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ABSTRACT 

Most inductive learning systems generate 
complete and consistent descriptions. In order to 
achieve completeness and consistency in the 
presence of noise or imprecision. one may 
generate overly complex and detailed 
descriptions. Such descriptions. however. may 
not perform well in future cases and suffer the 
disadvantage of excessive complexity. This is 
th~ well known phenomenon of overfining, In 
thIs paper. a rule optimization method called 
SQ-TRUNC is described and evaluated 
experimentally, SQ· TRUNC improves previous 
TRUNC methods and has been implemented in 
a more efficient way. In the method, an 
optimized description is obtained through a 
sequence of generalization and/or specialization 
operations performed on a complete and 
cons,istent concept description. The operations 
apphed always simplify a description. 

The method has been implemented in AQ16 that 
has been applied to two domains: a designed 
testing problem and "multiplexer" F 11' The 
experimental results have shown that both 
simplicity and perfonnance improvements can 
be gained in the domains when: noise is present. 

1. INTRODUCTION 

Most methods of machine learning research 
assume that concepts are precise entities, 
represented by a single symbolic description. In 
such a representation, the boundaries of a 
concept are well-defined. AU instances of a 
concept are assumed to be equally 
representative. If an instance satisfies the given 
concept description, then it belongs to the 
concept, otherwise it does not. However. most 

human concepts have a context-dependent 
meaning and lack: precisely defined boundaries. 
Examples of human concepts are usually not all 
equivalent. They may have different degrees of 
typicality in representing the concept, Thus. 
human concepts are flexible. as they adapt to the 
context in which they are used. 

Most learning systems make the "noise free 
domain" assumption that the examples presented 
to the systems do not contain errors :ind the 
description language is complete, and 
consequently constrain their searches only for 
rules that are both consistent and complete, The 
requirement of "noise free domain" is often too 
hard to be satisfied in the real world. The 
flexibility of concepts and the noise in training 
sets prevent most learning systems from being 
applied to many real world leaming tasks. 

In order to handle flexible concepts. :Michalski 
(1987) proposed a two-tiered concept 
representation. In the representation, a complete 
concept description is split into twcrparu: the 
Base Concept Representation (BCR) and the 
Inferential Concept Interpretation (lCI). The 
BCR describes the concept simply and explicitly 
by char.lcterizing the typical and easy-to-dc:ftne 
concept meaning. The prototypical instances of 
the concept can therefore be classified by simple 
matching with the SCR. The ICI specifies 
allowable modifications of typical meaning, 
concept matching procedures, special cases and 
context-dependency. and thus implicidy defmes 
conceptboundarieL 

The TRUNC method was first introduced by 
Michalsld et. al (1986) to genenlte a simple rwcr 
tiered concept description. In the TRUNC 
method. BCa is obtained through removing 



some components (conjunctions or disjunctions) 
from a complete. consistent and more complex 
concept description generated by AQIS. ICI is 
simply a predefmed flexible matching function. 
In this paper. we will present a new TRUNC 
method called SO-TRUNC that has been 
implemented in AQ16. AQ16 was developed 
from AQlS by incorporating SG-TRUNC 
method. Both AQlS and the idea of the TRUNC 
method \ViU be discussed in next two sections. 
Section 4 presents SQ-TRUNC method. 
Section 5 shows the experimental results Crom 
two problems: a designed testing problem and 
the "Multiplexer" F11 problem. Section 6 
discusses the comparisons with related work. 
Section 7 contains the conclusion and 
suggestions for future research. 

2. 	 INDUCTIVE LEARNING 
PROGRAM: AQIS 

AQl5 is a program that incrementally learns 
decision rules from examples and 
counterexamples of decisions. and possibly 
previously learned rules. The rules learned are 
complete and consistent with the training 
examples. In learning the rules. the program 
uses (i) background knowledge that consists of 
rules and concepts the program already knows. 
(ii) the derwtion of descriptors and their types~ 
and (iii) a preference criterion that evaluates 
competing candidate hypotheses. Each training 
example characterizes an object (situation. 
process. etc.) and specifies the COITeCt decision 
associated with that object. The generated 
decision rules are optimized according to a 
flexible criterion selected by the user. The 
criterion measures the quality of the rules from 
the viewpoint of the specific problem under 
consideration. The user may also specify the 
initial decision hypotheses to be used for 
incrementalleaming. In this case. the program 
will improve them until they are consistent with 
all available facts. The AQl5 program also has 
the capability of consauctive induction. It can 
use new descriptions as input data to simplify 
previously generated decision rules. Fmally. the 
AQlS program includes a decision rule testing 
utility. A man: detailed presentation about AQ IS 
is in (Hong. Mozetic "Michalski, 1986). 

