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The paper presents a core theory of human plausible reasoning based on analysis
of people’s answers to everyday questions about the world. The theory consists
of three parts:

1. a formal representation of plausible inference patterns: such as deductions,
inductions, and analogies, that are frequently employed in answering every-
day questions;

2. a set of parameters, such as conditional likelihood, typicality, and similarity,
that aoffect the certainty of pedple’s answers to such questions; and

3. a system relating the different plausible inference patterns and the different
certainty parameters.

This is one of the first attempts to construct a formal theory that addresses both
the semantic and parametric aspects of the kind of everyday reasoning that per-
vades all of human discourse.

1. BACKGROUND FOR THE THEORY

The goal of our research on plausible reasoning is to develop a formal sys-
tem based on Michalski’s (1980, 1983) variable-valued logic calculus that
characterizes different patterns of plausible inference humans use in reason-
ing about the world (Collins, 1978a; Polya, 1968). Our work attempts to
formalize the plausible inferences that frequently occur in people’s responses
to questions for which they do not have ready answers (Carbonell & Collins,
1973; Collins, 1978a, 1978b; Collins, Warnock, Aiello, & Miller, 1975). In
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this sense it is a major departure from formal logic and various nonclassical
logics: for example, fuzzy logic (Zadeh, 1965), multiple-valued logic (Lu-
kasiewicz, 1967), Dempster-Shafer logic (Shafer, 1976), intuitionist logic
(Martin-Lof, 1982) variable-precision logic (Michalski & Winston, 1986),
probabilistic logic (Nilsson, 1986), belief networks (Pearl, 1986), and de-
fault logic (Reiter, 1980; Yager, 1987). Being descriptively based, the theory
includes a variety of inference patterns that do not occur in formal logic-
based theories. The central goals of the theory are to discover recurring gen-
eral patterns of human plausible inference and to determine parameters
affecting the certainty of these inferences. Unlike other theories of plausible
reasoning, the theory combines semantic aspects with parametric aspects
captured by numeric or symbolic estimates of certainty.

In order to analyze human plausible reasoning, Collins (1978b) collected
a large number of people’s answers to everyday questions, some from teach-
ing dialogues and some from asking difficult questions to four subjects.
These answers have the following characteristics:

1. There are usually several different inference patterns used to answer
any question.

2. The same inference patterns recur in many different answers.

3. People weigh different evidence that bears on their conclusion.

4. People are more or less certain about their conclusion depending on the
certainty of their information (either from some outside source or from
memory), the certainty of the inference patterns and associated param-
eters used, and on whether different patterns lead to the same or oppo-
site conclusions.

The analysis of the answers attempts to account for the reasoning and
the conclusions drawn in terms of a taxonomy of plausible inference pat-
terns. As will be evident, this is an inferential analysis. To use Chomsky’s
(1965) felicitous terms, we are trying to construct a deep structure theory
from the surface structure traces of the reasoning process.

In our development of the theory to date we have not tried to characterize
all the different types of plausible inferences that occur in the protocols. In
particular, we have not formalized the spatial, temporal, and meta-knowl-
edge inferences often seen in protocols (Collins, 1978a). This project pre-
sents a core system centered around the plausible deductions, analogies, and
inductions, seen most frequently in the protocols, but we expect there are
other forms of these inferences that will need to be added to the core theory.
In future work we plan to extend this core system to encompass the other
patterns of inference, such as spatial, temporal, and meta-knowledge infer-
ences (Collins, 1978a, 1978b). ’

We will illustrate some of the characteristics of people’s answers, as well
as some of the inference patterns formulated in the theory with several
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transcripts. The first transcript comes from a teaching dialogué on South
American geography (Carbonell & Collins, 1973), (T stands for teacher and
S for student):

T: There is some jungle in here (points to Venezuela) but this breaks into a

savanna around the Orinoco (points to the Llanos in Venezuela and Co-
- lombia).

S: Oh right, is that where they grow the coffee up there?

T I don’t think that the savanna is used for growing coffee. The trouble is the
savanna has a rainy season and you can’t count on rain in general. But 1
don’t know. This area around Sao Paulo (in Brazil) is coffee region, and it
is sort of getting into the savanna region there.

In the protocol the teacher went through the following reasoning. Ini-
tially, the teacher made a hedged *‘no’’ response to the question for two
reasons. First, the teacher knew that coffee growing depends on a number
of factors (e.g., rainfall, temperature, soil, and terrain), and that savannas
do not have the correct value for growing coffee on at least one of those fac-
tors (i.e., reliable rainfall). In the theory this is an instance of the inference
pattern called a derivation from a mutual implication, in particular the
implication that coffee growing depends on reliable rainfall. Second, the
teacher did not know that the Llanos was used for growing coffee, which
the teacher implicitly took as evidence against its being a coffee region. The
inference takes the form I would know the Llanos produces coffee if it
did, and I don’t know it, so probably it does not.”” This is called a “‘lack-
of-knowledge inference’” (Collins et al., 1975; Gentner & Collins, 1981).
This inference pattern is based on knowledge about one’s own knowledge
and hence is a meta-knowledge inference.

Then the teacher backed off the initial negative response, because positive
evidence was found. In particular, the teacher thought the Brazilian savanna
might overlap the coffee growing region in Brazil around Sao Paulo, and
therefore might produce coffee. If the Brazilian savanna produces coffee,
then by functional analogy (calléd a similarity transform in our theory) the
Llanos might. Hence, the teacher ended up saying *‘I don’t know,”’ even
though the original conclusion was correct.

The teacher’s answer exhibits a number of the important aspects of hu-
man plausible reasoning. In general, a number of inference patterns are used
together to derive an answer. Some of these are inference chains where the
premise of one inference draws on the conclusion of another inference. In
other cases the inference patterns are triggered by independent sources of
evidence. When there are different sources of evidence, the subject weighs

' This and other technical terms introduced in italics in the paper are defined and exempli-
fied in a glossary at the end of the paper.
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them together to determine a conclusion and the strength of belief in it. This
weighing of evidence parallels the theory of endorsements espoused by
Cohen (Cohen, 1985; Cohen & Grinberg, 1983).

It is also apparent in this protocol how different pieces of information
are found over time. What appears to happen is that the subject launches a
search for information starting with the words in the question (Collins &
Loftus, 1975; Quillian, 1968). As pieces of information are found, they
trigger particular inferences. Which inference pattern is applied is determined
by the relation between the information found and the question asked. For
the question about growing coffee in the Llanos, if the respondent knew
that savannas are generally good for growing coffee, that would trigger a
deductive inference. If the respondent knew of a similar savanna somewhere
that produced coffee, that would trigger an analogical inference. In the pro-
tocol, the more accessible information about the unreliable rainfall in
savannas was found before the less accessible information about the coffee
growing region in Brazil and its relation to the Brazilian savanna. The search
for information is such that the most accessible information is found first,
as by a marker passing or spreading activation algorithm (Charniak, 1983;
Quillian, 1968).

The next protocol illustrates a plausible deduction. (Q stands for ques-
tioner and R for respondent):

Q: Is Uruguay in the Andes Mountains? )

R: I get mixed up on a lot of South American countries (pause). I'm not even
sure. I forget where Uruguay is in South America. It’s a good guess to say
that it’s in the Andes Mountains because a lot of the countries are.

The respondent knew that the Andes are in most South American coun-
tries (seven out of nine of the Spanish speaking countries). Since Uruguay is
a fairly typical South American country, the respondent guesses that the
Andes may be there too. The respondent is wrong, but the conclusion was
quite plausible. This kind of plausible deduction is called a specialization
transform in the theory, based on the fact that Uruguay is a specialization
of a South American country. This example illustrates two of the certainty
parameters associated with it: Jrequency (respondent knows the Andes are
in most countries), and typicality (Uruguay is a typical South American
country). : )

The third protocol illustrates the other kind of plausible deduction in the
theory, called a derivation from mutual implication (in particular, rice
growing implies warm weather, flat terrain, and fresh water):

Q: Do you think they might grow rice in Florida?
R: Yeah. I guess they could, if there were an adequate fresh water supply.
Certainly a nice, big, warm, flat area.

The respondent knew that whether a place can grow rice depends on a
number of factors, and also knew that Florida had the correct values on at



PLAUSIBLE REASONING 5

least two of these factors (warm temperatures and flat terrain). The respon-
dent therefore inferred that Florida could grow rice if it had the correct
value on the other factor thought of (i.e., adequate fresh water). The re-
spondent may or may not have been aware that rice growing also depends
on fertile soil, but did not mention it here. Florida in fact does not produce
rice in any substantial amount, probably because the soil is not adequate.
This protocol shows how people make plausible inferénces based on their
approximate knowledge about what depends on what, and how the certainty
of such inferences is a function of the degree of dependency between the
variable in question (rice) and the known variables (i.e. terrain, climate,
water).

The fourth protocol from a teaching dialogue illustrates two inferences
in the core theory, a similarity transform and a dissimilarity transform. (S
stands for student, T for teacher):

S: Is the Chaco the cattle country? I know the cattle country is down there
(referring to Argentina).

T: I think it’s more sheep country. It’s like western Texas, so in some sense [
guess it’s cattle country, The cattle were originally in the Pampas, but not
so much anymore:.

As in the first protocol, the respondent (teacher) is making a number of
plausible inferences in answering this question, some of which lead to dif-
ferent conclusions. First, the teacher thinks that the Chaco is used for sheep
raising, but there is some uncertainty about the information retrieved, which
leads to a hedged response. This supports a dissimilarity transform and an
implicit lack-of-knowledge inference (a meta-knowledge inference). The
dissimilarity transform is based on the view that sheep country is distinct
from cattle country, presumably in terms of its climate or vegetation, so
that if the Chaco is sheep country it is not likely to be cattle country. The
lack-of-knowledge inference takes the form: I don’t know that it’s cattle
country, and I would know if it were (e.g., I know about sheep), so it prob-
ably is not cattle country.’”’ But then the teacher noted a similarity between
the Chaco and western Texas, presumably in terms of the functional deter-
minants of cattle raising (e.g., climate, vegetation, terrain). Because Western
Texas is cattle country, this led the teacher to a very hedged affirmative
response, based on a similarity transform. Finally the teacher alluded to the
fact that the Pampas is the place in Argentina known for cattle, and the
place the student most likely was thinking of. This argues against the Chaco
having cattle based on another meta-knowledge inference, a “‘functional
alternative inference’” (Collins, 1978b, Pearl, 1987): ““The Pampas is an
Argentinian plain and the Pampas has cattle, so the fact that there are cattle
in an Argentinian plain cannot be taken as evidence for cattle in the Chaco.”
In answering this question, then, two patterns of plausible inference led to a
negative conclusion and one to a positive conclusion.
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- The fifth protocol again illustrates both a similarity and a dissimilarity
transform, and more importantly, the distinction between inferences based
on overall similarity and those based on similarity with respect to the func-
tional determinants of the property in question. (Q stands for questioner, R
for respondent):

Q: Can a goose quack?

R: No, a goose—well, its like a duck, but its not a duck. It can honk, but to
say it can quack. No, I think its vocal cords are built differently. They have
a beak and everything, but no, it can’t quack.

The similarity transform shows up in the phrases, “it’s like a duck’’ and
““They have a beak and everything’’ as well as in the initial uncertainty about
the negative conclusion. It takes the form, “A duck quacks and a goose is
like a duck with respect to most features, so maybe a goose quacks.”” The
certainty of the inference depends on the degree of similarity between ducks
and geese. e

But then two lines of negative inference led the respondent to a negative
conclusion. First there is a lack-of-knowledge inference implicit in the state-
ment “It can honk, but to say it can quack.’’ The respondent knew about
geese honking but not about their quacking. Therefore, the respondent
would supposedly know about geese quacking, if in fact they did quack.

The second line of negative inference (apparently found after the respon-
dent started answering) is the dissimilarity transform evident when it is stated,
*“I think its vocal cords are built differently.’”” The dissimilarity transform
takes the form ‘‘Ducks quack, geese are dissimilar to ducks with respect to
vocal cords, and vocal cords determine the sound an animal makes, so prob-
ably geese do not quack.’”” This inference was enough to lead to a strong

“no.” Of course the respondent knew nothing about the vocal cords of
ducks and geese, because they don’t have any, and was probably thinking of
the difference in the length of their necks. Our own hypothesis is that longer
necks resonate at lower frequencies and hence honking can be thought of as
deep quacking.

