
PROCEEDINGS OF THE

THIRD INTERNATIONAL

CONFERENCE ON

GENETIC
ALGORITHMS

George Mason University

June 4-7, 1989

Editor/Program Chair: J. David Schaffer

With support from:
Navy Center for Applied Research in Arti:2..::.ial Intelligence,
Naval Research Laboratory
Philips LaboratOries, North American Phitps Corporation

Conference Committee:
Kenneth A. De jong, George Mason UniveT""'....i::)· (Conference Chair)
John J. Grefenstette, Naval Research Laboraory (Finance)
Lashon B. Booker, Naval Research LaborClt(Jry' (Local Arrangements)
David E. Goldberg, Univenity ofAlabama (F-.ublicity)
J. David Schaffer, Philips Laboratories (Progr:o:m)

Lawrence Davis. Bolt, Beranek and Newmar.., lnc.

John H. Holland, University ofMichigan

George G. Robertson, Xerox PARC

Stephen F. Smith, Camegie~Mel1on Universi:::"

Stewart W. Wilson, Rowland Institute for Science

Morgan Kaufmann Publishers, Inc.

San Mateo. California

124

Using Genetic Algorithms to Solve NP.Complete Problems

Kenneth A. De Jong

George Mason University

KDEJONG@GMUVAX2.GMU.EDU

Abstract
,~ , .­

A strategy for using Genetic Algorithms (GAs) to

solve NP-complete problems is presented. The key

aspect of the approach taken is to exploit the obser­

vation that, although all NP-complete problems are

equally difficult in a general computational sense,

some have much better GA representations than oth­

ers, leading to much more successful use of GAs on

some NP-complete problems than on others. Since

any NP-complete problem can be mapped into any

other one in polynomial time, the strategy described

here consists of identifying a canonical NP-complete

problem on which GAs work well, and solving other

NP-complete problems indirectly by mapping them

onto the canonical problem. Initial empirical results

are presented which support the claim that the

Boolean Satisfiability Problem (SAl) is a GA­

effective canonical problem, and that other NP­

complete problems with poor GA representations can

be solved efficiently by mapping them first onto SAT

problems.

1. Introduction

One approach to discussing and comparing Al prob­
lem solving strategies is to categorize them using the
terms "strong" and "weak" methods. Generally, a weak
method is one which has the property of wide applicability
but, because it makes few assumptions about the problem
domain, can suffer from combinatorially explosive solu­
tion costs when scaling up to larger problems. State space
search algorithms and random search are familiar exam­
ples of weak methods.

Frequently, scaling up problems can be avoided by
making sufficiently strong assumptions about the problem
domain and exploiting these assumptions in the problem
solving method. Many expert systems fall into this
category in that they require and use large amounts of
domain- and problem-specific knowledge in order to
efficiently find solutions in enormously complex spaces.
The difficulty with strong methods, of course, is their lim­
ited domain of applicability leading, generally, to
significant redesign even when applying them to related
problems.

William M. Spears

Navy Center for Applied Research in AI

SPEARS@AIC.NRL.NAVY.M1L

These characterizations tend to make one feel
trapped in the sense that one has to give up significant per­
formance to achieve generality, and vice versa. However.
it is becoming increasingly clear that there are at least two
methodologies which fall in between these two extremes
and offer in similar ways the possibility of powerful, yet
general problem solving methods.

The two approaches we have in mind are Genetic
Algorithms (GAs) and Neural Networks (NNs). They are
similar in the sense that they achieve both power and gen­
erality by demanding that problems be mapped into their
own particular representation in order to be solved. If a
fairly natural mapping exists, impressive robust perfor­
mance results. On the other hand. if the mapping is awk­
ward and strained, both approaches behave much like the
more traditional weak: methods yielding mediocre. unsatis­
fying results when scaling up.

These observations suggest two general issues
which deserve further study. FIrSt, we need to understand
how severe the mapping problem is. Are there large
classes of problems for which effective mappings exist?
Clearly. if we have to spend large amounts of time and
effort in constructing a mapping for each new problem, we
aren't any better off than the more traditional strong
methods. The second major issue involves achieving a
better understanding of the relationship between GAs and
NNs. Are the representaLion issues and/or performance
characteristics significantly different? Arc there classes of
problems handled much more effectively by one approach
than the other?

