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LEARNING FLEXIBLE CONCEPTS:

Fundamental Ideas and a Method Based
on Two-Tiered Representation

Ryszard S. Michalski
(George Mason University)

Abstract

Most human concepts elude precise definition-——they have fluid boundaries and
context-dependent meaning. We call such concepts flexible, in contrast to crisp con-
cepts, which are well defined and context independent. As machine leaming research
has concentrated primarily on learning crisp concepts, leamning flexible concepts
emerges as a new challenge to the field and an important research direction.

This chapter describes an approach to leaming flexible concepts based on a
two-tiered concept representation. In such a representation, the concept meaning is
defined by two components: the base concept representation (BCR), and the inferen-
tial concept interpretation (ICI). The BCR (the first tier) is an explicit description of
basic concept properties, while the ICI (the second tier) characterizes allowed modi-
fications of the concept meaning and its possible variations in different contexts.
Thus, the ICI defines concept boundaries implicitly, by the results of matching pro-
cedures and inference processes. The latter can be deductive, analogical or inductive.

In the method described, the initial BCR is a complete and consistent concept
description, induced from concept examples by a conventional AQ inductive leam-
ing program (AQ15). This description is then simplified by the so-called TRUNC
procedure, t0 maximize a description quality measure. The so-obtained BCR is usu-
ally much simpler than the initial description, but in a strict, logical sense is incom-
plete with regard to the training examples. The ICI is implemented in the form of a
procedure for flexible maiching, which determines a degree to which instance
matches different candidate concepts and chooses the concept that makes the best
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64 CHAPTER 3: LEARNING FLEXIBLE CONCEPT

match. Due to this procedure, training examples that have been “uncovered” durir
the description-reduction process may still be classified correcty.

The method has been implemented in the learning system AQTT-15, and e:
perimentally applied to learning diagnostic rules in a sample of medical domain
Experiments have shown that the method may produce more significantly reduce
concept representations than the traditional approach and that these representatios
may also perform better in recognizing new concept examples. This surprising ar
potentially significant result calls for further research and new experiments, In pa
ticular, the method should be tested on other problems and in different domain
Other interesting topics for future work include the development of a “direc
method for learning two-tiered representations, an extension of the form of suchre
resentations, acquiring the second tier of descriptions through examples, and the d
velopment of techniques for learning hierarchically organized two-tiered represent
tions.

We have no sound notions either in logic or physics; substance, quality, actic
passion, and existence are nol clear notions...

Sir Francis Bacon
Novum Organum, First Book, Chapter 15, 1620

3.1 INTRODUCTION

Most machine learning research done so far has focused primarily on leami
crisp concepts, by which we mean concepts that have precise and context-indepe
dent meaning. Such concepts are usually represented by explicit descriptions, whi
are either satisfied or not satisfied by any given instance. Popular representations
crisp concepts include logical expressions, production rules, semantic networks, ¢
cision trees, and frames. For relevant references see, for example, Volumes I and
of Machine Learning [Michalski, Carbonell, and Mitchell, 1983 and 1986]. The t«
dency 1o use crisp concepts is characteristic of not only machine learning resear
but every scientific activity. The clarity and precision of concepts and of their int
relationships has tradiconally been, and remains, a mark of quality of scientific the
ries. Crisp concepts enable us to reason precisely and derive strong conclusions.

Yet, most human concepts used for characterizing real-world objects and e
ployed in communication are flexible—as they have fluid and modifiable bour
aries, and their meaning often depends on the context of discourse. Note how dii
cult it is to define precisely and in a context-independent fashion such concepts
“chair,” “music,” “key,” “space,” “game,” “freedom,” or “mechanism,” which :
frequently used in conversations, To make machine learning programs more applis
ble to real-world problems, it is crucial to make them able to learn flexible conceg
The key problem n learning such concepts lies in the difficulty of accounting, for
their possible forms, permissible modifications and context dependence. Developi



MICHALSKI 65

methods for representing and learning flexible concepts thus represents a fundamen-
1al new challenge to the field.

Some researchers view the imprecision and flexibility of human concepts as
some fault of our language or an imperfection of our mind. In our view, these proper-
ties are a consequence of the necessity to cope efficiently with the complexity of our
world. As discussed in [Michalski, 1988b], flexible concepts are a powerful means
of increasing cognitive economy of our descriptions.

