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Two-tiered concept meaning,
inferential matching, and
conceptual cohesiveness

RYSZARD §S. MICHALSKI

Introduction

Suppose we asked someone how to get to some place in the city we
were visiting and received needed instructions in response. Clearly,
we would say that this person knew the answer, no matter whether
the person knew the place personally or just had to figure out its
location on the basis of general knowledge of the city, that is, by
conducting inference. We would say this, of course, only if the answer
were given to us in a reasonable amount of time.

The above example illustrates a general principle: One knows what
one remembers, or what one can infer from what one remembers
within a certain time constraint. Thus our knowledge can be viewed
as a combination of two components, memorized knowledge and in-
ferenual extension, that is, knowledge that can be created from re-
corded knowledge by conducting inference within a certain time limit.

The main thesis of this chapter is that individual concepts — ele-
mentary components of our knowledge — parallel such a two-tiered
nature of knowledge. We hypothesize that processes of assigning
meaning to individual concepts recognized in a stream of information,
or of retrieving them from memory to express.an intended meaning
are intrinsically inferential and involve, on a smaller scale, the same
types of inference — deductive, analogical, and inductive — as processes
of applying and constructing knowledge in general. This hypothesis
reflects an intuition that the meaning of most concepts cannot, in
principle, be defined in a crisp and context-independent fashion.

Specifically, the meaning of most concepts cannot be completely
defined by some necessary or sufficient features, by a prototype, or
by a set of representative exemplars. Rather, the meaning of a concept
1s a dynamic structure built each time anew, in the course of an in-
teractton between some initial base meaning and the interpreter’s
background knowledge in the given context of discourse.

122



Concept meaning, matching, and cohesiveness 123

This view leads us to the proposition that the meaning we assign
to a concept in any given situation is a result of an interplay between
two parts: the base concept representation (BCR), and the nferential con-
cept interpretation (ICI). The base concept representation is an explicit
structure residing in memory that records both specific facts about
the concept and general characteristics of it. The specific facts may
include representative examples, exceptions, and counterexamples.
The general characteristics are teacher-defined, or inferred by in-
duction from examples or by.analogy. They include typical, easily
definable, and possibly context-independent assertions about the con-
cept. These characteristics tend to capture the principle, the ideal or
intention behind a given concept. If this principle changes to reflect
a deeper knowledge about the concept involved, the BCR is redefined.
To see this, consider, for example, the changes of our understanding
of concepts such as whale (from fish to mammal) or atom (from the
smallest indivisible particle to the contemporary notion cf a dual
wave—matter form).

The inferential concept interpretation is a process of assigning
meaning to a concept using the BCR and the context of discourse.
This process involves the interpreter’s relevant background knowl-
edge and inference methods and transformations that allow one to
recognize, extend, or modify the concept meaning according to the
context. These methods are associated with the concept or its gen-
eralizations, and, together with relevant background knowledge, con-
stitute the second tier in concept representation.

The main goal of this chapter is to sketch ideas and underlying
principles for constructing an adequate cognitive model ‘of human
concepits. It is not to define such a model precisely or to present specific
algorithms. It is also hoped that the proposed ideas will suggest better
computational methods for representing, using, and learning con-
cepts in artificial intelligence systems.

Inference allows us to remember less and know more

This section will attempt to show that the two-tiered representation
of concept meaning outlined above can be justified on the basis of
cognitive economy — that is, economy of mental resources, memory
and processing power ~ and that it reflects some general aspects of
the organization of human memory. For a discussion of issues con-
cerning cognitive economy see Lenat, Hayes-Roth, and Klahr (1979).

Let us start by assuming that the primary function of our knowledge
is to interpret the present and predict the future. When one is exposed
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to any sensory inputs, one needs knowledge to interpret them. The
more knowledge and the stronger the inferential capabilities (i.e.,
roughly the number of production and inference rules) one possesses,
the greater the amount of information one can derive from a given
input.

Interpreting observations in the context of the available knowledge
makes it possible to derive more information from the input than is
presented on the surface. It also allows one to build expectations about
the results of any action and to predict and/or influence future events.
The latter is possible because events and objects in our world are
highly interrelated. If our world consisted of totally unrelated random
events, one following the other, our knowledge of the past would be
of no use for predicting the future, and this would obviate the need
to store any knowledge. Moreoever, this, in turn, would presumably
‘obviate the need for having intelligence, as the primary function of
intelligence is to construct and use knowledge.

On the other hand, if our world were an eternal repetition of exactly
the same scenes and events, knowledge once acquired would be ap-
plicable forever, and the need for its extension and generalization
would cease. No wonder that in old, slow-changing traditional societies
the elderly enjoyed such high status. The slower the rate of change
in an environment, the higher the predictive value of past specific
knowledge and the lower the need to extend and generalize knowl-
edge. This suggests a hypothesis that the degree to which our mnate
subconscious capabilities for generalizing any input information cor-
responds to the rates of change in our environment. Thus, in a world
that was evolving and changing at a different rate, our innate capa-
bilities for generalization would presumably be different.