This paper is a first step in exploring these issues. It
focuses on GAs and how they can be applied to a large,
well-known class of combinatorially explosive problems:
NP-complete problems. A parallel effort is underway
using NNs to solve NP-complete problems. Although a
conclusive study is not yet completed. We will describe
some preliminary results which compare the performance
of GAs and NNs on a family of very difficult NP-complete
problems.

2. NP-Complete Problems

In complexity theory, NP denotes the set of all
(decision) problems solvable by a non-deterministic

mailto:SPEARS@AIC.NRL.NAVY.M1L
mailto:KDEJONG@GMUVAX2.GMU.EDU

ICCA'S9IUsing Genetic Algorithms to Solve NP-Complete Problems 125

polynomial time algorithm. P denOleS the set of all (deci­
sion) problems solvable by a deterministic polynomial
time algorithm. NP problems are considered -bard" in the
sense that they are not currently solvable in deterministic
polynomial time. It is an open question whether NP =P.

The canonical example of a problem in NP is the
boolean satisfiabiIity problem (SA1): Given an arbitrary
boolean expression of n variables, does there exist an
assignment to those variables such that the expression is
uue? Other familiar examples include job shop schedul­
ing, bin packing, and traveling salesman problems.

The concept of NP-completeness comes from the
observation that, althougb every problem L in NP can be
transformed into an equivalent SAT problem in polyno­
mial time (Cooke's theorem), the reverse polynomial-time
transformation may not exist Those problems in NP
which do have 2-way transformations form an equivalence
class of "equally hard" problems and have been called
NP-complete problems [Garey79].

Although NP-complete problems are computation­
ally equivalent in this complexity theoretic sense, they do
not appear to be equivalent at all with respect to how well
they map onto GA (or NN) representations. For example,
in the case of GAs, the SAT problem has a very natural
representation while finding effective representations for
bin packing. job shop scheduling. and traveling salesman
problems seems to to be quite difficult [DeJong85. Gold­
berg85. Grefensteue85. Smith85. Davis85. Oliver87,
Goldberg89].

These observations suggest the following intriguing
. strategy. Suppose we are able to identify an l\l'-complete
problem which has an effective representation in the

•. 	 methodology of interest (GAs or NNs) and develop an
.efficient problem solver for that particular case. Other

'" 	 NP-complete problems which don't have effective
representations can then be solved by transforming them
into the canonical problem, solving it, and transforming
the solution back to the original one.

We have explored this strategy in detail for GAs
,using SAT as the canonical NP-complete problem. A

. ,similar effort is underway using NNs and will be presented
.at a later date.

,

3. Genetic Algorithms and Boolean Satisfiability Prob­
lems

. In order to apply GAs to a particular problem, we
need to select an internal string representation for the solu­
tion space and define an external evaluation function

assigns utility to candidate solutions. Both com­
Jk>nents are critical to the SUCcess/failure of the GAs on the

.iXl)ble,m of interest We have selected SAT as the choice
canonical NP-complete problernbecause it appears
a highly d~irable string representation, Damely,

strings of length N in which the i·th bit represents

the truth value of the i-th roolean variable of the N
boolean variables present in the boolean expression. It is
hard to imagine I representation much better suited for use
with ~As: it is fixed length, binary, and context indepen­
dent m the sense that the meaning of one bit is unaffected
by changing the value of other bits [DeJong85].

3.1. Choosing a PayolT Function

Somewhat more thought must be given to selecting
an evaluation function. The simplest and most natural
function assigns a payoff of 1 to a candidate solution
(string) if the values specified by that string result in the
boolean expression evaluating to TRUE, and 0 otherwise.
A moment's thought., however, suggests that for problems
of interest the payoff function would be 0 almost every­
where and would nOl support the formation of useful inter­
med~te buiI~ng b~ks. Even though in the real problem
dOmaIn, partIal soluuons to SAT are not of much interest.,
they are critical components of a GA approach.

