
-....

In Proceedings oCTIle 4th European Working Session onL...eaming
December.. 1989

RULE OPTIMIZATION VIA SG·TRUNC METHOD

Jianping Zhang & Ryszard S. Michalski

Artificial Intelligence Center

George Mason University

Fairfax, V A 22030, USA

ABSTRACT

Most inductive learning systems generate
complete and consistent descriptions. In order to
achieve completeness and consistency in the
presence of noise or imprecision. one may
generate overly complex and detailed
descriptions. Such descriptions. however. may
not perform well in future cases and suffer the
disadvantage of excessive complexity. This is
th~ well known phenomenon of overfining, In
thIs paper. a rule optimization method called
SQ-TRUNC is described and evaluated
experimentally, SQ· TRUNC improves previous
TRUNC methods and has been implemented in
a more efficient way. In the method, an
optimized description is obtained through a
sequence of generalization and/or specialization
operations performed on a complete and
cons,istent concept description. The operations
apphed always simplify a description.

The method has been implemented in AQ16 that
has been applied to two domains: a designed
testing problem and "multiplexer" F 11' The
experimental results have shown that both
simplicity and perfonnance improvements can
be gained in the domains when: noise is present.

1. INTRODUCTION

Most methods of machine learning research
assume that concepts are precise entities,
represented by a single symbolic description. In
such a representation, the boundaries of a
concept are well-defined. AU instances of a
concept are assumed to be equally
representative. If an instance satisfies the given
concept description, then it belongs to the
concept, otherwise it does not. However. most

human concepts have a context-dependent
meaning and lack: precisely defined boundaries.
Examples of human concepts are usually not all
equivalent. They may have different degrees of
typicality in representing the concept, Thus.
human concepts are flexible. as they adapt to the
context in which they are used.

Most learning systems make the "noise free
domain" assumption that the examples presented
to the systems do not contain errors :ind the
description language is complete, and
consequently constrain their searches only for
rules that are both consistent and complete, The
requirement of "noise free domain" is often too
hard to be satisfied in the real world. The
flexibility of concepts and the noise in training
sets prevent most learning systems from being
applied to many real world leaming tasks.

In order to handle flexible concepts. :Michalski
(1987) proposed a two-tiered concept
representation. In the representation, a complete
concept description is split into twcrparu: the
Base Concept Representation (BCR) and the
Inferential Concept Interpretation (lCI). The
BCR describes the concept simply and explicitly
by char.lcterizing the typical and easy-to-dc:ftne
concept meaning. The prototypical instances of
the concept can therefore be classified by simple
matching with the SCR. The ICI specifies
allowable modifications of typical meaning,
concept matching procedures, special cases and
context-dependency. and thus implicidy defmes
conceptboundarieL

The TRUNC method was first introduced by
Michalsld et. al (1986) to genenlte a simple rwcr
tiered concept description. In the TRUNC
method. BCa is obtained through removing

some components (conjunctions or disjunctions)
from a complete. consistent and more complex
concept description generated by AQIS. ICI is
simply a predefmed flexible matching function.
In this paper. we will present a new TRUNC
method called SO-TRUNC that has been
implemented in AQ16. AQ16 was developed
from AQlS by incorporating SG-TRUNC
method. Both AQlS and the idea of the TRUNC
method \ViU be discussed in next two sections.
Section 4 presents SQ-TRUNC method.
Section 5 shows the experimental results Crom
two problems: a designed testing problem and
the "Multiplexer" F11 problem. Section 6
discusses the comparisons with related work.
Section 7 contains the conclusion and
suggestions for future research.

2. 	 INDUCTIVE LEARNING
PROGRAM: AQIS

AQl5 is a program that incrementally learns
decision rules from examples and
counterexamples of decisions. and possibly
previously learned rules. The rules learned are
complete and consistent with the training
examples. In learning the rules. the program
uses (i) background knowledge that consists of
rules and concepts the program already knows.
(ii) the derwtion of descriptors and their types~
and (iii) a preference criterion that evaluates
competing candidate hypotheses. Each training
example characterizes an object (situation.
process. etc.) and specifies the COITeCt decision
associated with that object. The generated
decision rules are optimized according to a
flexible criterion selected by the user. The
criterion measures the quality of the rules from
the viewpoint of the specific problem under
consideration. The user may also specify the
initial decision hypotheses to be used for
incrementalleaming. In this case. the program
will improve them until they are consistent with
all available facts. The AQl5 program also has
the capability of consauctive induction. It can
use new descriptions as input data to simplify
previously generated decision rules. Fmally. the
AQlS program includes a decision rule testing
utility. A man: detailed presentation about AQ IS
is in (Hong. Mozetic "Michalski, 1986).