One evidence of this is ¢hat in an abstract, simplified world created by our
imagination, concepts typically have a precise, well-defined meaning. But once they
leave this abstract world and are applied to the real world, these concepts acquire a
flexible and context-dependent meaning. Consider, for example, the concept of a tri-
angle. It has a well-defined meaning in geometry. But outside of geometry, the con-
cept “triangle” becomes imprecise and highly context dependent. For example, itcan
be used to characterize a configuration of streets, a relationship among people, or the
shape of a musical instrument. In ail these usages certain core properties of the ideal,
geometrical concept are preserved, but the specific meaning depends on the context
in which it is used.

Moreover, even in the context of geometry, one can distinguish between more
or less typical riangles. This means that there is a perceived distinction in the repre-
sentativeness of different instances of a given concept. Consider, for example, the
concept of a bird. A cardinal is viewed in the U.S. as a more typical bird than, say, an
ostrich or a kiwi. In most machine learning programs, however, the distinction be-
tween degrees of typicality of different concept examples has been largely ignored.
Among the few early exceptions from this general rule is, for example, the idea of
near miss [Winston, 1975] or the method of outszanding representatives for selecting
“best” learning examples [Michalski and Larson, 1978].

A related and also relatively unexplored issue involves the degree of precision
and accuracy with which individual examples are presented to a learning system. For
example, a triangle can be drawn in many different ways: with dotted lines, lines
made of other shapes, or 10 appear as a shadow on an uneven surface. In all these
cases, the form may still be recognizable as a triangle. Thus, concept examples may
vary greatly in the ways they are presented and may be strongly distorted or modi-
fied. Nevertheless, they represent the same concept.

Finally, the complete concept meaning perceived by a person depends on the
amount of knowledge this person possesses about it. Clearly, the conceptualization
of a triangle by a layperson is different from that of a mathematician specializing in
geometry. The difference lies in the number of facis they know about and in the
depth of their understanding of the concept and its properties. Such backgronnd
knowledge-dependency in understanding a concept indicates that human concepts
are personalized, living and growing constructs, rather than fixed and stable entities
that mean exactly the same thing to all those using them. As the meaning of concepts
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may change from individual to individual and evolve in time, such concepts cannot
be defined precisely as objective impersonal entities with a context-independent
meaning. Note, that even fundamental scientific concepts, such as energy, force,
light, gravitation, atom and electricity, have been changing and evolving over time.
Nonscientific concepts are almost universally flexible, rather than crisp. Thus, in
general, human concepts are very different entities than the well-defined and con-
text-independent structures we use to represent concepts in today’s computer sys-
tems. Determining representations of human concepts that would account for all
their possible manifestations, allowable modifications and a change of meaning in
different contexts is a fundamentally difficult and unresolved problem.

This problem is not new, however, and there have been many attempts to solve
it. One of the most widely known is the work on fuzzy sets by Zadeh and his collab-
orators and many followers (e.g., [Zadeh, 1965; 1976; 1978; Mumdani and Gaines,
1981]). This approach has concentrated primarily on representing the imprecision of
concept boundaries and has proposed to associate with an imprecise concept a set
membership function that defines the degree to which an instance represents the con-
cept. This is usually a continuous numeric function, which expresses a subjective
view of a person about the concept variability. One way to interpret the s¢t member-
ship function is to view it as a representation of the typicality of instances. It has
been shown that such a function is useful for computatonally representing the influ-
ence of linguistic modifiers, such as “very,” “more or less,” “slightly” on the mean-
ing of concepts. The fuzzy set approach has been widely studied and has found a
number of applications, in particular, in the control of complex systems.

This approach does not address, however, several issues relevant to represent-
ing flexible concepts. The membership function must be defined by a person and for
every context; the approach does not offer methods for automatically deriving such a
function. The membership function is usually defined as one argument function; it is
difficult to characterize in this way concepts whose boundaries depend on many ar-
guments. For example, it is relatively easy to define the membership function for the
concept “tall,” whose meaning depends on one argument, the numerical height (and
on the context). It is much more difficult to define the membership function for
multiargument concepts, such as “chair,” or “heart condition.” The fuzzy set ap-
proach does not seem to provide adequate mechanisms for capturing concept exten-
sions, representing multiple but interrelated meanings of a concept, recasoning about
the context dependence, or employing background knowledge for interpreting a con-
cept. A set membership function is not sufficient for handling such problems.