These five examples illustrate a number of aspects of human plausible
reasoning as it occurs in common discourse. They show how people bring
different pieces of knowledge to bear on a question and how these pieces
sometimes lead to the same conclusion and sometimes to different conclu-
sions. Often knowledge is found after the respondent has started answering,
so that the certainty of the answer seems to change in midstream. The exam-
ples also show how people’s approximate functional knowledge of what
depends on what often comes to play in different inferences such as deduc-
tions and analogies. Therefore these dependencies are a central part of the
core theory we have developed. We will return to these examples to illustrate
how the formal rules we have developed can be used to characterize differ-
ent plausible inferences seen in these examples,
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We have collected many such protocols (Collins, 1978b) and these same
patterns (as well as others) recur again and again in many different content
domains and contexts. Any theory that is to account for such data will have
to characterize these systematic patterns and the way that functional depen-
dencies (e.g., coffee growing depends on reliable rainfall) interpenetrate
these patterns of inference. The theory outlined in the rest of the paper is
the simplest theory that we have been able to construct to do that job.

We should emphasize also that the scope of the theory is the kind of
domain-independent, weak inferences (Newell, 1980) akin to the syllogistic
forms in logic. The core theory attempts to specify the generalizations of
syllogistic forms that reflect the way people actually reason, not how they
should reason. This scope leaves out two kinds of plausible reasoning seen
frequently in people’s answers to questions: 1) domain specific reasoning
(e.g., *‘the language of Mexico is Mexican,” which employs a special rule
for forming language names); and, 2) generalized weak methods that in-
volve active search for information, such as means-ends analysis (Newell &
Simon, 1972) and proof by cases (e.g., to estimate how many Catholics
there are in the world, many people will consider different countries or con-
tinents and estimate how many in each).

Johnson-Laird (1980, 1983) has argued that the best account for human
reasoning is not in terms of systematic rules or inference patterns, but rather
in terms of the manipulation of mental models. While we agree that people
manipulate mental models in their reasoning (Collins, 1985; Collins & Gent-
ner, 1982, 1983, 1987; Stevens & Collins, 1980), their use of mental models
is orthogonal to the systematic patterns described in this paper. In particular,
the protocols we have collected often involve picturing different situations
(e.g., a mental map of South America, images of savannas, or an advertise-
ment showing Juan Valdez on his coffee plantation in Colombia). These im-
ages can be taken as evidence for the manipulation of mental models in
Johnson-Laird’s terms. But overlaying this manipulation of mental models
are the systematic patterns in which they are deployed to support one’s con-
clusions (cf. Rips, 1986). So while mental models may be part of the story of
plausible reasoning, there is another critical part which the theory we pro-
pose addresses. :

The theory does not address the issue of whether people make systematic
errors in their reasoning, as the psychological literature on decision making
(Kahneman, Slovic, & Tversky, 1982) attempts to document. This issue does
not arise in the theory because we are developing a formalism for represent-
ing the kinds of inferences people make and the parameters that affect their
certainty, rather than a theory about how people make particular inferences.
People may systematically ignore some kinds of information or undervalue
particular certainty parameters—we have not attempted to determine whether
they do or not. Instead we have tried to represent all the kinds of reasoning
patterns and the kinds of certainty parameters that appear in the protocols
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we have analyzed (Collins, 1978a, 1978b). In this regard it is worth pointing
out that certain fallacies in logic, such as affirming the consequent (Havi-
land, 1974), become plausible inference patterns in the theory.?

The theory was developed to account for protocols where a question
drives the search for relevant information; in Artificial Intelligence this is
called backward inferencing. One question that might arise is whether the
theory applies to forward inferencing: when a person finds out some fact
such as that they grow rice in Java, does he or she draw inferences about
places that might grow rice (e.g., Sumatra, Borneo, the Philippines, or even
Madagascar, the Congo, and Brazil) or about what conditions lead to rice
growing (e.g., a tropical climate, an oriental location, an island climate,
having a lot of people to feed, etc.). One danger in forward inferencing is
that there are so many possible inferences, it can go on forever. If one de-
cides that islands can grow rice, one can carry this to Iceland and Greenland
and then wonder about Antarctica and Australia, or even Africa. In general,
people probably do not do much forward inferencing, except as Schank
(1986) suggests when they ask themselves questions in order to explain and
generalize their experiences. In any case, people do some forward inferencing
and our guess is that the same patterns occur. But they do not carry it very
far because the certainty of the inferences quickly falls below some threshold
of plausibility. There are just no long chains of inference in people’s plausi-
ble reasoning, unlike logical or mathematical proofs.

There is a high payoff from trying to formalize the patterns of human
plausible reasoning in a system. The system helps to identify parallels among
apparently different inference types (e.g., deductions, analogies and induc-
tions). Furthermore, it makes it possible to see the systematic patterns in
which different certainty factors in the psychological literature (e.g., typi-
cality, similarity, frequency, dominance) affect related inference types. The
payoff is similar to what happened when Mendeleev discovered the periodic
table establishing the regularities between different chemical elements: Then
it was possible to see which elements were missing, predict how new elements
might behave, and begin the search for why the systematic patterns in the
table arose at some deeper level.

2. ASSUMPTIONS UNDERLYING THE THEORY

The theory assumes that a large part of human knowledge is represented in
‘‘dynamic hierarchies,” that are always being updated, modified or ex-
panded. In the core theory described here we distinguish between two basic
kinds of hierarchies, type- and part-hierarchies (Collins & Quillian, 1972).
A type-hierarchy (also called an abstraction or is-a hierarchy) is organized

? As will be seen, dependencies and implications are bidirectional in the theory and so de-
rivations from them, such as affirming the consequent, are plausible but not certain inferences.
The same point is made by Polya (1968).
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by the type relation holding between connected nodes, or more precisely,
between concepts represented by the nodes. A part-hierarchy is organized
by the part-of relation holding between connected nodes. Any given node
may be a member of more than one hierarchy. Each such hierarchy charac-
terizes the node from a different viewpoint. There are other kinds of hier-
archies (e.g., kinship hierarchies) which govern human inferences, but they
play a minor role as compared to type- and part-hierarchies.

Nodes of a hierarchy may represent classes (e.g., flowers), individuals
(e.g., a specific flower) or manifestations of individuals (e.g., a specific
flower at a given moment). For the purpose of the theory, they are treated
alike, though it may be necessary in future refinements of the theory to treat
manifestations, individuals, and classes differently.

Figure 1 shows examples of type- and part-hierarchies. In the first four
examples (a,b,c,d), the Llanos is viewed from four different perspectives.
These perspectives are organizing principles of the hierarchies (Bobrow &
Winograd, 1977). The type-hierarchy in Figure 1a is organized according to
the type of terrain. The type of terrain can be mountainous, plateau, hilly,
or plain, etc. The Llanos is characterized as a type of plain, like the Chaco.
The type-hierarchy in Figure 1b is organized according to the geographical
land type. It characterizes the Llanos as a type of savanna, which is one of
the major land types that geographers divide the world into, including rain
forests, deserts, steppes, Mediterranean climates, mid-latitude forests, etc.
The part-hierarchy in Figure 1c is organized according to regions in South
America: the Andes, Amazon Jungle, Llanos, Guiana Highlands, and their
subregions in different countries. The part-hierarchy in Figure 1d represents
South America broken down into countries and the subregions within each.

The other three examples in Figure 1 are designed to illustrate how differ-
ent kinds of information are represented in hierarchies. Among colors there
are green and red. Among reds there are scarlet and burgundy, and among
scarlets there are bright scarlet and perhaps dull scarlet, and so forth. Color
is a one-place descriptor applying to objects, but feeling emotion is a two
place descriptor where X (a person) feels the emotion toward Y (any con-
cept). In the emotion hierarchy there are many types of emotions, among
them love and hate, and there are different kinds of love, such as romance,
affection, motherly love, etc. In the weight hierarchy there are different
kinds of weight, such as human weight which in turn might be divided into
birth weight and adult weight. For birth weight one might think of 11b. as a
minimum, 15 Ibs as a maximum, and 7 lbs as the norm. For the purposes of
the theory these can be thought of as different values of birth weight, just as
red and green are different values of color.

Node A in any hierarchy can be a descriptor of node B in another hier-
archy, that is, A can be used to characterize node B. We write such a relation
as a term:

A(B)
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Terrain

Landtype

Mountain

Plains Savanna

Rain Forest

Chaco .

Llanos Mato Grosso Llanos

(a) Llanos in
rainy
season

South America South America

Llanos Colombia Venezuela

Andes
Colombian Venezuelan
1 Llanos i \% enezuelan
Llanos Colombian enczuelan
Llanos Llanos Andes

“c) Orinoco Delta (d)

Color .
Feel Emotion

Green Hate

Scarl
carlet Feel
Feel

Romantic
Burgundy Affection
Bright
Scarlet
f)
(e)
Weight
) ) Human Body Weight
Fish Weight
Birth i
Weight .AAdull Weight

L J
11b 7lbs  1Slbs 5O Ibs 150 Ibs 1000 ibs
(8)

Figure 1. Examples of hierarchies.

For example, the node *‘color’’ in hierarchy Ie of Figure 1 applies as a de-
scriptor to the node “‘eyes’ in a hierarchy of body parts. This is denoted as
“‘color(eyes).”” The node “‘eyes’” can in turn be applied as descriptor to the
node, John, in some hierarchy describing people. To express both relations
we would write:

color(eyes(John))



PLAUSIBLE REASONING - u

plants World

flowers
Europe

Asia

daffodils England

flowers (England) = {daffodils, roses. . .}

color person

organs

woman

red

John

color(eyes(John)) = blue

Figure 2. Examples of two traces of statements.

A term A(B) can take values (called referents in the theory) only from the
set of subnodes of A, that is, the descendants of the node A in the hierarchy.
Applying a descriptor to an argument (a node or a sequence of nodes) pro-
duces a specific value characterizing the argument. This implies that only
nonterminal nodes of a hierarchy can be descriptors. For example, to state
that the color of the eyes of John is blue, a path would be created that links
John, color, and blue as shown in Figure 2. To express this formally, we
write:

color(eyes(John)) = blue

In the theory such an expression is called a statement. Statements are
recordings of information within the hierarchies. They are paths connecting
the nodes of two or more hierarchies which represent beliefs about the world.
Figure 2 shows examples of statements representing the beliefs that there are
daffodils and roses in England, and that John’s eyes are blue. The state-
ments can have annotations describing their origin, their frequency of use,
the ce'rtainty of belief in their correctness, and other information. The links
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Animals

Birds
Dogs

(a) Fish

Animals

Reptiles
Amphibians
®) Cats

Animals

Invertebrates Vertebrates

[EP Mammals
Fish

Marsupials

Felines Canines

Cats Wolves

Dogs

(c)
Figure 3. Differentiation of hierarchies.

denoting the type and part relation in generalization hierarchies can also be
viewed as denoting statements, but for the purposes of the theory we will
distinguish them from other statements. The knowledge organization de-
scribed above includes various elements of semantic network structure (Car-
bonell & Collins, 1973; Collins & Quillian, 1972; Quillian, 1968; Woods, 1975)
and frame structure (Bobrow & Winograd, 1977; Brachman & Schmolze,
1985; Minsky, 1975; Schank & Abelson, 1977; Winograd, 1975).

Figure 3 illustrates the fact that the hierarchies are partial orderings, and
can be differentiated or collapsed as appropriate for the purpose of drawing
plausible inferences. At a fairly early age children think of animals as com-
ing in different types: dogs, cats, fish, birds, and so forth. They don’t dif-
ferentiate them much more than that. When they get to school they may
learn there are different basic types of animals, such as fish, birds, reptiles,
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TABLE 1
Hypothetical Frames in a Person's Memory

tlower
type/ot=plant
types={rose, daffodil, peony, bougainvillea ...}
parts={petals, stem ...}
colors= {pink, yellow, white, red .. .}
countries= {all countries}

daffodil
type/of =flower
parts={petals, stem ...}
colors={yellow ...}
countries= {England, United States ...}

red
type/of =color
types={scarlet, burgundy ...}
tlowers= {roses, tulips ...}
vehicles= {fire engines, London buses .. .}

mammals, and amphibians, and that dogs and cats are types of mammals.
Still later in biology this hierarchy might be differentiated much more finely
as in Figure 3c. For the purposes of the theory, such hierarchies may be
thought to coexist, and plausible inferences can be made in any of them.

