corresponding input-output observations:

model: state;— (in, out), 1<i<n

Notice that there is no specific requirements for the model representation. We just assume
that a model m is defined by a set of axioms which map a tuple of independent variables x (x
denotes states) into a tuple of dependent variables y (y denotes input-output observations):

m x-Yy

When a system exhibits deterministic behavior (e.g., a binary adder), its model is defined by
a many-to-one mapping, i.., a function. In general, however, a system may behave non-
deterministically, and consequently, its model must be defined by a many-to-many mapping.

10

In both cases, to denote a model, we will use either relational notation m(x, y), or functional
notation y = m(x) when we want to emphasize the direction of inference.

Given a model m that maps any state x to the corresponding input-output observations
y = (in, out), we may formulate three different tasks to be solved by the model:

e Prediction task: given x and in, find out.

e Control task: given x and out, find in.

e Diagnostic task: giveny = {in, out), find x.
The diagnostic problem, which is the topic of the paper, is thus effectively reformulated:
given mapping y = m(x), find the inverse mapping x = m~I(y) for given values of y.

In order to appreciate the problem and its formulation, consider three cases of general

interest:

(1) Equation solving, where m is a real-valued function. -
For example, given is a function y = f{x) = x + tan(x) where the inverse function
x =f~(y) = ? does not exist in analytical form. The task, to find an x for a given y, is
usually solved by numerical methods.

(2) Constraint satisfaction, where m is a boolean function over discrete variables.
Given constraints, the problem is to find an assignment of values to a tuple of variables
x such that the constraints are satisfied, i.e., x is mapped to y = true. Efficient solutions
are typically based on a generate-and-test approach, where testing is incorporated into
the early phases of generation.

(3) Model-based diagnosis, where m is a nondeterministic simulation model.

In technical domains, simulation models describing the behavior of physical or biologi-
cal systems often exist. Such a model can be readily applied for prediction, since it
maps the initial state of the system x (causes) to its final state y (manifestations). How-
ever, in general, it is not possible to interpret equations or run simulations ‘backwards’
in order to infer causes from their manifestations, because causal knowledge often maps
different causes onto the same manifestations.

A direct generate-and-test method to diagnosis is not applicable if the domain of x is infinite,

11

as it is in the case (1). Even if the domain of x is finite, the method may be too inefficient for
systems with large number of components, Or large number of different states of components
(especially when multiple faults are considered), since the domain of x is large.

To solve the diagnostic problem more efficiently, we propose to represent a model at several
levels of detail, and to use a diagnostic algorithm that exploits the hierarchical representa-
tion. The idea behind the method is to first solve the diagnostic problem at an abstract level,
where the model is simpler and the search space smaller. The abstract, coarse solutions are
then used to guide the search at more detailed levels, where the model is more complex and
the search space larger.

3.2 Three refinement/abstraction principles

In Figure 2, the representation of a model at two adjacent levels of detail is outlined. Recall
that any model definition, say m, or m,, may introduce some intermediate variables. How-
ever, notice that models m, and m, in Figure 2 are connected only through the hierarchical
relation h between the states x and input-output observations y.

Abstract level G\ e Y f)’D

Detailed level G} my(X,, y,) Q D

Figure 2. Hierarchical model representation. m denotes a mapping from any state x to
input-output observations y, and A a relation between the abstract and detailed level states
(left column) and input-output pairs (right column).

Below we define three refinement or abstraction principles that can be used in a multi-level
model representation. The principles can be applied either when one refines a model in a
top-down fashion (from abstract to detailed), or in a bortom-up model abstraction (from

12

detailed to abstract). Each principle is defined in terms of differences it induces between the
abstract and detailed level model, and named with respect to the top-down/bottom-up

method of model development:

(1) Introduction/supression of variables
Let w, be an abstract level tuple of variables (either x, or y,), and w, 2 detailed level tuple
(x,0r yz):

w; = Wy oo wln)

Wy = (W) ces Wopo Wop s oo Wy NSM
Each abstract level variable w;; must have a detailed level counterpart w,;, I <i <n. How-
ever, new variables w,, , .., W,, that are not relevant at the abstract level may be intro-
ducted at the detailed level. The relation k between tuples of variables w; and w, can be
defined by the following clause:

h(w;, w,) « h(w;,, wy,); .., h(w,,. w,,)-

(2) Refinement/abstraction of values
The relation » between individual (non-tuple) variable pairs w, and w, is defined through
relations between elements of their domains (values). For example, a variable w, can take

some values v, , ..., v,; which all correspond to an abstract value v, of w,. Such hierarchical
relations can be defined by a set of unit clauses:

h(v;,vy). . h(vyvy)
Hierarchies of values are not restricted to tree-structured, but must be acyclic.

