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Abstract 
,~ , .­

A strategy for using Genetic Algorithms (GAs) to 

solve NP-complete problems is presented. The key 

aspect of the approach taken is to exploit the obser­

vation that, although all NP-complete problems are 

equally difficult in a general computational sense, 

some have much better GA representations than oth­

ers, leading to much more successful use of GAs on 

some NP-complete problems than on others. Since 

any NP-complete problem can be mapped into any 

other one in polynomial time, the strategy described 

here consists of identifying a canonical NP-complete 

problem on which GAs work well, and solving other 

NP-complete problems indirectly by mapping them 

onto the canonical problem. Initial empirical results 

are presented which support the claim that the 

Boolean Satisfiability Problem (SAl) is a GA­

effective canonical problem, and that other NP­

complete problems with poor GA representations can 

be solved efficiently by mapping them first onto SAT 

problems. 


1. Introduction 

One approach to discussing and comparing Al prob­
lem solving strategies is to categorize them using the 
terms "strong" and "weak" methods. Generally, a weak 
method is one which has the property of wide applicability 
but, because it makes few assumptions about the problem 
domain, can suffer from combinatorially explosive solu­
tion costs when scaling up to larger problems. State space 
search algorithms and random search are familiar exam­
ples of weak methods. 

Frequently, scaling up problems can be avoided by 
making sufficiently strong assumptions about the problem 
domain and exploiting these assumptions in the problem 
solving method. Many expert systems fall into this 
category in that they require and use large amounts of 
domain- and problem-specific knowledge in order to 
efficiently find solutions in enormously complex spaces. 
The difficulty with strong methods, of course, is their lim­
ited domain of applicability leading, generally, to 
significant redesign even when applying them to related 
problems. 
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These characterizations tend to make one feel 
trapped in the sense that one has to give up significant per­
formance to achieve generality, and vice versa. However. 
it is becoming increasingly clear that there are at least two 
methodologies which fall in between these two extremes 
and offer in similar ways the possibility of powerful, yet 
general problem solving methods. 

The two approaches we have in mind are Genetic 
Algorithms (GAs) and Neural Networks (NNs). They are 
similar in the sense that they achieve both power and gen­
erality by demanding that problems be mapped into their 
own particular representation in order to be solved. If a 
fairly natural mapping exists, impressive robust perfor­
mance results. On the other hand. if the mapping is awk­
ward and strained, both approaches behave much like the 
more traditional weak: methods yielding mediocre. unsatis­
fying results when scaling up. 

These observations suggest two general issues 
which deserve further study. FIrSt, we need to understand 
how severe the mapping problem is. Are there large 
classes of problems for which effective mappings exist? 
Clearly. if we have to spend large amounts of time and 
effort in constructing a mapping for each new problem, we 
aren't any better off than the more traditional strong 
methods. The second major issue involves achieving a 
better understanding of the relationship between GAs and 
NNs. Are the representaLion issues and/or performance 
characteristics significantly different? Arc there classes of 
problems handled much more effectively by one approach 
than the other? 

This paper is a first step in exploring these issues. It 
focuses on GAs and how they can be applied to a large, 
well-known class of combinatorially explosive problems: 
NP-complete problems. A parallel effort is underway 
using NNs to solve NP-complete problems. Although a 
conclusive study is not yet completed. We will describe 
some preliminary results which compare the performance 
of GAs and NNs on a family of very difficult NP-complete 
problems. 

2. NP-Complete Problems 

In complexity theory, NP denotes the set of all 
(decision) problems solvable by a non-deterministic 
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polynomial time algorithm. P denOleS the set of all (deci­
sion) problems solvable by a deterministic polynomial 
time algorithm. NP problems are considered -bard" in the 
sense that they are not currently solvable in deterministic 
polynomial time. It is an open question whether NP =P. 

The canonical example of a problem in NP is the 
boolean satisfiabiIity problem (SA1): Given an arbitrary 
boolean expression of n variables, does there exist an 
assignment to those variables such that the expression is 
uue? Other familiar examples include job shop schedul­
ing, bin packing, and traveling salesman problems. 