In the cognitive science literature, the inadequacy of representing human con-
cepts by context-independent, logic-style definitions (the classical view), has been
widely recognized (e.g., [Wittgenstein, 1922; McCloskey and Glucksberg, 1978;
Barsalou and Medin, 1986; and Lakoff, 19871). There have been other views ad-
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vanced, such as the probabilistic view and the exemplar view (e. g., [Smith and
Medin, 1981; Medin and Smith, 1984; Nosofsky, 1987; Allen, et al., 1988]).

The probabilistic view represents concepts by prototypes and uses the so-called
family resemblance principle {e.g, [Rosch and Mervis, 1975]), while the exemplar
view claims that concepts are represented by means of examples {e.g., [Smith and
Medin, 1981; Bareiss, Porter, and Craig, 1990—Chapter 4, this volume]). Both
views can be criticized on various grounds. The prototype view, which formally is
based on the idea of linear separability, disregards the existence of correlations be-
tween the attributes, the context dependence, and other information that has been
shown 1o be relevant to human concept understanding (e.g., surprisingly, [Kempler-
Nelson, 1984; Estes, 1986; Flannagan, Fried, and Holyoke, 1986]).

The exemplar view promotes the idea of using similarity-based and context-
sensitive matching; a view that has received support in the cognitive science litera-
ture. Itignores, however, the importance of general concept descriptions, that clearly
play a role in human concept formation, Such general descriptions are useful, for
example, for comparing different concepts, for recognizing them from partial infor-
mation, for identifying exceptions, handling context dependence, recording concept
changes or for efficiently storing invariant information about concepts. The above
operations are difficult to perform, if concepts are represented only by examples. In
some work using the exemplar view, general aspects of concepts are captured under
the idea of category structure, which is a network of domain knowledge that speci-
fies the relevance of exemplars to the concept they define [Bareiss, Porter, and
Craig, 1990—Chapter 4, this volume]. Some recent work has advocated a knowl-
edge-based view, which emphasizes the need to define concepts through their role in
theories in which they exist as interelated components [Carey, 1985; Hofstadter,
1985; Schank, Collins, and Hunter, 1986; Medin, 1989].

The two-tiered representation (TT), employed in this chapter, constitutes a sig-
nificant departure from the existing approaches, although it has a relationship to
most of them. The TT approach assumes that concepts have a certain central ten-
dency and proposes to describe this tendency explicitly, as the “first approximation”
of the concept. On the other hand, it assumes that concepts” variability and context
dependence are best represented implicitly, by appropriate matching methods and
context- and background knowledge-dependent rules of inference.

Thas, in the sense that it recognizes that concepts have a central tendency, and
that there are typical and less typical concept examples, the TT approach is similar to
the probabilistic view and the fuzzy set representation. It has also a retationship 1o
the exemplar view, as it postulates the use of sophisticated matching procedures and
inference rules in classifying new instances, and recognizes the usefulness of storing
individual examples (by advocating a full or partial memory learning [Reinke and
Michalski, 1988]). The TT approach is also closely related to the knowledge-based
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view, as it stresses the role of background knowledge (and inference) in matching
concept with instances, especially, nontypical or borderling instances.

The TT approach was originally proposed by the author in {Michalski, 1986]
and was motivated by an observation that although a given individual human con-
cepts may lack precise definition when used alone in a context-independent sense, it
acquires precise meaning when used in a combination with other concepts and in a
specific context. Consider, for example, the statement: *This tall man in the group in
the corner of the room.” If there is only one man visibly taller than other people in
the indicated group, the statement above precisely specifies the man of interest. The
concept “tall,” although by itself and/or without context is imprecise (as are the con-
cepts “group,” “corner,” or “room™), in the given context it conveys a precise mean-
ing—the height of the man pointed out in the group.