(3) Elaboration/simplification of mapping — model structure expansion/aggregation
The abstract level model m,(x,, y;) can be defined by a simpler mapping than the detailed
model m,(x,, y,), denoted by:

my e m
In the case of a component-based model representation, a function of each component
€;p - €, is also defined by a mapping. The abstract model m, is then defined by a compo-
sition of mappings:

myx,y;) & €1 (xp 21) s €1p(Z0, pY))-

where z,, are intermediate variables. On the detailed level, one can expand the

4
w0 Zing
model structure by introducing new components c,,,, ,, ..., C,,,, and consequently define more

13

elaborate mapping m,:
m2(x2’ yZ) « CZI(XZ’ 221)’ i c2n(22n-1’ zZn)’ CZn+1(ZZn’ ZZml)’ e ch(ZZm-I’ }’2)-
Further, a function of each detailed level component can be defined by a more elaborate

mapping than the abstract level component:

Cqi

; %< Cop 1<i<n

3.3 Formal requirements for hierarchical representation

The three model development principles allow for a number of ways to refine or abstract the
model, thus hopefully covering a large number of real-world situations. However, in order to
exploit possible computational advantages of hierarchical representation over one-level
representation, different levels of the model have to be mutually consistent. In particular,
any pair of adjacent levels in the model representation has to satisfy the following con-
sistency condition: ;

pr}’z (3)(.'2 mg(xz: yz) A h(xp xz)) = (3}’1 m](xp y]) A h(yp yZ)) _(1)

In order to give an intuitive interpretation of the above condition, let us first consider a spe-
cial case.

Suppose we have a multi-level model, where the domain of the variable y (denoting observa-
tion) remains unchanged across the levels. Consequently, A(y,, y,) is the identity relation
and the consistency condition can be simplified:

Vx.,y (Fx, my(xy y) A (%), X5)) = my(x,,y)

The simplified condition states that for any pair of variables x; and y, if there exists an x, that
maps to y at the detailed level and has an abstraction x,, then x, should map to y at the
abstract level as well.

From the model development viewpoint, the condition prevents inconsistent abstractions and
refinements. In particular, when abstracting a detailed model m, in a bottom-up approach,
one should not oversimplify the abstract level model m,, without proper abstraction of vari-
able x, to x;. The simplified consistency condition is violated if, given a detailed model m,,
there exists a mapping from x, to y, and there is an abstraction x, of x, that does not map to y
at the abstract level model m;:

14

Tx,y my(x,, y) A 3x, hix), x5) A—my(x,, y)

In a top-down approach, when refining a given abstract model m,, one should avoid those
variable refinements of x; to x, that turn impossible mappings —m, into possible mappings
m, at the detailed level. Specifically, the simplified consistency condition is violated if the
abstract model m, does not map some x, t0 y, but there is a refinement x, of x; that does map
to y at the detailed level model m,:

A,y —my(xp, ¥) A Txy h(xg, X)) Amy(x 3)

The original consistency condition (1) is a straightforward extension of the simplified condi-
tion, and so are considerations in the bottom-up and top-down approaches.

We turn now to some consequences of the consistency condition (1) to exploit the possibili-
ties of the search space reductions at diagnostic reasoning. This also offers guidelines for the
formulation of the hierarchical diagnostic algorithm. Suppose that an input-output observa-
tion y, at the detailed level is given, and one wants to find the corresponding detailed level
diagnosis x,. First consider the case when y, does not have any abstraction y,. A logical
consequence of the consistency condition (1):

Verxz ﬂ(3}’] h(y},)’2)) A (ax] h(xp xz)) = -‘mz(xz: }'2) (2)

states that for any y,, if there is no abstraction y,, then no x, which does have an abstraction
x, maps to y,. Consequently, in this rather special case, possible candidates for the diagnosis
are only x, without any abstraction x,.

Now consider a more common case when y, does have an abstraction y,. The following log-
ical consequence of the consistency condition (1):

Yy, (Vy, 3x, h(y,, ¥o) A—my(X;, Y1) A B(X), X)) = —imy(X,, Y,) (3)

states that, if for all abstractions y, of y, there is an x, that does not map to y,, then all
refinements x, of x, do not map to y, either. Therefore, possible candidates are only those x,
that are not refinements of x;. This reformulation enables a major reduction of the search
space at the detailed level, since it basically says that diagnoses which are impossible at the
abstract level (where the search space is smaller) are impossible at the detailed level as well.

15

From the above conclusions it follows that the abstract level model acts as a falsity-
preserving filter which can be used early in order to eliminate a number of impossible diag-
noses. However, this does not ensure that diagnoses not eliminated by the abstract model are
all actually possible at the detailed level. Specifically, the following is not a logical conse-
quence of the consistency condition (1):

Vyz,xz (Vyl Bxl h(y,, yz)Aml(xl,yI)Ah(xl,xz)) = my(x,, ¥,) “4)

It is not necessarily the case that for all x, that map to y, at the abstract level, all refinements
x, of x; do map to y, at the detailed level. Therefore, it has to be explicitly verified if an
individual x, actually maps to y,.

The first refinement principle allows for the introduction of new variables at the detailed
level. The expressive power of hierarchical model representation is thus enhanced, since
phenomena which cannot be envisioned or are irrelevant at the abstract level can be ignored.
However, this also renders the abstract level model incomplete with respect to the detailed
level when some mappings do not have corresponding abstract counterparts. As a conse-
quence, in the case of the incompleteness, the abstract level model cannot always be used as
a falsity-preserving filter. Formally, the following is not a logical consequence of the con-
sistency condition (1):

Yy, X, (Yy;3x; h(yp, y,) Amy(x, y)) A —h(x), X)) = —my(x), ¥,) (5)

It is not necessarily the case that for all x,, if there is an x, that maps to y, and x, is not a
refinement of x,, then x, does not map to y,. Consequently, all x, that have no abstraction x,
have to be verified for the possibility that they map to y,. This effectively means that the
diagnostic algorithm cannot take any advantage of the hierarchical model representation for
the parts of the model that do not have any abstractions.