The concept descriptions learned by AQIS are
represented in VLl which is a simplified version

of Variable· valued Logic System VL and used to
represent ataibutional concept descriptions. In
VL1. a description of a concept is a disjunctive
nOllIlal form which is called a cover. A cover is
represented as a disjunction of complexes. A
complex is a conjunction of selectors. A selector
is a form:

[L# R)
where
L is called the referee. It is an attribute;
R is called the referent It is a set of values in the

domain of the attribute in L;
is one the following relational symbols: =. <.

>. S. :i!:. ;Ill.

3. 	 THE TRUNC METHOD AND
FLEXIBLE MATCHING

This section contains a discussion of the basic
idea behind the TRUNC method and a
description of the idea of flexible matching.

The TRUNC method was first discussed in
(Michalski. et a1.. 1986). The idea behind the
method is to detennine the optimal disaibution
of the concept description between the explicit
base concept representation (BCR) and the
inferential concept interpretation (leI)
(Michalsld. 1987). One of the simple realization
of the idea is described below.

In AQ15. each complex generated is associated
with a pair of weights: total (t-weight) and
unique (u-weight). The t-weight of a complex is
the number of positive examples covered by the
complex and the u-weight is the number of the
positive examples uniquely covered by the
complex. The complexes arc ordered according
to decreasing values of the t-weight. The t
weight may be interpreted as a measure of the
typicality or the representativeness of a complex
as a concept description. The complex \Vith the
highest t-weight may be viewed as describing
the most typical concept examples, and thus
serves as its prototypical description. The u
weight may be interpreted as a measure of
imponance of the complex.

We distinguish between two methods for
recognizing the concept membership of an
instance: the strict match and the flexible match.
In the suitt match. one tests whether an instance
stricdy satisfies the condition pan of a rule (a

complex}. In the flexible match. one determines
the degree of closeness between the instance and
the condition pan.

Using the strict match. one can recognize a
concept without checking other candidate
concepts. In the flexible match. one needs to
determine the most closely related concept. Such
a match can be accomplished in a variety of
ways. ranging from approximate matching of
features to conceptual cohesiveness (Michalski
& Stepp. 1983).

The weight-ordering of complexes described
above suggests an interesting possibility.
Suppose we have a t-weight ordered disjunction
of complexes, and we remove from it the
"lightest" co~plex that is the complex with the
lo:vest u.we~ght. Such a truncated description
wtl.l not Strlctly match events that uniquely
sausfr the re:noved complex. However, by
apply10g a fleXIble match, these events may still
be most closely related to the correct concept.
and t~u~ be .correctly recognized. A truncated
descn{>t1on l~, of c~ur$e. simpler but carries a
pote~tlally hlgher n~k .of recognition error, and
reqUireS a more sophisncated evaluation. We can
proceed funher and remove the second "lightest"
complex from the cover. and observe the
p~rformance. Each such step produces a
differ~n~ trade-off between the complexity of the
descnpnon on the one hand, and the risk factor
and the evaluation complexity on the other. At
so~e step the ,best overall result may be
achIeved for a gIven application domain. This
method of knowledge reduction by truncating
?rdered covers and applying a flexible matching
IS called TRUNC. The truncated description
serve~ ~ the BC~ of the two-tiered concept
descnptlon. A fleXIble matching function is the
IC~ of the. two-tiered concept description. See
Ovhchalski, et al.• 1986) for further details of the
TRUNC method and flexible matching.

Bergadano et. a1. (1988a. 1988b) applied the
TRID:'lC. me~od to generate two-tiered concept
des~ptlons 10 a more sophisticated way. In
thelT system. the TRUNC method is seen as a
sta.te space search. The process of truncation is
~lded by a general description quality, and is
Impl<:m~nted as a best flfSt search, i.e., the
descnpoons of better quality are considered
fU"SL The operations used in the search are both
generalization (selector removal) and

~ializatio~ (complex removal). The algorithm
IS computanonally expensive when the initial
descriptions contain many complexes.

4. THE SG-TRUNC METHOD

4.1 Discussion

In the SG-~~C meth~. both Specialization
and ~enerallzanon operatIons are applied to a
consistent and complete description represented
as a disjunction of complexes. The
generalization is implemented as selector
removal. and specialization is implemented as
comp.le~ removal. Both operations simplify a
descnpuon. After a selector is removed from a
complex, the complex is more general and
covers more e~ampl~s. A consistent complex
may become mconslstent, after some of its
selectors are removed. After a complex is
removed from a description, the description is
less general and covers less examples. Therefore
the description may no longer be complete.