Table 1 shows hypothetical concept structures for a few concepts in some-
one’s memory (Collins & Quillian, 1972; Collins et al., 1975). These examples
are not meant to provide a detailed analysis of how concepts are represented,
but rather to illustrate how the statements shown in later examples can be
constructed from a memory structure. In the example, type and part rela-
tions form the basis for hierarchical structures such as those shown in
Figures 1 and 3. Flowers are represented as a type of plant coming in at least
four varieties (i.e., roses, etc.), having various parts, various colors, and
growing in all countries. Each descriptor (i.e., type/of, types, parts, color,
countries) might be further specified as to how it relates to the concept flower
(e.g., type/of is a biological class, colors are surface features of the petals,
countries are places where flowers are grown, etc). The concept description
for daffodils, which are a particular type of flower, provides further specifi-
cation for each of the variables in the concept of flowers. That is, they have
petals and a stem, they come in yellow and perhaps other colors, and they
are grown in at least England and the United States. The concept red is
shown to illustrate how a color concept points back to various objects which
it describes. Finally let us stress that we have not concerned ourselves with
exactly how concepts are represented, but rather we have assumed they are
represented in a structure similar to these examples.
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Any node in a hierarchy €an potentially be g descriptor for a node in
another hierarchy. For example, if flower isina hierarchy of things and
England is jn a hierarchy of places, ﬂowar-type might be a descriptor for
England, Thjs produces a Statement of the form:

()} ﬂower-type(England):{daffodils, roses, ...}

In (), f]ower-type is a descriptor, England is ap argument, ﬂower-type
(England) is 4 term, and daffodils and Toses are referents for the term. The

looks green),
Examples (2) to (6) below illustrate how different descriptors apply to
different concepts:

) England-part(daffodﬂs) ={Southern England. , .}

3) daffodil-part(England) ={petals, stem, ..}

“@ country—type(daffodils) = {temperate countries. ., }
(5) daffodil-type(EngIand) = {yellow daffodils. . -}

6) England-type(daffodi]s): {England in the spring}

Examples (2) and (3) illustrate statements based on part-hierarchies. I
(2) the descriptor selects the part of England where daffodis occur. In (3)
the descriptor selects the parts of daffodijls that occur i England; presum-
ably daffodj] parts in England are the same ag daffodi] parts anywhere in
the world (though perhaps Martjan daffodils are Quite different). In “)
country-type applied to daffodils selects the types of countries that have



PLAUSIBLE REASONING 15

TABLE 2
Elements of Expressions

arguments a1, az, f(a1)
e.g., Fido, collie, Fido's master
descriptors di, da
e.g., breed, color
terms di(a1), da2(a2), da(di(a1))
e.g., breed (Fido), color (collie), color (breed (Fido))
referents r1, ra, r3, {rz .. .} :
e.g., collie, brown and white, brown plus other colors
statements di(a1)=r1: v, ¢
e.g., means-of-locomotion (bird)= {tHlying...}: certain, high frequency (translation: | am
certain almost all birds fly)
dependencies between terms difar) <— — —>daf(a1)): @, B, ¥
e.g., latitude (place) <— — — —>average temperature (place):
moderate, moderate, certain (translation: | am certain that latitude constrains
average temperature with moderate reliability, and that average temperature
constrains latitude with moderate reliability)
implications between statements difa)=n<===>dy(Ha1))=rz a, B,y
e.g., grain (place)={rice. ..} <= = => rainfall (place)=heavy:
high, low, certain (translation: | am certain that if a place produces rice, it
implies the place has heavy rainfall with high reliability, but that if a place has
heavy rainfall it only implies the place produces rice with low reliability)

We have discussed the most important assumptions we are making about
how human memory is organized and accessed for the purposes of making
plausible inferences. Further descriptions of our underlying assumptions
about human memory are given in earlier papers (Carbonell & Collins, 1973;
Collins & Loftus, 1975; Collins & Quillian, 1972; Collins, et al., 1975).

3. PRIMITIVES IN THE CORE SYSTEM

In the core system we have developed there is a set of primitives and a set of
basic inference rules. In this section we describe the primitives in the system,
consisting of basic expressions, operators, and certainty parameters.
Table 2 shows the basic elements in the core system. Arguments can be
any node in a hierarchy, or a function of one or more nodes such as Fido’s
master or the flag of England. Descriptors apply to arguments, and together
they form a term, such as breed (Fido). The potential referent for a term is
the set of nodes in the hierarchy under the descriptor node: It can be either a
definite set of values such as collie, or brown and white, or an indefinite set
of values such as brown, plus other colors (or possibly no other colors). In-
definite sets are represented by brackets and dots (e.g., {brown...}).
Statements consist of a term on the left of a relational operator (usually
an equal sign) and a referent on the right, together with a set of certainty
parameters. Expressions (1) through (6) above were all statements, without
the certainty parameters specified. The certainty parameters can be thought
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of as approximate numbers ranging between 0 and 1, but we have repre-
sented them as verbal descriptions. In the example of a statement in Table 2,
7 refers to how certain one is that the statement is true, and ¢ to the belief
about the frequency that if something is a bird it can fly (o(flying/bird)).
These certainty parameters are all listed in Table 4, to be discussed later.

The last two types of expressions in Table 2 represent functional depen-
dence between different variables. Mutual dependencies between terms rep-
resent the functional relationship between two terms, such as between the
average temperature of a place and the latitude of the place.® The depen-
dency can be annotated to different degrees; It can be unmarked, meaning
there exists some functional relation between the two, it can be marked with
+ or — indicating a monotonic increasing or decreasing relation, or it can
be further specified to any degree (e.g., a V-shaped function with 3 values
specified). For example, if one thinks that average temperature of a place in
January varies between about 85° at the equator and —30° at the North
Pole and +30° at the South Pole, this relation can be represented as a V-
shaped function with values (—-90°, 30°), (0°, 85°) and (90 °, —30°), where
the first number is latitude and the second temperature. The conditional
likelihood parameters ( and f) specify the degree of constraint in the de-
pendency from latitude to temperature and from temperature to latitude,
respectively. In the latitude-temperature example the degree of constraint is
moderate in both directions, as is discussed later.

Mutual implications between statements relate particular values of func-
tions such as the latitude-temperature function above (e.g., latitude (place)
=equator < = >average temperature (place) = hot). The example shown in
the table relates the grain of a place being rice to the rainfall of the place
being heavy (e.g., >40 in/year). Knowing a place produces rice predicts
that it will have heavy rainfall quite strongly, so that « is high (though there
are exceptions like Egypt where rice is grown by irrigation). However, the
fact that the rainfall of a place is heavy (e.g., Oregon) only weakly predicts
that rice is grown, so 3 is low. In general mutual implications between state-
ments will be asymmetric in this way. '

Table 3 illustrates the four relations in the core system and the kinds
of statements they occur in. The generalization (GEN) and specialization
(SPEC) relations go up and down in a hierarchy, while the similarity (SIM)
and dissimilarity (DIS) relations g0 between any two comparable nodes in a

* Dependencies between terms play essentially the same role in this theory as determinations
play in the work of Davies and Russell (1986). Determinations have the form that one variable
determines the truth of another variable, whereas.dependencies are bidirectional, where each
variable constrains the other variable to some degree specified by certainty parameters « and 8.
Determinations are used in their theory to determine the relevance of variables over which
analogies are made, whereas dependencies in our theory more generally constrain a larger class
of inferences including basic analogies (called similarity transforms in our theory).
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TABLE 3
Relations*

Generalization @’ GENainCX(a".d(a’)): y, 7, &
e.g., bird GEN chicken in CX (birds, physical freatures(birds)):
’ certain, atypical, low dominance (translation: | am certain chickens are birds, but

they are atypical of birds in their physical features, and they are a low percentage
of birds)

Specialization - 9’ SPEC ain CX(a,d(a)): v, 7, 6
e.g., chicken SPEC fow! in CX (fowl, food cost(fowl)):
certain, typical, moderate dominance (translation: 1 am certain chicken are fowl
and they are typical of fowl with respect to food costs, and they are a moderate
percentage of barnyard fowl)

Similarity a’SIMainCX(A,d(A)): v, ¢
e.g., ducks SIM geese in CX(birds, all teatures(birds)):
certain, highly similar (translation: I am certain ducks are highly similar to geese
with respect to all their features)

Dissimilarity a’ DISain CX(A,d(A)): 4
e.g., ducks DIS geese in CX(birds, neck length(birds)):
certain, fairly dissimilar (translation: | am certain ducks are fairly dissimilar to geese
with respect to neck length)

* A represents a superordinate of a and a’

hierarchy. Associated with the GEN and SPEC relations there is a typicality*
parameter 7 (Rosch, 1975; Smith & Medin, 1981), and with the SIM and
DIS relations there is a similarity parameter o. There is also a dominance
parameter § associated with GEN and SPEC statements that specifies what
proportion of the superset, the subset actually comprises. Finally, all the
statements involving relations have a y parameter associated with them re-
flecting the certainty of belief that the statement is true.

Typicality and similarity are always computed in some context (CX)
which is denoted by the CX variables. The first variable in the CX denotes a
node in the argument hierarchy specifying the range of arguments over
which typicality or similarity are computed. For GEN and SPEC this is
always the superset specified in the statement: for chicken SPEC barnyard
fowl, barnyard fowl is the superset over which typicality is computed. For
SIM and DIS, however, it is the basic level category (Rosch, 1975; Smith &
Medin, 1981) to which the two arguments belong that is the basis for com-
puting similarity. Hence the similarity of ducks and geese would normally
be computed in the context of birds, which is their basic level category.

The second variable in the CX specifies the set of descriptors to be used
in comparing the two nodes with respect to typicality or similarity. For ex-

* Typicality corresponds roughtly to representativeness in the work of Kahneman and
Tversky (1972).
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TABLE 4
Certainty Parameters for Expressions

a Conditional likelihood that the right-hand side of a dependency or implication has a
particular value (referent) given that the left-hand side has a particular value.
Applies to dependencies and implications.

B8 Conditional likelihood that the left-hand side of a dependency or implication has a
particular value given that the right-hand side has a particular value. Applies to
dependencies and implications.

y Degree of certainty or belief that an expression is true. Applies to any expression.

7 Degree of typicality of a subset within a set (e.g., robin is a typical bird and ostrich
is an atypical bird). Applies to GEN and SPEC statements.

o Degree of similarity of one set to another set. Applies to SIM and DIS statements.

¢ Frequency of the referent in the domain of the descriptor (e.g., a large percentage
of birds fly). Applies to any nonrelational statement.

5 Dominance of a subset in a set (e.g., chickens are not a large percentage of birds,
but are a large percentage-of barnyard fowl). Applies to GEN and SPEC state-
ments.

ur  Muitiplicity of the referent (e.g., many minerals are produced by a country like
Venezuela). Applies to any nonrelational statement.

pa  Multiplicity of the argument (e.g., many countries produce a mineral like oil). Applies
to any nonrelational statement.

ample, one can evaluate how typical chickens are as birds with respect to
their physical features, with respect to all their features, or with respect to
some particular feature such as the cost of feeding them. Similarity and dis-
similarity can also be computed with respect to different features. As we
discussed with respect to the fifth protocol shown earlier, ducks and geese
are quite similar when compared on all their features, but they are dissimilar
in neck length (which is relevant to determining the sound they make). The
procedure for computing typicality and similarity is described below.

Table 4 lists the certainty parameters we have identified so far that affect
the certainty of different plausible inferences. These parameters do not yet
have an agreed computational definition, and so different computer models
of the theory have implemented them in different forms. We will describe
each of these parameters in terms of the examples given above. The descrip-
tion is meant to specify our best hypothesis about how people might com-
pute these parameters. _

The conditional likelihood (o and () parameters can best be introduced
in terms of the example: grain(place) = {rice. ..} <= = =>rainfall(place) =
heavy. As we said, « would be high in such a case if a person thinks that
most places that grow rice have heavy rainfall (say greater than 40 inches
per year), whereas 8 would be low if he or she thinks there are many places
with heavy rainfall, that don’t produce rice. We can construct a hypotheti-
cal contingency table that represents this view in terms of a small sample of
places and the frequencies with which they have heavy rainfall and produce
rice:
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Rice No Rice Total
Heavy Rainfall 8 -8 16
No Heavy Rainfall 2 20 22
Total 10 28 38

Given this table « is simply the conditional probability that a rice-pro-
ducing place has heavy rainfall, in this case 8 of 10 or .8, and 8 is the condi-
tional probability that a place with heavy rainfall produces rice, in this case
8 of 16 or .5. We don’t think that people actually construct such tables though
they may consider a small number of cases in computing rough estimates of
« and §, as they do in using the availability heuristic (Tversky & Kahneman,
1973). Basically our assumption is that people build up a rough intuition
about how frequently one thing leads to (or predicts) another, and this is
what is captured by the « and 8 parameters. By providing two parameters,
the theory can encompass the kind of asymmetries found by Tversky and
Kahneman (1980) in reasoning causally versus diagnostically.