Thus, the TT approach views flexible concepts as inherently and intentionally
imprecise when they are considered alone and outside of a specific context. Conse-
quently, it does not try to give them a complete and precise meaning in an explicit
and context-independent sense. Instead, this approach attempts to describe precisely
only the central tendency and to use inference rules and matching procedures to im-
plicitly characterize the complete concept meaning and context dependence. -

As mentioned in [Michalski, 1986], the underlying supposition for the TT ap-
proach is that the imprecision of human concepts stems not from an undesirable
vagueness of our concept definitions, but rather from the universal need for cogni-
tive economy. By allowing concepts to have a context-modifiable meaning, and
making them precise only to the extent to which a given situation and/or context
requires them to be precise, the expressive power of concepts is greatly enhanced.
This means that one can employ fewer concepts for expressing more meanings and
helps us simplify our descriptions of our immensely complex universe, The experi-
ments reported here seem to confirm this idea in a microworld to which it was ap-
plied.

The following sections describe various aspects of the proposed approach to
learning flexible concepts using TT representation, present a simple computational
method, and report early experimental results. The learning method employs the in-
ductive learning program AQ15, which is also briefly described. For more details
about AQ15, see [Michalski, et al., 1986]. Various improvements to the method and
a number of new experimental results with two-tiered representations are reported in
[Bergadano, et al., 1988h; 1988c; 1990].

3.2 TWO-TIERED CONCEPT REPRESENTATION

In order to develop a computational method for leamning concepts one needs to
make assumptions about the meaning of “concepts™ in the method. We assume that
concepts are named representations of classes of entities, whose borderlines can be



MICHALSKI 69

imprecise and context dependent. The entities are assumed to have central tenden-
cies within the concept classes, and therefore different concept instances may be
characterized by different typicality. A concept representation can take a wide range
of forms: an explicit description of observable properties of the entities in the class,
an abstract description of the function of the entities and their relation to other con-
cepts, a complete or partial listing of the entities, an implied concept characterization
by the concept usage, or as a combination of the above. There can be an enormous
variation in the specific instantiation of some concepts. Consider, for example, the
concepts such as “object” or “set.” Because of the assumed central tendencies, con-
text dependence and other previously mentioned properties, a concept representation
should allow a varying degree match with concept instances, and use of context-
dependent inference rules in performing such matches (examples below illustrate
this point in more detail). The problem then is how a concept with such central tend-
encies and context-dependent meaning can be efficiently represented and learned?

As mentioned earlier, the proposed approach to this problem is based on the
idea of two-tiered (TT) concept representation. In the TT representation, a concept is
defined by two components: the base concept representation (BCR) and the inferen-
tial concept interpretation (ICI). The BCR (the first tier) is an explicit characteriza-
tion of a concept, stored directly in the learner’s memory. The ICI (the second tier) is
a set of matching procedures and inference rules that characterize the allowed modi-
fications and possible variations of the concept meaning in different contexts. Thus,
the ICI determines the meaning of a concept by executing these matching procedures
and inference rules in the given context, and thus only implicitly defines concept
boundaries.

In the general theory, the “distribution” of the meaning between the BCR and
the ICI is not agsumed to be fixed, but is modifiable based on a criterion of descrip-
tion quality. One extreme of such a distribution is when the BCR represents explic-
itly all possible concept variations in different contexts, and the ICI is just direct
match. Another extreme is when the BCR is empty, and all concept meaning resides
in context-dependent inference rules. The description quality criterion reflects com-
putational properties of the learner and requirements of the problem domain, The
former ones include, e.g., the relative costs of remembering concept properties ver-
sus deriving them through inference.

In an important, cognitively oriented special case of the TT representation, the
BCR is assumed to express the general unifying idea, the typical function of the con-
cept, and/or common measurable properties implied by or correlated with this idea
or function. Such a BCR can be viewed as representing the “first approximation of
the concept.” The ICI, in this case, defines the matching procedures and inference
rules for handling less typical instances and context dependence. This type of distri-
bution of the concept meaning between the two tiers facilitates an efficient concept
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recognition and is related to the idea of censored production rules [Michalski and
Winston, 1986].

In matching an instance with the BCR of 4 concept, the ICI may employ deduc-
tive, analogical, or inductive inference. A deductive inference is involved when the
instance is a logical consequence of the BCR. An analogical inference is employed
when the instance is similar to the BCR in a context-dependent sense. Finally, an
inductive inference is employed when in order to match the instance with the BCR
the latter needs to be generalized. Illustrative examples of such inference processes
are given in Section 3.3. Performing these inferences may involve concept
metaknowledge, e.g., the importance of concept attributes and frequencies of con-
cept occurrence, the relation to other concepts and other relevant domain knowledge.