'f!1~ ex~mples of a flexible concept can be
di~ded 1Oto three types: typical examples. non
typ!cal examples and exceptions (rare cases).
NOISY data can be treated as exceptions or non
typical examples depending on the degree of the
noi~e. Typi.cal examples share many common
attnbutes WIth each other and few attributes with
the examples of the other concepts. Non-typical
examples share fewer atoibutes with typical
examples. Exceptions share few attributes with
typical examples, they may share many
attributes with negative examples and look like
negative examples.

As mentioned in the previous section.
complexes generated by AQ15 can be ordered
according to their t-weights or u-weights. A t
weight may be interpreted as a measure of the
representativeness or typicality of a complex as a
co~cept description. Complexes with high t
we~ghts may be viewed as describing many
typICal examples. and thus serve as prototypical
descriptions. The examples covered by
complexes with low t-weights are often far from
the other positive examples, thus these
complexes describe rare, exceptional cases. IT
the .learning e~ples from which complexes are
denved are no!sy! a ~omplex with low t-weight
may also be tndlcattve of errors in the data.

- -

Figure I illustrates this situation. "+" and It."
represent a positive example and a negative
example. respectively. CPXI and CPX2 are two
complexes that cover all positive examples. The

y

CPXl

- .
~ CPX2

x

Figlue 1: Complex with low t-weight

A u-weight may be interpreted as a measure of
the importance of the complex. The higher the u
weigh. the more imponant the complex. A
representative complex may not be important. It
may carry a lot of redundan[infonnation,
therefore it is not important The complexes
most interesting to the SQ-TRUNC method are
those with high t-weights and low u-weights.
These complexes are representative but not
imponant. Let CPX be a complex with a high t·
weight and a low u-weight. Many of the
examples covered by CPX are also covered by
other complexes. These multiply covered
examples can be treated as typical examples. The
examples uniquely covered by CPX are
considered as non-typical examples. In Figure
2. both CPXl and CPX2 have high t-weights
and low u-weights. Thus. both of them are
representatives and not important. el, e2 and e3
are less typical examples and the others are
typical examples.

From the above discussion. one can see that two
kinds of complexes. the complexes with low t
weights and the complexes with low u-weights
and high t-weights, can be removed. The t
weight of a complex never changes. The u
weight of a complex may increase when other
complexes are removed. Therefore. removing
complexes with low t-weights is simple. They
can be removed independent of the others. But

t-weights of CPXl and CPX2 are 14 and 2,
respectively. CPX 1 is a representative
description of the concept. The two examples
covered by CPX2 are considered as exceptions.

y

CPX2+ + + + +e2+
+ + + + +

++ e3++ + ++....

+el
 .
CPXl

x

Figure 2: Complexes with low u-weights

removing complexes with high t-weights and
low u-weights is more complicated. Only somt
complexes with low u-weights can be removed.
For example, in Figure 2 only one of the two
complexes CPX 1 and CPX2 can be removed,
although the u-weights of both are small. We
thus have to decide which one of these two
complexes should be removed.

The loss of coverage resulting from removing
complexes with high t-weights and low u
weights can be restored by flexible matching.
After a complex is removed. only those
examples uniquely covered by it are no longer
covered. Since these uncovered examples are
close to many typical examples which are still
covered by some other complexes. That is, these
uncovered examples are close to some remaining
complexes. so they can be easily matched with
these complexes by flexible matching. Suppose
CPXl in Figure 2 is removed. el is no longer
covered strictly. but it can be matched with
CPX2 by flexible matching. The loss of
coverage that results from removing the
complexes with low t-weights is not easily
:restored by flexible matching. In this case, the
examples that are no longer covered may not be
close to any remaining complexes. In Figure 1.
after CPX2 is removed. the two examples
covered by it are not close to CPX2. so they
cannot be matched with CPX2 by flexible

matching. In order to restore the loss of
coverage resulting from removing such
complexes, some extra rules are needed (see
Bergadano et aI.• 1988a & 1988b).

The exceptions from other concepts break one
complex into several. In Figu're 3a, the

y
CPX2

+
+ + +

.. -4 1 + +..1..
CPX J + ... Co + + +

+ + +
+ + +

+ + ~-

CPX4

CPX3

x

Figure 3a: Before selector removal

In AQ learning algorithm. no backtracking is
allowed during the process of ~enerating a
complex. Some selectors seh:: ted. at the
beginning of the process may becoL.e irrelevant
after more selectors are selected. The complexes
with such irrelevant selectors are often too
specific, so these irrelevant selectors must be
removed.