The « and 8 parameters for mutual dependencies can be constructed by
an extension of the procedure for mutual implications. Suppose one con-
siders the relationship of rainfall and grain growing as before, but instead as
a mutual dependency: that is, grain (place) <— —> rainfall (place). For sim-
plicity we can present the same hypothetical table in revised form:

Rice Wheat Corn Total
Heavy Rainfall 8 6 2 16
Light Rainfall 2 14 6 22
Total 10 20 8 38

Then « reflects the degree to which you can predict whether a place has
heavy or light rainfall, given the predominant grain grown in the place, which
is quite high (i.e., the prediction is correct in 28 or 38 cases or .7 assuming
an optimal guessing strategy). Similarly, 8 reflects the degree to which you
can predict whether they grow rice, wheat, or corn, given the amount of
rainfall (i.e., the prediction is correct in 22 of 38 cases or .6, assuming an

. optimal strategy of guessing wheat for light rainfall and rice for heavy rain-
fall). This example makes evident the fact that the « and 8 parameters reflect
the way the dependency partitions the known cases in the world.

The y parameter in Table 3 reflects the certainty or subjective likelihood
with which a person believes any expression is true. Gamma can reflect dif-
ferent possible sources of uncertainty. One source arises when people re-
trieve a fact from memory and are uncertain whether they are making a
memory confusion. Another basis for uncertainty arises when they doubt
the source from which they got the information. Finally, if a piece of infor-
mation derives from a plausible inference, there will be uncertainty as to
whether the conclusion is correct, and this uncertainty will propagate to in-
ferences dependent on it. All these sources of uncertainty are represented by
the vy parameter.
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Typicality (r) and similarity (o) both involve computing the coincidence
of features.* In the case of typicality it is computed between a subset and its
superset, and in the case of similarity it is computed between two subsets.
We assume for these purposes that any set (or concept) is represented as a
bundle of features (Collins & Quillian, 1972), and the 7 and ¢ parameters are
computed by comparing the two concepts with respect to those features spe-
cified by the descriptor variable in the context CX. For example, “‘chicken”
might be compared to ““bird’’ with respect to size or with respect to all its
physical features to determine its typicality. For a continuous variable like
size, typicality or similarity is determined by computing how close (normal-
ized between 0 and 1) the two values are in the distribution of sizes for the
class specified by the context CX (e.g., birds). For discrete variables like
‘“ability to fly’’, the two concepts either match or not (assigned either 1 or
0), though many discrete variables might better be treated as continuous for
comparison processes (e.g., reflecting the degree of flying ability). Typicality
or similarity are based on the average score for all the features compared,
weighted for their criterjality or importance (Carbonell & Collins, 1973;
Collins & Quillian, 1972). We assume the combining function used is some-
thing like that proposed by Tversky (1977) where matching features increase
the similarity or typicality and mismatching features decrease similarity or
typicality.

Frequency (¢) and dominance (9) reflect different ratios that affect the
certainty of plausible inferences in systematic ways. Frequency reflects the
proportion of members of the argument set that can be characterized by the
referent specified. It reflects what ““Some”’ or “All”” reflect in logic (e.g.,
‘‘Some men have arms’?), but as a continuous variable between 0 and 1. For
the statement ““means-of-locomotion (birds) = {flying...},” ¢ is the propor-
tion of birds that fly to the total of all birds. The dominance (8) of a subset
within a set applies only to generalization and specialization statements. It
reflects the proportion of members of the set that are members of the subset
specified in the statement. For example, chickens constitute a high propor-
tion of barnyard fowl, but not of birds in general.

The mulitiplicity of the referent (ur) and multiplicity of the argument (y,)
are closely related parameters. Suppose somebody thinks that Mineral(Vene-
zuela)={oil...}. The multiplicity of the referent in this case reflects the
relative number of minerals (the superordinate of oil) the person thinks
Venezuela might have, and the multiplicity of the argument reflects the
number of countries (the superordinate of Venezuela) that might produce
oil. In this case most people think of both pr and pa as multiple; that is,
Venezuela produces more than one mineral, and there are other countries
that produce oil. In general people don’t know about the multiplicity of
particular cases, so they derive the multiplicities by inference from more

* Rips (in press) has evidence that people in fact compute typicality and similarity differ-
ently.
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general knowledge: for example, that countries typically produce more than
one mineral, and that any mineral is found in more than one country. Many
descriptors and arguments are thought of as single-valued or low in multi-
plicity. For example, most people think of mines as producing only one .
mineral (i.e., pr=1low) though each mineral comes from multiple mines
(za=high). For capital (Spain) = Madrid both : is low (Spain has only one
capital) and ua is low (only one country has Madrid as capital). If the multi-
plicity of the referent is low, then this corresponds to the fact that the referent
is single-valued rather than set-valued. The theory treats the single-valued
versus set-valued distinction as a continuous variable, thereby allowing the
degree of certainty derived from inferences to vary continuously with differ-
ent degrees of multiplicity.

In conclusion, the different primitives in the system can be classified into
four groups. The first group are statements representing people’s beliefs
about the world (e.g., means-of-locomotion(birds) = {flying. . . }). The sec-
ond group are statements involving relations (i.e., GEN, SPEC, SIM, DIS)
representing different relationships among concepts in hierarchies (e.g.,
canary SPEC bird). The third-group are relational expressions called mutual
implications and mutual dependencies, that represent people’s approximate
knowledge about what depends on what, which can be specified with more
or less precision. The fourth group are the certainty parameters that act to
condition these three kinds of expressions, and which affect the certainty of
the different inferences described in the next two sections.

4. STATEMENT TRANSFORMS

The simplest class of inferences in the core theory are called statement trans-
forms. If a person believes some statement, such as that the flowers growing
in England® include daffodils and roses [i.e., flower-type(England) = {daffo-
dils, roses. ..}], there are eight statement transforms which allow plausible
conclusions to be drawn. These eight transforms can be thought of as per-
turbations of the statement either with respect to the argument hierarchy
(starting from England) or the referent hierarchy (starting from daffodils
and roses). The argument transforms move up (using GEN), down (using
SPEC), or sideways (using SIM or DIS) in the argument hierarchy. Similarly
the referent transforms move up, down, or sideways in the referent hier-
archy. Thus each of these transforms is a perturbation in one of the two
hierarchies.

Let us illustrate the eight transforms of statements in terms of hierarchies
for England and roses. Figure 4 shows a part hierarchy for England and a
type hierarchy for roses and daffodils that someone might have. If a given

¢ This can be taken to mean flowers that grow outdoors in England which we have simpli-
fied to flower-type(England).
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World
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Bougainvillea Peonies

Yellow Roses
Figure 4. Part Hierarchy for England and Type Hierarchy for Roses.

person believes that “flower-type(England) = {daffodils, roses. . .}, then
Table 5 shows eight conclusions that the person might plausibly draw (assum-
ing other information does not override any of the conclusions).

The first generalization transform is that Europe as a whole grows daffo-
dils and roses, which is a kind of induction. This may not be true: Daffodils
and roses may be a peculiarity of England, but it is at least plausible that
daffodils and roses are widespread throughout Europe. Similarly, for the
SPEC operator it is a plausible inference that the county of Surrey in south-
ern England grows roses and daffodils. There is an implicit context (CX) in
GEN and SPEC transforms, that will be discussed later.

The SIM and DIS inferences are also made in some context. In the case
of the transforms of arguments the context might be ‘““‘countries of the world
with respect to the variable climate.”’ Holland is quite similar to England
with respect to climate, while Brazil is quite dissimilar. The variables over
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TABLE 5
Eight Transforms on the Statement: “flower-type(England)= {daffodils, roses. ..}

"

Argument Transforms

(M GEN flower-type(Europe) = {daffodils,roses. . . }
(2) SPEC flower-type(Surrey) = {daffodils, roses. ..}
(3) : SIM flower-type(Holland) = {daffodils, roses...}
4) DIsS flower-type(Brazil) # {daffodils, roses. ..}

Referent Transforms

(5) GEN flower-type(England) = {temperate flowers. ..}
(6) SPEC flower-type(England) = {yellow roses. ..}

(7) SIM flower-type(England)= {peonies. ..}

(8) . DIs flower-type(England) # {bougainvillea. . .}

which the comparison is made may be few or many, but people will make
the comparison with respect to those variables that they think are most rele-
vant to the question (e.g., whether they grow daffodils in Holland). That is,
they base their inference on whatever mutual dependency most constrains
the descriptor in question. In this case the flowers grown in a place depend
highly on the climate of the place, but hardly at ail on the language of the
place. Therefore climate is a reasonable variable on which to make the com-
parison. We will refer to this issue later when we talk about how different
parameters affect the certainty of any statement transform.

The transforms of referents are perhaps easiest to understand if you sub-
stitute a fictional place like Ruritania for England, because other inferences
are not invoked so easily. If one believes they grow daffodils and roses in
Ruritania, then one might infer they grow temperate flowers in general
there, and yellow roses in particular. It is also reasonable that they grow
peonies there, since they are similar to roses and daffodils as to the climates
they grow in. But bougainvillea grows in more tropical climates, so it is un-
likely to grow in Ruritania (Ruritania is, after all, a small little kingdom and
unlikely to encompass different climates—see discussion under multiplicity
below). These examples should give a feel for how the transforms of state-
ments are made.

An argument that might be made against the generality of these patterns
of inference is that people would draw all sorts of absurd conclusions if they
followed these patterns in most cases. For example, since most people know
that in general birds fly (i.e., means-of-locomotion(birds) = {flying...}),
they therefore might conclude by a generalization transform that animals or
living things in general fly. Or by a specialization transform that penguins
and ostriches fly. Or by a similarity transform that fish or chipmunks fly, if
they think fish or chipmunks are in some ways similar to birds. Or by a dis-
similarity transform, that insects do not fly because they are so different
from birds. Examples like these can be invented indefinitely.
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The claim of the theory is that to the degree people do not have contrary
_ information or make countervailing inferences to override such conclusions,
that they indeed will tend to make such inferences. Consider the plight of a
young child who has never seen any animals until he is 3-years-old. If he
first meets up with birds and is told that there are many different kinds of-
animals other than birds, he might well infer that they all fly around in the
air like birds. And if he is told that there are different kinds of birds, like
bobolinks and starlings, he will infer that they probably fly unless given
some reason to think they do not. And if he is shown a little chipmunk that
looks a lot like a bird he has seen, he may think it can fly, unless he notices it
doesn’t have wings. And until he sees insects flying, he might well infer that
they do not fly, since they look so different from birds. That is to say the
thing that prevents people from making a lot of absurd inferences in our
view is the overwhelming dominance of their knowledge about the world:
When put into the situation of reasoning about aspects of the world for
which they have little knowledge, these kinds of incorrect conclusions are
commonplace. That is not to criticize such plausible reasoning: More often
than not it leads to correct conclusions, particularly when one has enough
information to go on. In order to help the reader see the plausibility of the
patterns in the theory, we have tried to choose examples where most readers
will not have a lot of relevant information to override the plausibility of the
inferences shown.

4.1 Certainty Parameters Affecting Statement Transforms
In this section we will discuss how different certainty parameters affect the
various transforms shown in Table 5.

Typicality. Typicality (7) affects the certainty of any GEN or SPEC trans-
form as shown in Table 6. In transforms of arguments, the more typical the
subset is of the set in the argument hierarchy, the more certain the inference.
For example, in Table 5 inference (1) is more certain the more typical England
is as part of Europe, and inference (2) is more certain the more typical Sur-
rey is as part of England.