The concept of NP-completeness comes from the 
observation that, althougb every problem L in NP can be 
transformed into an equivalent SAT problem in polyno­
mial time (Cooke's theorem), the reverse polynomial-time 
transformation may not exist Those problems in NP 
which do have 2-way transformations form an equivalence 
class of "equally hard" problems and have been called 
NP-complete problems [Garey79]. 

Although NP-complete problems are computation­
ally equivalent in this complexity theoretic sense, they do 
not appear to be equivalent at all with respect to how well 
they map onto GA (or NN) representations. For example, 
in the case of GAs, the SAT problem has a very natural 
representation while finding effective representations for 
bin packing. job shop scheduling. and traveling salesman 
problems seems to to be quite difficult [DeJong85. Gold­
berg85. Grefensteue85. Smith85. Davis85. Oliver87, 
Goldberg89]. 

These observations suggest the following intriguing 
. strategy. Suppose we are able to identify an l\l'-complete 
problem which has an effective representation in the 

•. 	 methodology of interest (GAs or NNs) and develop an 
.efficient problem solver for that particular case. Other 

'" 	 NP-complete problems which don't have effective 
representations can then be solved by transforming them 
into the canonical problem, solving it, and transforming 
the solution back to the original one. 

We have explored this strategy in detail for GAs 
,using SAT as the canonical NP-complete problem. A 

. ,similar effort is underway using NNs and will be presented 
.at a later date. 


, 

3. Genetic Algorithms and Boolean Satisfiability Prob­
lems 

. In order to apply GAs to a particular problem, we 
need to select an internal string representation for the solu­
tion space and define an external evaluation function 

assigns utility to candidate solutions. Both com­
Jk>nents are critical to the SUCcess/failure of the GAs on the 

.iXl)ble,m of interest We have selected SAT as the choice 
canonical NP-complete problernbecause it appears 
a highly d~irable string representation, Damely, 

strings of length N in which the i·th bit represents 

the truth value of the i-th roolean variable of the N 
boolean variables present in the boolean expression. It is 
hard to imagine I representation much better suited for use 
with ~As: it is fixed length, binary, and context indepen­
dent m the sense that the meaning of one bit is unaffected 
by changing the value of other bits [DeJong85]. 

3.1. Choosing a PayolT Function 

Somewhat more thought must be given to selecting 
an evaluation function. The simplest and most natural 
function assigns a payoff of 1 to a candidate solution 
(string) if the values specified by that string result in the 
boolean expression evaluating to TRUE, and 0 otherwise. 
A moment's thought., however, suggests that for problems 
of interest the payoff function would be 0 almost every­
where and would nOl support the formation of useful inter­
med~te buiI~ng b~ks. Even though in the real problem 
dOmaIn, partIal soluuons to SAT are not of much interest., 
they are critical components of a GA approach. 

One approach to providing intermediate feedback 
would be to transform a given boolean expression into 
conjunctive normal form (CNF) and define the payoff to 
be the total number of top level conjuncts which evaluate 
to uue. While this makes some intuitive sense, one cannot 
in general perform such transformations in pOlynomial 
time without introducing a large number of additional 
boolean variables which, in turn, combinatorially increase 
the size of the search space. 

An alternath-e would be to assign payoff to indivi­
dual clauses in the original expression and combine them 
in some way to generate a total payoff value. In this con­
text the most natural approach is to define the value of 
TRUE to be I, the value of FALSE to be 0, and to define 
the value of simple expressions as follows: 

lIol(NOT e) =1- val (e) 

val(AND el ... e,.) =MIN(val(el) ... val(e,.)) 

vol (OR el •.• e,.) =MAX (val (e 1) •.. val(e,.» 

Since any boolean expression can be broken down 
(parsed) into these basic elements. one has a systematic 
mechanism for assigning payoff. Unfortunately, as the 
astute reader has probably already noticed. this mechanism 
is no better than the original OQe since it still only assigns 
payoff values of 0 and 1 to both individual clauses and and 
the entire expression. 

However, a minor change to this mechanism can 
generate differential payoffs, namely: 

val(AND el ... e,.) =AVE (val(el) ••• 'val(e,.)) 