The main goal of selector removal is to merge
complexes. The way to achieve this is to reduce
the u-weights of some complexes so that they
can be removed. After a selector is removed

, from a complex, its t-weight increases. and the
u-weights of other complexes decreases. It is
desirable that removal of selectors from a
complex maximize the increase of the t-weight
of the complex. and the decreases of the u
weights of the others. while the complex does
not cover many negative examples.

4.2 The SG·TRUNC Method

The method we developed works in two stages.
selector removal and complex removal. Two
parameters, INCONS and INCOMP, are used to
control selector removal and complex removal
respectively. INCONS is used to resuict the

exception e breaks one complex into four. If we
generalize one of the four complexes to allow it
to cover the exception. the four complexes
merge into one larger complex. se~ Figure 3b.
One way to generalize a complex IS to remove
some of the selectors of the complex.

y

+ + + +

+ + + + +
+ ++ Co + + +

+ + +
+ + + +

x

Figure 3b: After selector removal

degree of inconsistency produced by selector
removal. INCOMP is used to restrict the degree
of incompleteness produced by complex
removal.

Selector removal. As discussed above, the
goal of removing selectors is to merge
complexes. and at the same time. to simplify the
complex from which selectors are removed. In
order to merge complexes. the u-weights of
merging complexes need to be reduced so that
_these complexes can be removed during the
complex removal stage. After selectors are
removed from a complex. the t-weight of the
complex often increases. This may cause the
decreases in the u-weights of other complexes.
The more the t-weight of a complex increases,
the more the u-weights of other complexes
decrease. and the greater the chance of merging
complexes. On the other hand. removal of
selectors from a complex may result in an
inconsistent complex. The inconsistency needs
to be restricted in some range. For these
reasons., removing a selector from a complex
should maximize the increase of the number in
positive examples covered and minimize; the
increase in the number of negative examples
covered.

Based on the ideas discussed above. we
developed a very simple selector removal
algorithm that works as follows.

1. 	 Choose a complex that has nOl been
processed before.

2. 	 Choose a selector from the complex which
has the smallest ratio #SNI/#SPI and
NCVD/PCVD S INCONS, where #SPI
(#SNI) is the number of additional positive
(negative) examples covered by the new
complex after having removed the selector,
PCVD (NCVD) is the number of positive
(negative) examples covered by the new
complex after having removed the selector.
INCONS is the parameter to control the
degree of inconsistency provided by the
user, and 0 S'INCONS S 1.

3. 	 If a selector is chosen in step 2, then
remove it from the current complex and
repeat step 2 and 3. Otherwise. go step 4.

4. 	 Repeat step 1,23,4 until all complexes are
processed.

In the algorithm, the parameter INCONS is used
to control the the degree of inconsistency of the
truncated complex. The larger INCONS. the
more selectors that can be removed. When
L'lCONS is set to I, the complex. after selector
truncation, may cover the same number of
negative examples and positive examples. When
mCONS is set to 0, only those selectors whose
removal does not result in inconsistency are
removed. .

Complex removal. We have said that
complexes with low t-weights and complexes
wi.th low u-weights and high t-weights are
candidates for being removed. All complexes
with low t-weights can be removed immediately.
The removal of complexes with low u-weights
is more complicated. Only a subset of the
complexes with low u-weights can be removed.
Thus we need to select the subset of the
complexes with low u-weights to remove.

We sum up the ideas behind our complex
removal algorithm as follows:

1. 	 AU complexes with low t-weights should
be removed.

2. 	The complexes with high u-weights camot
be removed.

3. 	 Remove some of the complexes with low
u-weights and retain the others.

4. 	 Remove complexes as much as possible.
S. 	 The algorithm is not forced to remove any

complexes when they all have about the
same t-weight

The algorithm is described as follows:

Input: 	 a concept description D which consists
of a disjunction of a set C of
complexes.

Output: 	 a concept description D' which
consists of a disjunction of a set C'
of complexes, where C is a subset
of set C.

I. 	 Initialize set C aQII set R to the nuU set.
where R is the set of complexes that are
removed.

2. 	 Set LOT to the largest t-weight among all
complexes in C and C'. and recompute the
u-weights for the complexes in C. (In
computing the u-weights, the complexes in
C need to be considered.)

3. 	 Determine a set of complexes in set C. and
move these complexes from the set C to
set C. A complex cpx is moved to C if

cpx(u-weight)/LOT ~ INCOMP
where INCOMP is the parameter used to
control complex removal and 0 S
INCOMP S 1.

4. 	 If no complex is moved from C to' C in
step 3. the complex with the largest t
weight in C is selected and removed from
C to C.

