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Abstract 

This paper collects ideas from causal analysis, analogical reasoning, empirical 
learning, and presents an integrated methodology to refining causal and social 
theories. Its major contribution is that the theory validation meth<Xl, which consists 
of an incremental process of generation and pruning of examples and counter­
examples, can work in the face of the two following limitations: (a) lack of prior 
knowledge, (b) lack of specific examples. The approach has been implemented in a 
program called IR89. We provide an example of 1R89 acting as an experimenter of 
social theories in the domain of Italian Renaissance history. Experimental 
investigations with "interesting" theories give the work more support. 

1. Introduction 

The problem of inducing causal and social theories from orderly accounts of 
events has received much attention in the machine learning field recently (Pazzani et 
ai., 1986; Danyluk, 1987). However, little work has been done on the 
complementary problem of validating causal and social theories, perhaps acquired 
by observation. 

One notable exception, though restricted to the discovery of laws about the 
physical world, is the experimentation-based theory revision approach. In an early 
example of this approach (Langley, 1981) experimentation is used to explain 
inconsistencies between the system's theory and the real world. More recently 
(Rajamoney-DeJong, 1987) it has been argued that experiment design may be the 
key strategy to prune the incorrect explanations pr<Xluced by an incomplete m<XleL 

In this paper we propose a domain-independent meth<Xlology based on active 
observation to refining causal theories. The observation involves identification of 
examples and counter-examples from a totally ordered set of events, the past 
examples being used to evaluate the correctness of a theory and suggest 
refinements. Unlike previous work, we analyze and refine hypothetical causal 
dependencies in the light of given temporal dependencies. As an interesting 
byproduct, the comparison between sequences of events of different length reveals 
subtle effects of seeming achievement, like those described in Machiavelli's The 
Prince (Machiavelli, 1961) and illustrated here in the example. 

In addition to performing theory validation outside of conventional scientific 
theory discovery, this approach presents two salient features. 

The first is that it integrates several existing techniques in causal analysis 
(Winston, 1986), analogical reasoning (Gentner, 1983), and learning from 
examples and counter-examples (Dietterich-Michalski, 1983), 
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The second is that it allows for the contemporary absence of the two standard 
sources of knowledge in learning, namely (a) prior causal theories and (b) specific 
examples explicitly supplied by the user. 

The approach has been implemented in a system called IR89. The rest of the 
paper is organized as follows. First we will describe the program IR89. Secondly, 
we give a simplified example of IR89 at work in an historical domain. Thirdly, we 
compare this work with two approaches that perform a structurally similar learning 
task by using a different learning method. Finally we provide an empirical 
evaluation with "interesting" theories. 

2. System overview 

IR89 confirms, rejects or completes general theories about causal and social 
processes. IR89 is provided with a memory of temporally ordered events. The 
theory to be investigated is a causal relationship between the features that describe 
such events. 

After being given the input theory, IR89 employs its operational definition of 
causality to generate from the event memory a set of positive examples and a set of 
negative examples for that theory. Then IR89 attempts to reduce the set of negative 
examples by varying the temporal parameter involved in the definition of causality. 
At this point, IR89 recursively refines the theory over the two sets, until the set of 
negative examples reduces to the empty set. The refinement is heuristically driven: 
analogical heuristics figure out possible refinements and statistical heuristics 
evaluate their impact on the two example sets. Interestingly, as will become clear 
later. there is no need to use the event memory to (re)generate the new sets of 
positive and negative examples at each refinement step. 

In the next three sections we illustrate the memory and theory representation in 
IR89, and the two main mechanisms involved in the algorithm, namely 1) generation 
of examples and counter-examples and 2) theory refinement 

2.1 Memory and theory representation in IR89 

Each event stored in the system is labelled with a progressive ordering number. 
The events are represented as hierarchical frame descriptions. with two major 
syntactic types: <name> and <description>. Intuitively. <name> is for naming 
descriptive features, <description> is for describing them. perhaps in terms of other 
features. More formally. any event is a pair «name> <description», where 
<name> is an atomic symbol and <description> is either an atomic symbol, or 
another pair «name> <description», or a conjunction of such pairs. This 
representation reduces to classic attribute-value representation when <description> 
is atomic. 

We assume that each event is self-contained; that is, there is no need to infer 
missing features from the event memory. Consequently, the system trades clarity of 
description and better efficiency for redundancy in representation. 