In making plausible inferences people compute typicality with respect to
those variables, such as climate, that they think flower growing depends on.
Thus, if Surrey is thought to have a typical climate for England, and climate
is thought to predict the types of flowers grown in a place, then the infer-
ence is more certain.

This example reveals the mutual dependency implicit in any statement
transform, that has forced us to include a third premise in the statement
transforms. The mutual dependency relates the set of variables on which the
typicality or similarity judgment is made (e.g., climate or all variables) to
the descriptor in question (e.g., flower-type). If the typicality judgment is
made considering all variables (as when we said Surrey is a typical English
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TABLE 6

Effects of Different Parameters on Statement Transforms
Transforms
in Table 5 Parameters Target Node

T 4 o @ é kr pa

1 GEN + 0 + 4+ + 0 + Europe
Argument 2 SPEC + 0 + + 4+ 0 0 Surrey
Transforms 3 SIM o + + 4+ 0 0 + Holland

4 DIS o - + - 0 0 - Brazil

5 GEN + 0 + + '+ + 0 Temperate Flowers
Referent 6 SPEC + 0 + + + 0 0 Yellow Roses
Transforms 7 SIM o + + + 0 + 0 Peonies

8 DIS o - + - 0 - 0 Bougainvillea

As the value of the parameter increases, a+ means it has a positive effect on the cer-
tainty of the inference and a— means it has a negative effect on the certainty of the infer-
ence.

county), the transform will be inherently less certain because of the weak
dependency between most variables and any descriptor such as flower-type.
Therefore, if you know that Surrey is typical of England in general, it leads
to a less certain inference than if you know Surrey is typical of England with
respect to climate. .

In transforms of referents, typicality works the same way except that it is
computed with respect to the subset and its superset in the referent hier-
archy. In inference (5) in Table 5, the greater the typicality of daffodils and
roses as temperate flowers, the more certain the inference. Similarly in the
inference (6), the greater the typicality of yellow roses as roses, the more cer-
tain the inference. Pink roses are more typical than yellow roses, and so they
are even more likely to be found in England (or Ruritania for that matter).
Again the inference is more certain if typicality is measured with respect to
the climate in which the flowers are grown.

Similarity. Degree of similarity (o) affects the certainty of any SIM or
DIS inference as shown in Table 6.” Like typicality, similarity can be com-
puted over all variables or over a subset of variables (e.g., climate) that are

7 Rips (1975) found that the typicality of a bird affected the certainty of the inference that
. another type of bird on an island would have the same disease as the first type of bird: In our
terms this is a similarity transform. While Rips found that similarity between the two types of
birds also affected certainty, there is nothing in our theory that says that the typicality of the
bird with the disease should matter. Our view is that this implies there are two chains of sup-
porting inference: one based on the similarity transform, and one based on a generalization
(robins have disease x —» birds in general have disease x) and a corresponding specialization
(birds have disease x—e starlings have disease x). Rips’ finding that the typicality of the first
bird (robins) mattered more than typicality of the second bird (starlings) may reflect the fact
that the generalization is inherently a much less certain inference than the specialization, and so
is more affected by the certainty parameters.
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particularly relevant in the given context. Degree of similarity increases the
certainty of SIM inferences and decreases the certainty of DIS inferences, as
would be expected. In Table 5, therefore, the inference (3) that Holland has
daffodils and roses is more certain the more similar Holland is to England
with respect to climate or whatever variables one thinks flowers are related
to. The inference (4) that Brazil does not have roses and daffodils is more
certain the less similar Brazil is to England. The inference (7) that England
has peonies is more certain, the greater the similarity of peonies to both
daffodils and roses. The inference (8) that England does not have bougain-
villea is more certain, the less similar bougainvillea is to daffodils and roses.
More particularly, bougainvillea is dissimilar in that it tends to grow in
warmer climates than daffodils and roses.

Conditional Likelihood. Every statement transform involves an implicit
mutual dependency. The inference is always more certain the greater the
conditional likelihood () between the variables on which typicality or simi-
larity are measured and the yariable in question as shown in Table 6. If
climate were the variable used for measuring typicality and similarity, the
transforms on arguments would be more certain the more the climate of a
place constrains the flowers grown in the place. The mutual dependency is
slightly different for transforms on referents. They are more certain, the
more the climate where flowers grow constrains the places where flowers
grow.

Freguency. The frequency (¢) of the referent set within the domain of the
argument (which is the same as the all, most, or some variable in logic)
affects the certainty of all eight inferences, as shown in Table 6. For a par-
ticular instance like England, frequency with respect to the argument set
only makes sense if you think of England as a set of small parts (about the
size of Surrey or Holland) and count the frequency of parts that have daffo-
dils and roses versus those that do not. The more frequent daffodils and
roses are in the parts of England, then all but the DIS inferences are more
certain. For example, roses and daffodils are more likely to occur in Holland
or Surrey if they are very frequent in England. The two DIS inferences go in
the opposite direction. For example, the less frequent are daffodils and
roses in England, the more likely bougainvillea will be found there (though
this is a very weak inference).

1

Dominance. Dominance (8) affects GEN and SPEC inferences as is shown
in Table 6. In all cases, the greater the dominance of the subset, the more cer-
tain the inference. For example, for (2) if Surrey comprises most of England
it would be a more certain inference that it has daffodils and roses, than if it
is a very small area in England. Similarly for (6) if yellow roses are the most
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dominant kind of roses, they would be more likely found in England than if
they are a rare type of rose.

Multiplicity. The multiplicity of the referent (ur) and the multiplicity of
the argument (pa) directly affect the eight transforms as shown in Table 6.%
If England produces many different flower types (ur = high), then it makes it
more likely that temperate flowers in general grow in England and that peo-
nies, in particular, grow in England (one might even argue it makes yellow
roses more likely). However, the negative inference that bougainvillea do
not grow in England is less certain if England produces lots of flowers.
Similarly, if many countries have daffodils and roses (za is high), it is more
likely that Europe in general and Holland in particular have them, and it is
less likely that Brazil does not have them.

These two types of multiplicity often determine whether a SIM or DIS in-
ference is invoked. In particular, if a referent is viewed as single-valued (e.g.,
Capital(place) and Weather(place)), then DIS inferences are more certain
than SIM inferences. For example, if Capital(Spain) =Madrid and Lisbon
DIS Madrid, then probably Capital(Spain) # Lisbon; or if Weather(Boston) =
rain and Sunshine DIS rain, then probably Weather(Boston) # sunshine.
However, to the degree a referent is set-valued (e.g., Minerals(place) and
Means-of-locomotion(animal)), then SIM inferences are more certain than
DIS inferences. For example, if Mineral(Chile) = copper and Zinc SIM cop-
per, then perhaps Mineral(Chile) = zinc; or if Means-of-locomotion(gazelle)
=running and Walking SIM running, then probably Means-of-locomotion
(gazelle) = walking.

These examples bring up two caveats. First it is important to understand
that single-valued versus set-valued referents and arguments are often not
clearly distinguished in people’s minds, as linguists or logicians might prefer.
Instead, there is a continuum between single-valued and set-valued: Just
because it is raining in a spot doesn’t necessarily mean it isn’t sunny as well,
and just because the capital of Brazil is Brasilia doesn’t mean the capital of
Brazil isn’t Rio de Janeiro as well (where the Congress meets). In a parallel
manner, people may get the impression from their school learning that many
South American countries produce one mineral product and that is all (i.e.,
Chile produces copper, Venezuela oil, and Bolivia tin), in which case they
may reject other minerals as coming from these countries. So people treat
variables as having more or fewer values depending on their understanding
of the world.

* There are also indirect effects of low multiplicity on SIM and DIS transforms where 0’s
appear in Table 6. If only one or few kinds of flowers were grown in a country (ur =low), then
it would be less likely that Holland has daffodils and roses (especially if one knows about Hol-
land’s tulips), and more likely that Brazil does not have daffodils and roses. Similarly, if very
few countries had a particular flower (xa =low), then it is less likely that England would have
peonies, and more likely that it would not have bougainvillea.
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The other caveat has to do with the way that SIM and DIS inferences are
always competing. The competition between SIM and DIS inferences showed
up in the goose quacking protocol, where the SIM inference (i.e., ducks
quack, and geese are similar to ducks, so maybe geese quack) competed with
the DIS inference (ducks quack and geese are different from ducks in their
vocal cords, so probably geese do not quack). But often only one of the two
(SIM or DIS) is actually invoked, and so whether a SIM or DIS inference is
invoked can depend on other variables. If one thinks of the Minerals(Mines)
as being single-valued, then one will likely invoke a DIS inference rather
than the SIM inference cited above for copper and zinc (e.g., if Mineral
(Anaconda mine) =copper and Zinc DIS copper, then Mineral(Anaconda
mine) # zinc). But which inference wins out really does seem to hang on a
knife edge. If a person is aware that some mines produce more than one
mineral, then they may conclude that the Anaconda mine might very possi-
bly produce zinc as well as copper. In summary both SIM and DIS trans-
froms are appropriate in many cases, and whether a person invokes one or
the other often depends on the peculiarities of their knowledge, particularly
their knowledge about the multiplicity of the referents and arguments.

4.2 Formal Representation of Statement Transforms®
Table 7 shows the formal representations we have developed for each of the
eight statement transforms in terms of the variable-valued logic notation of
Michalski (1983). Most of the examples shown are from protocols we have
collected (Collins, 1978b), some of which appear in the first section of this
paper. We will briefly describe each of the examples.

We can illustrate GEN-based argument transforms with the inference that
if chickens have gizzards, then birds in general may have gizzards. The first
premise, represents the belief that chickens have gizzards: presumably almost
all chickens have gizzards so the frequency (¢) and the certainty (y) are high.
Presumably , is also high because any internal organ tends to occur in many
different animals. The second premise represents the belief that chickens are
birds, and that they are typical with respect to their biological characteris-
tics. As we pointed out earlier, the dominance (3) of chickens among birds
is low. The third premise states that the internal organs of a bird depend
highly on the biological characteristics of the bird. The conclusion that birds
in general have gizzards is fairly certain given the high values of the critical
variables. ’

SPEC-based argument transforms are illustrated by an example from the
beginning of the paper where the respondent inferred that the Andes might
be in Uruguay. The respondent believed that the Andes are in most South

—_—
* This section can safely be skipped by readers.



TABLE 7
Formal Representations of Statement Transforms*

(1) GEN-based argument transforms

dla)=r: v,, ¢, pa
o’ GEN ain CX (a’,D(a’)): 7, 72,5
D{a')<—===>d(a’): @, 13

d{a’)=r: y=f (1, ¢, pa. 7, v2, 8, @, 73)

Internal organ (chicken)={gizzard ...}: v1=high, ¢=high, ge=indeterminate
Bird GEN chicken in €X (bird, biological characteristics(bird)):

r=high, y2=high, §=low
Biological characteristics (bird) <— — — —>Internal organ (bird):

a=high, ya=high

Internal organ (bird)= {gizzard ...}: y=high

(2) SPEC-based argument transforms

d{a)=r: 11, ¢
a’ SPEC @ in CX (a; D{a)): 7, y2,'6 -
D(a) <=~ = ~>d(a): a, y3

d(a’)=r: y=f (y1, ¢, 7, 2, 5, @, 73)

Mountains (S.A. country)= {Andes ...}t y1=high, ¢=high, ga=indeterminate

Uruguay SPEC S.A. country in CX (S.A. country; characteristics(S.A. country)):
r=high, y2=high, §=low

Characteristics (S.A. country) <— — — —>Mountains (S.A. country):
a=moderate, y3=high

Mountains (Uruguay)={Andes ... }: y=moderate

(3) SIM-based argument transforms

d(a)=r: y1, ¢, pa

o’ SIM g in CX (A: D(A)): o, 72
D(A)<———=>d(A): a, ¥3

a, @’ SPEC A: v4, s

Livestock (West Texas)= {cattle .. -}t mi=high, ¢=high, ma=high

Chaco SIM West Texas in CX (region; vegetation(region)):
$=moderate, y2=moderate )

Vegetation (region) <— — — —> Livestock (region): a=high, ya=high

West Texas, Chaco SPEC region: y4=high, ys=high

Livestock (Chaco)={cattle ...} y=moderate

(continued)
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(4)

()

(6)