The following summarizes the relationship between the consistency condition (1) and state-
ments (2, ..., 5):

(1) > (2),(3) and (1) D (4),(5)

16

3.4 Diagnostic algorithm

Suppose that an ordered list of models m, ..., my, satisfying the consistency condition is
given, and hierarchical relations between adjacent levels, states, and input-output observa-
tions are specified by a binary predicate h. The hierarchical diagnostic algorithm is defined
by a logic program which implements a depth-first, backtracking search through the space of
possible states (diagnoses). The top level predicate diagnose(L, Y, X) relates an input-output
observation Y to the corresponding state X of the model, at the level of detail L. L0, Y0 and
X0 denote more abstract level, input-output observation, and state, respectively:

diagnose(L,Y, X) «
abstracy(L, LO),
abstrac(Y, Y0),
diagnose(L0, Y0, X0),
detailed(X0,X),
veriff(L,X, Y).

diagnose(L,Y,X) «
no_abstract(L,X),
verify(L, X, Y).

Normally, the procedure is invoked with a given Y at the detailed level L, and X unknown.
The first clause deals with the case when there exists a more abstract model at level L0, and
the observation Y has an abstraction YO. The procedure recursively searches for the
corresponding abstract state X0, and, if found, verifies if a refinement X of X0 actually maps
to the given Y. The intended meaning of the predicates abstract(X, X0) and detailed(X0, X)
is that X0 is an abstraction of X:

abstract(X, X0) « h(X0,X).
detailed(X0,X) « h(X0,X).

The second clause deals with the diagnosis at the top level when there is no more abstract
model, and with instances of states that do not have any corresponding abstractions. It is
assumed that at each level L, all states X without any abstraction X0 are the intended mean-
ing of the predicate no_abstract(L, X):

no_abstract(L,X) « —(3X0) h(X0,X).

According to the consistency condition, if there is no abstraction for the given Y it suffices to
check only those X without any abstraction. Further, all X without any abstraction have to be

17

always verified as potentially possible diagnoses. The predicate verify(L, X, Y) checks if the
model m; at the level L really maps X to Y:

verify(L,X,Y) « mL(X, Y)

Provided that the consistency condition is satisfied, it can be shown that the algorithm is
correct and complete with respect to the model definition. The algorithm is obviously
correct since all pairs state-observation are explicitly verified by the model itself. The algo-
rithm is also complete since it finds all possible pairs state-observation that have a mapping
according to the model definition. Suppose there is a state-observation mapping for which
neither the body of the first nor the second clause can be satisfied. It is straightforward to
show that such assumption is either contradictory or that it violates the consistency condi-
tion.

The reduction of search space in hierarchical diagnosis is illustrated in Figure 3.

Level 1

Level 2

Level 3

Figure 3. Search space reduction in hierarchical diagnosis.

Given a Y at the detailed level 3, the algorithm first climbs the hierarchies of input-output
observations (filled circles on the right-hand side of Figure 3). The algorithm uses the
abstract (level 1) model to verify if any abstract state maps to the abstract observation.
Verifications are denoted by arcs, where solid arcs denote mappings while dashed arcs
denote non-mappings. At the more detailed levels (2 and 3), only states that are refinements
of possible abstract states, and states without abstractions are considered (filled circles on the
left-hand side of Figure 3). Eventually, all three detailed states that do map to Y are found
through backtracking: X ;, X, X;. Now suppose that at the detailed level 3 a Y is given which
does not have any abstraction, e.g., the rightmost circle in Figure 3. In this case the

18

algorithm checks for possible mappings only the states without abstractions, i.e., in Figure 3
only the leftmost state would be verified.

Suppose a model is defined by a one-to-one (i.e., a strictly monotonic function) or one-to-
many mapping, and the state values hierarchy has the form of a tree. If there are n distinct
states at the detailed level, the time complexity of the hierarchical diagnostic algorithm is
O(log n), a considerable improvement over the O(n) complexity of the generate-and-test
method. The same reduction of complexity applies even if the model is defined by a k-to-
many mapping, where k is an upper bound of possible diagnoses at each level, fixed in
advance and independent of n.

19

4 Three case studies

In this section we show applications of hierarchical model representation and the diagnostic
algorithm to three domains of general interest: equation solving, constraint satisfaction, and
qualitative modeling.

4.1 Numerical equation solving: the bisection method

Suppose there is a continuous function y = f(x) which does not have the inverse function £~
in analytical form. To solve the equation y = f{x) means to find an x for a given y,. Suppose
the initial interval [x, x,], f(x) <y, < fix,) where f is monotonic is given. For a given error
tolerance &, the task is to narrow the interval /[x,, xJ until lxl—xrl <E.

The hierarchical diagnostic algorithm can be readily applied to emulate the well-known
bisection method. The independent, state variable X is a pair [XI, Xr], representing the inter-
val [x, x,]. The dependent variable Y is a real-valued variable y, and the mapping is defined
by the function f. The mapping and the values of ¥ do not change across the hierarchical lev-
els, while the values of X are defined by a binary tree. Notice that only the
refinement/abstraction of values — principle (2) — is used in this hierarchical model
specification.

Since there is no hierarchies for Y, the diagnostic algorithm can be slightly simplified:

diagnose(L,Y,X) «
abstract(L, LO),
diagnose(L0, Y, X0),
detailed(X0, X),
verify(X, Y).

diagnose(L,Y,X) «
no_abstract(L, X),
verify(X, Y).

Let denote abstraction levels by integers I, ..., L, and assume that the value for the most
abstract X is the initial interval, defined by the predicate init_solution(X):

abstract(L,L0) « L>1,L0 :=L-I.

no_abstract(1,X) « init_solution(X).