S. 	 If C is not empty. determine a set of
complexes in C. and move them from set
C to set R. A complex cpx . is mo"'ed to R
if '

cpx(u'.wieght)/LOT < ~COMP
where u'·weight is the number of positive
examples covered by cpx and not covered
by any complex in C.

6. 	 Repeat step 2 to step 6 until C becomes
empty.

7. 	 If all complexes in C satisfy the following
condition:

u-weightlLGT;:: INCOMP
then stop and output set C' as the new
concept description 0'. Otherwise, set C
to C and C to null. and repeat step 2 to 7.

In the algorithm. the parameter INCOMP is used

to control the the degree of incompleteness. The
larger INCOMP is, the more complexes can be
removed. When INCOMP is set to I, only
complexes with the largest t-weights are not
removed. When INCOMP is set to 0, no
complex is removed.

In step 3, all complexes with high u·weight <u.
weightILGT ~ INCOMP) are selected to retaIn.
All complexes with low t·weights (t
weightILGT S INCOMP) are removed in step 5,
because the u'-weight of a complex is less or
equal to the t-weight of the complex. It is
obvious that all complexes remaining have high
u-weight (u-weight/LGT > INCOMP), after the
algorithm tenninates. If the t-weights of all
complexes are low, no complex is removed.

Finally the algorithm always tenninates. The
inner loop from step 2 to step 6 tenninates if C
becomes empty. The size of C reduces at least
by 1 for each execution of the loop. As the loop
executes, at least one complexes are moved to
C' in either step 3 or step 4. The loop from step
2 to 7 tenninates if all comple~es in C' satisfy
the condition u-weight/LGT ~ INCOMP. If
some of the complexes in C' do not satisfy the
condition. the loop step 2 to 7 executes again.

During each execution of the loop, at lease one
complex is moved to R. .

5 EXPERIMENTAL RESULTS

To evaluate the SG· TRUNC method, we ran
experiments in two problems, a designed testing
problem and the "Multiplexer" Fll problem. We
chose these two problems because they allow us
to control the environments of the experiments.
The experimental results show the perfonnance
of the SG-TRUNC method under varying noise
levels. We tested the method under noisy
environments instead of imprecise
environments, because noisy environments are
easier to create.

5.1 A Designed Testing Problem

The designed problem has two concepts
represented by 4 attributes each of which has 6
values. The fIrst target concept description is
x:c:presented by one complex with two selectors
and the second is represented by two
complexes, each of which has only one selector.

: I f Anifi .al DomaiTable I E XpallllCntal Resutso Cl n

!Noise Levels

No
Truncation

INCOMP=O.l
INCONS=O.1

INCOMP=O.:
INCONS =0.2

INCOMP =O.~
INCONS =0.3

trNCOMP =O.~
IINCONS =0.4

ACC
%

CPX SEL ACC
%

CPX SEL ACC
%

CPX SEL ACC
%

~PX~EL ACC
%

CPX ~EL

0% 100 3 4 100 3 4 100 3 4 100 3 4 100 3 4

5% 87.5 9 27 98 3 5 100 3 4 100 3 4 100 3 4

10% 71 12 38 92.~ 4 10 100 3 4 100 3 4 100 3 4

15% 74 13 42 76.~ 11 35 98 3 6 100 3 4 100 3 4

20% 71 15 49 76.~ 11 35 78 7 18 84 3 7 83.5 4 2

The size of the instance space of the problem is
1296. 100 examples are used for learning, 50
for each concept They are generated randomly.
The SQ·TRUNC method is tested under
different levels of noise and the truncation
control p'arameters, INCOMP and INCONS, are
set to different values. Table 1 is the results of
the experiments. in which the rules are tested on
all instances.

In the table, ACC is the accuracy of the learned
rules over all instances, CPX (SEL) is the
number of complexes (selectors) in the
generated rules. INCOMP and INCONS are
parameters used to control the complex and
selector removals in AQ16, Noise is created by
switching the class of the examples with the
given probability.