30

DiS-based argument transforms

d(@)=r: v, ¢, pa

a’ DIS a in CX({A; D(A)): a0, 12
D(A)<— — = =>d(A): «, 72
a, a’ SPEC A: 4, 75

d(a’)#r: y=H1, ¢, pa. 0, ¥2. @, ¥3, ¥4, ¥5)

Sound (duck)=quack: y1=high, ¢=high, pa=low
Goose DIS duck in CX (bird; vocal cords (bird)):
o=low, y2=moderate
Vocal cords (bird) <— — — —>Sound (bird): a=high, ya=low
Duck, goose SPEC bird: y4=high, ys=high

Sound (goose) # quack: y=low

GEN-based referent transforms

dla@)={r...}: v, o, ur

r’ GEN rin CX(d; O(d)): 7, y2: &
D(d) <————=>A(d): a, v3

a SPEC A: 4

Agricultural product (Honduras)={bananas ...}:
yi=unknown, ¢=high, ur=high

Tropical fruits GEN bananas in CX (agricultural products,
climate(agricultural products)): r=high, y2=high, §=low

Climate (agricultural products) <— — — —>Place (agricultural products):
a=high, ys=high

Honduras SPEC place: y4=high

Agricultural products {Honduras)= {tropical fruits...}: y=moderate

SPEC-based referent transforms

dl@)={r ...}: y, )

r' SPEC r in CX(d; D(d)): 7, y2, §
D(d)<———=>A(d): a, v3

a SPEC A: v4

dla)={r" ... }: y=F (11, &, 7, v2, §, @, ¥3, v4)

Minerals (South Africa)={diamonds...}: y1=high, ¢=high

Industrial diamonds SPEC diamonds in CX (minerals; characteristics(minerals)):
r=high, ya=high, é=high

Characteristics(minerals) <— — — —>Place (minerals): a=moderate, ya=high

South Africa SPEC place: ya=high

{continved)
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TABLE 1 (Continued)

(7) SiM-based referent transforms

dla)={r...}: y1. &, ur

r’ SIM r in CX(d; D(d)): ¢, y2
D(d)<————>A(d): «, 13
a SPEC A: 74

da)={r"...}: y=Hm. &, pr. 0, y2. @, y3. 74)
Sound (wolf)={howl...}: i=high, ¢=high, pr=Ilow
Bark SIM howl in CX(sound; means of production(sound)):
o=high, y2=high
Means of production (sound) <~ — — —>animal (sound): a=high, ya=high
Wolf SPEC animal: y4=high

Sound (wolf)={bark. ..}: y=moderate

(8) Dis-based referent transforms

dl@)={r...}: y1. &,

r' DIS r in CX(d; D(d)): o, y2
D(d) <= == =>A(d): , 13
a SPEC A: v4

dl@)={r'...}: y=Hmn, &, pr 0, y2. @, ¥3, 74)

Color (Princess phones)= {white, pink, yellow...}: yi=high, ¢=high, gr=moderate
Black DIS white & pink & yellow in CX (color: lightness(color)):
o=low, y2=high
Lightness (color) <— — — —=>phone type (color): a=low, ya=high
Princess phone SPEC phone: y4=high

Color (Princess phones) # {black. .. }: y=moderate

* D and A represent superordinates of d and a respectively.

American countries, so frequency (¢) was moderately high. With respect to
the second premise, Uruguay is a typical South American country, which in-
creases the likelihood that the Andes would be found there. But its low
dominance (6) in terms of the proportion of South America that Uruguay
comprises makes the inference less likely. With respect to the third premise,
the fact that Uruguay is typical of South American countries in general only
weakly predicts that it will include the Andes mountains. Altogether, the in-
ference is fairly uncertain given the moderate frequency and the low domi-
nance of Uruguay.

We can illustrate SIM-based argument transforms with the Chaco proto-
col from the beginning of the paper, where the respondent inferred that the
Chaco might produce cattle given that west Texas did. In the first premise,
the frequency (¢) with which different parts of west Texas have cattle is
high, and the multiplicity (xa) of places with cattle is high, both of which
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make the inference more likely. The second premise asserts that the Chaco
is at least moderately similar to west Texas in vegetation (or whatever vari-
ables the respondent had in mind). The third premise relates vegetation of a
region to its livestock, which is a strong relation, given that cattle will usu-
ally be raised where the vegetation will support them. The fourth premise
merely establishes the fact that west Texas and the Chaco are regions, in
support of the second and third premises. The conclusion is only moderate
in certairity, given our assumption of uncertainty about how similar the
Chaco and west Texas are.

To illustrate DIS-based argument transforms, we chose the example from
the protocol shown earlier as to whether a goose quacks. The first premise
reflects the respondent’s belief that ducks quack, which was very certain.
Though almost all ducks quacks (¢ is high), very few other animals quack
(za is low), which makes the DIS inference more certain. The second premise
. states the belief that ducks and geese are dissimilar in their vocal cords which
the respondent must have been at least a bit uncertain about (hence the low
certainty assigned to the statement). The third premise relates the sound a
‘bird makes to its vocal cords, which also must have been an uncertain belief
given that it is not true. The certainty of the conclusion that geese do not
quack should have been fairly low (though another inference led to the same
conclusion in the actual protocol).

We have created an example to illustrate GEN-based referent transforms.
The first premise asserts that Honduras produces bananas among other
things (the multiplicity (ur) of agricultural products is high). Bananas are a
fairly typical tropical fruit in terms of the climates where they are grown, as
the second premise states. The third premise asserts that the climate appro-
priate for agricultural products constrains the places where they are grown
fairly strongly. The conclusion follows with moderate certainty that Hon-
duras produces many tropical fruits, such as mangos and coconuts,

We also created the example of SPEC-based referent transforms. The
first premise states that South Africa produces diamonds. Industrial dia-
monds are a kind of low-quality diamond (used in drills) and they must be
fairly dominant (5) among diamonds given their low quality, though they
are not particularly typical of what we think of as diamonds. Here is a case
where high dominance compensates for low typicality. The third premise is
somewhat irrelevant since the typicality is low. But the inference that South
Africa produces industrial diamonds is quite certain given the high domi-
nance of industrial diamonds among diamonds.

" The example of SIM-based referent transforms is drawn from a protocol
where the respondent, when asked whether wolves could bark, inferred they
probably could (Collins, 1978b). One of his inferences derived from the fact
that he knew wolves could howl, with both high frequency and certainty (but
low multiplicity (ur) because most animals only make one or two sounds).
He also thought that barking was similar to howling in terms of the way the
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sound is produced (a howl, as it were, is a sustained bark). Furthermore, the
means of production of a sound constrains the type of animals that can
make that sound, as the third premise states. It follows then with at least
moderate certainty that a wolf can bark.

The example of DIS-based referent transforms is from a protocol where
the respondent was asked if there are black princess telephones (Collins,
1978b). The respondent could remember seeing white, pink and yellow prin-
cess phones, as the first premise states. Here the frequency (¢) of these colors
among those she had seen seemed quite high, which counts against the pos-
sibility of black princess phones. But the multiplicity of different colors
among phones (ur) is moderate, which counts for the possibility of black
princess phones. The second premise reflects the fact that black is quite dis-
similar to those colors in terms of lightness. The third premise states that
knowing the lightness only somewhat constrains the type of phone (« is
low). The conclusion that princess phones are not black is uncertain given
the low « in the third premise and the moderate g in the first premise.

5. INFERENCES BASED ON IMPLICATIONS
AND DEPENDENCIES

The previous section illustrated the systematic patterns by which one state-
ment can be transformed into another. The pattern of inferences based on
mutual implications and dependencies is somewhat more complicated, but
is also quite systematic. There are three basic classes of these inferences: (a)
derivations from mutual implications and dependencies, where a statement
is derived from an implication or dependency, (b) transitivity inferences,
where a new implication or dependency is derived from a given pair of im-
plications or dependencies, and (c) argument or referent transforms based
on implication or dependency that parallel the statement transforms shown
in the previous section. In this section we give the formal representation for
these inference patterns together with an example of each.

5.1 Derivations from Implications and Dependencies
Table 8 illustrates the two types of derivation from mutual implication that
occurred in the protocols shown at the beginning of the paper. The positive
derivation illustrates how multiple conditions were ANDed together (i.e., a
warm climate, heavy rainfall, and flat terrain) as predictors of rice growing.
The belief that Florida has all three leads to a prediction that rice will be
grown there. In the actual protocol the respondent was unsure about rain-
fall in Florida, and so concluded that rice would be grown if there were
enough rain (i.e., Rainfall(Florida)=heavy<= = => Product(Florida) =
{rice...}). ‘

The negative derivation illustrates the fact that if any of the variables on
one side of a mutual implication that are ANDed together do not have the
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TABLE 8
Formal Representations of Derivations from Mutual Implication

Positive Derivation

dife)=r1<==>ds(a)=r2 a, 1
difa’)=ri: ¢, y2

a’'=SPEC a: v3

d2(a’)=r2: y=*Ha, 71, ¢, v2. 73)

Climate(place)=warm & Rainfall(place)=heavy & Terrain(place)=flat <==>
Product{place)={rice. .. }: a=high, y1=certain

Climate(Florida)=warm: ¢1=moderately high, y2=certain

Rainfall(Florida)=heavy: ¢2=moderate, ya=uncertain

Terrain(Florida) =flat: ¢a=high, y4=certain

Florida SPEC place: ys=certain

Product(Florida)= {rice. . .}: y=uncertain

Negative Derivation

di{a)=ri<==>ds(a)=r2"c;, 7
di(a’)#r: ¢, y2, pr
a’SPEC a: vy3

da(a’) #rz y=Ha, 11, 6, ¥2, e, ¥3)
Rainfall(place)=reliable & climate(place)=subtropical <= =>
Product(place) = {coffee. . .}: a=moderate, y1=certain

Rainfall(Llanos) % reliable: ¢=high, y2=fairly certain, pr=low
Llanos SPEC place: ya=certain

Product(Llanos) # {coffee. . . }: y=fairly certain

appropriate values, then you can conclude that the variable on the other
side does not have the value assumed in the mutual implication. In the ex-
ample, because the Llanos did not have reliable rainfall, the respondent
concluded that the Llanos probably did not produce coffee. If variables are
ORed together (e.g., either heavy rainfall or irrigation are needed for grow-
ing rice) a different pattern holds: Having one or the other predicts rice is
grown and having neither predicts no rice is grown.

Table 9 shows the equivalent representations for derivations from mutual
dependencies. The inference patterns are different for positive and negative
dependencies, so we have separated them in the table. It is possible to draw
a negative conclusion from a mutual dependency simply by negating the sec-
ond premise and the conclusion in either of the patterns shown.

The positive dependency represents the case where as one variable in-
creases, the other variable also increases. In the formal analysis we have
denoted the entire range of both variables by three values: high, medium,
and Jow. When a positive dependency holds, if the values of the first variable
is high, medium, or low, the value of the second variable will also be high,
medium, or low, respectively. This is the weakest kind of derivation possible
from a mutual dependency. In the example, if a person knows that the tem-
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TABLE 9
Formal Representations of Derivations from Mutual Dependencies

Derivation from Positive Dependency
difg)<— =t — —>d2(a): &, M
di(a’)=high, medium, low: ¢, y2
'=SPEC a: y3
dz{a’)=high, medium, low: y=Ha, 7. ¢, v2, 13)
Temperature(air) <— — + — —>Water holding capacity(air): a=high, y1=certain
Temperature(air outside) =high: ¢=high, y2=certain
Air outside SPEC air: y3=certain

Water holding capacity(air outside)=high: y=certain

Derivation from Negative Dependency

di{fg) <= —"— —>d2(d): o, 1
di(a’)=high, medium, low: ¢, y2
a’'=SPEC a: v3

da(a’)=low, medium, high: ¥=He, 71, ¢, v2. 73)

Abs. Val. Latitude(place) <— =~ — ~> Aver. Temperature(place): linear;
0°, 85° 90°, 0°; a=moderate, y1=certain

Abs. Val. Latitude (Lima Peru)=10°: ¢=high, y2=tairly certain

Lima Peru SPEC place: y3=certain

Aver. Temperature(Lima Peru)=75°: y=moderately certain

perature of air predicts the water-holding capacity of air, and he knows that
temperature of the air outside is warm, then he can infer that the air outside
could hold a lot of moisture. People make this kind of weak inference very
frequently in reasoning about such variables (Collins & Gentner, 1987;
Stevens & Collins, 1980).