One approach to providing intermediate feedback
would be to transform a given boolean expression into
conjunctive normal form (CNF) and define the payoff to
be the total number of top level conjuncts which evaluate
to uue. While this makes some intuitive sense, one cannot
in general perform such transformations in pOlynomial
time without introducing a large number of additional
boolean variables which, in turn, combinatorially increase
the size of the search space.

An alternath-e would be to assign payoff to indivi­
dual clauses in the original expression and combine them
in some way to generate a total payoff value. In this con­
text the most natural approach is to define the value of
TRUE to be I, the value of FALSE to be 0, and to define
the value of simple expressions as follows:

lIol(NOT e) =1- val (e)

val(AND el ... e,.) =MIN(val(el) ... val(e,.))

vol (OR el •.• e,.) =MAX (val (e 1) •.. val(e,.»

Since any boolean expression can be broken down
(parsed) into these basic elements. one has a systematic
mechanism for assigning payoff. Unfortunately, as the
astute reader has probably already noticed. this mechanism
is no better than the original OQe since it still only assigns
payoff values of 0 and 1 to both individual clauses and and
the entire expression.

However, a minor change to this mechanism can
generate differential payoffs, namely:

val(AND el ... e,.) =AVE (val(el) ••• 'val(e,.))

-This suggestiOn was made first by Smith [Smith79]
. and intuitively justified by arguing that this would reward

"more nearly true" AND clauses. So, for example,

U6 De Jong md Spears

solutions to Ihe boolean expression

.' ".,. ';.' r. X AND (X OR X;) .
. I I 1

.would be assigned payoffs as rollows:

XI Xl PAYOFF
0
0
1
1

0
1
0
1

(AVE 0 (MAX (0 (1 ­ 0))) =0.5
(AVE 0 (MAX (0 (1-1))) =0.0
(AVE 1 (MAX (1 (1-0))) =1.0
(AVE 1 (MAX (1 (1-1))) =1.0

Notice that both of the correct solutions (lines 3 and 4) arc
assigned a payoff of 1 and, of the incorrect solutions (lines
1 and 2), line 1 gets higher payoff because it got half of the
ANDrighL

This approach was used successfully by Smith and
was initially adopted in our experiments.. However, there
were a number of features of this payoff function that left
us uncomfortable and which led to a more eareful exami­
nation of it

The fust and fairly obvious property of using AVE
to evaluate AND clauses is that the payoff function is not
invariant under standard boolean equivalency transforma­
tions. For example. it violates the associativity law:

val«XI AND Xl) AND X3) '¢ val(X 1AND (Xl AND X3»

since

(AVE (AVE Xl X2)X3) '¢(AVE Xl (AVE X2 X 3»
We have attempted to construct alternative differential
payoff functions which have this ideal property of payoff
invariance and have had no success. However. one could
argue that a weaker form of invariance might be adequate
for use with GAs, namely, truth invariance. By that we
mean that the payoff function should assign the same
value (typically 1. but could even be a set of values) to all
correct solutions of the given boolean expression, and
should map all incorrect solutions into a set of values (typ­
ically 0 S value < 1) which is distinct and lower than the
correct ones. Since boolean transformations do not occur
while the GAs are searching for solutions, the actual
values assigned non-solutions would seem to be of much
less importance than the fact that they are useful as a
differential payoff to support the construction of partial
solutions.

Unfortunately, the proposed payoff function does
not even guarantee this second and weaker property of
truth invariance as the following example shows:

by De Morgan

However,

. as we see in me following table:

XI X1 uJhide Right side
0 0 0 0
0 1 1 112
1 0 1 112
1 1 1 1

Notice that lines 2-4 are all solutions, but lines 2 and 3 are
assigned a payoff of 1/2 after De Morgan's law has been
applied.

In genem1, it can be shown that, although the payoff
does not assign the value of 1 to non-solutions. it fre­
quently assigns values < 1 to perfectly good solutions and
can potentially give higher payoff to non-solutions!