20

The binary tree-structured hierarchies for X are defined by the following two clauses, where
Xm is the midpoint between the interval boundaries X! and Xr:

detailed([X1, Xr], [X], Xm]) < Xm := (X1+Xr)/2.
detailed([X1, Xr], [Xm, Xr]) < Xm := (X1+Xr)/2.

The model, unchanged across levels, just verifies if the given value of Y is within the interval
[fiX1), f(Xr)] at the current level of detail:

verify([X1,Xr],Y) «
function(X1, Y1),
Sfunction(Xr, Yr),
YISY, Y<Yr

Now suppose that one wants to solve the equation x + tan(x) = 1. Function f and the initial
interval are specified by the following two clauses:

function(X,Y) « Y :=X + tan(X). =

init_solution([0, 1]).

Given the error tolerance € = 0.00001, and by successively increasing the level of detail until
L = 18, the query:

?— diagnose(18,1,X).

returns the solution X = [0.479729, 0.479736].
4.2 Hierarchical constraint satisfaction: the eight queens problem

Given constraints over variables, the constraint satisfaction problem is to find an assignment
of values to variables such that the constraints are satisfied. Due to a deductive nature of the
problem, in principle, straightforward backtracking techniques may be used to solve it. To
improve the efficiency and eliminate redundancies exploited by a simple-minded backtrack-
ing, a number of intelligent backtracking techniques was proposed, (€.g., Bruynooghe &
Pereira 1984). Alternatively, Bibel (1988) proposes a general bottom-up, lazy-evaluation
method which transforms a constraint satisfaction problem into the problem of evaluating a
database expression. In our approach, we do not address the backtracking redundancies, but
rather reduce the search by first satisfying more abstract constraints over smaller search

21

space.

A typical constraint satisfaction problem is to place eight queens on an empty chessboard so
that no queen attacks any other queen (e.g., Bratko 1986). A sample solution on an abstract
4x4, and a detailed 8x8 board is given in Figure 4.

8 Q
4 Q| Q . Q
6 Q
31 Q Q sl
4 Q
2 Q| Q 3 Q
2
Il Q Q / Q Q
a b ¢ d a b c d e f g h -

Figure 4. An abstract and detailed solution to the eight queens problem.

In the diagnostic framework, the eight queens problem may be formulated as follows: The
independent variable X is an 8-tuple Board =(Q,, .., Q) of discrete valued variables,
representing a position of each queen on the board. The dependent variable Y is binary-
valued {true, false}. The mapping m(Q,, ..., Qg) = {true, false} is a boolean function that
maps Board to true if constraints are satisfied, and to false otherwise. There are two levels of
abstraction correspondirig to the board dimensions 4x4 and 8x8. Hierarchies for the values
of X are tree structured, while values of Y are the same at both levels. The mapping m,, ,
(i.e., constraints) at the abstract level is different from the mapping mg, , at the detailed level.
Notice that in this hierarchical model definition only the refinement/abstraction principles (2)
and (3) are used.

We are interested only in solutions where constraints are satisfied, i.e., when Board maps to
Y = true. Therefore, we can omit the dependent variable Y from the algorithm definition:

22

diagnose(L, Board) «
abstracy(L, LO),
diagnose(L0, Board0),
detailed(Board0, Board),
verify(L, Board).

diagnose(L, Board) «
no_abstract(L, Board),
verify(L, Board).

The model has only two levels of abstraction:
abstract(8x8, 4x4).
At the abstract 4x4 level, all board positions are without abstraction:
no_abstract(4x4, Board) « (Vils<i<8) Q, = CR, Ce {abcd},Re {1234}

For each square on the 4x4 board, there are four corresponding squares on the 8x8 board
e.g., ¢2 has refinements €3, e4, f3, f4. Constraints at the 8x8 board allow to place at most. one
queen in each row, column and diagonal, while at the 4x4 board they allow up to two queens
in the same row or column, and up to three queens in the same diagonal:

verify(4x4, Board) «
max_row(Board, 2),
max_col(Board, 2),
max_diag(Board, 3).

verify(8x8, Board) «
max_row(Board, 1),
max_col(Board, 1),
max_diag(Board, 1).

It is obvious that such hierarchical model definition satisfies the consistency condition, since
all configurations of eight nonattacking queens also satisfy the abstract constraints. The
computational advantage of this representation stems from the fact that configurations not
satisfying the abstract constraints do not need to be considered at all at the detailed level, and
that the number of possible configurations on the 4x4 board is smaller than on the 8x8 board.
A comparison between the one-level (8x8) and hierarchical (both 4x4 and 8x8) constraints is
given in Table 1.

23

Queensper Positions checked by constraints | Queens per
Board | col. row One-level Hierarchical diagonal Solutions
2 2 90 N/A 3 73
b 9% N/A 45
1 1 40320 18688 1 92
&8 3544 2796 92

Table 1. Number of board configurations checked by and satisfying one-level and
hierarchical constraints. Lines 2 and 4 corresponds to stronger constraints at the 4x4 level,
and to an early test incorporation at the 8x8 level.