An advantage of distributing the concept meaning between the BCR and the
ICI is that it permits a learner to flexibly modify or extend the concept meaning by
varying matching procedures and inference rules and/or by changing the context of
discourse. The concept meaning can thus be changed without having to alter the base
concept representation. By evaluating the type and the amount of inference involved
in matching a concept with an instance, one may produce a qualitative or quantita-
tive estimation of the strength of such a match. The ability to produce a measure of
the strength of match indicates one principal difference between this approach and
the fuzzy set approach {e.g., [Zadeh, 1978]). In the fuzzy set approach, a set defining
a concept is associated with a membership function, which needs to be defined 1o the
leamer by a person. The influence of the context is hidden in the definition of this
membership function. In the proposed approach, a concept is associated with inter-
pretation procedures and context-dependent inference rules, which implicitly define
the membership of an instance in a concept. These rules and procedures can be used
to compute the membership function in different contexts.

Figure 3-1 illnstrates the relationship between the BCR and the ICI in a TT
concept representation. It shows that the ICI can, in general, extend the concept
meaning beyond the BCR in one area of the description space and reduce the mean-
ing in another area.

The concept explicitly defined by BCR The concept modified by applying ICI

Figure 3-1:  An illustration of the relationship between the Base Concept Representation
(BCR) and the Inferential Concept Interpretation (ICI)
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Learning a two-tiered representation of a concept consists thus of two parts:

1. acquiring the base representation, and

2. acquiring the inferential concept interpretation (i.e., matching procedures and
inference rules for various contexts).

The ICI can be completely or partially shared by concepts in the same class or
inherited from a superclass. By sharing ICI, a significant economy of the concept
representation can be achieved. As mentioned earlier, the distribution of the concept
meaning between BCR and ICI can vary, in order to optimize the obtained descrip-
tion according to an assumed criterion of description quality. Such a criterion de-
pends on the use of the concept and the properties of the learner. This implies that the
BCR may be in several forms. For example, it can be in the form of an abstract defi-
nition, capturing the general principle and the central function of the concept. Such a
description can be short, but inefficient for concept recognition. Altematively, it can
be in the form of a specification of easy-to-measure properties of concept instances.
The latter description facilitates an efficient concept recognition, but it may be com-
plex and too restrictive. In general, a BCR can be a combination of such forms.

3.3 EXAMPLES ILLUSTRATING TWO-TIERED REPRESENTATION

Let us consider a few examples illustrating the idea of two-tiered representa-
woon,

Example 1. Concept of Sugar Maple Our prototypical image of a sugar maple is
that it is a tree with three- to five-lobed leaves that have V-shaped clefts. Some of us
may aiso remember that the teeth on the leaves are coarser than those of red maple,
that slender twigs turn brown, and the buds are brown and sharp pointed. As a tree,
of course, a maple has roots, a trunk, and branches.

Suppose that while strolling on a nice winter day someone tells you that a par-
ticular tree is a sugar maple. A simple introspection tells you that the fact that the tree
does not have leaves would not strike you as a contradiction of what you know about
sugar maples. Yet, clearly, the presence of leaves of a particular type is deeply em-
bedded in your typical image of a maple tree. The two-tiered theory explains this
phenomenon simply: The inferential concept interpretation associated with the gen-
eral concept of deciduous tregs evokes a rule, “In winter deciduous trees lose
leaves.” Since a maple is deciduous tree, the rule would apply 1o the maple tree. The
result of this inference would override the stored standard information about maple
trees, and the inconsistency would be resolved. In this case, maiching an instance
with the concept requires deduclive reasoning from the knowledge associated with a
more general concept.
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Example 2. Concept of an Absitract Tree Structure  Suppose that a student is read-
ing his first book on computer data structures and encounters a drawing of a graph
structure, which the author calls a “wree.” Calling such a structure a tree will likely
not evoke any objection in the student, because he can see in this structure some
abstracted and modified features (e.g., upside-down direction) of a biological tree. In
this case, matching the graph structure with the concept of a tree involves a general-
ization operaticn on the base representation,