S.2 The Multiplexer Ftt Problem

The "Multiplexer" problems were fIrst used by
Wilson (1987a, b) to test his system Boole
which learns concepts expressed as
classification rules. Later, this family of tasks
was used by Quinlan (1988) to compare senetic
classifiers with decision-tree classifiers. -'. '

The "Multiplexer" is a family of tasks in which
an object consists of n "address" bits and 2n

"data" bits. An object belongs to the positive
concept if the particular data bit indicated by the
address bits is "on", A member of this family of
tasks is named by the total number of bits
(number of "address" + number of "data")
involved. For the task F6 the address bits are xo
and Xl and the data bits x2 through xs. If xo and
x I are both off, for instance, the address is 0
and the object is a member of the positive class
iff the Oth data bit (X2) is on. The rule for the
positive concept is:

[xo = O][xI =0] [x2 =1] v
[xo =0] [Xl = 1] [x3 =1] v
[xo = 1] [Xl = 0] [X4 =1] v
[xo= 1] [Xl =1] [xS::: 1]

The rule for negative concept is:

[xo =0] [Xl =0] [x2 = 0] v
[xo = 0] [Xl = 1] [x3 =0] v
[xo =1] [Xl = 0] [X4 =0] v
[xo= 1] [Xl = 1] [xS =0]

Table 2: Experimental Results of F11

Noise Levels

No
Truncation

L.~COMP = 0.1
~CONS =0.1

L~COMP=O.:
INCONS =0.2

INCOMP=0.3
INCONS =0.3

INCOMP=O.4
INCONS =0.4

ACC
%

CPX SEL ACC
%

CPX SEL ACC
%

CPX SEL ACC
%

~PX SEL ACC
%

CPX ~El

0% 100 3 4 100 3 4 100 3 4 100 3 4 100 3 4

5% 87.5 9 27 98 3 5 100 3 4 100 3 4 100 3 4

10% 71 12 38 92.S 4 10 100 3 4 100 3 4 100 3 4

15% 74 13 42 76.5 11 35 98 3 6 100 3 4 100 3 4

20% 71 15 49 76.S 11 35 78 7 18 84 3 7 83.5 4 2

F 11 is used for our experiments. F 11 has 3
"address" bits and 8 "data" bits. The size of the
instance space is 2048. Unlike the artificial
domain in the previous section, each target
concept description here is more complicated
and represented by 8 complexes (32 selectors).
It is a challenge for our truncation algorithm. It
is much harder to select a set of complexes to
retain than to select one or two. 400 examples
are generated randomly as a training set (200 for
each concept). The algorithm is tested under
different noise levels. The truncation control
parameters INCOMP and INCONS are set to
different values. Table 2 shows the experimental
results for the domain Fll . In the experiments.
the rules generated are tested on all instances.

The contents of the table are the same as for
Table 1. The time spent in learning the rules
ranges from I second to 10 second on a Sun
3/50.

5.3 	 Discussion of The
Experimental Results

In the previous two subsections, we have
shown the experimental results with the AQ16
on two problems. an designed problem and the
"Multiplexer" FIl problem. In this subsection.
we discuss the experimental results.

The resul ts from both problems showed that not
only were the rules simplified, but that the
performance of the rules was improved on noisy
data. In the domain of F11. when INCOMP and
INCONS become too large, the performance
begins to drop. Each of the target concept
descriptions has 8 complexes. When INCOMP
is too large. the descriptions were over
truncated. Thus the performance drops. When a
target concept description has many complexes,
it is safe not to set INCOMP too large.

It is not necessary to set INCOMP and INCONS
to the same value. In fact, better results may be
obtained from other combinations of INCOMP
and INCONS values. For example, with 20%
noise data of the designed problem. INCOMP
set to 0.3 and INCONS set to 0.35, the accuracy
is 98% which is much better than the results
shown in Table 1. It is not a easy task to set

proper values for INCOMP and INCONS.
Generally speaking, the noisier the data, the
larger values INCOMP and INCONS must be
set to. As we mentioned above, these two
parameters also depend on the target concept
descriptions. In the experiments. the best results
are obtained when INCOMP and INCONS are
set to the values around 0.2. To set proper
values to INCOMP and INCONS, one needs the
knowledge about the data and the target concept
descriptions in the given domain.

The results confmn the argument that the greater
the noise, the greater the number of complexes
and selectors are generated. Some of the
complexes are removed immediately and others
are removed once selectors are removed. This is
proved by the following experiment We ftrst set
INCONS to 0 and INCOMP to 0.2. Some of the
complexes are removed. Then both INCONS
and INCOMP are set to 0.2. More complexes
are removed.

6. RELATED WORK

The research presented here is related to recent
and imponant work in machine learning that
investigates the effects of simplifying concept
descriptions (e.g. Fisher & Schlimmer; 1988;
Iba et al., 1988; Quinlan, 1987; Clark & Niblett,
1989). An advantage of the presented method is
that it may not experience any major loss of
coverage as a result of description simpliftcation
because of flexible matching.