A careful analysis, however, indicates that these
problems only arise when De Morgan's laws are involved
in introducing terms of the form (AND ••.). This sug­
gests a simple fix: preprocess each boolean expression by
systematically applying De Morgan's laws to remove such
constructs. It also suggests another interesting opportun­
ity. Constructs of the fonn (OR •••) are computed
correctly. but only take on 0/1 values. By using De
Morgan's laws to convert these to AND constructs, we
introduce additional difIerential payoff. Converting both
fonns is equivalent to reducing the scope of all NOTS to
simple variables. Fortunately, unlike the conversion to
CNF, this process has only linear complexity and can be
done quickly and efficiently.

In summary, we feel that, with the addition of this
preprocessing step. we now have an effective payoff func­
tion for applying GAs to boolean satisfiability problems.
This payoff function has the following properties: 1) it
assigns a payoff value of 1 if and only if the candidate
solution is an actual solution; 2) it assigns values in the
range 0 S value < 1 to all non-solutions; and 3) non­
solutions receive differential payoff on the basis of how
near their AND clauses are to being satisfied.

3.2. Possible Improvements to tbe Payoff Function

One way to view the problems discussed in the pre­
vious section is to note that many of the undesirable
effects are due to the fact that, by choosing to evaluate
AND/OR clauses with AVE/MAX, we have broken the
natural symmetry between AND and OR in the sense that
AND clauSes will have differential payoffs assigned to
them while OR clauses will only be assigned 0/1. An
interesting observation is that evaluating AND nodes by
raising AVE to some integer power p is still truth preserv­
ing (assuming the preprocessing step described above) and
has several additional beneficial effects. F"JISl, it has the
effect of reducing the AND lOR asymmetry by reducing
the average score assigned to a false AND clause. In addi­
tion, it increases the differential between the payoff for
AND clauses with only a few Is and those which are

ICGA'891Using Genetic Algorithms to Solve NP-Complete Problems U7

nearly rrue.

On the other hand, as p approaches infinity. the
function AVE P behaves more and more like MIN which
means we have again lost the differential payoff property.
'Ibis suggests an interesting optimization experiment to
determine a useful value for p. We will present our initial
results on this in the next section.

4. 	Experimental Results

4.1. Implementation Details

AU of our experiments have been perfonned using a
Lucid Common Lisp implementation of the GAs. In all
eases the population size has been held fixed at 100. the
standard 2-point crossover operator has been applied at a
60% rate, the mutation rate is 0.1%. and selection is per­
fonned via Baker's SUS algorithm [Baker87].

Having formulated SAT as an optimization prob­
lem. there are some interesting issues concerning conver­
gence to a solution. First of aU, whenever a candidate
evaluates to 1. we know that a solution has been found and
the search can be tenninated. Conversely, there is strong
motivation to continue the search until a solution is found
(since nearly true expressions are not generally of much
interest to the person formulating the problem). The
difficulty. of course. is that on any particular run there is
no guarantee that a solution will be found in a reasonable
amount of time due to the increasing homogeneity of the
population as the "search proceeds.

One approach would be to take extra measures to
guarantee continuing diversity (such as increasing muta­
tion. selection by ranking. introducing crowding factors.
etc.). Unfonunately, these aU have additional side effects
which would need to be studied and controlled as well.
We have chosen a simpler approach. We use De Jong's
measure of population homogeneity based on allele "con­
vergence" [DcJong75], and when that measure exceeds
90%, the GA is restarted with a new random population.
Consequently, in the experimental data presented in the
subsequent sections, the evaluation counts reflect aU of the
GA restarts. Although this technique might seem a bit
drastic, it appears to work quite well in practice.

Since the number of evaluations (uials) required to
find a solution can vary quite a bit from one run to the next
due to stochastic effects, all of the results presented here
represent data averaged over at least 10 independent runs.

4.2. Initial SAT Experiments

Our first set of experiments involves constructing
several families of boolean expressions Cor which we can
control the size and the difficulty of the problem. The first
family selected consists of two-peak (TP) expressions oC
the Corm: .

(AND Xl' •• XII) OR (AND Xi ... X.;)

which have exactly two solutions (aU Os and aU Is). By
varying the number n of boolean variables, one can
observe how the GAs perform as the size of the search
space increases exponentially while the number oC solu­
tions remains fixed.

Figure 1 presents the results of varying n between
10 and 90 (i.e., for search spaces ranging in size from 210

to 290
). It is clear that the differential payoff function is

working as intended, and that the GAs can locate solutions
to TP problems without much difficulty.