From the myriad sensory inputs and deluge of information re-
ceived, we select and store only a minuscule fraction. This selection
is done by a goal-dependent filtering of the inputs. The fraction ac-
tually stored contains a spectrum of structures representing different
levels of abstraction from reality and different beliefs in their cor-
rectness. This spectrum spans the low-level, highly believed facts and
observations, through partial plausible abstractions and heuristics, to
high-level and highly hypothetical abstractions. The highest belief
usually is assigned to our own personal sensory experiences, and the
lowest belief to vague abstractions made by people whom we do not
especially trust. These various assertions, together with a degree of
belief in them, are automatically memorized when they are received

or generated by inference. They then can be forgotten but not con-
sciously erased.
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The filtering of input information is done by conducting inferences
— deductive, analogical, and inductive — that engage the input infor-
mation and the goals and the knowledge of the person. The idea that
a person’s knowledge is involved in the processes of interpreting in-
puts is, of course, not new. An interesting illustration of it is presented,
for example, by Anderson and Ortony (1975). They conducted ex-
periments showing that the comprehension of a sentence depends
heavily on the person’s knowledge of the world and his or her analysis
of the context.

Our ability to make inferences seems to come from a naturally
endowed mechanism that is automatically activated in response to any
input of information. One may ask why this is so. As our mMemory
and information-processing powers are limited, it seems natural that
the mind should tend to minimize the amount of information stored
and maximize the use of that which is already stored. Consequently,
one may hypothesize that the inferential processes that transfer any
mput information to stored knowledge are affected by three factors:

1. what is important to one’s goals

2. what knowledge will be maximally predictive

3. what knowledge will allow one to infer the maximum amount of
other knowledge.

The first factor reflects the known phenomenon that facts considered
very important tend to be remembered before other facts. The second
factor is significant because the predictive power of knowledge enables
us to develop expectations about the future, and thus to prevent or
avoid undesirable courses of actions, and to achieve gozils. The third
factor relates to cognitive economy: If we can infer B from A without
much cognitive effort, then it is enough just to remember A. The
second and third factors have interesting consequences. They suggest
4 Memory organization that is primarily oriented toward storing anal-
ogies and generalizations, but facilitates the process of efficiently per-
forming deduction on the knowledge stored.

_ These three factors explain the critical role of analogical and in-
ductive inference in the process of transforming information received
from the environment to knowledge actually memorized. This is so
because it is analogical inference that transfers knowledge from
known objects or problem solutions to new but related objects or
Problems. And it is inductive inference that produces generalizations
and causal explanations of given facts (from which one can deduce
Original facts and predict new ones}. Strict deductive inference and
"arlous forms of plausible inference (plausible deductive, analogical,
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Figure 4.1. Types of inference.

and inductive) are means for extending/deriving more knowledge
from our base knowledge, though such derived knowledge may be
of lesser certainty.

The relationship between different types of inference is shown in
Figure 4.1. The types of inference are divided according to two di-
mensions: (2) mode of inference: deductive versus inductive; and (b)
strength of inference: crisp versus plausible. “Crisp” deductive infer-
ence is the truth-preserving inference studied in formal logic. “Soft”
deductive inference uses approximate rules of deductive inference
and produces probable rather than strict consequences of given prem-
1ses. ‘This type of inference is implemented, for example, in various
expert systems that generate advice together with an estimate of its
certainty.

Inductive inference produces hypotheses (or explanations) that
crisply or softly imply original facts (premises). This means that orig-
nal facts are deductive consequences of the hypotheses. Crisp in-
ductive inference is a falsity-preserving inference. For example,
hypothesizing that all professors at a particular university are bright
on the basis that all professors of the Computer Science Department
at this university are bright is a falsity-preserving inductive inference.
(If the initial premise is true, the conclusion can be true or false; but
if the premise is false, the hypothesis must be false also. Conversely,
if the hypothesis is true, then the premise clearly must be true also.)
Soft inductive inference produces hypotheses that only plausibly im-
ply the original facts. For example, seeing smoke, one may hypothesize
that there is a fire somewhere. It is a soft inductive inference, because
there could be smoke without a fire.

Analogical inference is placed in the middle because it can be viewed
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as inductive and deductive inference combined (Michalski, 1987). The
process of noticing _analogy fmd creating an analogical mapping F)e-
tween [wo systems 18 intrinsically inductive; the process of deriving
:nferences about the analog using the mapping is deductive. This
view, derived by the author through purely theoretical speculations,
eems to be confirmed by the experimental findings of Gentner and
Landers (1985) and Gentner (this volume). In order to explain dif-
ficulties people have in noticing analogies, they decomposed analog-
ical reasoning into three parts, which they call "access,” "structure-
mapping,” and “inferential power.” They found that access and
structure-mapping are governed by different rules than inferential
power. Access is facilitated by literal similarity or mere appearance,
and structure-mapping is governed by similarity of higher-order re-
lations. These are inductive processes, as they produce a structure
that unifies the base and the target systems. Inferential power cor-
responds to deduction.