In an efficient implementation of the eight queens problem, the pigeonhole principle can be
used: since there are eight columns and rows, and eight queens to be placed on the board, it
follows that in every one of the columns and rows there must be exactly one queen. There
are 8! = 40320 distinct positions that satisfy this one-level 8x8 constraint (see column 4, line
3 in table 1). A similar principle can be used when refining 73 abstract level solutions
(column 7, line 1), yielding 73*2**2* = 18688 distinct positions at the detailed level (column
5, line 3). As a consequence, the hierarchical constraints reduce the number of positions to
be checked for a diagonal attack by more than two times. A further improvement may be
achieved by an early test incorporation. Instead of checking if any two queens are on the
same diagonal only after all queens are on the board, we may check for the diagonal attack
immediately after placing each queen on the board. This reduces the number of positions
considered by one-level constraints to 3544 (column 4, line 4), and to 2796 for hierarchical
constraints (column 5, line 4). In this case, constraints at the abstract level were also
stronger, limiting the maximum number of queens on adjacent diagonals, and thus yielding
only 45 abstract solutioqs (column 7, line 2).

4.3 Hierarchical qualitative modeling: the heart

The underlying motivation of the KARDIO project (Bratko, Mozetic & Lavrac 1988, 1989)
was to solve the ECG interpretation problem: given a symbolic description of the ECG data,
find all possible heart failures (cardiac arrhythmias). Several qualitative models which simu-
late the electrical activity of the heart were developed to solve the problem. In this subsec-
tion we concentrate on the hierarchical model, represented at four levels of detail, and the
application of hierarchical diagnostic algorithm to efficiently solve the ECG interpretation
problem. The model at the most detailed level maps 943 heart failures (both single and mul-
tiple) to 5240 ECG descriptions altogether.

24

In the diagnostic framework, the independent variable X denotes the qualitative state of the
heart Arr, and the dependent variable Y the output from the heart ECG; there is no input.
Each state Arr is defined as a tuple of states of the heart components (each component state
in turn denotes an isolated arrhythmia A), and corresponds to a single or multiple cardiac
arthythmia. The ECG is defined as a tuple of individual ECG features E. There are four lev-
els of detail, I, 2, 3, 4, and at each level some new variables are introduced. Specifically:

Arr;=(A) ECG,=(Ep

Arr,={A; A, A) ECG,=(E, E, E;, E)

Arry=(A;, Ay Ay Ay As, Ag ECG;=(E,E, E; E,Es Eg E,)

Arry={(A;, A, Ay Ay Ag Ag A)) ECG,=(E.E,EE, E, E, E, Eg E,, E,»
In the hierarchical model development, all three refinement/abstraction principles were used.
Apart to the introduction of new variables, values of the variables are refined at each level of

detail. The model also defines different mappings m;, ..., m, from Arr to ECG by introduc-
ing new components at each level.

The abstract heart models are usually incomplete with respect to their detailed counterparts,
due to the introduction of new variables. The incompleteness prevents the search space
reduction at an abstract level, and the algorithm has to resort to the inefficient generate-and-
test method for the states Arr without abstractions. In order to avoid the repetitive use of the
generate-and-test method, a set of all pairs (Arr, ECG) for all Arr without abstractions was
generated in advance from the model at each level L. This renders a slightly modified diag-
nostic algorithm, where the second clause resorts to the predicate surface(L, Arr, ECG)
defining {Arr, ECG) pairs in the extensional form:

diagnose(L, ECG, Arr) «
abstract(L, LO),
abstract(ECG, ECGO),
diagnose(L0, ECGO, Arr0),
detailed(Arr0, Arr),
verify(L, Arr, ECG).
diagnose(L, ECG, Arr) «
no_abstract(L, Arr),
surface(L, Arr, ECG).

The verification whether an individial heart disorder Arr can actually cause a given ECG
consists of two steps. First, the disorder is checked against constraints which eliminate phy-
siologically impossible and medically uninteresting heart states. Then, the model simulates

25

the heart activity for the disorder:

verify(L, Arr, ECG) «
constraints(L, Arr),
heart(L, Arr, ECG).

At each level L, the simulation model maps a heart disorder Arr to one or more ECG descrip-
tions. The model is defined by its structure (a set of components and their connections) and
functions of the constituent components:

heart(L, Arr, ECG) «
generator(Agr,rp, Impulseqyr)
conductor(Agrarps Impulseyy, Impulsey), ...
summator(Impulsep,, Impulse;y, Impulse), ..
projector(Impulsepy, E ;i), -

A model component, in general, relates its qualitative state to the input and output. In the
heart, the state of a component corresponds to an isolated arrhythmia A, the input is.an
electrical impulse Impulse, and the output is either an electrical impulse or an individual
“ECG feature E. There are four types of components in the heart model: impulse generators,
conductors of impulses, summators of impulses, and projectors of impulses to the ECG.

26

5 Experiments and results

In this section, we emphasize the importance of application and experimental evaluation of
the multi-level representation and hierarchical diagnosis to a non-toy problem. First we out-
line transformations between different representations of diagnostic knowledge in KARDIO,
with the goal to efficiently solve the ECG interpretation problem. Then we compare diag-
nostic efficiency and space requirements between different representations and the four-level
hierarchical model of the heart.

5.1 Knowledge transformations in KARDIO

In KARDIO (Bratko, Mozetic & Lavrac 1988, 1989), the ECG interpretation problem is for-
mulated as follows: given a symbolic description of the ECG data, find all possible heart
disorders (cardiac arrhythmias). There are both single and multiple disorders in the heart,
and in the medical literature there is no systematic description of ECG features which
correspond to complicated multiple disorders. Further, there is no simple rule yielding ECG
features of multiple disorders, given ECG features of the constituent single disorders. These
were the two main problems we encountered when attempting to construct the diagnostic
knowledge base.