The concept descriptions learned by AQIS are 
represented in VLl which is a simplified version 

of Variable· valued Logic System VL and used to 
represent ataibutional concept descriptions. In 
VL1. a description of a concept is a disjunctive 
nOllIlal form which is called a cover. A cover is 
represented as a disjunction of complexes. A 
complex is a conjunction of selectors. A selector 
is a form: 

[L# R) 
where 
L is called the referee. It is an attribute; 
R is called the referent It is a set of values in the 

domain of the attribute in L; 
# is one the following relational symbols: =. <. 

>. S. :i!:. ;Ill. 

3. 	 THE TRUNC METHOD AND 
FLEXIBLE MATCHING 

This section contains a discussion of the basic 
idea behind the TRUNC method and a 
description of the idea of flexible matching. 

The TRUNC method was first discussed in 
(Michalski. et a1.. 1986). The idea behind the 
method is to detennine the optimal disaibution 
of the concept description between the explicit 
base concept representation (BCR) and the 
inferential concept interpretation (leI) 
(Michalsld. 1987). One of the simple realization 
of the idea is described below. 

In AQ15. each complex generated is associated 
with a pair of weights: total (t-weight) and 
unique (u-weight). The t-weight of a complex is 
the number of positive examples covered by the 
complex and the u-weight is the number of the 
positive examples uniquely covered by the 
complex. The complexes arc ordered according 
to decreasing values of the t-weight. The t­
weight may be interpreted as a measure of the 
typicality or the representativeness of a complex 
as a concept description. The complex \Vith the 
highest t-weight may be viewed as describing 
the most typical concept examples, and thus 
serves as its prototypical description. The u­
weight may be interpreted as a measure of 
imponance of the complex. 

We distinguish between two methods for 
recognizing the concept membership of an 
instance: the strict match and the flexible match. 
In the suitt match. one tests whether an instance 
stricdy satisfies the condition pan of a rule (a 



complex}. In the flexible match. one determines 
the degree of closeness between the instance and 
the condition pan. 

Using the strict match. one can recognize a 
concept without checking other candidate 
concepts. In the flexible match. one needs to 
determine the most closely related concept. Such 
a match can be accomplished in a variety of 
ways. ranging from approximate matching of 
features to conceptual cohesiveness (Michalski 
& Stepp. 1983). 

The weight-ordering of complexes described 
above suggests an interesting possibility. 
Suppose we have a t-weight ordered disjunction 
of complexes, and we remove from it the 
"lightest" co~plex that is the complex with the 
lo:vest u.we~ght. Such a truncated description 
wtl.l not Strlctly match events that uniquely 
sausfr the re:noved complex. However, by 
apply10g a fleXIble match, these events may still 
be most closely related to the correct concept. 
and t~u~ be .correctly recognized. A truncated 
descn{>t1on l~, of c~ur$e. simpler but carries a 
pote~tlally hlgher n~k .of recognition error, and 
reqUireS a more sophisncated evaluation. We can 
proceed funher and remove the second "lightest" 
complex from the cover. and observe the 
p~rformance. Each such step produces a 
differ~n~ trade-off between the complexity of the 
descnpnon on the one hand, and the risk factor 
and the evaluation complexity on the other. At 
so~e step the ,best overall result may be 
achIeved for a gIven application domain. This 
method of knowledge reduction by truncating 
?rdered covers and applying a flexible matching 
IS called TRUNC. The truncated description 
serve~ ~ the BC~ of the two-tiered concept 
descnptlon. A fleXIble matching function is the 
IC~ of the. two-tiered concept description. See 
Ovhchalski, et al.• 1986) for further details of the 
TRUNC method and flexible matching. 