-This suggestiOn was made first by Smith [Smith79] 
. and intuitively justified by arguing that this would reward 

"more nearly true" AND clauses. So, for example, 



U6 De Jong md Spears 

solutions to Ihe boolean expression 

.' ".,. ';.' r. X AND (X OR X; ) . 
. I I 1 

.would be assigned payoffs as rollows: 

XI Xl PAYOFF 
0 
0 
1 
1 

0 
1 
0 
1 

(AVE 0 (MAX (0 (1 ­ 0))) =0.5 
(AVE 0 (MAX (0 (1-1))) =0.0 
(AVE 1 (MAX (1 (1-0))) =1.0 
(AVE 1 (MAX (1 (1-1))) =1.0 

Notice that both of the correct solutions (lines 3 and 4) arc 
assigned a payoff of 1 and, of the incorrect solutions (lines 
1 and 2), line 1 gets higher payoff because it got half of the 
ANDrighL 

This approach was used successfully by Smith and 
was initially adopted in our experiments.. However, there 
were a number of features of this payoff function that left 
us uncomfortable and which led to a more eareful exami­
nation of it 

The fust and fairly obvious property of using AVE 
to evaluate AND clauses is that the payoff function is not 
invariant under standard boolean equivalency transforma­
tions. For example. it violates the associativity law: 

val«XI AND Xl) AND X3) '¢ val(X 1AND (Xl AND X3» 

since 

(AVE (AVE Xl X2)X3) '¢(AVE Xl (AVE X2 X 3» 
We have attempted to construct alternative differential 
payoff functions which have this ideal property of payoff 
invariance and have had no success. However. one could 
argue that a weaker form of invariance might be adequate 
for use with GAs, namely, truth invariance. By that we 
mean that the payoff function should assign the same 
value (typically 1. but could even be a set of values) to all 
correct solutions of the given boolean expression, and 
should map all incorrect solutions into a set of values (typ­
ically 0 S value < 1) which is distinct and lower than the 
correct ones. Since boolean transformations do not occur 
while the GAs are searching for solutions, the actual 
values assigned non-solutions would seem to be of much 
less importance than the fact that they are useful as a 
differential payoff to support the construction of partial 
solutions. 

Unfortunately, the proposed payoff function does 
not even guarantee this second and weaker property of 
truth invariance as the following example shows: 

by De Morgan 

However, 

. as we see in me following table: 

XI X1 uJhide Right side 
0 0 0 0 
0 1 1 112 
1 0 1 112 
1 1 1 1 

Notice that lines 2-4 are all solutions, but lines 2 and 3 are 
assigned a payoff of 1/2 after De Morgan's law has been 
applied. 

In genem1, it can be shown that, although the payoff 
does not assign the value of 1 to non-solutions. it fre­
quently assigns values < 1 to perfectly good solutions and 
can potentially give higher payoff to non-solutions! 

A careful analysis, however, indicates that these 
problems only arise when De Morgan's laws are involved 
in introducing terms of the form (AND ••. ). This sug­
gests a simple fix: preprocess each boolean expression by 
systematically applying De Morgan's laws to remove such 
constructs. It also suggests another interesting opportun­
ity. Constructs of the fonn (OR ••• ) are computed 
correctly. but only take on 0/1 values. By using De 
Morgan's laws to convert these to AND constructs, we 
introduce additional difIerential payoff. Converting both 
fonns is equivalent to reducing the scope of all NOTS to 
simple variables. Fortunately, unlike the conversion to 
CNF, this process has only linear complexity and can be 
done quickly and efficiently. 

In summary, we feel that, with the addition of this 
preprocessing step. we now have an effective payoff func­
tion for applying GAs to boolean satisfiability problems. 
This payoff function has the following properties: 1) it 
assigns a payoff value of 1 if and only if the candidate 
solution is an actual solution; 2) it assigns values in the 
range 0 S value < 1 to all non-solutions; and 3) non­
solutions receive differential payoff on the basis of how 
near their AND clauses are to being satisfied. 