The view of analogy as induction and deduction combined explains
why it is more difficult for people to notice analogy than to use 1t
once it is observed. This is so because inductive inference, being an
underconstrained problem, typically consumes significantly more cog-
nitive power than deductive inference, which is a well-constrained
problem. |

Figure 4.2 illustrates levels of knowledge derived from the base
knowledge by conducting various types of inference (the “trumpet”
model). The higher the type of inference, the more conclusions can
be generated, but the certainty of conclusions decreases. A core theory
and a discussion of various aspects of human plausible inference can
be found in Collins and Michalski (1986).

Let us now return to the discussion of the third factor influencing
aferential processes, namely, what knowledge allows us to infer the
maximum amount of other knowledge. This issue, obviously, has spe-
cial significance for achieving cognitive economy. The need for cog-
nitive economy implies that it is useful for individual words (concepts)
to carry more than one meaning, when considered without any context
and without inferential extension of their meaning. By allowing that
the meaning of words can be context-dependent and inferentially
extensible, one can greatly expand the number of meanings that can
be conveyed by individual words. This context dependence, however,
cannot be unlimited, again because of cognitive economy. To be eco-
nomical, context dependence should be employed only when the con-
text can be identified with little mental effort. Inferential extensions
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Figure 4.2. A “trumpet” model of inferential knowledge extension. Shading
represents decreasing strength of belief in inferentially derived knowledge.

also have natural limits, which are dictated by the mental power avail-
able, and the decreasing confidence in conclusions as the levels of
mference increase.

Concept meaning is distributed between representation
and interpretation

Concepts are mental structures representing classes of entities united
by some principle. Such a principle might be a common use or goal,
the same origin or behavior, or just similar perceptual characteristics.
In order to use concepts, one must possess efficient methods for
recognizing them in streams of sensory signals or in mental processing.
To do so, one needs to have appropriate mental representations of
concepts.

The traditional work on concept representation assumes that the
whole meaning of a concept resides in a single stored structure, for
example, a semantic network, a frame, or a graph, that captures all
relevant properties of the concept (e.g., Collins & Quillian, 1972;
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Minsky, 1975; Sowa, 1984). The process of recognizing a concept
involves simple matching between the stored representation and per-
ceived facts. Such maiching may include comparing attribute values
or nodes of corresponding networks, but has not been assumed to
involve any complex inferential processes.

In contrast, our view is that such a matching may involve a signif-
icant amount of deductive, analogical, or inductive inference and that
this inference takes into consideration the context of discourse and
the person’s background knowledge. Therefore, we postulate a two-
tiered representation of concept meaning, which draws a distinction
between the base concept representation (BCR) and the inferential
concept interpretation (ICI). The BCR is a stored-knowledge struc-
ture associated with the concept. It specifies the most common, typical
properties of the concept and the principle unifying different in-
stances of it. It may also include representative examples, counter-
examples, exceptions, and other known facts about the concept.

The ICI uses methods, relevant background knowledge, and rules
of inference for interpreting the BCR according to various contexts.
The methods incorporate metaknowledge about the concept, that is,
which properties of the concept are crucial and which are not in a
given context, what transformations are allowed on the BCR, and how
these properties or transformations can vary among instances of the
concept. These methods contain procedures for matching the BCR
with observations. In the case of physical objects, the methods include
permissible physical transformations (i.e., transformations that do not
remove an object from the given class, for example, the transfor-
mations of a chair that do not remove it from the class of chairs).

Figure 4.3 illustrates the two-tiered concept meaning. The rectan-
gular area denotes the scope of a concept as defined by the base
concept representation. The irregularly shaped area depicts the
changes in the concept meaning due to the inferential concept inter-
pretation. For example, the rectangular area may represent all animals
sharing typical physical characteristics of fish, and the irregularly
shaped area may represent animals that can be considered fish in
various contexts. | |

It is easy to see that to recognize an object — that is, to assign it to
a concept — one may need to match only a small portion of properties
observed in the object with properties stated in the base representa-
tion. The properties that need to be matched depend on the context
in which the recognition process occurs.

For example, one may recognize a given person just by some of
this person’s facial features, silhouette, voice, handwriting, medical
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ICI

BCR - the scope of the concept defined by the Base
Cancept Representation

ICl - the scope of the concept as derived by Inferential
Concept Interpretation for a given context and
background knowledge

Figure 4.3. An illustration of two-tiered concept representation.

record, fingerprints, any combination of these, or Dy a host of other
characteristics. Thus, if the concept recognition process were based
on a direct match of a fixed number of features of the target concept
with properties of an observed object, then one would need to store
representations for all these possibilities. Such a method would be
hopelessly memory-taxing and inefficient. It is ‘practical only in simple
cases, such as those considered in many current expert systems.