Bergadano et. a1. (1988a. 1988b) applied the 
TRID:'lC. me~od to generate two-tiered concept 
des~ptlons 10 a more sophisticated way. In 
thelT system. the TRUNC method is seen as a 
sta.te space search. The process of truncation is 
~lded by a general description quality, and is 
Impl<:m~nted as a best flfSt search, i.e., the 
descnpoons of better quality are considered 
fU"SL The operations used in the search are both 
generalization (selector removal) and 

~ializatio~ (complex removal). The algorithm 
IS computanonally expensive when the initial 
descriptions contain many complexes. 

4. THE SG-TRUNC METHOD 

4.1 Discussion 

In the SG-~~C meth~. both Specialization 
and ~enerallzanon operatIons are applied to a 
consistent and complete description represented 
as a disjunction of complexes. The 
generalization is implemented as selector 
removal. and specialization is implemented as 
comp.le~ removal. Both operations simplify a 
descnpuon. After a selector is removed from a 
complex, the complex is more general and 
covers more e~ampl~s. A consistent complex 
may become mconslstent, after some of its 
selectors are removed. After a complex is 
removed from a description, the description is 
less general and covers less examples. Therefore 
the description may no longer be complete. 

'f!1~ ex~mples of a flexible concept can be 
di~ded 1Oto three types: typical examples. non­
typ!cal examples and exceptions (rare cases). 
NOISY data can be treated as exceptions or non­
typical examples depending on the degree of the 
noi~e. Typi.cal examples share many common 
attnbutes WIth each other and few attributes with 
the examples of the other concepts. Non-typical 
examples share fewer atoibutes with typical 
examples. Exceptions share few attributes with 
typical examples, they may share many 
attributes with negative examples and look like 
negative examples. 

As mentioned in the previous section. 
complexes generated by AQ15 can be ordered 
according to their t-weights or u-weights. A t­
weight may be interpreted as a measure of the 
representativeness or typicality of a complex as a 
co~cept description. Complexes with high t­
we~ghts may be viewed as describing many 
typICal examples. and thus serve as prototypical 
descriptions. The examples covered by 
complexes with low t-weights are often far from 
the other positive examples, thus these 
complexes describe rare, exceptional cases. IT 
the .learning e~ples from which complexes are 
denved are no!sy! a ~omplex with low t-weight 
may also be tndlcattve of errors in the data. 
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Figure I illustrates this situation. "+" and It." 
represent a positive example and a negative 
example. respectively. CPXI and CPX2 are two 
complexes that cover all positive examples. The 

y 

CPXl 

- . ­
~ CPX2 

x 

Figlue 1: Complex with low t-weight 

A u-weight may be interpreted as a measure of 
the importance of the complex. The higher the u­
weigh. the more imponant the complex. A 
representative complex may not be important. It 
may carry a lot of redundan[ infonnation, 
therefore it is not important The complexes 
most interesting to the SQ-TRUNC method are 
those with high t-weights and low u-weights. 
These complexes are representative but not 
imponant. Let CPX be a complex with a high t· 
weight and a low u-weight. Many of the 
examples covered by CPX are also covered by 
other complexes. These multiply covered 
examples can be treated as typical examples. The 
examples uniquely covered by CPX are 
considered as non-typical examples. In Figure 
2. both CPXl and CPX2 have high t-weights 
and low u-weights. Thus. both of them are 
representatives and not important. el, e2 and e3 
are less typical examples and the others are 
typical examples. 

From the above discussion. one can see that two 
kinds of complexes. the complexes with low t­
weights and the complexes with low u-weights 
and high t-weights, can be removed. The t­
weight of a complex never changes. The u­
weight of a complex may increase when other 
complexes are removed. Therefore. removing 
complexes with low t-weights is simple. They 
can be removed independent of the others. But 

t-weights of CPXl and CPX2 are 14 and 2, 
respectively. CPX 1 is a representative 
description of the concept. The two examples 
covered by CPX2 are considered as exceptions. 
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Figure 2: Complexes with low u-weights 

removing complexes with high t-weights and 
low u-weights is more complicated. Only somt 
complexes with low u-weights can be removed. 
For example, in Figure 2 only one of the two 
complexes CPX 1 and CPX2 can be removed, 
although the u-weights of both are small. We 
thus have to decide which one of these two 
complexes should be removed. 