3.2. Possible Improvements to tbe Payoff Function 

One way to view the problems discussed in the pre­
vious section is to note that many of the undesirable 
effects are due to the fact that, by choosing to evaluate 
AND/OR clauses with AVE/MAX, we have broken the 
natural symmetry between AND and OR in the sense that 
AND clauSes will have differential payoffs assigned to 
them while OR clauses will only be assigned 0/1. An 
interesting observation is that evaluating AND nodes by 
raising AVE to some integer power p is still truth preserv­
ing (assuming the preprocessing step described above) and 
has several additional beneficial effects. F"JISl, it has the 
effect of reducing the AND lOR asymmetry by reducing 
the average score assigned to a false AND clause. In addi­
tion, it increases the differential between the payoff for 
AND clauses with only a few Is and those which are 



ICGA'891Using Genetic Algorithms to Solve NP-Complete Problems U7 

nearly rrue. 

On the other hand, as p approaches infinity. the 
function AVE P behaves more and more like MIN which 
means we have again lost the differential payoff property. 
'Ibis suggests an interesting optimization experiment to 
determine a useful value for p. We will present our initial 
results on this in the next section. 

4. 	Experimental Results 

4.1. Implementation Details 

AU of our experiments have been perfonned using a 
Lucid Common Lisp implementation of the GAs. In all 
eases the population size has been held fixed at 100. the 
standard 2-point crossover operator has been applied at a 
60% rate, the mutation rate is 0.1%. and selection is per­
fonned via Baker's SUS algorithm [Baker87]. 

Having formulated SAT as an optimization prob­
lem. there are some interesting issues concerning conver­
gence to a solution. First of aU, whenever a candidate 
evaluates to 1. we know that a solution has been found and 
the search can be tenninated. Conversely, there is strong 
motivation to continue the search until a solution is found 
(since nearly true expressions are not generally of much 
interest to the person formulating the problem). The 
difficulty. of course. is that on any particular run there is 
no guarantee that a solution will be found in a reasonable 
amount of time due to the increasing homogeneity of the 
population as the "search proceeds. 

One approach would be to take extra measures to 
guarantee continuing diversity (such as increasing muta­
tion. selection by ranking. introducing crowding factors. 
etc.). Unfonunately, these aU have additional side effects 
which would need to be studied and controlled as well. 
We have chosen a simpler approach. We use De Jong's 
measure of population homogeneity based on allele "con­
vergence" [DcJong75], and when that measure exceeds 
90%, the GA is restarted with a new random population. 
Consequently, in the experimental data presented in the 
subsequent sections, the evaluation counts reflect aU of the 
GA restarts. Although this technique might seem a bit 
drastic, it appears to work quite well in practice. 

Since the number of evaluations (uials) required to 
find a solution can vary quite a bit from one run to the next 
due to stochastic effects, all of the results presented here 
represent data averaged over at least 10 independent runs. 

4.2. Initial SAT Experiments 

Our first set of experiments involves constructing 
several families of boolean expressions Cor which we can 
control the size and the difficulty of the problem. The first 
family selected consists of two-peak (TP) expressions oC 
the Corm: . 

(AND Xl' •• XII) OR (AND Xi ... X.;) 

which have exactly two solutions (aU Os and aU Is). By 
varying the number n of boolean variables, one can 
observe how the GAs perform as the size of the search 
space increases exponentially while the number oC solu­
tions remains fixed. 

Figure 1 presents the results of varying n between 
10 and 90 (i.e., for search spaces ranging in size from 210 

to 290
). It is clear that the differential payoff function is 

working as intended, and that the GAs can locate solutions 
to TP problems without much difficulty. 

To make things a bit more difficult, we changed the 
problem slightly by turning one of the solutions into a 
false peak (FP) as foUows: 

(AND Xl'" 	X,,) OR (AND XI Xi ... x.:) 
so that the previous all Os solution is now almost' correct 
and the only correct solution is that of allIs. 

Figure 2 presents the results of applying GAs to the 
FP family with n ranging from 10 to 90. As before, we 
see that the GAs have no difficulty in finding the correct 

2~------------------~ 

15000 

Evals 10000 

5000 

o 	 20 40 60 80 
# Variables =10g(Search Space) 

5-------~~-----------------~ 

4 

log(Evals) 	 3 

2 

l-L--_______--~-----__-------~~ 

o 	 20 40 60 80 
# Variables = 10g(Search Space) 

Figure 1: Perfonnance of GAs on the TP Problems 
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solution even in Ihe presence of false peaks. 