In order to solve the problem of multiple disorders, we took the reverse approach. Instead of
constructing diagnostic rules directly, we rather developed a simulation model of the heart.
The model is qualitative in the sense that it does not deal with electrical signals represented
numerically as functions of time, but rather by symbolic descriptions. Subsequently, using
deductive and inductive inference techniques, the qualitative model (1) was automatically
transformed into a set of surface if-then rules (2), and compressed diagnostic rules (3), both
representations more suitable for diagnosis.

The original model of the heart in KARDIO related over 2400 heart disorders to over
140 000 ECG description. In this paper, however, all experiments described were conducted
by a subset of the original model, here referred to as the detailed, one-level model, relating
943 heart failures to 5240 ECG descriptions. A set of rules which reconstruct the original
model from the subset is specified in (Bratko, Mozetic & Lavrac 1989).

27

(1) Qualitative model of the heart

The one-level model of the heart simulates its electrical activity. Specifically, the model
maps any arrhythmia (a single or multiple disorder) to all corresponding ECG descriptions.
An arthythmia Arr is defined as a 7-tuple of isolated arrhythmias A, and an ECG as a 10-
tuple of individual ECG features E:

Arr=(A, .., Ay
ECG =(E,, ... E;p)

The model is defined by a many-to-many mapping, since each arrhythmia Arr may have
more than one corresponding ECG, and several arrhythmias may map to the same ECG
description. However, due to the simulation nature of the model m, its application in the
‘forward’ direction can be carried out efficiently, resorting only to shallow backtracking
when deriving all ECG descriptions for a given Arr:

M(A,, .y Ay) = E, s Ejo)

Since the model m is specified by a logic program which defines a relation between Arr and
ECG, it can be used in the ‘backward’ direction as well:

m(E,, . E,) =4, ..A)

However, the reasoning from ECG to Arr involves deep backtracking where a large number
of fruitless paths are explored, and therefore renders the ‘backward’ application inefficient.
The main source of fruitless branching is the model component summator(X, Y, Z) which,
when applied, requires that for a given impulse Z, a pair of impulses X and Y is to be found,
such that their ‘sum’ yields Z. Usually, there is a number of possible decompositions of Z,
only few of which are consistent with other constraints in the model, and further, those
inconsistencies may be found only in late stages of the model application.

(2) Surface if-then rules

Despite the fact that the model cannot be used for efficient diagnosis directly, it can be used
indirectly. Since the model m relates any Arr to all corresponding ECG descriptions, one can
generate an exhaustive set of pairs (Arr, ECG):

28

m(Arr, ECG) = (A, .. Ay, Ejy . Egg)

Such a table of pairs, properly organized and simplified, can be interpreted as a set of surface
if-then rules, directly relating heart disorders to ECG observations. Prediction rules of the

form:
if A, ..., A, then E,.. E,

can be used to predict possible ECGs for a given heart disorder, and diagnostic rules of the
form:

if E,..,E, then A, ., A,

can be used for efficient diagnosis.

A problem with such an exhaustive set of if-then rules is a large storage space which may be
required, thus rendering it impractical for diagnostic purposes. In the KARDIO project, for
example, the original model of the heart was used to generate a set of rules occupaying over
5 Mb when stored as a text file. In many practical applications it might not even be feasible
to generate all pairs disorder-observation, but only a small subset. Some inductive generali-
zation techniques must then be applied to the subset in order to extend the coverage to the
whole diagnostic space (or at least most of it).

(3) Compressed diagnostic rules

In inductive learning (Michalski 1983), one is given a set of learning examples and some
background knowledge, and the goal is to find a concept description which is consistent and
complete with respect to the examples. A learning example e is usually represented as a
tuple of variable values, where one designated variable denotes a class ¢, and the remaining
values v, ..., v, are features of the object belonging to the class c:

e(V.V, C)
The induced concept description is usually in the form of if-then rules:
if ¢ then v, ., v, or if v,, ..., v, then ¢

where ¢ denotes an instance of the concept, and v, ..., v,, is a logical expression, as simple as

29

possible, but sufficient to discriminate between the class ¢ and all other classes. Note that in
general, an if-then rule is not a logical implication, but rather a relationship, merely indicat-
ing the direction of inference. Consequently, depending on the problem domain, the left and
right-hand sides can be interchanged.

The inductive learning techniques were applied to the exhaustive set of pairs (Arr, ECG).
First, ten sets of learning examples were prepared, in each a different ECG feature E;
representing the class variable:

e(Ap wAnEy)
el Ap s ApEpy)

An algorithm for learning from examples was then used, and ten sets of compressed diagnos-
tic rules were induced:

if E; then AL, . Ay -t
if E;, then A, ..., A,

Each rule relates an individual ECG feature E; to a minimal description of corresponding
arthythmias A, ..., A, which is still sufficient to discriminate between the E; and other ECG
features. Since the set of learning examples was exhaustive and some additional conditions
were satisfied, no generalization occurred in the process, and consequently the compressed
diagnostic rules are logically equivalent to the original exhaustive set of if-then rules. The
compressed rules are compact and can be efficiently used for diagnosis. However, their
induction required 40 hours of (user) CPU time on SUN 2 (Mozetic 1986).

The same approach of constructing a qualitative model, exhaustive simulation, and induction
of compressed diagnostic rules was taken by Pearce (1988) to automatically construct a fault
diagnosis system of a satellite power supply. Similarly, Buchanan ez al. (1988) show the
advantage of using a classical simulation model to generate a (non-exhaustive) set of learn-
ing and testing examples, which is then used to induce rules for location of errors in particle
beam lines used in high energy physics.