In the proposed theory, the process of relating the base represen-
tation of a concept to observations is done by inferential concept
interpretation. This process “matches” the base concept representa-
tion with observations by conducting inference involving the contex-
tual information (e.g., What are other candidate concepts?) and
relevant background knowledge. This inference determines what fea-
tures are needed or sufficient to be matched in order to recognize a
concept among a context-dependent set of candidates, and what kind
of match is required. Thus the degree of match between a concept
representation (CR) and an observed entity (OE) is not just a function
of CR and OE, as traditionally assumed, but rather a four-argument
function, which also includes 2 parameter, CX, for context, and BXK,
for background knowledge:

Degree of match (CR, OF) = f(CR, OE, CX, BK)
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The context 1s computed dynamically in the process of using or
recognizing concepts. Thus the proposed view requires an efficient
method for representing and using contexts for any given concept.
A simple introspection of our mental processes appears to confirm
this: We seem to have little difficulty in determining and maintaining
the context in any discourse.

There is no unique way of distributing the concept meaning be-
tween BCR and ICI. We expect that the actual distribution of the
concept meaning between these two parts represents a desired trade-
off between the economy of concept representation and the economy
of inferential concept interpretation. Thus, learning a concept in-
volves acquiring not only the base concept representation but also the
methods for inferential concept interpretation.

Let usillustrate the proposed approach by a few examples. Consider
the concept of fish. Typical and general characteristics of fish are that
they have a certain elongated shape, a tail, live in water, and swim.
‘These and other typical physical properties of fish, as well as repre-
sentative examples, would be stored in the BCR. Suppose someone
finds an animal that matches many characteristics of fish but does not
swim. Suppose that this animal appears to be sick. The ICI would
involve background knowledge that sick animals may not be able to
‘move and that swimming is a form of moving. By deductive reasoning
from these facts one concludes that lack of ability to swim should not
be taken as negative evidence for the animal being a fish. On the
contrary, the fact that the animal does not swim might even add to
the confidence that it is a fish, once the animal was recognized as being
sick.

Suppese that we learned the concept of fish by reading a general
description and seeing a few examples. The BCR consists of this
‘general description and the memorized examples. Suppose that we
visit a zoo and see an animal defined as fish that is of a shape never
seen in the examples or stated in the general description — say, a
horselike shape. We may add this example to our BCR without nec-
essarily modifying our general notion of fish. If we see another horse-
shaped fish, we may recall that example and recognize the new in-
Stance as a fish without evoking the general notion of fish. This explains
why we postulate that the BCR is not just a representation of the
general, typical, or essential meaning of a concept but may also include
¢xamples of a concept.

The rules used in the above reasoning about sick fish would not be
Stored as the base concept representation for fish. They would be a
Part of the methods for inferential concept interpretation. These



1532 RYSZARD §. MICHALSKI

methods would be associated with the general concept of animal,
rather than with the concept of fish, because they apply to all animals,
Thus we postulate that the methods for inferentially interpreting a
concept can be inherited from those applicable to a more general
concept.

As another example, consider the concept of sugar maple. Our pro-
totypical image of a sugar maple is that it is a tree with three- to-five-
lobed leaves that have V-shaped clefts. Some of us may also remember
that the teeth on the leaves are coarser than those of the red maple,
that stender twigs turn brown, and that the buds are brown and sharp-
pointed. Being a tree, a sugar maple has, of course, a trunk, roots,
and branches.

Suppose now that while strolling on a nice winter day someone tells
us that a particular tree is a sugar maple. Simple introspection tells
us that the fact that the tree does not have leaves would not strike us
as a contradiction of our knowledge about sugar maples. This is sur-
prising, because, clearly, the presence of leaves of a particular type is
deeply embedded in our typical image of a maple tree. The two-tiered
theory of concept representation explains this phenomenon simply:
The inferential concept interpretation associated with the general
concept of tree evokes a rule; “In winter deciduous trees lose leaves.”
By deduction based on the subset relationship between a tree and a
maple tree, the rule would be applied to the latter. The result of this
inference would override the stored standard information about ma-
ple trees, and the mconsistency would be resolved.

Suppose further that when reading a book on artificial intelligence
we encounter a drawing of an acyclic graph structure of points and
straight lines connecting them, which the author calls a tree. Again,
calling such a structure a tree does not evoke in us any strong objec- -
tion, because we can see in it some abstracted features of a tree. Here,
the matching process involves inductive generalization -of the base
concept representation. Once such a generalized notion of a tree is
learned in the context of mathematical concepts, it will be used in this
context.

These examples clearly show that the process of relating observa-
tions with concept representations is much more than matching fea-
tures and determining a numerical score characterizing the match, as
done in various mechanized decision processes, for example, expert
systems.

It should be noted that the distribution of the concept meaning
between the representation and interpretation parts is not fixed but
can be done in many ways. Each way represents a trade-off between
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the amount of memory for concept storage and computational com-
plexity of concept use. At one extreme, all the meaning can be ex-
pressed by the representation. In this case the representation explicitly
defines all properties of a concept, including any concept variations,
exceptions, and irregularities. It states directly the meaning of the
concept In every possible context. It stores all known examples of the
concept. This results in a very complex and memory-taxing concept
representation. The concept interpretation process would, however,
be relatively simple. It would involve a straightforward matching of
the properties of the unknown object with information in the concept
description.