Since we are dealing with problems for which there 
are no blown polynomial-time algorilhms, we have been 
particularly interesled in the log-log graphs. Notice that. 
for both abc TP and FP problems.. a sub-linear curve is 
genetaled, indicating (as upecled) a subsranlial improve­
ment over . .systematic search. The fonn that these sub­
linear curves take give some indication of the speedup 
(over systematic search) obtained by using GAs. If, for 
eJtample. these curves are all logarithmic in form, we have 
a polynomial-time algorithm for SAn Additional discus­
sion of these curves will occur in a later section after more 
data has been presented. 

With these initial encouraging results, we were 
eager to apply GAs to more naturally arising boolean 
expressions. However. we have found it difficult to find 
good examples of hard SAT problems (including those 
used by Smith [Smith79]). So. we have chosen instead to 
look at other NP-complcl.e problcms as possible sources. 
The first one we have ~lected is the famUy of hamiltonian 

S~~-------------------; 

Evals 
20000 


10000 


0 


0 20 40 60 80 
# Variables =10g(Search Space) 

5 

4 

10g(Evals) 	 3 

2 

1 

0 20 40 60 80 
# Variables =10g(Search Space) 

Figure 2: Performance of GAs on the FP Problems 

circuit poblems. 

4.3. Solving Hamiltonilll Circuit Pa:ob1ems 

The hamiltonian circuit (HC) problem consists oC 
finding a tour througb a directed graph that touches all 
nodes exactly once. acarly. if a graph is Cully c:onnected, 
this is an easy task. However, as edges are removed the 
problem becomes much more difficult. and the general 
problein is known to be NP..complete. 

Attempting to solve this problem directly with GAs 
raises many of the same representation issues as in the 
case of traveling salesman problems [DeJong8S. Grefen­
stette8S1. However. it is not difficult to construct a 
polynomial-time ttansformation from He problems to 
SAT problems. 

An example of the transformation we are using is 
given in Figure 3. The definition of the He problem 
implies that. for any solution. each node must have exactly 
one input edge and one output edge. If any tour violates 
this constraint. it cannot be a solution. Therefore. all 
equivalent boolean expression is simply the conjunction of 
terms indicaLing valid edge combinations for each node. 
As an example, consider node d. Node d has two output 
edges and one input edge. The OULput edge constraints are 
given by the exclusive-or. «db and de ) or ( d[j and de ). 
The input edge is described simply by cd. The assign­
ments to the edge variables indicate which edges make up 
a LOur. with a value of 1 indicating an edge is included and 
a valuc of 0 if it is not This transformation is computed 

a 

ea 

de 
d 

(and ab 
be 
ex! 
de 
ea 
(or (and db (not de)) 

(and (not db) de))) 
(or (and ea (not eb» 

(and (not ea) eb» 
(Qr (and ab (001 db)( not eb» 

. (and (not ab) db (not eb» 
( and, (not ab) (not db) eb)) 

Figure 3: Transforming He Problems to SAT Problems 
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in polynomial time, and a solution to the HC problem 
exists if and only if the boolean expression is satisfiable. 

As before, we wish to systematically study the per­
formance of GAs on a series of increasingly difficult HC 
problems. Clearly, the complexity in this case is a func­
tion of both the number of nodes and the number of 
directed edges. For a given number N of nodes, problems 
with only a small number of edges (~ N) or nearly fully 
connected (approximately N 2 edges) are not very interest­

ing. We feel that problems with approximately N22 

edges would, in general, present the most difficult prob­
lems. In addition, to achieve some degree of uniform 
difficulty and to allow for a direct comparison with some 
of the results in the previous section, we wanted the prob­
lems to have exactly one solution. Consequently, we have 
defined the following family of HC problems for our 
experiments. 

Consider a graph of n nodes, which are labeled 
using consecutive integers. Suppose the first node has 
directed edges to all nodes with larger labels (except for 
the last node). The next n-2 nodes have directed edges to 
all nodes with larger labels (including the last one). The 
last node has a directed edge back to the first node. A 
complete tour consists of following the node labels in 
increasing order, until you reach the last node. From the 
last node you travel back to the first. Because the edges 
are directed, it is clear that this is also the only legal tour. 