Closer relevant work is concerned with the
problem of pruning decision trees (Quinlan.
1987; Cesmilc, Kononenko, and Bratko. 1987).
The two methods are similar in the sense that
both methods remove components from
complete and consistent concept descriptions.
The removal often results in incomplete and
inconsistent descriptions. Pruning removes
subtrees from decision trees, whereas truncation
removes selectors and complexes from covers.
Removing a subtree can be viewed as removing
complexes from one concept and selectors from
another.

Now we discuss three imponant differences
between the approach presented here and

pruning of decision trees. First is the lack of
constraints on the pan of the representation that
is removed when applying SG-TRUNC
method. In pruning of decision trees, only paths
ending in leaves may be pruned. During the
generalization of decision trees, each attribute is
seJected independent of the remaining attributes.
Thus, the attributes n,ear the root may be less
relevant and the attribUtes near the leaves may be
more relevant. The tree pruning has nothing to
do with this problenp. Second, pruning will
always specialize one qoncept and generalize the
other, while truncatiqn of rules can perform
generalization and specialization independently.
Third, pruning has no p.ray to restore the loss of
coverage resulting frortt the pruning. The loss of
coverage resulting flOm truncation may be
restored by flexible maJChing.

In table 3, we sum up the results of the
experiments performed on "multiplexer" with
the decision tree building system ASSISTANT
(Cestnik et aI., 1987). This system was
developed from Quinlan's ID3; the basic
algorithm was improved to handle incomplete
and noisy data. continuous and multivalued
attributes. This system, also supports tree
pruning mechanisms. The same training and
testing sets were used for ASSISTANT that
were used for the previous experiments.

Table 3: Experimental results
on Multiplexer Fl1 with ASSISTANT

noise
level

no pruning pruning

IA~ INns ILvs V\iC tNos ~VS

0% 92 183 92 86.5 91 46

3% 84.5 201 101 78 95 48

5% 85.5 203 102 86 119 60

10% 80 259 130 76 79 40

15% 70 279 140 63 57 29

20% 73.5 295 148 57 39 20

In Table 3, ACC is the percentage of accuracy
on testing data, ~TIS and L VS are the number of
nodes and leaves in the decision tree generated
respectively. From the result, it is obvious that
AQ16 outperforms ASSISTANT in the domain
of "multiplexer" FII on both accuracy and
complexity. The pruned trees almost always
degrade accuracy on the testing data. The more
noisy the data, the simpler the pruned trees. As
indicated in (Quinlan, 1988), the most relevant
attributes in the domain are all address bits. but
such bits themselves provide no information
about the class membership. Instead each of the
data bits independently provides more
information. Thus all generated decision trees
began with a test on a data bit. As we discussed
above. pruning only removes the paths ending
in leaves. In the case here those most relevant
attributes, address bits, are very possible in
these paths and pruned so that the quality of the
pruned trees decrease.

In (Quinlan, 1987) a method for transforming
decision trees into rules and then performing
truncation is presented. -The method presented in
this paper works on the rules generated by AQ
algorithm instead of decision trees. Also our
algorithm is more sophisticated especially for
complex removal.

CN2 induction algorithm (Clark & Niblett.
1989) is another related work. CN2 uses a
heuristic function to tenninate search during rule
construction, based on an estimate of the noise
present in the data. This results in rules that may
not classify all the training examples correctly t
but that perform well on new data. CN2 can be
viewed as an induction algorithm that includes
pre-truncation. while the algorithm reponed here
is post-uuncation. CN2 applies truncation
during the rule generation and AQl6 applies
truncation after the rule generation. The pre
truncation is more efficient, but it fails to remove
the irrelevant selectors generated first and
redundant complexes generated first

7. CONCLUSION

In this paper, the SG·TRUNC method has been
described. in which, both selector and complex
removals are applied. Selector removal tries to
reduce the impact produced by noise or

exceptions from other concepts which break a
few complexes into many. For this purpose,
selector removal attempts to increase the
intersection among complexes so that some of
the complexes are redundant and can be
removed, while introducing minimum
inconsistency. Complex removal tries to reduce
the impact produced by noise or exceptions as
well as nontypical instances of the concept to be
learned. To achieve this, all complexes with low
t-weights and some of the complexes with low
u-weights are removed. The goal of the method
is to obtain simpler descriptions which remain
accurate. In this way, the comprehensibility and
the predictive power of the acquired knowledge
are improved.

The SG-TRUNC method has been implemented
in a learning system AQI6, that is a new
member of the AQ family of learning systems.
The system has been applied to two problems, a
designed testing problem and the "Multiplexer"
F11 problem. Experimental results have shown
that both simplicity and performance
improvements can be gained. The system has
been also applied to some real world domains,
such as vision (Pachowicz, 1989) and US
airplane classification (Janikow, 1989). The
results obtained from these domains are
promising.