The loss of coverage resulting from removing 
complexes with high t-weights and low u­
weights can be restored by flexible matching. 
After a complex is removed. only those 
examples uniquely covered by it are no longer 
covered. Since these uncovered examples are 
close to many typical examples which are still 
covered by some other complexes. That is, these 
uncovered examples are close to some remaining 
complexes. so they can be easily matched with 
these complexes by flexible matching. Suppose 
CPXl in Figure 2 is removed. el is no longer 
covered strictly. but it can be matched with 
CPX2 by flexible matching. The loss of 
coverage that results from removing the 
complexes with low t-weights is not easily 
:restored by flexible matching. In this case, the 
examples that are no longer covered may not be 
close to any remaining complexes. In Figure 1. 
after CPX2 is removed. the two examples 
covered by it are not close to CPX2. so they 
cannot be matched with CPX2 by flexible 



matching. In order to restore the loss of 
coverage resulting from removing such 
complexes, some extra rules are needed (see 
Bergadano et aI.• 1988a & 1988b). 

The exceptions from other concepts break one 
complex into several. In Figu're 3a, the 
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Figure 3a: Before selector removal 

In AQ learning algorithm. no backtracking is 
allowed during the process of ~enerating a 
complex. Some selectors seh:: ted. at the 
beginning of the process may becoL.e irrelevant 
after more selectors are selected. The complexes 
with such irrelevant selectors are often too 
specific, so these irrelevant selectors must be 
removed. 

The main goal of selector removal is to merge 
complexes. The way to achieve this is to reduce 
the u-weights of some complexes so that they 
can be removed. After a selector is removed 

, from a complex, its t-weight increases. and the 
u-weights of other complexes decreases. It is 
desirable that removal of selectors from a 
complex maximize the increase of the t-weight 
of the complex. and the decreases of the u­
weights of the others. while the complex does 
not cover many negative examples. 

4.2 The SG·TRUNC Method 

The method we developed works in two stages. 
selector removal and complex removal. Two 
parameters, INCONS and INCOMP, are used to 
control selector removal and complex removal 
respectively. INCONS is used to resuict the 

exception e breaks one complex into four. If we 
generalize one of the four complexes to allow it 
to cover the exception. the four complexes 
merge into one larger complex. se~ Figure 3b. 
One way to generalize a complex IS to remove 
some of the selectors of the complex. 
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Figure 3b: After selector removal 

degree of inconsistency produced by selector 
removal. INCOMP is used to restrict the degree 
of incompleteness produced by complex 
removal. 

Selector removal. As discussed above, the 
goal of removing selectors is to merge 
complexes. and at the same time. to simplify the 
complex from which selectors are removed. In 
order to merge complexes. the u-weights of 
merging complexes need to be reduced so that 
_these complexes can be removed during the 
complex removal stage. After selectors are 
removed from a complex. the t-weight of the 
complex often increases. This may cause the 
decreases in the u-weights of other complexes. 
The more the t-weight of a complex increases, 
the more the u-weights of other complexes 
decrease. and the greater the chance of merging 
complexes. On the other hand. removal of 
selectors from a complex may result in an 
inconsistent complex. The inconsistency needs 
to be restricted in some range. For these 
reasons., removing a selector from a complex 
should maximize the increase of the number in 
positive examples covered and minimize; the 
increase in the number of negative examples 
covered. 



Based on the ideas discussed above. we 
developed a very simple selector removal 
algorithm that works as follows. 

1. 	 Choose a complex that has nOl been 
processed before. 

2. 	 Choose a selector from the complex which 
has the smallest ratio #SNI/#SPI and 
NCVD/PCVD S INCONS, where #SPI 
(#SNI) is the number of additional positive 
(negative) examples covered by the new 
complex after having removed the selector, 
PCVD (NCVD) is the number of positive 
(negative) examples covered by the new 
complex after having removed the selector. 
INCONS is the parameter to control the 
degree of inconsistency provided by the 
user, and 0 S'INCONS S 1. 

3. 	 If a selector is chosen in step 2, then 
remove it from the current complex and 
repeat step 2 and 3. Otherwise. go step 4. 

4. 	 Repeat step 1,23,4 until all complexes are 
processed. 

In the algorithm, the parameter INCONS is used 
to control the the degree of inconsistency of the 
truncated complex. The larger INCONS. the 
more selectors that can be removed. When 
L'lCONS is set to I, the complex. after selector 
truncation, may cover the same number of 
negative examples and positive examples. When 
mCONS is set to 0, only those selectors whose 
removal does not result in inconsistency are 
removed. . 