To make things a bit more difficult, we changed the
problem slightly by turning one of the solutions into a
false peak (FP) as foUows:

(AND Xl'" 	X,,) OR (AND XI Xi ... x.:)
so that the previous all Os solution is now almost' correct
and the only correct solution is that of allIs.

Figure 2 presents the results of applying GAs to the
FP family with n ranging from 10 to 90. As before, we
see that the GAs have no difficulty in finding the correct

2~------------------~

15000

Evals 10000

5000

o 	 20 40 60 80
Variables =10g(Search Space)

5-------~~-----------------~

4

log(Evals) 	 3

2

l-L--_______--~-----__-------~~

o 	 20 40 60 80
Variables = 10g(Search Space)

Figure 1: Perfonnance of GAs on the TP Problems

128 De Jong and Spean

solution even in Ihe presence of false peaks.

Since we are dealing with problems for which there
are no blown polynomial-time algorilhms, we have been
particularly interesled in the log-log graphs. Notice that.
for both abc TP and FP problems.. a sub-linear curve is
genetaled, indicating (as upecled) a subsranlial improve­
ment over . .systematic search. The fonn that these sub­
linear curves take give some indication of the speedup
(over systematic search) obtained by using GAs. If, for
eJtample. these curves are all logarithmic in form, we have
a polynomial-time algorithm for SAn Additional discus­
sion of these curves will occur in a later section after more
data has been presented.

With these initial encouraging results, we were
eager to apply GAs to more naturally arising boolean
expressions. However. we have found it difficult to find
good examples of hard SAT problems (including those
used by Smith [Smith79]). So. we have chosen instead to
look at other NP-complcl.e problcms as possible sources.
The first one we have ~lected is the famUy of hamiltonian

S~~-------------------;

Evals
20000

10000

0

0 20 40 60 80
Variables =10g(Search Space)

5

4

10g(Evals) 	 3

2

1

0 20 40 60 80
Variables =10g(Search Space)

Figure 2: Performance of GAs on the FP Problems

circuit poblems.

4.3. Solving Hamiltonilll Circuit Pa:ob1ems

The hamiltonian circuit (HC) problem consists oC
finding a tour througb a directed graph that touches all
nodes exactly once. acarly. if a graph is Cully c:onnected,
this is an easy task. However, as edges are removed the
problem becomes much more difficult. and the general
problein is known to be NP..complete.

Attempting to solve this problem directly with GAs
raises many of the same representation issues as in the
case of traveling salesman problems [DeJong8S. Grefen­
stette8S1. However. it is not difficult to construct a
polynomial-time ttansformation from He problems to
SAT problems.

An example of the transformation we are using is
given in Figure 3. The definition of the He problem
implies that. for any solution. each node must have exactly
one input edge and one output edge. If any tour violates
this constraint. it cannot be a solution. Therefore. all
equivalent boolean expression is simply the conjunction of
terms indicaLing valid edge combinations for each node.
As an example, consider node d. Node d has two output
edges and one input edge. The OULput edge constraints are
given by the exclusive-or. «db and de) or (d[j and de).
The input edge is described simply by cd. The assign­
ments to the edge variables indicate which edges make up
a LOur. with a value of 1 indicating an edge is included and
a valuc of 0 if it is not This transformation is computed

a

ea

de
d

(and ab
be
ex!
de
ea
(or (and db (not de))

(and (not db) de)))
(or (and ea (not eb»

(and (not ea) eb»
(Qr (and ab (001 db)(not eb»

. (and (not ab) db (not eb»
(and, (not ab) (not db) eb))

Figure 3: Transforming He Problems to SAT Problems

ICGA'89/using Genetic Algorithms to Solve NP-Complete Problems U9

in polynomial time, and a solution to the HC problem
exists if and only if the boolean expression is satisfiable.