It is also worth noting that while equal <names> appearing in different events 
may have different <descriptions>, we do not adopt an action-state representation. 
In effect. the only predefined causal assumption is that the occurence of an event is 
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the trivial cause of any change described in the event. The motivation for this 
guarded initial assumption is that we consider domains (e.g. history, economics) 
where 1) there is a great number of potentially active factors, and 2) their 
interrelations are often unclear. 

Any causal theory has the form of implication, of the type: IF A THEN B. Both its 
antecedent and its consequent have the same syntax as the event descriptions, 
except that their atomic <descriptions> can be variabilized and treated with selected 
predicates. 

The two parts of a given theory are supposed to partially match some pair of 
events. The idea is that a partial theory can be seen as a hierarchical relational 
structure with variable-place predicates and missing arguments. In this way, the 
task of refming the theory just requires appropriate filling gap. 

2.2 Generating examples and counter-examples 

We use a simple operational definition of causality: 

A causes B ifevery occurrence ofA is strictly followed by an occurrence ofB. 

This reduces a causal relation to a material implication, whereas a more realistic 
definition of causality would probably have to be expressed as a combination of 
necessary and sufficient conditions (Sternberg, 1985). In effect, the normal use of 
causation seems to be both stronger and weaker than material implication (Shoham, 
1988), and therefore a more thorough evaluation would require for instance an 
analysis of the mutual covariations of the causal antecedent and the causal 
consequent. However, while these issues may be relevant for inducing causal 
theories from scratch, they are much less important for a quantitative refinement of 
given causal theories, as in IR89. 

According to our generative account of causality, the memory is scanned, and: 
1) each pair of consecutive events, such that the first matches A and the second 

matches B*, is considered to be a positive example for the theory. . 
2) each pair of consecutive events, such that the first matches A and the second 

does not match B, is regarded as a negative example. 
In practice, as IR89 only diagnoses more restrictive condition for theory 

applicability, it will only pay attention to 1be antecedents of the two sets. 
Before illustrating the supplementary treatment of the negative examples, it is 

worth explaining the motivations for introducing a specific component that 
generates an initial example set. This need is often neglected in machine learning 
systems. We feel instead that the capability of identifying training examples as a 
strategic learning component takes the construction of an integrated performance 
system one step further. One more practical consideration is that, while it may 
be relatively easy to have a collection of general data, it may be very difficult to 
obtain specific examples; our observations are usually more complicated and 

* Matching requires simple unification of the theory antecedent, and instantiation of the theory 
consequent's variables. Since the subframes occurring in a theory are intended to be existentially 
quantified. any pair ofevents may match the theory in multiple ways. 
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contain more information than necessary to test or induce one specific theory, 
Because the relevance of any obervational feature is a function of the causal process 
being investigated, the approach taken in IR89 is to project any input theory onto 
the whole set of observations, trying to enlight the ponions involved. 

Recomputing the example set with a wider ordering step 

The generation of the two example sets is intended to identify a causal search 
space. However. our definition of positive and negative examples is based only on 
strict temporal contiguity (statistical frequency and similarity will be used later to 
order the search space). This requirement turns out to be very severe in identifying 
positive examples. In particular. it prevents from correctly classifying those cases in 
which incidental observations temporally separate a causal antecedent from its 
causal consequent. In order to reduce the number of misclassified positive 
examples, IR89 tests each negative example with a wider ordering step (= 2), This 
corresponds to allow for degrees of consistency of each theory. depending on 
different partitions of the observation set. In fact. we started with an ordered list of 
observations (obsl ..... obsn). and then defined for each theory a procedure (0 
mapping ordered pairs (obst. obst+l) into the three-valued set {pos-example, neg­
example, no-example}. Now we are saying that there are no counter-examples (Le. 
the theory is consistent with the data) not only if 

-3t f(obst, obst+l) =neg-example, 
but also if 
V't (f(obst. obst+ 1> = neg-example) ~ (f(obst. obst+2) = pos-example). 

As this definition may produce implausible causal relationships, we want to 
check if there are features being omitted that can be deemed as direct causes of the 
theory consequent. This is done semi-automatically: the user may supply a causal 
antecedents that matches the skipped event (obst+ I> and is consistent with the 
causal consequent. and the program reruns, with a lower temporal step (=1) 
focusing the search on strict temporal contiguity, This technique for ruling out 
implausible causal inferences is similar. in spirit. to two other approaches to 
constraining a procedure for IF-THEN rules acquisition. namely Winston's censors 
technique (Winston. 1986) and Blum's search for latent variables (Blum. 1982). 
Here. however. the focus is on the effects produced by a temporal dilution of the 
causal consequent. whereas Winston and Blum identify as a possible reason of rule 
misapplication an incomplete description of the causal antecedent. 