At the other extreme, the concept is explicitly represented only by
the most simple description characterizing its idealized form. In this
case, the process of matching a concept description with observations
might be significantly more complex. |

As far as memory representation of concepts is concerned, we as-
sume that their base concept representations are stored as a collection
of assertions and facts. These collections are organized into part or
type hierarchies with inheritance properties (e.g., Collins & Michalski,
1986). The methods used by inferential concept Interpretation are
also arranged into hierarchies. For example, as already indicated, the
rule that a sick fish may not swim is stored not with the ICI methods
associated with the concept of fish but rather with the concept of
anmimal.

As mentioned earlier, the process of inferential concept interpre-
tation may involve performing not just truth-preserving deductive
inference on the base concept interpretation but also various forms
of plausible inference. In particular, it may create an inductive gen-
eralization of the base concept representation, draw analogies, run
mental simulations, or envision consequences of some acts or features.
The background knowledge needed for inferential interpretation in-
cludes information about methods for relating concept representa-
tions to observations, about which properties are important and which
are not in various contexts, and about typicality of features, statistical
distribution of properties and concept occurrences, and so on. An
inferential interpreter may produce a yes/no answer or a score rep-
resenting the degree to which the base representation matches given
observations. Extending the meaning of a single concept by con-
ducting inference corresponds on a small scale to extending any
knowledge by inference.

When an unknown entity is matched agamnst a base concept rep-
resentation, it may satisfy it directly or it may satisfy some of its in-
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Figure 4.4. Types of inferential concept matching.

terential extensions. The type of inference performed to match the
description of the entity with the base concept representation deter-
mines the type of match (Figure 4.4). If the description of an entity
matches the BCR precisely — satisfies it directly or satisfies its spe-
cialization (falls into its deductive extension) — then we have a strict
maich; 1f 1t satisfies an approximate deductive extension, then we have
an approximate match; if it matches an analogical or inductive extension
— satisfies a generalization that unifies the BCR with the description
of the entity — then we have an analogical or, generally, an inferential
match.' *

As mentioned earlier, when we are recognizing an entity in the
context of a finite set of candidate entities, usually only a small subset
of its properties will need to match the properties in the base rep-
resentation of candidate concepts. This set is defined by a discriminant
concept description (Michalski, 1983). Such a description can be deter-
mined by conducting inductive inference on the base representation
of the candidate concepts. A method for an efficient recognition of
concepts in the context of candidate concepts, called dynamic recog-

nitton, is described in Michalski (1988).
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The process of inferential concept interpretation can be viewed as
a vehicle for extending the base concept meaning into a large space
of variations by the use of context, rules of inference, and general
knowledge. This process is an important means for achieving flexi-
bility of concepts and thus leads to cognitive economy. Later, in the
section describing experimental results, we present an example of a
very simple inferential interpretation of a logic-style base concept
representation.

Some other views on concept representation

There seems to be universal agreement that human concepts, except
for special cases occurring predominantly in science (concepts such
as a prime number, a triangle, a vertebrate, etc.), are structures with
flexible and imprecise boundaries. I call such concepts flextble. They
allow a varying degree of match between them and observed instances
and have context-dependent meaning. Flexible boundaries make it
possible to “fit” the meaning of a concept to changing situations and
to avoid precision when it is not needed or not possible. The varying
degree of match reflects the varying representativeness of a concept
by different instances. According to the theory presented, this is ac-
complished by applying inferential concept matching, which takes
into consideration the context and background knowledge of the
interpreter.

Instances of a concept are rarely homogeneous. Among instances
of a concept people usually distinguish a “typical instance,” a “non-
typical instance,” or, generally, they rank instances according to their
typicality. By using context, the meaning of almost any concept can
be expanded in directions that cannot be predicted in advance. An
illustration of this is given by Hofstadter (1985, chap. 24), who shows
how a seemingly well-defined concept, such as First Lady, can express
a great variety of meanings depending on the context. For example,
it might include the husband of Margaret Thatcher.

Despite various efforts, the issue of how to represent concepts in
such a rich and context-dependent sense is not resolved. Smith and
Medin (1981) distinguish among three approaches: the classical view,
the probabilistic view, and the exemplar view. The classical view assumes
that concepts are representable by features that are singly necessary
and jointly sufficient to define a concept. This view seems to apply
only to very simple cases. The probabilistic view represents concepts
as weighted, additive combinations of features. It postulates that con-
cepts should correspond to linearly separable subareas in a feature
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space. Experiments indicate, however, that this view is also not ade-
quate (Smith & Medin, 1981; Wattenmaker, Dewey, Murphy, &
Medin, 1986). The exemplar view represents concepts by one or more
typical exemplars rather than by generalized descriptions. Although
it is easy to demonstrate that we do store and use concept exemplars
for some particular purposes, it seems clear that we also create and
use abstract concept representations. For important ideas on concept
representation and organization from the computational viewpoint,
see papers by Minsky (1980), Sowa (1984), and Lenat, Prakash, and
Shepherd (1986).