As before, we wish to systematically study the per­
formance of GAs on a series of increasingly difficult HC
problems. Clearly, the complexity in this case is a func­
tion of both the number of nodes and the number of
directed edges. For a given number N of nodes, problems
with only a small number of edges (~ N) or nearly fully
connected (approximately N 2 edges) are not very interest­

ing. We feel that problems with approximately N22

edges would, in general, present the most difficult prob­
lems. In addition, to achieve some degree of uniform
difficulty and to allow for a direct comparison with some
of the results in the previous section, we wanted the prob­
lems to have exactly one solution. Consequently, we have
defined the following family of HC problems for our
experiments.

Consider a graph of n nodes, which are labeled
using consecutive integers. Suppose the first node has
directed edges to all nodes with larger labels (except for
the last node). The next n-2 nodes have directed edges to
all nodes with larger labels (including the last one). The
last node has a directed edge back to the first node. A
complete tour consists of following the node labels in
increasing order, until you reach the last node. From the
last node you travel back to the first. Because the edges
are directed, it is clear that this is also the only legal tour.

Intuitively, such instances of HC problems should
be difficult. Only one tour exists in each instance. In addi­
tion. there are a large number of solutions that are almost
complete tours scattered throughout the search space. Fig­
ure 4 illustrates what the corresponding SAT payoff func­
tion looks like for an HC problem of this type with 7
nodes.

In summary, our experimental framework consists
of varying the number N of nodes in the range 4 S; N S; 10
and, for each value of N, generating a directed graph of the

2
.. d 'bed b . . . I Nlorm cscn a ove contammg approximate y 2
edges and exactly one solution. Each of these HC

0.8

0.6
EvahwiOll

0.4

000.. 010_ 100- 110_ 111.
, ,H~

Figure 4: SAT Payoff function for a 7-node HC Pioblem
. . .

problems is transformed into its equivalent SAT problem
using the transformation described above. generating
search space sizes ranging from 26 to rs. GAs are then
used to solve each of Ihe corresponding SAT problems
which. in tum, describes a legal HC tour.

Figure 5 presents the results of these experiments.
Notice that we have succeeded in generating significantly
more difficult SAT problems in that the number of evalua­
tions required to find a solution is an order of magnitude
higher that the earlier TP and FP problems. However,
even with these difficult problems. the log-log plot is still
sub-linear.

4.4. Improvements to the SAT PayolT Function

Although we were pleased with the results so far,
we were very curious as to the effects of using AVE P in
the payoff function for integer values of p > 1 for the rea­
sons discussed in section 3.2. Our hypothesis was that ini­
tial increases in the value of p would improve perfor­
mance, but that beyond a certain point performance would

le+06-r--------------------~

800000

600000
Evals

400000

200000

0

0 20 40 60

1# Vari:lbles = 10g{Search Space)

6

5

4
10g(Evals)

3

2

1

0 20 40 60

Variables = 10g{Search Space)

Figure 5: Performance of GAs on the HC Problems

130 De Jong and Spean

actually drop oil as AVE' began to more closely approxi­
mate MIN. :' ,

We tested this hypothesis by re-lUMing the GAs on
the three families of problems (TP. FP, and HC) varying P
from 2lO S. and compared their performance with the ori­
ginal results with p = 1. Figure 6 presents the results of
our e~~ents. Somewhat surprisingly, an optimum

~-r----------------~

15000

Evals 10000

5000

0

50000

40000

30000
Evals

20000

10000

0

100000

80000

60000
Evals

40000

20000

0

AVE"S

AVE....

0 20 40 60 80
Variables =10g(Search Space)

AVE"S

AVE"l

AVE....

0 20 40 60 80
Variables = 10g(Search Space)

AVE"S

AVE"l

AVE....

AVE"3

AVE"2

0 10 20 30 40
Variables = 10g(Search Space)

Figure 6: Perfonnance of GAs using AVE P

appeared already at P • 2. Accordingly. we have adopted
that value for the remaining experimental wen we have
performed.

4.5. Some Empirical Evidence o(Implicit Parallelism

One of the nice theoretical results in Holland', ori­
ginal analysis of the power of GAs is the "implicit paral­
lelism" theorem whi:h sets a lower bound of an N'
speedup over systematic sequential search [Holland75}.
This suggeslS that, in Ihe worst case, GAs should not have
to search more than the cube root of Ihe search space in
order to find a soIutioo and, in general. should do much
better.