Complex removal. We have said that 
complexes with low t-weights and complexes 
wi.th low u-weights and high t-weights are 
candidates for being removed. All complexes 
with low t-weights can be removed immediately. 
The removal of complexes with low u-weights 
is more complicated. Only a subset of the 
complexes with low u-weights can be removed. 
Thus we need to select the subset of the 
complexes with low u-weights to remove. 

We sum up the ideas behind our complex
removal algorithm as follows: 

1. 	 AU complexes with low t-weights should 
be removed. 

2. 	The complexes with high u-weights camot 
be removed. 

3. 	 Remove some of the complexes with low 
u-weights and retain the others. 

4. 	 Remove complexes as much as possible. 
S. 	 The algorithm is not forced to remove any 

complexes when they all have about the 
same t-weight 

The algorithm is described as follows: 

Input: 	 a concept description D which consists 
of a disjunction of a set C of 
complexes. 

Output: 	 a concept description D' which 
consists of a disjunction of a set C' 
of complexes, where C is a subset 
of set C. 

I. 	 Initialize set C aQII set R to the nuU set. 
where R is the set of complexes that are 
removed. 

2. 	 Set LOT to the largest t-weight among all 
complexes in C and C'. and recompute the 
u-weights for the complexes in C. (In 
computing the u-weights, the complexes in 
C need to be considered.) 

3. 	 Determine a set of complexes in set C. and 
move these complexes from the set C to 
set C. A complex cpx is moved to C if 

cpx(u-weight)/LOT ~ INCOMP 
where INCOMP is the parameter used to 
control complex removal and 0 S 
INCOMP S 1. 

4. 	 If no complex is moved from C to' C in 
step 3. the complex with the largest t­
weight in C is selected and removed from 
C to C. 

S. 	 If C is not empty. determine a set of 
complexes in C. and move them from set 
C to set R. A complex cpx . is mo"'ed to R 
if ' 

cpx(u'.wieght)/LOT < ~COMP 
where u'·weight is the number of positive 
examples covered by cpx and not covered 
by any complex in C. 

6. 	 Repeat step 2 to step 6 until C becomes 
empty.

7. 	 If all complexes in C satisfy the following 
condition: 

u-weightlLGT;:: INCOMP 
then stop and output set C' as the new 
concept description 0'. Otherwise, set C 
to C and C to null. and repeat step 2 to 7. 

In the algorithm. the parameter INCOMP is used 



to control the the degree of incompleteness. The 
larger INCOMP is, the more complexes can be 
removed. When INCOMP is set to I, only 
complexes with the largest t-weights are not 
removed. When INCOMP is set to 0, no 
complex is removed. 

In step 3, all complexes with high u·weight <u. 
weightILGT ~ INCOMP) are selected to retaIn. 
All complexes with low t·weights (t­
weightILGT S INCOMP) are removed in step 5, 
because the u'-weight of a complex is less or 
equal to the t-weight of the complex. It is 
obvious that all complexes remaining have high 
u-weight (u-weight/LGT > INCOMP), after the 
algorithm tenninates. If the t-weights of all 
complexes are low, no complex is removed. 

Finally the algorithm always tenninates. The 
inner loop from step 2 to step 6 tenninates if C 
becomes empty. The size of C reduces at least 
by 1 for each execution of the loop. As the loop 
executes, at least one complexes are moved to 
C' in either step 3 or step 4. The loop from step 
2 to 7 tenninates if all comple~es in C' satisfy 
the condition u-weight/LGT ~ INCOMP. If 
some of the complexes in C' do not satisfy the 
condition. the loop step 2 to 7 executes again. 

During each execution of the loop, at lease one 
complex is moved to R. . 

5 EXPERIMENTAL RESULTS 

To evaluate the SG· TRUNC method, we ran 
experiments in two problems, a designed testing 
problem and the "Multiplexer" Fll problem. We 
chose these two problems because they allow us 
to control the environments of the experiments. 
The experimental results show the perfonnance 
of the SG-TRUNC method under varying noise 
levels. We tested the method under noisy 
environments instead of imprecise 
environments, because noisy environments are 
easier to create. 