2.3 Theory refinement 

The strategy is to shrink the negative set while minimizing the reduction of the 
positive set. The tactic to cut off the search space is to focus attention only on a 
limited number of hypotheses at one time. We seek refmement features connected to 
the lowest level of the hierarchical structure of the theory antecedent first. and then 
move on to features connected to the upper levels, interleaving analogical heuristics 
for candidate generation and statistical heuristics for candidate evaluation. 

4 




The inputs of the refine routine are: the theory-antecedent (we shall say theory 
for short), the set of positive examples, the set of negative examples, the innennost 
level of the input theory description. 

It works as follows: 

1. A set of candidate refinements is formed just by inspecting the positive set. It 
contains all the "nodes" of the positive examples which can be added as "brothers" 
to the current hierarchical level of the theory. 

2. The candidate features are evaluated on the basis of how they modify the 
negative and positive sets. Over-general and over-specific features are discarded. 
Features that affect both sets in the same way are kept away for later use*. The best 
refinement among the remaining candidates, if any, is added to the theory. 

3. Two new example sets are associated with the refined theory. They contain 
all of and only the previous examples that (still) match the refined theory. Step 3 is 
interleaved with step 2. 

4. The refine routine is recursively applied to the new theory, to the two new 
sets of positive and negative examples, to the next hierarchical level. 

S. The algorithm ends successfully when the negative set becomes empty. In 
this event, the refined theory is guaranteed to hold in at least two examples and to 
have no counter-examples. It halts unsuccessfully when either there are no more 
discriminating features, or the positive set becomes too small (=1), or at the top of 
the refmement hierarchy. 

We use powerful analogical heuristics to reduce the refmement space. While their 
effectiveness will be empirically discussed later, the general underlying idea is that a 
feature that belongs to a shared system of encapsulated features is more likely to 
provide the required theory specialization than isolated common features. This is an 
adaptation from Gentner's systematicity principle (Gentner, 1983), which states 
that people prefer structural similarity over literal similarity when generalizing 
models. It is worth noting, however, that we use this simple technique not to find 
the best analogies between two fixed relational structures, as Gentner does, but as a 
means to inductively fill in arguments in a semi-specified structure of variable-space 
predicates (Le., the input theory). 

Apart from the use of analogical heuristics, there is another major difference 
between this refinement routine and most learning from examples and counter­
examples algorithms (Dietterich-Michalski, 1983). The difference is that the learned 
concept (Le., the refined theory) is required to be complete only with respect to a 
subset of the original set of positive examples. Therefore this algorithm is rather a 
variant, for coping with the cases in which the set of positive examples can be 
reconfigured, depending on the current concept fonnulation. 

The advantage, in presence of this active feedback between theory refonnulation 
and example identification, is that, at each step, the system can generate itself a 
customized set of examples from the given sets of events to fmd a solution. 

*The reuse of unrateable features in later refinement steps may greatly reduce the effects of 
heuristics interaction. In this case the pairing of features allocated in different branches of the 
theory structure may uncover non-linear causal effects. 

5 




3. An example 

We have modeled from a history textbook about thirty major events occurring in 
Italy during the XV and XVI century. Consider as an example what happened at the 
beginning of the XVI century. The French asked for Spanish alliance to conquer the 
Kingdom of Naples. The French and the Spanish conquered the Kingdom of 
Naples and divided it among themselves. Afterwards the Spanish made war on the 
French and captured the French part. The memory representation of this sequence 
of events is shown in figure 1. 