The pattern for the negative dependency is reversed: if the value of one
variable is high, the other is low, and vice versa. We have illustrated the
derivation from a negative dependency in terms of a more precise depen-
dency between two variables. If a person believes that the latitude of a place
varies negatively (and linearly) with the temperature of the place, and also
that the average temperature is near 85 degrees at the equator and 0° at the
poles, then he might conclude that a place like Lima, Peru, which is about
10° from the equator, has an average temperature of about 75°. People
have both more or less precise notions of how variables interact, and we
have tried to preserve flexibility within our representation for handling these
different degrees of precision.

5.2 Transitivity Inferences

Table 10 shows two forms of a transitivity inference, one based on mutual
implication and the other based on mutual dependency. The example for
mutual implication states that if a person believes an average temperature of
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TABLE 10

Formal Representations of Transitivity Inferences

On Mutual Implication

di(@)=ri<==>d2{a)=r2: =1, B1. 1
do(a)=r2<==>d3(a)=ra: a2, B2, y2

di(a)=r1<==>ds(a)=ra: a=f(a1, uz), B=%(81, B2) Y=F(y1, 72)

Aver. Temperature(place) =85° <= => Latitude(place) =equatorial:
ar=high, Bi=fairly high, y1=certain

Latitude(place) =equatorial <= => Abs. humidity(place)=high:
o2=high, B2==moderate, y2=certain

Aver. Temperatur®(place)=85° <= => Abs. Humidity(place)=high:
a=high, f=low, y=certain
On Mutual Dependency

di{a) <= —=>dz(a):.an, B1, M
d2(a) <— —>da(a): a2, B2, v2

di{a) <= =>d3(a): a=Hoc, ag), B=F(B1, B2) y=Fm1, v2)

Interest rates(countryf <— — —>Money supply growth(country):
ar=high, Bi=moderate, y1=certain

Money supply growth(country) <— t —>Inflation rate(country):
az=high, B2=high, y2=certain

Interest rates(country) <— = —=>Inflation rate (country):
az=high, fa=low, ya=certain

85° implies a place is equatorial, and that if a place is equatorial it will tend
to have high humidity, then he can infer that if the average temperature of a
place is 85 ° it will tend to have high humidity, and vice versa. This example
illustrates the way people often confuse causality and diagnosticity in their
understanding.'® If one were to write the causal links for this example, it
would probably go from equatorial latitude to high temperature to high
humidity. But people do not systematically make a distinction between
causal and diagnostic links, nor do they store things in such a systematic
order. For example, they may know that equatorial places, such as jungles,
have high humidity and not link it explicitly to their high temperature. Thus,
the inference in this example derives a more direct link (temperature<= =
humidity) from a less direct link (latitude <= =>humidity). It also should
be noted that the diagnostic link in the first implication (temperature=>
latitude) may be more constraining than the causal link (latitude => temper-
ature). That is, there are probably more equatorial places where the average
temperature is not 85° (e.g., Ecuador), than places where the average tem-
perature is 85° but are not equatorial.

e This is not to say that where people do make a clear distinction between causality and
diagnosticity, as in the examples cited by Tversky and Kahneman (1980), that they do not treat
« and 3 asymmetrically, giving preference to causal links.
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TABLE 11
Formal Representations of Referent Transforms based on Mutual Implications

Positive Transforms

di{a)=r1<==>ds(a)=r2: a1, 71, pr
GEN

r'2 SPEC rz2 in CX(d2; D(d2)): {r/0}, 12
SiM

D(d2) <~ —>A(d2): a2, 73
di{a)=r1<==>da)=r"2 y=Har, v1, pr, {170}, v2. @2, 73)

Climate(place)=subtropical <= => Fruit(place)={oranges. ..}

Citrus fruits GEN

Navel oranges SPEC oranges in CX (fruit; growing conditions(fruit))
Grapefruit SIM

Growing conditions(fruit) <— > Place(fruit)

) {Citrus fruit...}
Climate(place) =subtropical <= =>Fruit{place) = {Naval oranges.. .}
{Grapefruit...}

Negative Transforms

di{a@)=ri<==>dz{a)=r2: a1, 71, pr
r’2 DIS rz in CX (d2: D(d2)): o, 12
D(d2) <= —=>A(d2: e2. v3

di(a)=r1 <==>dz2(a) #r'2: y=Har, y1. pe, 0, ¥2, 22, 73)

Climate(place) =subtropical <= => Fruit(place) = {oranges. ..}
Apples DIS oranges in CX (fruit; growing conditions (fruit))
Growing conditions(fruit) <— —>Place (fruit)

Climate(place) =subtropical <= =>Fruit(place) # {apples...}

The example for a transitivity inference on mutual dependency illustrates
how people reason about economics (Salter, 1983). Salter askéd subjects
questions, such as what is the effect of an increase in interest rates on the in-
flation rate of a country. People gave him chains of inferences like the one
shown: If interest rates increase, then growth in the money supply will de-
crease, and that in turn will cause the inflation rate to decrease (the latter is
a positive dependency). So an increase in interest rates will lead to a decrease
in the inflation rate. This kind of reasoning is a major way that people con-
struct new mutual implications and dependencies.

5.3 Transforms based on Implications and Dependencies

Tables 11 and 12 show a set of transforms based on mutual implications
that follow the same pattern as the statement transforms in the previous sec-
tion. Table 11 shows four referent transforms that parallel the last four
statement transforms shown in Tables 5 and 7. (In fact there is a quite direct
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TABLE 13
Formal Representations of Argument Transforms based on Mutual Dependencies

Positive Transforms

di(a) <= —>d2(a): a1, N

SIM
) da(A) <= —=>d2(A): a2, v3
di{a’)<— =>d2a’): y=far, 71, {770}, y2. 2, ¥3)

GEN
a’ SPEC ain CX (A; d3(A)): {1/0}, 72

Business tax rate (state) <—

Government unit GEN
Hlinois SPEC state in CX (place; economics (place))
Province SIM

—>Amount of investment(place)

—>Amount of investment (state))

Economics(place) <~

(government unit)
Business tax rate (Nlinois)
(province)

: (government unit)
<— ~ —3 Amount of investment (Hlinois)
(province)

with respect to their growing conditions, then probably subtropical places
do not produce apples.

Table 12 shows the corresponding four types (i.e., GEN, SPEC, SIM,
and DIS) of argument transforms. These correspond to the first four state-
ment transforms shown in Tables 5 and 7. We illustrate the four with a
demographic example: If one believes that men who live in the tropics have
a short life expectancy and that farmers are typical of men in terms of their
demographic characteristics, then one can plausibly infer that farmers have
a short life expectancy if they live in the tropics. Similarly one can infer that
people in general and women (because they are similar to men in their demo-
graphic characteristics) have short life expectancy in the tropics. Finally,
one might conclude that birds do not have a short life expectancy in the
tropics, if one thinks they are dissimilar to men in their demographic char-
acteristics. : )

Table 13 shows the corresponding positive transforms based on mutual
dependencies. We have illustrated these with another example from eco-
nomics: If one believes that the business tax rate in a state negatively im-
pacts the amount of investment in that state, then one might generalize this
relationship to any governmental unit, or particularize it to Illinois, or con-
clude that it would also apply to Canadian provinces. There is really no
negative transform based on dissimilarity that corresponds to these three
positive transforms. For example, if one believes that communist countries
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are quite dissimilar from states in their economics, the most one can con-

“clude is that there is no negative relation between the business tax rate (if
there were one) and the amount of investment; that is to say, no conclusion
can be drawn. In such a case we just omit the form from the theory, because
the theory does not specify conclusions that cannot be drawn. Similarly,
there can be no referent transforms based on mutual dependencies, because
they do not involve a referent.

6. CONCLUSION

We conclude with a few comments about the methodology being used to
construct and test the theory. It is difficult for experimental psychologists to
find experiments that address the processes that people use to answer every-
day questions. The problem is that cognitive psychology’s methods are
limited for the most part to percent correct and response time measures.
Trying to understand the processing in the human mind with these two mea-
sures is like trying to conduct a surgical operation with a hammer and chisel.
The tools are inappropriate for the questions involved. Cognitive psycholo-
gists manage to carry off some clever operations despite their tools, but at
the same time they should be looking for finer grain tools.

The methodology of fitting the arguments made in a set of human re-
sponses to a minimal set of argument forms is an attempt to develop one
such fine grain method. The method attempts to balance the constraints
necessary to produce consistent structures. It is not a hypothesis-testing
method: The forms used to fit the data are for the most part derived from
the data. The difficulty of the data analysis is to find the optimal decompo-
sition of the argument forms, so that the set of forms is in some sense mini-
mal (i.e., there are not a large set of forms that share subparts). In other
words, the difficulty is to extract all the regularities from the data. Suffice it
to say we have only partially succeeded in this endeavor.

There are real limitations to the methodology, just as there are limita-
tions when an astronomer studies the sky using only the visible spectrum.
Some of the problems with protocol analysis as developed by Newell and
Simon (1972) apply to the analysis of people’s answers that the theory is
based on: It is both a post hoc analysis and a highly inferential analysis. Un-
like protocol analysis, the method used here does not interfere with normal
processing; people just answer in a way that is the normal conversational
mode. Some psychologists worry that answering so many questions may
force people into a special mode of answering questions, but the patterns of
inference appear to be the same in the teaching dialogues we have collected.
Even if people are more articulate about their reasoning in this kind of set-
ting, they are not inventing new modes of reasoning for the occasion.

Another difficulty in constructing a theory of plausible reasoning from
analyzing actual cases of human reasoning is that the theory is likely to be
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underconstrained. That is to say, there may be many cases where people
could employ a particular reasoning pattern, but do not because of other
constraints on its invocation. As it stands now, the only constraints we place
on the invocation of any inference pattern is that its premises be satisfied
and that its certainty parameters not drive the conclusion below some thresh-
old level of certainty. But there may well be other factors that constrain the
invocation of any inference pattern.

A more serious limitation to the method is its bias against nonverbal pro-
cesses. We can illustrate this with the following protocal. (Q stands for
questioner, R for respondent.)

Q: How many piano tuners do you think are in New York City?

R: Well now let me think. How many people are there in New York City any-
way? If you think about the whole area, I suppose there may be 10 or 12
million people. Youdon’t need a lot of piano tuners to keep a whole city in
tune. Maybe a thousand?

: Why do you guess a thousand?

: Well, let’s think. If there are 12 million people in the city. How many house-
holds might there be, and what proportion of them would have pianos and
then how many. . .? We’re talking about employed piano tuners I suppose.
A piano tuner must need to do a whole lot of pianos just to keep bread on
the table. Ah. A thousand is beginning to sound a little high because if one
guy does a whole lot of pianos, he’ll cover a lot of ground. There must be
fewer piano tuners than there are doctors in the city. They can service more
pianos, and they are fewer and farther between. It’s just a matter of what
feels right and might be off by an order of magnitude either way. Maybe-
300.

7R

In the protocol the respondent attempts to carry out a means-ends analy-
sis of the problem (Newell & Simon, 1972), but never carries it through.'
Rather the respondent seems first to pull the number 1000 out of the air,
which is then revised down to 300. The number 1,000 could have been derived
from any number of nonverbal processes. In any case, whatever process was
used, there is no trace in the protocol of it. Such nonverbal processes may
be as equally systematic as the verbal processes that are so omnipresent; it is
just that they do not show up in the protocols. The danger John Seely Brown
and Jonathan Baron (personal communication) point out is that the verbal
protocols may be rationalizations for answers arrived at by some other pro-
cess. Our intuition is different. It is that the answers frequently follow from
both verbal and nonverbal reasoning processes and that these are weighed
together in responding. In answering the piano tuner question some subjects
have actually carried through a verbal process (in particular the means-ends

'* Directed search techniques, like means-ends analysis are beyond the scope of the theory,
though they often utilize information obtained from the kind of automatic inferences included
in the theory.



42 " COLLINS AND MICHALSKI

analysis the subject quoted above started, or a functional analogy) and the
answers they derived clearly followed from the verbal process. If our analy-
sis is correct, the responses shown in the five protocols at the beginning of
the paper follow at least in part from a verbal process. It is certainly true
that nonverbal processes will not be as visible in the responses, though some
subjects certainly allude to them (Collins, 1978a, 1978b). But their existence
does not negate the ubiquity of patterns we have identified in people’s rea-
soning. Our position, then, is that while there may be additional processes
used to answer questions that are not apparent in the responses, nevertheless
the processes apparent in the responses play a central role in determining
people’s conclusions, and hence are not mere rationalizations.