5.1 A Designed Testing Problem 

The designed problem has two concepts 
represented by 4 attributes each of which has 6 
values. The fIrst target concept description is 
x:c:presented by one complex with two selectors 
and the second is represented by two 
complexes, each of which has only one selector. 

: I f Anifi .al DomaiTable I E XpallllCntal Resutso Cl n 

!Noise Levels 

No 
Truncation 

INCOMP=O.l 
INCONS=O.1 

INCOMP=O.: 
INCONS =0.2 

INCOMP =O.~ 
INCONS =0.3 

trNCOMP =O.~ 
IINCONS =0.4 

ACC 
% 

CPX SEL ACC 
% 

CPX SEL ACC 
% 

CPX SEL ACC 
% 

~PX~EL ACC 
% 

CPX ~EL 

0% 100 3 4 100 3 4 100 3 4 100 3 4 100 3 4 

5% 87.5 9 27 98 3 5 100 3 4 100 3 4 100 3 4 

10% 71 12 38 92.~ 4 10 100 3 4 100 3 4 100 3 4 

15% 74 13 42 76.~ 11 35 98 3 6 100 3 4 100 3 4 

20% 71 15 49 76.~ 11 35 78 7 18 84 3 7 83.5 4 2 



The size of the instance space of the problem is 
1296. 100 examples are used for learning, 50 
for each concept They are generated randomly. 
The SQ·TRUNC method is tested under 
different levels of noise and the truncation 
control p'arameters, INCOMP and INCONS, are 
set to different values. Table 1 is the results of 
the experiments. in which the rules are tested on 
all instances. 

In the table, ACC is the accuracy of the learned 
rules over all instances, CPX (SEL) is the 
number of complexes (selectors) in the 
generated rules. INCOMP and INCONS are 
parameters used to control the complex and 
selector removals in AQ16, Noise is created by 
switching the class of the examples with the 
given probability. 

S.2 The Multiplexer Ftt Problem 

The "Multiplexer" problems were fIrst used by 
Wilson (1987a, b) to test his system Boole 
which learns concepts expressed as 
classification rules. Later, this family of tasks 
was used by Quinlan (1988) to compare senetic 
classifiers with decision-tree classifiers. -'. '­

The "Multiplexer" is a family of tasks in which 
an object consists of n "address" bits and 2n 

"data" bits. An object belongs to the positive 
concept if the particular data bit indicated by the 
address bits is "on", A member of this family of 
tasks is named by the total number of bits 
(number of "address" + number of "data") 
involved. For the task F6 the address bits are xo 
and Xl and the data bits x2 through xs. If xo and 
x I are both off, for instance, the address is 0 
and the object is a member of the positive class 
iff the Oth data bit (X2) is on. The rule for the 
positive concept is: 

[xo = O][xI =0] [x2 =1] v 
[xo =0] [Xl = 1] [x3 =1] v 
[xo = 1] [Xl = 0] [X4 =1] v 
[xo= 1] [Xl =1] [xS::: 1] 

The rule for negative concept is: 

[xo =0] [Xl =0] [x2 = 0] v 
[xo = 0] [Xl = 1] [x3 =0] v 
[xo =1] [Xl = 0] [X4 =0] v 
[xo= 1] [Xl = 1] [xS =0] 

Table 2: Experimental Results of F11 

Noise Levels 

No 
Truncation 

L.~COMP = 0.1 
~CONS =0.1 

L~COMP=O.: 
INCONS =0.2 

INCOMP=0.3 
INCONS =0.3 

INCOMP=O.4 
INCONS =0.4 

ACC 
% 

CPX SEL ACC 
% 

CPX SEL ACC 
% 

CPX SEL ACC 
% 

~PX SEL ACC 
% 

CPX ~El 

0% 100 3 4 100 3 4 100 3 4 100 3 4 100 3 4 

5% 87.5 9 27 98 3 5 100 3 4 100 3 4 100 3 4 

10% 71 12 38 92.S 4 10 100 3 4 100 3 4 100 3 4 

15% 74 13 42 76.5 11 35 98 3 6 100 3 4 100 3 4 

20% 71 15 49 76.S 11 35 78 7 18 84 3 7 83.5 4 2 



F 11 is used for our experiments. F 11 has 3 
"address" bits and 8 "data" bits. The size of the 
instance space is 2048. Unlike the artificial 
domain in the previous section, each target 
concept description here is more complicated 
and represented by 8 complexes (32 selectors). 
It is a challenge for our truncation algorithm. It 
is much harder to select a set of complexes to 
retain than to select one or two. 400 examples 
are generated randomly as a training set (200 for 
each concept). The algorithm is tested under 
different noise levels. The truncation control 
parameters INCOMP and INCONS are set to 
different values. Table 2 shows the experimental 
results for the domain Fll . In the experiments. 
the rules generated are tested on all instances. 