Intuitively, such instances of HC problems should 
be difficult. Only one tour exists in each instance. In addi­
tion. there are a large number of solutions that are almost 
complete tours scattered throughout the search space. Fig­
ure 4 illustrates what the corresponding SAT payoff func­
tion looks like for an HC problem of this type with 7 
nodes. 

In summary, our experimental framework consists 
of varying the number N of nodes in the range 4 S; N S; 10 
and, for each value of N, generating a directed graph of the 

2 
.. d 'bed b . . . I Nlorm cscn a ove contammg approximate y 2 
edges and exactly one solution. Each of these HC 

0.8 

0.6 
EvahwiOll 

0.4 

000.. 010_ 100- 110_ 111. 
, ,H~ 

Figure 4: SAT Payoff function for a 7-node HC Pioblem 
. . . 

problems is transformed into its equivalent SAT problem 
using the transformation described above. generating 
search space sizes ranging from 26 to rs. GAs are then 
used to solve each of Ihe corresponding SAT problems 
which. in tum, describes a legal HC tour. 

Figure 5 presents the results of these experiments. 
Notice that we have succeeded in generating significantly 
more difficult SAT problems in that the number of evalua­
tions required to find a solution is an order of magnitude 
higher that the earlier TP and FP problems. However, 
even with these difficult problems. the log-log plot is still 
sub-linear. 

4.4. Improvements to the SAT PayolT Function 

Although we were pleased with the results so far, 
we were very curious as to the effects of using AVE P in 
the payoff function for integer values of p > 1 for the rea­
sons discussed in section 3.2. Our hypothesis was that ini­
tial increases in the value of p would improve perfor­
mance, but that beyond a certain point performance would 

le+06-r--------------------~ 
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400000 


200000 

0 

0 20 40 60 

1# Vari:lbles = 10g{Search Space) 
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5 
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10g(Evals) 
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1 

0 20 40 60 

# Variables = 10g{Search Space) 

Figure 5: Performance of GAs on the HC Problems 
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actually drop oil as AVE' began to more closely approxi­
mate MIN. :' , 

We tested this hypothesis by re-lUMing the GAs on 
the three families of problems (TP. FP, and HC) varying P 
from 2lO S. and compared their performance with the ori­
ginal results with p = 1. Figure 6 presents the results of 
our e~~ents. Somewhat surprisingly, an optimum 

~-r----------------~ 
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Figure 6: Perfonnance of GAs using AVE P 

appeared already at P • 2. Accordingly. we have adopted 
that value for the remaining experimental wen we have 
performed. 

4.5. Some Empirical Evidence o(Implicit Parallelism 

One of the nice theoretical results in Holland', ori­
ginal analysis of the power of GAs is the "implicit paral­
lelism" theorem whi:h sets a lower bound of an N' 
speedup over systematic sequential search [Holland75}. 
This suggeslS that, in Ihe worst case, GAs should not have 
to search more than the cube root of Ihe search space in 
order to find a soIutioo and, in general. should do much 
better. 

One of the unexpected benefilS of the experimental 
results presented here is substantial empirical evidence of 
just such speedups on SAT problems. 

Figure 7 summa:izes the performance of the GAs on 
the 3 families of SAT problems using AVE! in the payoff 
function. As we noted earlier, the log-log curves appear to 
be sub· linear. To get 2. better feeling for the form of these 
curves, we have tried to fit both linear and quadratic 
curves to the data. Fa each of the families of SAT prob­
lems, a quadratic form produces a better fit and, by using 
the coefficients of the quadratic form, we can calc,ulate the 
observed speedup. The resullS are as follows: 

TP speedup: N
' 

.21 

FP speedup: N 6.25 

HC speedup: N2..94 

Clearly, on the easier problems OF and FP) we are per­
forming better than C-.e predicted lower bound. What is 
particularly intriguing. however, is how well the empirical 
resullS match the theoretical resullS for the HC family 
which we have delib:::rately consuucted to be a class of 
very difficult single-sc:ution problems. 