The real test of our position is whether a computer implementation of the
theory produces the same conclusions as people do and for the same reasons,
given the same information. In order to test out the core theory, we have
built a computer model iricorporating the reasoning patterns derived from
our analysis (Baker, Burstein, & Collins, 1987). Similar models were also
built by Dontas and Zemankova (1987) and Kelly (1988), a student of Michal-
ski. We plan to evaluate the thieory in a series of experiments comparing the
system’s reasoning to that of expert human reasoners who have no special
knowledge about the domain they are asked to reason about. To do this we
will ask expert human reasoners, working from well specified, small knowl-
edge bases in geography and economics to draw plausible conclusions from
each knowledge base and to estimate the certainty of each conclusion. The
knowledge bases are incomplete and it is the subject’s task to infer what
they can about the missing information. For example, the geography data
base has data about twelve different regions of the world concerning nine
different variables such as climate, soil, terrain, precipitation, and grain.

This methodology for testing the theory looks like it will be very reveal-
ing. The data we have collected so far, though not fully analyzed as yet, are
very rich in the kinds of inferences described in the core theory. But there
are clearly new inference patterns emerging in the data. We think this kind
of tight coupling between computational modeling on the one hand and de-
tailed analysis of human processing on the other hand offers a genuinely
new approach to understanding human thinking.

W Original Submission Date: April 18, 1988
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GLOSSARY

argument. The concept within a statement to which a descriptor is applied.
For example, in “means-of-locomotion (birds) = {flying...},”” ‘‘birds” is
the argument.

argument transform. A plausible inference where a person infers a state-
ment (or its negation) is true based on the fact that the argument in the state-
ment is related by one of the four relations (GEN, SPEC, SIM, and DIS) to
the argument in a statement the person believes is true. For example, if a
person believes that ‘‘grain(Kansas)={wheat...}"" and that ‘‘lowa SIM
Kansas”’ then a person may plausibly infer that ‘‘grain (lowa) = {wheat...}”.
(See Tables 5 and 7 for other examples.)

certainty. The certainty parameter denoted by v that indicates the degree
of belief a person has that an expression is true. For example, in ‘‘means-of-
locomotion(dogs) = {swimming. ..}, ¥ denotes the degree of belief a per-
son has that dogs in general can swim.

conditional likelihood. The certainty parameters denoted by « and 3 that
in a mutual implication or dependency indicate the degree of constraint
from one side of the expression to the other. For example, ‘‘temperature
(place) <— — —> desirability-of-living(place)’’, « denotes the degree to which
“‘temperature(place)’’ predicts ‘‘desirability-of-living(place)’’ and 3 denotes
the degree that ‘‘desirability-of-living(place)’’ predicts ‘‘temperature(place)’’.

dependency (see mutual dependency between terms).

descriptor. The concept within a statement that applies to the argument to
form a term. For example, in ““means-of-locomotion(birds) = {flying...}",
‘““means-of-locomotion’’ is the descriptor.

derivation from a mutual dependency. A plausible inference where a per-
son derives a belief about a new statement based on knowledge about a partic-
ular statement and how another term depends on the term in that statement.
For example, if a person believes ‘‘temperature (place) < — * —> desirability-
of-living (place)’’, and that ‘‘temperature (Texas)=warm,”’ then he may
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infer that ‘‘desirability-of-living (Texas) = high’’. (See Table 9 for other ex-
amples.)

derivation from mutual implication. A plausible inference where a person
derives a belief about a new statement based upon knowledge about a partic-
ular statement and how another statement depends on that statement. For
example, if a person believes ‘“‘grain(place) =rice<= => rainfall(place) =
heavy” and that “‘grain(Southern China)=rice”’, then he may infer that
“rainfall (Southern China)=heavy”’. (See Table 8 for other examples.)

DIS. The dissimilarity relation that specifies a concept that is dissimilar
to another concept. For example, geese DIS ducks in CX (birds, neck length
(birds)) means that geese are dissimilar to ducks in the length of their necks.

dissimilarity transform. A plausible inference where a person infers a
statement’s negation based on the dissimilarity of the argument or referent
in the statement to the argument or referent in another statement that the
person believes is true. For example, if a person believes that ‘‘geese DIS
ducks in CX(birds, neck length (birds))’’ and that “‘sound (ducks) = quack”’
and that “‘neck length (birds) <~ —>sound (birds)’’, then he may conclude
that “‘sound (geese) # quack’’. (See Tables 5 and 7 for other examples.)

dominance. The certainty parameter denoted by & that specifies the de-
gree a subset comprises a large fraction of its superset. For example, chickens
comprise a large fraction of poultry, whereas turkeys comprise only a small
fraction.

expression. Any statement, mutual dependency, or mutual implication.
For example, ‘‘sound(ducks) = quack’’, *‘geese DIS ducks in CX(birds; neck
length(birds))’’, *‘cost(coal)<— —>cost (oil)””, “‘rainfall(place) =heavy
<= =>grain(place) =rice’’ are all expressions. ‘

Sfrequency. The certainty parameter, denoted by ¢, that specifies the pro-
portion of elements in the argument set for which the referent is true. For
example, for ‘‘means-of-locomotion (birds) = {flying. ..}, ¢ specifies the
proportion of birds that fly.

GEN. The generalization relation that specifies a superordinate of a con-
cept. For example, *‘island GEN Great Britain in CX(islands, size (island))’’
means that Great Britain is an island (with typicality evaluated in terms of
size). -
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generalization transform. A plausible inference where a person infers a
statement is true based on the fact that the argument or referent in the state-
ment is a generalization of the argument or referent in a statement the per-
son believes is true. For example, the person knows that ¢‘birth-form (frogs)
=eggs’® and that ‘“‘amphibians GEN frogs”’, the person might plausibly
conclude that ““birth-form (amphibians) =eggs’’. (See Tables 5 and 7 for
other examples.)

implication. (see mutual implication between statements)

multiplicity of the argument. The certainty parameter, denoted by pa that
specifies the degree to which there are multiple arguments within the super-
ordinate of the argument for which the statement holds true. For example,
for “‘means-of-locomotion(birds) = {flying. .. }’’, pa is low because not many
other kinds of animals can fly, whereas for ‘‘means-of-locomotion (robins)
= {flying...}”’, pa is high because many other kinds of birds can fly.

multiplicity of the referent. The certainty parameter, denoted by ur that
specifies the degree to which there are multiple referents within the super-
ordinate of the referent (i.e., the descriptor) for which the statement holds
true. For example, for “‘means-of-locomotion (birds) = {flying...}"” ur is
moderate because there are other means of locomotion (e.g., walking, swim-
ming) among birds.

mutual dependency between terms. An expression which characterizes
the relationship between two terms. For example, ‘‘temperature (place)
< - - —>latitude (place)’’ expresses the relationship that temperature in-
creases as latitude decreases. The a and B certainty parameters express the
degree that knowing about temperature constrains latitude, and knowing
about latitude constrains temperature, respectively.

mutual implication between statements. An expression which character-
izes the relationship between two statements. For example, ‘‘temperature
(place) = hot <= =>latitude(place) =tropical’’ expresses the belief that hot
places are tropical (the right arrow) and that tropical places are hot (the left
arrow). The « and 3 certainty parameters express the degree to which know-
ing the place is hot leads to believing it is tropical, and the degree to which
knowing the place is tropical leads to believing it is hot.

referent. The concept within a statement which specifies the value(s) of
the term. For example, in ‘“‘means-of-locomotion(birds) = {flying...}”,
““flying’’ is the referent.
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referent transform. A plausible inference where a person infers a state-
ment (or its negation) is true based on the fact that the referent is related by
one of the four relations (GEN, SPEC, SIM, and DIS) to the referent ina
statement the person believes is true. For example, if a person believes *‘poli-
tical beliefs (George) = {conservative...}’’ and ‘‘hawkish SIM conserva-
tive”’, then she may plausibly conclude that ‘““‘political beliefs (George) =
{hawkish. ..}, (See Tables 5 and 7 for other examples.)

relation. One of the4our relations: GEN, SPEC, SIM, and DIS. They
select a member of either the generalization set, the specialization set, the
similarity set, or the dissimilarity set, respectively, of the set operated on.
For example, *‘birds GEN ducks’’ selects the set ‘“birds’’ among the gener-
alization sets of ducks, rather than water fowl or poultry.

SIM. The similarity relation that specifies a concept that is similar to
another concept. For example, geese SIM ducks in CX(birds; feet(birds))
means that geese are similar to ducks in the kind of feet they have.

similarity. The certainty parai‘neter, denoted by o, that specifies the de-
gree of match between two concepts with respect to some set of characteris-
tics specified by the context (CX). For example, from “‘geese DIS ducks in
CX(birds, neck length(birds))’’, o specifies the degree to which ducks and
geese are similar in the context of the neck lengths of birds.

similarity transform. A plausible inference where a person infers a state-
ment is true based on the similarity of the argument or referent in the state-
ment to the argument or referent in another statement the person believes is
true. For example, if a person believes that ‘‘geese SIM ducks in CX(birds;
legs (birds))’’ and that ‘““means-of-walking(ducks) = waddle’’ and that ‘‘legs
(birds) <— —> means-of-walking(birds)’’ then she may conclude that ‘“‘means-
of-walking (geese) =waddle’’. (See Tables 5 and 7 for other examples.)

SPEC. The specialization relation that specifies a subordinate of a con-
cept. For example, ‘“bobolink SPEC bird in the CX (birds, characteristics
(birds))’’ means a bobolink is a bird (with typicality evaluated in terms of
all characteristics).

specialization transform. A plausible inference where a person infers a
statement is true based on the fact that the argument or referent in the state-
ment is a specialization of the argument or referent in a statement that the
person believes is true. For example, if a person believes ‘‘means-of-loco-
motion(birds) = {flying. .. }’’ and that ‘‘bobolink = SPEC(bird)’’ the person
may plausibly conclude that ‘‘means-of-locomotion(bobolinks) = {flying
...}”. (See Tables 5 and 7 for other examples.)
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Statement. An expression where a descriptor is applied to an argument
specifying some set of referents. For example, “‘means-of-locomotion (birds)
= {flying, hopping...}" is a statement.

term. The left side of a statement, that is, a descriptor applied to an argu-
ment. For example, ‘“‘means-of-locomotion (birds)’’ is a term. -

transform based on a mutual dependency. A plausible inference where a
person infers a dependency is true based on the fact that the argument in the
dependency is related by one of three relations (GEN, SPEC, and SIM) to
the argument in a dependency the person believes is true, For example, if a
person believes *‘latitude (place) <— —> temperature (place)’’ and that “‘city
SPEC place”, then she can plausibly infer that ‘“‘latitude (city)<— —>tem-
perature (city)’’. (See Table 13 for other examples.)

transform based on a mutual implication. A plausible inference where a
person infers an implication is true based on the fact that an argument or
referent in the implication is related by one of the four relations (GEN,
SPEC, SIM, or DIS) to the argument or referent in an implication the per-
son believes is true. For example, if a person believes that “‘means-of-loco-
motion(object) = {flying. .. } <= =>structural part (object) = {wings. ..}"
and that “‘animals SPEC object’’, then he might plausibly infer that “‘means-
of-locomotion (animals) = {flying. ..} <= =>siructural part (animal)=
{wings...}”. (See Tables 11 and 12 for other examples.)

transitivity inference. A plausible inference where a person infers that an
implication or dependency is true by transitivity from the belief about two
related implications or dependencies. For example, if a person believes that
“‘diet(person) =too much salt <= =>blood-pressure (person)=too high”’
and that ““foods-eaten (person)=processed foods <= =>diet (person) =
too much sait”, then she may plausibly conclude *“‘foods-eaten (person) =
processed foods <= =>blood-pressure (person) = too high’’. (See Table 10
for other examples.)

typicality. The certainty parameter, denoted by 7, that specifies the degree
of match between a concept and its superordinate with respect to some set
of characteristics specified by the context (CX). For example, for “‘goose
SPEC bird in CX (birds, neck length(birds))’’, 7 denotes the degree that the
neck length of geese is typical of the neck length of birds in general.