30

5.2 Time/space tradeoff

The four-level hierarchical model of the heart was developed in two stages. First, the three-
level model was constructed in a top-down fashion, using QuMAS, a semiautomatic Qualita-
tive Model Acquisition System (Mozetic 1987). The fourth, most detailed level was then
added manually, by rewriting the original KARDIO heart model (which required a special
interpreter) into a logic program which can be interpreted directly.

Table 2 outlines the complexity of the hierarchical model of the heart at each level of detail.
The right-hand side of the table indicates the incompleteness of abstract levels, where the
number of entities without abstraction for each adjacent detailed level is given. Notice that
level 0 is totally incomplete with respect to level 1, and level 3 is complete with respect to
level 4.

Level Hierarchical heart model Without abstraction
ofdetail | Arr ECG ({(Arr,ECG) | Arr ECG (Arr, ECG) -
1 3 3 3 3 3 3
2 18 12 23 3 3 5
3 175 263 333 26 69 79
4 943 3096 5240 0 0 0

Table 2. Number of distinct entities in the hierarchical heart model at different levels of
detail, and corresponding model incompleteness.

Recall that in the cases of incompleteness, the hierarchical diagnostic algorithm has to resort
to the naive generate-and-test method, thus potentially decreasing the efficiency of diagnosis.
First experiments with the three-level model of the heart (Mozetic, Bratko & Urbancic 1989)
showed no considerable advantage of hierarchical diagnosis over the generate-and-test
method, due precisely to the high level of incompleteness in the model. In the experiments
described here, we slightly modified the heart model at level 2, thus decreasing its incom-
pleteness. Further, a set of surface if-then rules for all pairs (Arr, ECG) without abstractions
was generated in advance in order to avoid the repetitive application of generate-and-test.

We compared space requirements and diagnostic efficiency of the three types of diagnostic
knowledge (described in the previous subsection) to the hierarchical model of the heart. In
all cases, knowledge bases and diagnostic algorithms are implemented as logic programs and
compiled by Quintus Prolog. We measured space required by each representation together

31

with the corresponding algorithm, when both stored as text files. Diagnostic efficiency is the
time needed to find all possible diagnoses for a given ECG, and was measured on all 3096
distinct ECG descriptions at the detailed level. Results in Table 3 are the average times over
3096 ECGs.

Type of diagnostic knowledge Space [Kb] Time [sec]
generate-and-test 50.35
(1) Onedlevelmodel oy packwards’ 15 66.30
(2) Surface if-then rules 750 022
(3) Compressed diagnostic rules 25 0.55
(4) Hierarchical four-level model 45 2.67

Table 3. Space requirements for different representations and times spent to find all possi-
ble diagnoses for a given ECG description, averaged over all 3096 distinct ECGs.

Notice the very high directionality bias of the one-level heart model in Table 3. When the
model is used in the “forward’ direction, the average time to derive an ECG for a given Arr is
only 0.063 seconds (this is consistent with the 50.35 seconds for the generate-and-test, where
the model is applied 943 times in the ‘forward’ direction, once for each distinct Arr). In con-
trast, the average ‘backwards’ application (for diagnosis) requires as much as 66.30 seconds.
As a consequence, even the naive generate-and-test method turns out to be more efficient
than the model used in the ‘backwards’ direction. Surface if-then rules are the most time
efficient since only simple memory retrieval is required, but, on the other hand, they are very
space demanding. Compressed diagnostic rules are optimal in terms of space and time
efficiency and appear to be the best representation for the ECG interpretation. Finally, the
four-level model is obviously outperformed by the compressed diagnostic rules, but achieves
satisfactory performance from the practical point of view. More importantly, it is 20 times
more efficient than the one-level model, and requires only three times as much space (out of
45 Kb, 11 Kb are for surface if-then rules without abstractions).

The relation between different representations of diagnostic knowledge is better illustared on
a time/space tradeoff scale in Figure 5. Recall that representations (2) and (3) were automat-
ically derived from (1), while (4) was constructed semiautomatically on top of (1).

Space [Kb] }
1000

500 4

200 T

100 +
50::

20+

1071

32

Ll b 1Lt) 1 | I O S W .
™r—r—rrr T Lt B S o

02 05 12 5 10 20 50 100 Time [sec

Figure 5. A tradeoff between the average diagnostic time and space requirements for dif-
ferent representation: (1) one-level model, (2) surface if-then rules, (3) compressed diagnos-
tic rules, and (4) hierarchical four-level model.

In contrast to dedicated diagnostic rules, model-based reasoning offers better explanation
facilities which can be even tuned to the desired level of detail (Mozetic, Bratko & Urbancic
1989). Further, the hierarchical diagnostic algorithm can be easily modified to accommodate
diagnostic reasoning under time constraints, and to offer a tradeoff between diagnostic
specificity and certainty. The current algorithm implements a depth-first search, favoring
specificity (more detailed diagnoses) over certainty. In a breadth-first search implementation,
certainty (a proportion of possible diagnoses at a given level of detail) would be favored over

specificity.