One of the unexpected benefilS of the experimental
results presented here is substantial empirical evidence of
just such speedups on SAT problems.

Figure 7 summa:izes the performance of the GAs on
the 3 families of SAT problems using AVE! in the payoff
function. As we noted earlier, the log-log curves appear to
be sub· linear. To get 2. better feeling for the form of these
curves, we have tried to fit both linear and quadratic
curves to the data. Fa each of the families of SAT prob­
lems, a quadratic form produces a better fit and, by using
the coefficients of the quadratic form, we can calc,ulate the
observed speedup. The resullS are as follows:

TP speedup: N
'

.21

FP speedup: N 6.25

HC speedup: N2..94

Clearly, on the easier problems OF and FP) we are per­
forming better than C-.e predicted lower bound. What is
particularly intriguing. however, is how well the empirical
resullS match the theoretical resullS for the HC family
which we have delib:::rately consuucted to be a class of
very difficult single-sc:ution problems.

5. Current Activities

5.1. C and Parallelization

The experimer.:s reported here have been con·
strained by our use o~ Lucid Common Lisp. While Lisp
makes it easy to aULO::late the process of generating Lisp
code for the various SAT families of problems. the Lucid
Lisp compiler imposes intemallimits on the size and com­
plexity of the functions it can compile. We hit these limits
when attempting to generate payoff functions for HC prob­
lems with more than 10-Il nodes. We are in the process
of switching over to !.he Genesis system, a C implementa­
lion ofGAs [Grefenst!Ue84], to avoid these limitations. A
side benefit of this cOllversion is that Ihe experimenlS also
run a order of magl"1:.ude faster! Since many GA sites
already use Genesis, this step has the added advantage of
creating an additional GA testbed for the GA community.

More exciting perhaps is the use of parallelism.
Genesis is being co''lVerted for use on the Butterfly

ICGA'89IUsing Genetic Algorithms to Solve NP-Complete Problems 131

6

S

4
Log(Evals)

3

2

1

6

5

4
Log(Evals)

3

2

1

6

5

4
Log(Evals)

3

2

1

Figure 7: Summary Perfonnance of GAs using AVE2

machine at NRL. The Butterfly is a MIMD machine with
128 68020-based nodes. Preliminary results suggests that
the use of this machine could result in a two order of mag­
nitude speedup in execution time.

S.2. An NP.Complete Factorization Problem

Although the GNs have performed well on TP. FP.
and HC problems. one can argue that the problems are

TPProblcml

0 20 40 60 80
i# Variables =10g(Search Space)

FPProbI

0 20 40 60 80
Variables = 10g(Searcb Space)

HCProbI.....

0 20 40 60
i# Variables = 10g(Search Space)

simply not interesting. since the TP and FP problems are
somewhat artificial and there already exists specialized
algorithms for HC problems which can out perfonn the
GAs on the examples shown. What is perhaps needed at
this point to evaluate the robustness of this approach is a
problem which is known to be NP-complete, but for which
few (if any) specialized algorithms have been developed.

An example of such a problem has come to us from
the cryptography community. Most cryptography systems
make use of prime numbers and factorization [Rivest78].
Hoey [Hoey89] has devised an algorithm for converting a
factorization decision problem into an equivalent SAT
problem. For example, a problem of the fonn:

"Does 689 have a 4 bit factor'!"
can be converted to a boolean expression with 22 vari­
ables, lOS clauses, and 29S literals.

Such problems arc of interest 10 both the crypto­
graphic and complexity theory communities because they
are generally highly intractable. We plan a set of exten­
sive experiments when we have completed the conver­
sions described in the previous section.

5.3. A Comparison witb Simulated Annealing

As mentioned earlier, we are also examining the use
of neural networks (NNs) to solve NP-Complete p'roblems.
In particular, we have developed a method for using simu­
lated annealing (a class of NNs (McClelland88]) to solve
SAT problems. Although the details of the methodology
will not be presented here, some experimental highlights
are worth mentioning.

First, SA's work remarkably well on the TP prob­
lem, producing correct solutions in almost constant time
(regardless of the size of the TP problem). In this case,
SA's are essentially greedy algorithms. and the results are
not surprising. Secondly, SA's appear to be reasonably
competitive with GA's on HC problems, although they are
consistently outperformed on the examples we have run so
far (see Figure 8).