The notion of typicality can be captured by a measure called family
resemblance (Rosch & Mervis, 1975). This measure represents a com-
bination of frequencies in which different features occur in different
subsets of a superordinate concept, such as furniture, vehicle, and so
on. The individual subsets are represented by typical members. Non-
typical members are viewed as corruptions of the typical, ditfering
from them in various small aspects, as children differ from their
parents (e.g., Rosch & Mervis, 1975; Wittgenstein, 1953). The idea
of family resemblance is somewhat related to the two-tiered repre-
sentation, except that the BCR is a much more general concept than
a prototype, and the ICI represents a significantly greater set of trans-
formations than “corruptions” of a prototype.

Another approach uses the notion of a fuzzy set as a formal model
of imprecise concepts (Zadeh, 1976). Members of such a set are char-
acterized by a graded set-membership function rather than by the
infout function employed in the classical notion of a set. This set-
membership function is defined by people describing the concept and
thus is subjective. This approach allows one to express explicitly the
varying degree of membership of entities in a concept, as perceived
by people, which can be useful for various applications. It does not
explain, however, what are the computational processes that de-
termine the set-membership functions. Neither is it concerned with
developing adequate computational mechanisms tor express-
ing, handling, and reasoning about the context-dependence and
background-knowledge dependence of the concept meaning.

The idea of two-tiered representation attributes the graded concept
membership to the flexibility of inferential concept interpretation.
Thus, instead of explicitly storing the membership function, one ob-
tains an equivalent result as a by-product of the method of inter-
~ preting the base concept representation. This method also handles
the context and background-knowledge dependence, via a store of
rules and allowable concept transformations.
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Figure 4.5. An illustration of conceptual cohesiveness. Object X has higher

conceptual cohesiveness with concept A than with concept B though it is
“closer” to B.

The idea of two-tiered representation first appeared in a simple
form in the experiments conducted by Michalski and Chilausky (1980)
on inductive knowledge acquisition for expert systems. In these ex-
periments, two-valued logic-based diagnostic decision rules were cre-
ated by induction from examples. When these rules were applied to
diagnosing new cases, however, they were Interpreted not by the stan-
dard two-valued logic evaluation scheme but by various many-valued
logic evaluation schemes. For example, logical disjunction was inter-
preted either as the maximum function or as the probabilistic sum.
Logical conjunction was interpreted as the minimum function, the
average, or the probabilistic product. The experiments showed that
such modifications of rule interpretations can lead to an improvement
of the rule performance on new cases. |

A more advanced inferential matching was proposed in the method
of conceptual clustering described by Michalski and Stepp (1983). The
method utilized the idea of conceptual cohesiveness. Suppose that an
observed object does not match any concept description precisely.
There are, however, several concepts that are candidates for an 1m-
precise or, generally, an inferential match. The proposed solution 1s
to generalize each concept minimally, so that 1t includes the object
under consideration. The resulting generalized concepts are then
evaluated from the viewpoint of conceptual cohesiveness. This cri-
terion tries to minimize the degree of generalization necessary to
include the new object and to maximize the simplicity of the descrip-
tion of the generalized concept. The concept that receives the highest
score is viewed as the right “home” for the object. The concept of
conceptual cohesiveness is illustrated in Figure 4.5.

Closely related to our ideas is the work by Murphy and Medin (1985)
and by Barsalou and Medin (1986). Computational techniques for
using knowledge for interpreting observations via deductive inference
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are presented in the work by DeJong (1986), DeJong and Mooney
(1986), and Mitchell, Keller, and Kedar-Cabelli (1986). A computa-
tional framework for applying plausible inference for interpreting
observations (specialization, generalization, and similarity-based
transformations) is described by Collins and Michalski (1986). Various
1ssues involved In creating mental representations of concepts are
described by Collins and Gentner (1987).

The next section describes an experimental study investigating a
simple form of two-tiered concept representation in the context of
learning decision rules from examples in the area of medicine.

The two-tiered representation can reduce memory needed:
an experiment

This section describes the results of an experiment investigating a
simple form of two-tiered representation of four different types of
- lymphography. In the experiment, the base concept representation,
called a cover, 1s in the form of a disjunction of conjunctive statements,
called complexes. Interpreting a complex as the condition part of a rule,
CONDITION — CONCEPT NAME, a cover can be viewed simply as a
set of rules with the same right-hand side.

The complexes are conjunctions of relational assertions, called se-
lectors. Each selector characterizes one aspect of the concept. It states
a value or a set of values that an attribute may take on for the entities
representing the concept. Here are two examples of selectors:

[blood type = A or B] (Read: The blood type is A or B.)
[Diastolic blood pressure = 65...90] (Read: The diastolic blood
pressure is between 65 and 90.)