A number of problems remain to be addressed in
the fu ture. First, a more advanced selector
removal algorithm needs to be designed.
Second, a method needs to be designed to pass
information concerning the importance of
attributes to the flexible matching function.
Finally. the effects of the two parameters
I.NCONS and INCOMP on real world domains
should be explored.

A C KN0 \VLEDGEl\tENTS

This research was done in the Anificial
Intelligence Center of George Mason
University. The activities of the Center are
supponed in part by the Defence Advanced
Research Projects Agency under grant No.
NOOO14-87-K-0874. administered by the Office
of Naval Research, and in part by the Office of
Naval Research under grant No. NOOOl4-88·K
0226 and NOO014-88-K-0397. The authors

thank Hugo de Garis for useful comments .and
suggestions and Janet Holmel for proof reading.

REFERENCES

Bergadano, F., Matwin, S., Michalski. R. S.
and Zhang, J., "Learning Flexible Concept
Descriptions Using a Two-tiered Knowledge
Representation: Ideas and a Method", ReportS of
the Machine Learning and Inference Laboratory,
No 88-4, Anificial Intelligence Center, George
Mason University. 1988a.

Bergadano. F .• Matwin, S., Michalski, R. S.
and Zhang, J., "Learning Flexible Concept
Descriptions Using a Two-tiered Knowledge
Representation: Implementation and
Experiments", Reports of the Machine Learning
and Inference Laboratory, No 88-5. Artificial
Intelligence Center. George Mason University,
1988b.

Cestnik, B., Kononenko, I .• and Bratko. I..
"ASSISTANT 86: A Knowledge-elicitation Tool
for Sophisticated Users". Procs. of the 2nd
European Workshop on Learning. pp. 31-45
(1987).

Clark. P. and Niblett. T., "The CN2 Induction
Algorithm". Machine Learning 3. pp 261-183.
1989

Fisher. D. H.and Schlimmer. J. C., "Concept
Simplification and Prediction Accuracy". Froes.
of the Fifth Int1. Conr. On Machine Learning,
Ann Arbor, pp. 22·28 , 1988.

Hong. J., Mozetic. It and Michalski. R. S.•
"AQI5: Incremental Learning ofAttribute-Based
Descriptions from Examples, The Method and
User's Guide", Repon ISG 86-5. UIUCDCS
F-86-949, Dept of Computer Science.
University or Dlinois, Urbana.

Iba, W., Wogulis. J., and Langley, P.•
''Trading off Simplicity and Coverage in
Incremental Concept Learning", Procs. of the
Fifth Int'l. Conr. On Machine Learning, Ann
Arbor, pp. 73-79 (1988).

Janikow, C.z. "The AQ16 Inductive Learning
Program: Some Experimental Results with

AQ16 and Other Symbolic and Nonsymbolic
Programs", Reports of the Machine Learning
and Inference Laboratory. Anificial Intelligence
Center, George Mason University, 1989

.Michalski, R. S., "Two-Tiered Concept
Meaning, Inferential Matching and Conceptual
Cohesiveness", Chapter in the Book "Similarity
and Analogy", Stella Vosniadou and A. Onon,
(Eds), 1987.

Michalsld, R. S. and Stepp, R E., "Learning
from Observations: Conceptual Clustering. " In
Machine Learning - An Artificial Intelligence
Approach, R S, Michalski, 1. G. Carbonell, T,
M. Mitchell (Eds.), 1983.

Michalski, R. S., Mozetic, I., Hong, 1., and
Lavrac, N., "The Multi-purpose Incremental
Learning System AQ15 and its Testing
Application to Three Medical Domains", Proc.
5th AAAI, pp. 1041-1045, 1986.

Pachowicz, P. W., "Low-level Numerical
Characteristics and Inductive Learning
Methodology in Texture Recognition", Proc. of
IEEE Second Workshop on Tools for Anificial
Intelligence, Washington D.C., 1989.

Quinlan, 1. R., "Induction of Decision Trees"
Machine Learning I, 1986.

Quinlan, J. R., "Simplifying Decision Trees",
Intemational Journal of Man-Machine Studies,
1987

Quinlan, J. R, "An Empirical Comparison of
Genetic and Decision-Tree Classifiers", Procs,
of the Fifth Int'I. Conf. On Machine Learning,
Ann Arbor. pp. 135-141 , 1988.

Wilson, S. W., "Quasi-Darwinian Learning in a
Classifier System", in Proceedings of Founh
International Machine Learning Workshop,
1987a

Wilson, S. W., "Classifier Systems and the
Animat Problem", Machine Learning 2,4"
1987b