EVENTIO 
ALLIANCE 

DATE: 1500 
PLACE: GRANATA 
OBJECTIVE 

POWER 
NAME: KINGD.QP·NAP. 
GOVERN: KINGOOM 
lANGUAGE: SPANISH 
MIL-POWER: WEAK 
NUM.QF·TERRlT.: 0 

All1ES 
POWER 

NAME: FRANCE 
GOVERN: KINGOOM 
lANGUAGE: FRENCH 
MIL-POWER: WEAK 
NUM.QF·TERRlT.: 1 

POWER 
NAME:SPAIN 
GOVERN: KINGOOM 
lANGUAGE: SPANISH 
MIL-POWER: STRONG 
NUM.QF·TERRlT.: 2 

NUM.QF-AWES: 2 

EVENTll 
WAR 

BEGIN-DATE: 1501 
DURATION: lY 
BATTI..ES 

NUM.QP·BATILES: 1 
BATI1.E 


DATE: 1501 

PLACE: NAPLES 


WINNING·SIDE 
POWER 

NAME: FRANCE 
GOVERN: KINGOOM 
LANGUAGE: FRENCH 
MIL-POWER; WEAK 
NUM.QF·TERRIT.: 2 

POWER 
NAME: SPAIN 
GOVERN: KINGOOM 
lANGUAGE: SPANISH 
MIL·POWER: STRONG 
NUM.QF·TERRIT.: 3 

LOSING-SIDE 
POWER 

NAME: KINGD.QP·NAP. 
GOVERN: DESTROYED 
lANGUAGE: SPANISH 
MIL-POWER: DESTROYED 
NUM.QF·TERRIT.: 0 

EVENTU 
WAR 

BEGIN-DATE: 1502 
DURATION: 2Y 
BATTI..ES 

NUM.QP-BATTLES: 2 
BATI1.E 

DATE: 1503 
PLACE: BARlEITA 

BATI1.E 
DATE: 1503 
PLACE: NAPLES 

WINNING-SIDE 
POWER 

NAME: SPAIN 
GOVERN: KINGOOM 
LANGUAGE: SPANISH 
MIL-POWER: STRONG 
NUM.QF-TERRlT.: 4 

LDSING-SIDE 
POWER 

NAME: FRANCE 
GOVERN: KINGOOM 
lANGUAGE: FRENCH . 
MIL-POWER:WEAK 
NUM.QP-TERRlT.: 1 

Figure 1: A three events' sequence from IR89's memory 

Suppose to question the sytem about the following theory : it is not worth 
maldng alliance in order to increase one's territories *. The theory representation is 

Does (ALUANCE(ALLIES(POWER(NAME =X)(NUM-OP·TERRITORIES =N»» 
cause (POWER(NAME = X)(NUM-OP-TERRITORIES.s N»? 

*IR89 is incapable of detecting successful refinements if tested with the more intuitive 
question: is it worth making alliance in ortkr to increase one's territories? 
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Upon being presented with this theory, IR89 searches the set of events and finds 
positive examples (in which making alliance is not worthwhile), yet not illustrated 
in this paper, and nega!ive examples (in which making alliance is worthwhile). The 
sequence in figure 1, for instance, casts two negative examples, one for each 
power involved. At this point IR89 recomputes the example set. It turns out that 
some negative examples, included the example of France making alliance with 
Spain. become positive examples when increasing the ordering step*. Then IR89 
applies the Refine routine to the two new example sets. The refinement added to the 
theory are shown in fig. 2 in bold. 

Alliance 
,/ 

Allies 

,/ 
Power 
~ - Mil· power =Strong 
~ 

"" "" "",. Mil-power =Weak 

Power Narne=X 
~ Num-of-territories =N 

Fig. 2: Refinement of the causal antecedent 

The final theory is very much like one of the principles Machiavelli exposed in 
his book: itA power ought not to ask a more potent power for alliance". Note that 
the detection of the subtle causal effect involved in the example of France making 
alliance with Spain is made possible by the recomputing of the negative set with a 
wider temporal horizon. 

4. Discussion 

Given a theory to be refined and a set of events, the method we have discussed is 
purely empirical. It exploits the implicit analysis embodied in the description of the 
events, though, and crucially depends on the input theory. In particular, any theory 
to be refined must contain at least the top hierarchical level (along with one of its 
sons) of the corresponding complete theory. In order to make the implications of 
our implicit assumptions more explicit, we can compare IR89 to two distinct but 
related approaches (Danyluk, 1987; Carpineto, 1988). The learning tasks of the 
three systems are. in fact, structurally similar : 

* Another sequence example is the following: the Venetians allied with the French to conquer 
Milan. Once they had conquered Milan, the French declared war on the Venetians and threw them 
out of Milan. 
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1) These programs are able to acquire new knowledge from complex 
descriptions of the same class. 

2) The descriptions are represented as hierarchical frames, or as simple 
sequences of hierarchical frames. 

3) The learning involves matching (and mapping) of high-level, partially 
specified hierarchical frames of the same type (e.g., two allied countries, two 
narrative functions, two terrorist attack locations). 