Thus selectors relate an attribute to one or more of the attribute’s
possible values. A selector is safisfied by an entity if the selector’s at-
tribute applied to this entity takes on one of the values stated in the
selector. Each complex (a conjunction of selectors) in the base concept
representation (cover) is associated with a pair of weights, ¢t and u,
representing, respectively, the fotal number of known cases that it
covers and the number of cases that 1t covers alone (uniquely) among
other complexes associated with this concept. For example, suppose
that the complex:

[blood pressure = 140/90] & [blood type = A or O]: 60, 55

is one of the complexes characterizing patients with some disease. The
weights ¢ = 60 and « = 55 mean that the blood pressure 140/90 and
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Figure 4.6. An ordered disjunctive concept representation. 'The numbers in
parentheses denote the ¢ weight and u weight, respectively.

the blood type A or O occurred in a total of 60 patients with this disease,
and in 55 patients it occurred uniquely (i.e., these patients did not have
properties satisfying other complexes associated with this disease).
Statements with high ¢ weights may be viewed as characterizing typical
cases of a concept, and statements with low ¢ weights and « weights can
be viewed as characterizing rare, exceptional cases, or errors.

In the experiment, initial covers for the diseases were determined
by applying the inductive learning program AQ15 to a set of known
cases of diseases (Hong, Mozetic, & Michalski, 1986; Michalski, Moz-
etic, Hong, & Lavrac, 1986). Complexes in each cover were ordered
according to decreasing values of ¢t weights, as shown in Figure 4.6.
(If two complexes had the same ¢ weight, then they were ordered by
decreasing values of u weights). Thus, the first complex in' each cover
is likely to characterize the most typical properties of the concept, the
next complex less typical properties, and so on,

As mentioned earlier, a cover serves here the role of the base con-
cept representation. The diagnosis of a case is determined by matching
each cover with the case, and finding the cover with the highest match.
The way the cover is matched against a disease case is determined by
the inferential concept interpretation (see the discussion of flexible
matching below).

To determine the most desirable distribution of the concept mean-
ing between the BCR and ICI, the so-called TRUNC method was
applied.

First, the initial covers for each disease obtained from AQ15 were
used to diagnose a set of new disease cases, and the performance score
was calculated. Next, each such cover was reduced by removing from
it the “lightest” complex (i.e., the complex with the smallest ¢ weight).
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Single match Multiple match No match

Figure 4.7. Three possible outcomes of matching an event with the base
concept representation of different concepts.

The so-truncated cover was then used to diagnose the same new cases,
and the performance score was calculated again. The above process
was repeated until the truncated cover of each disease had only one
complex (termed the best complex). Each such iteration represents a
different split between the BCR and the ICI. Thus this experiment
enabled us to compare the performance of concept descriptions for
different distribution between BCR and ICIL.

The diagnosis of any new disease case was determined by a simple
inferential matching, called flexible matching, of the case with the set
of covers representing different diseases (here, types of lymphogra-
phy). This matching treated covers not as logical expressions that are
either satisfied or not satisfied by a given case but as descriptions with
flexible context-dependent boundaries. The confidence in the diag-
nosis was defined by the maximum degree of match found between
the given case and a cover. Thus the diagnostic decision is determined
in the context of all diagnoses under consideration.

The computation of the degree of match distinguished among three
possible outcomes of matching an event (here, a disease case) with 2
set of covers: single match — only one cover is strictly matched (i.e., the
case completely satisfies only one cover); no maich — the case satisfies
no cover; and multiple match — the case satisfies several covers. These
three possible outcomes are illustrated in Figure 4.7.

When there is a single match, the diagnosis is defined by the cover
satisfied. When there is no match or a multiple match, the degree of
(approximate) match is computed for each cover. This computation
takes into consideration the strength of conditions represented by
individual selectors® and ¢ weights of complexes (the ¢ weights are
treated as estimates of prior probabilities). The evidence provided by



Concept meaning, matching, and cohesiveness 141

Table 4.1. Experimental results

o
—————

Complexity  Accuracy

Cover 1st choice  Human Random
Domain reduction  # Sel # Cpx (percentage) experts =~ choice
o none 37 12 31
Lymphography unique >1 34 10 80 60/85% 25%
best cpx 10 4 82 (estimate)

individual complexes in a cover is summed as probabilities. Specifi-
cally, the degree of match is computed according to these rules:

+ The degree of match (DM) between an event and a selector is 1 when
the selector is satisfied; otherwise, it is the inverse of the strength of
the selector.

« The DM between an event and a complex is the product of DMs ot
individual selectors times the relative ¢ weight of the complex {the
ratio of the ¢ weight to the total number of past events).

. The DM between an event and a cover is the probabilistic sum® of
DMs for complexes in the cover.

The choice of this particular interpretation was experimental. Tech-
nical details on the matching function are described by Michalski et
al. (1986). A selection of results is shown in Table 4.1, which presents
results for three cases of cover reduction:

» “np” (no cover reduction), when the BCR included all complexes
that were needed to represent all known cases of the given disease,
that is, the complete description .