The contents of the table are the same as for 
Table 1. The time spent in learning the rules 
ranges from I second to 10 second on a Sun 
3/50. 

5.3 	 Discussion of The 
Experimental Results 

In the previous two subsections, we have 
shown the experimental results with the AQ16 
on two problems. an designed problem and the 
"Multiplexer" FIl problem. In this subsection. 
we discuss the experimental results. 

The resul ts from both problems showed that not 
only were the rules simplified, but that the 
performance of the rules was improved on noisy 
data. In the domain of F11. when INCOMP and 
INCONS become too large, the performance 
begins to drop. Each of the target concept 
descriptions has 8 complexes. When INCOMP 
is too large. the descriptions were over­
truncated. Thus the performance drops. When a 
target concept description has many complexes, 
it is safe not to set INCOMP too large. 

It is not necessary to set INCOMP and INCONS 
to the same value. In fact, better results may be 
obtained from other combinations of INCOMP 
and INCONS values. For example, with 20% 
noise data of the designed problem. INCOMP 
set to 0.3 and INCONS set to 0.35, the accuracy 
is 98% which is much better than the results 
shown in Table 1. It is not a easy task to set 

proper values for INCOMP and INCONS. 
Generally speaking, the noisier the data, the 
larger values INCOMP and INCONS must be 
set to. As we mentioned above, these two 
parameters also depend on the target concept 
descriptions. In the experiments. the best results 
are obtained when INCOMP and INCONS are 
set to the values around 0.2. To set proper 
values to INCOMP and INCONS, one needs the 
knowledge about the data and the target concept 
descriptions in the given domain. 

The results confmn the argument that the greater 
the noise, the greater the number of complexes 
and selectors are generated. Some of the 
complexes are removed immediately and others 
are removed once selectors are removed. This is 
proved by the following experiment We ftrst set 
INCONS to 0 and INCOMP to 0.2. Some of the 
complexes are removed. Then both INCONS 
and INCOMP are set to 0.2. More complexes 
are removed. 

6. RELATED WORK 

The research presented here is related to recent 
and imponant work in machine learning that 
investigates the effects of simplifying concept 
descriptions (e.g. Fisher & Schlimmer; 1988; 
Iba et al., 1988; Quinlan, 1987; Clark & Niblett, 
1989). An advantage of the presented method is 
that it may not experience any major loss of 
coverage as a result of description simpliftcation 
because of flexible matching. 

Closer relevant work is concerned with the 
problem of pruning decision trees (Quinlan. 
1987; Cesmilc, Kononenko, and Bratko. 1987). 
The two methods are similar in the sense that 
both methods remove components from 
complete and consistent concept descriptions. 
The removal often results in incomplete and 
inconsistent descriptions. Pruning removes 
subtrees from decision trees, whereas truncation 
removes selectors and complexes from covers. 
Removing a subtree can be viewed as removing 
complexes from one concept and selectors from 
another. 

Now we discuss three imponant differences 
between the approach presented here and 



pruning of decision trees. First is the lack of 
constraints on the pan of the representation that 
is removed when applying SG-TRUNC 
method. In pruning of decision trees, only paths 
ending in leaves may be pruned. During the 
generalization of decision trees, each attribute is 
seJected independent of the remaining attributes. 
Thus, the attributes n,ear the root may be less 
relevant and the attribUtes near the leaves may be 
more relevant. The tree pruning has nothing to 
do with this problenp. Second, pruning will 
always specialize one qoncept and generalize the 
other, while truncatiqn of rules can perform 
generalization and specialization independently. 
Third, pruning has no p.ray to restore the loss of 
coverage resulting frortt the pruning. The loss of 
coverage resulting flOm truncation may be 
restored by flexible maJChing. 