33

6 Conclusion

In the paper, we proposed a model representation at several levels of detail with the goal to
increase the efficiency of model-based diagnosis. We defined the consistency condition
which has to be satisfied by the hierarchical representation, and we specifed the diagnostic
algorithm. The algorithm turns out to be general, and is independent of the choice of the
model representation at any single level. Further, the model is always used only in the ‘for-
ward’ direction which is preferred and often the only feasible option. In particular, we envi-
sion the possibility of taking an existing simulation model, adding a few more abstract levels
to it, and then using it for efficient diagnosis.

The efficiency improvement is due to the smaller search spaces at more abstract levels and
the reduced search at the detailed level. The improvement depends on the branching factor of
hierarchical relations and on the degree of incompleteness. In particular, it is known that in
numerical equation solving, the bisection method has lower time complexity than the k-
section, k > 2. A hierarchy in the form of a binary tree is therefore preferred over a k-ary tree
or a non-tree structured hierarchy. As a consequence, to improve the efficiency, one should
introduce new, intermediate levels in the hierarchical representation. For example, in the
eight queens problem, it seems to be advantageous to introduce an intermediate 4x8 board. It
is domain dependent, however, when such intermediate levels are meaningful, and if
corresponding mappings can be easily formulated.

There is another possibility of improving diagnostic efficiency, when a component-oriented
model representation is used. Instead of specifying only hierarchical relations between dif-
ferent level models, one could specify hierarchical relations between their constituent com-
ponents as well. In this case, the verification if a detailed level model behaves consistently
with the abstact level can be terminated as soon as an inconsistent behavior of a component
(or a set of components) is encountered. The idea of using hierarchical relations between
components was already successfully applied in QuMAS, where a model is constructed
semiautomatically, in a top-down fashion, through cycles of learning, interpretation, and
debugging (Mozetic 1987).

Another interesting direction of further research concerns automatic construction of abstract
level models on top of an existing detailed level model. Given a class of problems to be
solved by a model, it may well turn out that the existing model is unnecessarily detailed, and
that a more abstract model is sufficient and even more efficient at problem solving. Such

goal-oriented reasoning may help in identifying useful abstractions and simplifications to be

carried out automatically.

35

References

Bibel, W. (1988). Constraint satisfaction from a deductive viewpoint. Artificial Intelligence
35, pp. 401-413.

Bratko, L (1986). Prolog Programming for Artificial Intelligence. Addison-Wesley, Read-
ing, MA.

Bratko, L., Mozetic, L, Lavrac, N. (1988). Automatic synthesis and compression of cardio-
logical knowledge. In Machine Intelligence 11 (J.E.Hayes, D.Michie, J.Richards, Eds.), pp.
435-454, Clarendon Press, Oxford, UK.

Bratko, I, Mozetic, L., Lavrac, N. (1989). KARDIO: A Study in Deep and Qualitative
Knowledge for Expert Systems. The MIT Press, Cambridge, MA (in press).

Bruynooghe, M., Pereira, L.M. (1984). Deduction revision by intelligent backtracking. In
Implementations of PROLOG (J.A.Campbell, Ed.), pp. 194-215, Ellis Horwood, Chichester,
UK.

Buchanan, B.G., Sullivan, J., Cheng, T., Clearwater, S.H. (1988). Simulation-assisted induc-
tive learning. Proc. 7th Natl. Conference on Artificial Intelligence, AAAI-88, pp. 552-557,
Saint Paul, MN, Morgan Kaufmann.

Cox, P.T., Pietrzykowski, T. (1987). General diagnosis by abductive inference. Proc. 1987
Symposium on Logic Programming, pp. 183-189, San Francisco, CA, IEEE.

de Kleer, J. (1976). Local methods for localizing faults in electronic circuits. MIT AI Memo
394, Cambridge, MA.

Geffner, H., Pearl, J. (1987). An improved constraint-propagation algorithm for diagnosis.
Proc. 10th Intl. Joint Conference on Artificial Intelligence, IJCAI-87, pp. 1105-1111, Milan,
Italy, Morgan Kaufmann.

Genesereth, M.R. (1984). The use of design descriptions in automated diagnosis. Artificial
Intelligence 24, pp. 411-436.

Korf, R.E. (1987). Planning as search: a quantitative approach. Artificial Intelligence 33, pp.
65-88.

Michalski, R.S. (1983). A theory and methodology of inductive learning. In Machine Learn-
ing: An Artificial Intelligence Approach (R.S.Michalski, J.G.Carbonell, T.M.Mitchell, Eds.),
pp. 83-134, Tioga, Palo Alto, CA.

Mozetic, I. (1986). Knowledge extraction through learning from examples. In Machine
Learning: A Guide to Current Research (T.M.Mitchell, J.G.Carbonell, R.S.Michalski, Eds.),
pp. 227-231, Kluwer Academic Publishers, Boston, MA.

Mozetic, 1. (1987). The role of abstractions in learning qualitative models. Proc. 4th Intl.
Workshop on Machine Learning, pp. 242-255, Irvine, CA, Morgan Kaufmann.

Mozetic, 1., Bratko, I, Urbancic, T. (1989). Varying level of abstraction in qualitative
modelling. In Machine Intelligence 12 (J.E.Hayes, D.Michie, E.Tyugu, Eds.), Oxford
University Press, Oxford, UK (in press).

Pearce, D.A. (1988). The induction of fault diagnosis systems from qualitative models.
Proc. 7th Natl. Conference on Artificial Intelligence, AAAI-88, pp. 353-357, Saint Paul, MN,
Morgan Kaufmann.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence 32, pp.
57-95.

Shortliffe, EH. (1976). Computer-Based Medical Consultation: MYCIN. American
Elsevier, New York.