If we again use quadratic fits to the He data seen so
far. the NN speedup is approximately N2.22 while the GA
speedup (reported earlier) is N2.94. We will have a more
comprehensive repon on these experiments in the near
future.

6. Conclusions

This paper presents a series of initial results regard­
ing a strategy for using GAs to solve NP-complele prob­
lems. This strategy avoids many of the GA representation
difficulties associated with various NP-complete problems
by mapping them into SAT problems for which an
effective GA representation exists.

These initial results suppon the view that GAs are
an effective. robust search procedure for NP-complete

I
I

,'SA
I

I
I

I
I

I

I

..'

De Jong. K. A. (1975). An Analysis of the Behavior 0/ Q

Class 0/ Genetic Adtzptive Systems, Doctoral c:Ussenation,
Dept. Computer and Communication Sciences, University
of Michigan, Ann Arbor.

De Jong, K. A. (1985). Genetic Algorithms: a 10 Year
Perspective, Proc.ln!' I Conference on Genetic Algorithms
and their Applications.

Garey, Michael R. & David S. Johnson (1979). Comput­
ers and Intractability: A Guide to the Theory 0/ NP­
Completeness, W. H. Freeman and Company, San Fran­
cisco,CA.

Goldberg, David E. and Robert Lingle, Jr. (1985). Alleles,
Loci, and the Traveling Salesman Problem, Proc. Int'l
Conference on Genetic Algorithms and their Applications.

Goldberg, David E. (1989). Genetic Algorithms in Search.
Optimization &: Machine Learning, Addison-Wesley Pub­
lishing Company. Inc.

Grefcnsteue, John J. (I984). GENESIS: A system for
using genetic search procedures. Proceedings 0/ the 1984
Conference on Intellige1l1 Systems and Machines, 161-165.

Gre[enstette,John J.,et al. (1985). Genetic Algorithms for
the Traveling Salesman Problem. Proc. Int'I Conference
on Genetic Algorithms and their Applications.

Hoey, Dan Navy CenJ.er for Applied Research in Artificial
InteIligence. Private Communication.

Holland, John H. (1975). Adaptation in Natural and
Artificial Systems, The University of Michigan Press.

McClelland, James L and David E. Rumelhart (1988).
ExPlorations in Parallel Distributed Processing, The MIT
Press. Cambridge, MA.

Oliver, I. M., Smith, D. J. and J. R. C. Holland (1987). A
Study of Permutation Crossover Operators on the Travel­
ing Salesman Problem, Proc. Int'l Conference on Genetic
Algorithms and their Applications.

Rivest. R. L., et al (1978). A Method for Obtaining Digi­
tal Signatures and Public-key Cryptosystems, CACM, 21,
2,120-6.

Smith, Gerald H. (1979). Adaptive Genetic Algorithms
and the Boolean Satisfiability Problem. Unpublished
Work.

Smith, Derek (1985). Bin PaCking with Adaptive Search,
Proc. Int'J Conference on Genetic Algorithms and their
Applications.

_ 13% De Jons and Spean

le+06

Evals 500000

o 20 40

,.SA6

5

410g(Evals)

3

2 I
I

1

0 20 40
Variables =10g(Search Space)

Figure 8: GAs and SAs on the HC Problems

60

60

II Variables =10g(Search Space)

problems in the sense that. although they may not outper­
form highly tuned, problem-specific algorithms, GAs can
be easily applied to a broad range of NP-complete prob­
lems with performance characteristics no worse than the
theoreti~ lower bound of an N3 speedup.

This paper also sets the stage for a direct com­
parison between GAs and NNs on NP-complete problems.
We feel that such comparisons are important and
encourage the research community to develop additional
results on these and other problems of interest.

Rderences

Balcer, James E. (1987). Reducing Bias and Inefficiency in
the Selection Algorithm, Proc. Int'l Conference on
Genetic Algorithms and their Applications.

Davis, Lawrence (1985). Job Shop Scheduling with
Genetic Algorithms, Proc. Int'l Conference on Genetic
Algorithms and their Applications.