« “unique > 1,” when the cover included only complexes with a u
weight greater than 1

* “best cpx,” when the BCR was reduced to the single complex with
the highest ¢ weight (the “heaviest”™)

The system’s performance was evaluated by counting the percent-
age of the correct diagnoses, defined as the diagnosis that receives
the highest degree of match and that is considered correct by an expert
(see Table 4.1, “Accuracy Ist choice”). For comparison, the table col-
umns “Human experts” and “Random choice” show the estimated
performance of human experts (general practitioner/specialist) and
‘the performance representing random choice.
 As shown in Table 4.1, the best performance (§2%) was obtained,
Sfirprisingly, when the BCR consisted of only one conjunciive statement
("best cpx”) per concept. This representation was also, of course, the

simplest, as it required approximately one-fourth the memory of the
complete description.
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These results show that by using a very simple concept represen.
tation (here, a single conjunction) and only a somewhat more complex
concept interpretation (as compared to the one that would strictly
match the complete concept description) one may significantly reduce
the amount of storage required, without affecting the performance
accuracy of the concept description. Further details and more results
from this experiment are described in Michalski et al. (1986).

This research is at an early stage, and further work is required,
both theoretical and experimental. There is, in particular, a need to
determine whether similar results can be obtained in other domains
of application. Among interesting topics fo1 further research are de-
velopment and experimentation with more advanced methods for
inferential matching and base concept representations, new tech-
niques for representing contexts, and algorithms for learning two-
tiered concept representations. For representing physical objects, one
needs to develop methods for defining and/or learning permissible
transformations of the base concept representations of these objects
(e.g., transformations of a typical table that will not change it to some
other object). The latter topic is of special importance for understand-
ing sensory perception.

Conclusion

The two-tiered concept representation postulates that the total con-
cept meaning is distributed between a base concept representation
and an inferential concept interpretation. The BCR covers the typical,
easily explainable concept meaning and may contain a store of ex-
amples and/or known facts about the concept. The ICI 1s a vehicle
for using concepts flexibly and for adapting their meanings to dif-
ferent contexts. The inferential interpretation involves contextual in-
formation and relevant background knowledge. It may require all
types of inference, from truth-preserving deductive inference
through approximate deductive and analogical inference to falsity-
preserving inductive inference. When dealing with physical objects,
the interpretation may involve various transformations of the BCR
(e.g., a prototype or a set of prototypes).

Experiments testing some of the ideas on a simple medical example
showed that distributing concept meaning more toward inferential
concept interpretation than toward the base concept representation
(as compared with storing the complete BCR) was highly advanta-
geous, leading to a significant reduction in the size of memory needed
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for storing concept descriptions while preserving the diagnostic
performance.

NOTES
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1 The above-mentioned analogical match is not to be confused with the
analogical mapping discussed in the structure-mapping theory of analogy
by Gentner (1983; this volume). The analogical match is related to what
Gentner and Landers (1985) call “analogical access.” It involves finding
semantic correspondences between attributes and relations of the entity to
be recognized and the base knowledge representation.

2 The strength of a selector {A = R}, where R is a set of values of A, is
defined as the ratio of the number of all possible values of attribute A over
the number of values in R. |

3 The probabilistic sum is defined as P+ P — (P X P
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Similarity and analogy are fundamental in human cognition. They are
crucial for recognition and classification, and have been associated with
scientific discovery and creativity. Successful learning is generally less
dependent on the memorization of isolated facts and abstract rules than
it is on the ability to identify relevant bodies of knowledge already stored
as the starting point for new learning. Similarity and analogy play an
important role in this process—a role that in recent years has received
much attention from cognitive scientists.

Any adequate understanding of similarity and analogy requires the in-
tegration of theory and data from diverse domains. This interdisciplinary
volume explores current developments in research and theory from psy-
chological, computational, and educational perspectives, and considers
their implications for learning and instruction. Well-known cognitive sci-
entists examine the psychological processes involved in reasoning by
similarity and analogy, the computational problems encountered in sim-
ulating analogical processing in problem solving, and the conditions pro-
moting the application of analogical reasoning in everyday situations.

Also of interest:

Metaphor and Thought
Edited by Andrew Ortony

The last several years have seen a surge of interest outside literary circles
in the nature and function of figurative language, of which metaphor is
the archetype. In this timely volume, philosophers, psychologists, linguists,
and educators raise serious questions about the viability of the traditional
distinction between the literal and the metaphorical. They discuss prob-
lems ranging from the definition of metaphor to its role in language ac-
quisition, learning, scientific thinking, and the creation of social policy.
Their essays reflect important parallel developments in the fields rep-
resented in the book but, further, they also illustrate an all-too-rare con-
vergence of approaches to a common problem by different disciplines.

Advances in theory have practical implications-for example, in edu-
cation—and several authors address these implications directly. A com-
prehensive introductory chapter helps students and general readers, as
well as scholars with a literary interest in metaphor, to identify the central
themes emerging from current work.
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