5. Current Activities 

5.1. C and Parallelization 

The experimer.:s reported here have been con· 
strained by our use o~ Lucid Common Lisp. While Lisp 
makes it easy to aULO::late the process of generating Lisp 
code for the various SAT families of problems. the Lucid 
Lisp compiler imposes intemallimits on the size and com­
plexity of the functions it can compile. We hit these limits 
when attempting to generate payoff functions for HC prob­
lems with more than 10-Il nodes. We are in the process 
of switching over to !.he Genesis system, a C implementa­
lion ofGAs [Grefenst!Ue84], to avoid these limitations. A 
side benefit of this cOllversion is that Ihe experimenlS also 
run a order of magl"1:.ude faster! Since many GA sites 
already use Genesis, this step has the added advantage of 
creating an additional GA testbed for the GA community. 

More exciting perhaps is the use of parallelism. 
Genesis is being co''lVerted for use on the Butterfly 
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Figure 7: Summary Perfonnance of GAs using AVE2 

machine at NRL. The Butterfly is a MIMD machine with 
128 68020-based nodes. Preliminary results suggests that 
the use of this machine could result in a two order of mag­
nitude speedup in execution time. 

S.2. An NP.Complete Factorization Problem 

Although the GNs have performed well on TP. FP. 
and HC problems. one can argue that the problems are 

TPProblcml 
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FPProbI ..... 
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HCProbI..... 
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simply not interesting. since the TP and FP problems are 
somewhat artificial and there already exists specialized 
algorithms for HC problems which can out perfonn the 
GAs on the examples shown. What is perhaps needed at 
this point to evaluate the robustness of this approach is a 
problem which is known to be NP-complete, but for which 
few (if any) specialized algorithms have been developed. 

An example of such a problem has come to us from 
the cryptography community. Most cryptography systems 
make use of prime numbers and factorization [Rivest78]. 
Hoey [Hoey89] has devised an algorithm for converting a 
factorization decision problem into an equivalent SAT 
problem. For example, a problem of the fonn: 

"Does 689 have a 4 bit factor'!" 
can be converted to a boolean expression with 22 vari­
ables, lOS clauses, and 29S literals. 

Such problems arc of interest 10 both the crypto­
graphic and complexity theory communities because they 
are generally highly intractable. We plan a set of exten­
sive experiments when we have completed the conver­
sions described in the previous section. 

5.3. A Comparison witb Simulated Annealing 

As mentioned earlier, we are also examining the use 
of neural networks (NNs) to solve NP-Complete p'roblems. 
In particular, we have developed a method for using simu­
lated annealing (a class of NNs (McClelland88]) to solve 
SAT problems. Although the details of the methodology 
will not be presented here, some experimental highlights 
are worth mentioning. 

First, SA's work remarkably well on the TP prob­
lem, producing correct solutions in almost constant time 
(regardless of the size of the TP problem). In this case, 
SA's are essentially greedy algorithms. and the results are 
not surprising. Secondly, SA's appear to be reasonably 
competitive with GA's on HC problems, although they are 
consistently outperformed on the examples we have run so 
far (see Figure 8). 

If we again use quadratic fits to the He data seen so 
far. the NN speedup is approximately N2.22 while the GA 
speedup (reported earlier) is N2.94. We will have a more 
comprehensive repon on these experiments in the near 
future. 

6. Conclusions 

This paper presents a series of initial results regard­
ing a strategy for using GAs to solve NP-complele prob­
lems. This strategy avoids many of the GA representation 
difficulties associated with various NP-complete problems 
by mapping them into SAT problems for which an 
effective GA representation exists. 

These initial results suppon the view that GAs are 
an effective. robust search procedure for NP-complete 
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problems in the sense that. although they may not outper­
form highly tuned, problem-specific algorithms, GAs can 
be easily applied to a broad range of NP-complete prob­
lems with performance characteristics no worse than the 
theoreti~ lower bound of an N3 speedup. 

This paper also sets the stage for a direct com­
parison between GAs and NNs on NP-complete problems. 
We feel that such comparisons are important and 
encourage the research community to develop additional 
results on these and other problems of interest. 
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