In table 3, we sum up the results of the 
experiments performed on "multiplexer" with 
the decision tree building system ASSISTANT 
(Cestnik et aI., 1987). This system was 
developed from Quinlan's ID3; the basic 
algorithm was improved to handle incomplete 
and noisy data. continuous and multivalued 
attributes. This system, also supports tree­
pruning mechanisms. The same training and 
testing sets were used for ASSISTANT that 
were used for the previous experiments. 

Table 3: Experimental results 
on Multiplexer Fl1 with ASSISTANT 

noise 
level 

no pruning pruning 

IA~ INns ILvs V\iC tNos ~VS 

0% 92 183 92 86.5 91 46 

3% 84.5 201 101 78 95 48 

5% 85.5 203 102 86 119 60 

10% 80 259 130 76 79 40 

15% 70 279 140 63 57 29 

20% 73.5 295 148 57 39 20 

In Table 3, ACC is the percentage of accuracy 
on testing data, ~TIS and L VS are the number of 
nodes and leaves in the decision tree generated 
respectively. From the result, it is obvious that 
AQ16 outperforms ASSISTANT in the domain 
of "multiplexer" FII on both accuracy and 
complexity. The pruned trees almost always 
degrade accuracy on the testing data. The more 
noisy the data, the simpler the pruned trees. As 
indicated in (Quinlan, 1988), the most relevant 
attributes in the domain are all address bits. but 
such bits themselves provide no information 
about the class membership. Instead each of the 
data bits independently provides more 
information. Thus all generated decision trees 
began with a test on a data bit. As we discussed 
above. pruning only removes the paths ending 
in leaves. In the case here those most relevant 
attributes, address bits, are very possible in 
these paths and pruned so that the quality of the 
pruned trees decrease. 

In (Quinlan, 1987) a method for transforming 
decision trees into rules and then performing 
truncation is presented. -The method presented in 
this paper works on the rules generated by AQ 
algorithm instead of decision trees. Also our 
algorithm is more sophisticated especially for 
complex removal. 

CN2 induction algorithm (Clark & Niblett. 
1989) is another related work. CN2 uses a 
heuristic function to tenninate search during rule 
construction, based on an estimate of the noise 
present in the data. This results in rules that may 
not classify all the training examples correctly t 
but that perform well on new data. CN2 can be 
viewed as an induction algorithm that includes 
pre-truncation. while the algorithm reponed here 
is post-uuncation. CN2 applies truncation 
during the rule generation and AQl6 applies 
truncation after the rule generation. The pre­
truncation is more efficient, but it fails to remove 
the irrelevant selectors generated first and 
redundant complexes generated first 

7. CONCLUSION 

In this paper, the SG·TRUNC method has been 
described. in which, both selector and complex 
removals are applied. Selector removal tries to 
reduce the impact produced by noise or 



exceptions from other concepts which break a 
few complexes into many. For this purpose, 
selector removal attempts to increase the 
intersection among complexes so that some of 
the complexes are redundant and can be 
removed, while introducing minimum 
inconsistency. Complex removal tries to reduce 
the impact produced by noise or exceptions as 
well as nontypical instances of the concept to be 
learned. To achieve this, all complexes with low 
t-weights and some of the complexes with low 
u-weights are removed. The goal of the method 
is to obtain simpler descriptions which remain 
accurate. In this way, the comprehensibility and 
the predictive power of the acquired knowledge 
are improved. 

The SG-TRUNC method has been implemented 
in a learning system AQI6, that is a new 
member of the AQ family of learning systems. 
The system has been applied to two problems, a 
designed testing problem and the "Multiplexer" 
F11 problem. Experimental results have shown 
that both simplicity and performance 
improvements can be gained. The system has 
been also applied to some real world domains, 
such as vision (Pachowicz, 1989) and US 
airplane classification (Janikow, 1989). The 
results obtained from these domains are 
promising. 

A number of problems remain to be addressed in 
the fu ture. First, a more advanced selector 
removal algorithm needs to be designed. 
Second, a method needs to be designed to pass 
information concerning the importance of 
attributes to the flexible matching function. 
Finally. the effects of the two parameters 
I.NCONS and INCOMP on real world domains 
should be explored. 
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