However, they differ in the learning method. Both Danyluk: and Carpineto use a 
combination of explanation-based learning and similarity-based learning; in their 
approaches, the use of an initial domain theory allows a complete explanation 
structure to be constructed and mapped onto each description, and this is essential 
in order to guarantee the feasibility of their subsequent inductive phase. In contrast, 
IR89 stans out with an incomplete explanation structure (Le., any of its input 
theories), and then, in order to select the relevant pan of the set of descriptions, 
integrates it with empirical techniques (in particular, by generating a set of positive 
and negative examples out of the set of descriptions, and by applying analogical 
heuristics to the example set). The comparison shows that a combination of 
empirical techniques can complement certain types of partially specified explanation 
structures - namely the ones in which all of the <names> are also present in the 
examples - so as to compensate for the lack of completely specified explanation 
structures. 

Another important difference is in the use of the temporal information associated 
with the real examples. Danyluk does not use time at all; "cause" and "result" are 
predefined slots of each of her event descriptions, like "location". IVAN (Carpineto, 
1988) takes advantage of the temporal ordering of the events told in its story 
examples, but only for confinning hypothetical causal generalizations suggested by 
its domain theory. IR89 makes an intensive exploitation of the temporal evidence, by 
using the ordering of its set of events as a basis for generating the training examples 
relevant to a given theory. Related to the use of different input theories and to this 
capability, there are two additional minor feature of IR89 : 

- the learning task is not restricted to the acquisition of a single concept, 
- the same event can be reused for generating different examples. 

5. Experimental evaluation 

Because its search is heuristically-driven, IR89 may not find a solution. Also, due 
to the lack of specific criteria of relevance, it may find a solution of little interest. 
The effectiveness of the various heuristics used to prune the space of possible 
refinements can be demonstrated by showing that not only is IR89 able to refine 
theories, but that it can generate interesting refinements. 

For this purpose we took from Machiavelli's The Prince a dozen of theories 
covered by IR89' event memory and input them to the system in an incomplete form 
(specifying at least one node for each level of the corresponding complete fonn). 
IR89, except for one class of theories, was able to refine most of them. The theories 
it could not refine typically involved adding refinements with variabilized atomic 
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descriptions. One example of such class is the following: "In order to keep the 
possession of a territory, the conquerer power ought to have the same language and 
establish colonies in it (rather than garrison)". 

Then we turned our attention to the behavior of the single learning components 
of IR89. We characterized the space of interestingness by means of three 
dimensions - (a) structuring degree of the causal antecedent, (b) temporal dilution of 
the causal consequent, (c) reuse of unratable features in the refinement of the causal 
antecedent - and defined three simple algorithmic measures for these dependent 
variables. In sum, we found out that: 

• The structuring degree of the theories was lower than expected; in fact, the 
number of unexploited nodes generated at the lower levels of the theory structures 
was relatively high. As there is a body of psychological evidence (Holland et al., 
1986) that in the use of default hierarchies rules based on more specific levels tend 
to dominate rules based on general levels. one possible explanation is that finding 
an interesting refinement requires shifting up the information specifity level. 

• The theories behaved difformly with respect to the amount of recomputation 
needed to transfonn their negative set. This component appeared however to be 
necessary for any theory involving detection and comparison of macro-sequences 
of analogical events. 

• Many theories. including the example shown above, required simultaneous 
refinements over different branches of their structure. This effect was probably 
accentuated by a large presence of analogous features of different powers in the 
chosen sample. 

6. Conclusions 

We have presented IR89, a system that refines causal and social theories through 
active observation of a totally ordered set of events. The problem of learning theory 
refinements has been cast as a heuristic search through a reconfigurable space of 
examples and counter-examples. We discussed the advantages of this approach and 
evaluated how good it is at generating interesting refinements in an historical 
domain. 

The main result of this research is that the combination of several empirical 
techniques - causal analysis to generate a search space. analogical and statistical 
heuristics respectively to order and prune it - makes theory refinement without prior 
knowledge and without specific examples feasible. 

Some major weaknesses of this approach, suggesting future research directions, 
are indicated below. 

• IR89 allows for (limited) differences between the causal ordering of the events 
and their temporal ordering in the memory. Also, it can do pluricausal inferences. 
However, IR89 cannot deal with diachronic causes, such as a temporally disjoined 
causal antecedent; it can only discover multiple sinchronic causes. 

• The widening of the temporal horizon may affect the positive set in much the 
same way as does the negative set. We have ignored this problem because of the 
difficulty of providing an autonomous definition for negative examples recognition. 

• IR89 is unable to induce causal theories by itself; indeed, the refined theories 
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can only grow around the incomplete structure provided by the user. However, 
IR89 might be used as a part of a larger system for theory development. Another 
program, such as OCCAM (Pazzani et aL,1986), might be used to induce qualitative 
rules and then IR89 might quantitatively refine these rules·. 
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