Example 3. Concept of a Triangle Let us go back to the concept of a triangle. For-
mally, a triangle can be described as a geometrical figure consisting of three non-
colinear points connected by straight lines. Using the notation of annotated predicate
calculus {APC), which is equivalent to predicate calculus but permits one to write
logical expressions in a more compact form [Michalski, 1983], one can write:

Triangle(T, P1, P2, P3) <= Consists(T, P1 & P2 & P3) & Type(P1 & P2 & P3)
= point & Connected_by
(P1,P2 & P1,P3 & P2,P3) = straight_line &
RelationAmong(P1, P2, P3) = noncolinear 1)

In (1), the symbol “&” is used in two related meanings: one, to denote an ordi-
nary (external) conjunction connecting predicates; and second, to denote an infernal
conjunction, i.e., conjunction of terms, treated as a compound argument of a predi-
cate. For example, the predicate “Consists(T, P1 & P2 & P3)” states that the triangle
T consists of points P1 and P2 and P3. |

Suppose that someone tells us that the towers in his hometown form a big trian-
gle, Obviously, the meaning of the triangle in this statement differs from that in the
formal geometrical description. To match the two, one needs to make the following
assumptions and transformations:

a. In the context of describing a configuration of physical objects such as towers,
the individual objects play the role of nodes. Thus, the statement implies that
there are three towers in the town. The matching operation involves drawing an
analogy between the abstract nodes and the towers, which can be characterized
as consisting of one step of generalization (GEN):

Point —GEN — Object
and one step of specialization (SPEC):
Object —SPEC — Tower

b. In the context of towers, the presence of a “straight line™ is imaginary, i.e.,
there is no physical connection, but one could imagine a straight line between
the objects {towers). The condition “Connected By” is satisfied in such an ab-
stract sense. This 1s an operation of generalization. Thus, matching the state-
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ment about a triangular arrangement of towers with the formal definition of a
triangle involves here both generalization and specialization,

The examples above show that relating a concept instance to a concept repre-
sentation is not just a straightforward comparison of attribute values in an instance
with those in the concept representation, as done in various mechanized decision
processes. They show that such a process may involve different forms of inference.

3.4 TRADING BCR FOR ICI

As mentioned earlier, the TT representation does not assume that the distribu-
tion of the concept meaning between BCR and ICI is fixed, but that it can change to
reflect the goals or the properties of the learning agent. To illustrate the interrelation-
ship between the BCR and the ICI, let us consider an imaginary concept, which we
call the “R-ball.” Suppose that the complete meaning of this concept is defined by
the diagram in Figure 3-2, |

Each “1” in the diagram describes an instance of the R-ball by specifying val-
ues of attributes for this instance. The set of all instances of the R-ball depicted in the
diagram defines precisely the concept of an R-ball. A complete and consistent (CC)
description of the concept (i.c., one that covers all “1”s, and does not cover any
empty cells) is:

SHAPE = round & BOUNCES = yes

or
SHAPE = round & SIZE = medium or large
- or
BOUNCES = yes & SIZE = medium or large (2)

Any instance that strictly matches any of the above rules is recognized as an
R-ball (It is assumed that “&” is interpreted as a logical conjunction, the “or” linking
conjuncts as a logical disjunction; and the “or” linking atiribute values as an internal
disjunction {Michalski, 1983]). Assuming that satisfied conditions give the degree of
match equal 1, and unsatisfied conditions give the degree of match 0, such an inter-
pretation is equivalent to treating a conjunction as the minimum function (MIN), and
a disjunction as the maximum function (MAX) of the degrees of match.

Let us now consider the diagram in Figure 3-3, which presents only four exam-
ples of the R-ball (the four *17s). A CC description of these examples is:

SHAPE = round & BOUNCES = yes & SIZE = medium or large 3)

If interpreted the same way as above, this description covers only the indicated
four R-balls, and thus is an incomplete concept description. Suppose, however, that
we interpret “&” not as the minimum function but as the average function. Suppose
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SHAPE BOUNCES

round

not round

yes
light dark light dark light dark COLOR
small medium large SIZE
Representation:
sHape =round & pBOUNCES = Yes or

sHAPE =tound & gz¢ = medium orlarge
gounces <= Yes & size = medium or large

Interpretation: Concept membership:
& = MIN (conjunction) Yes, if degree of match = 1
or = MAX (disjunction) No, otherwise

Figure 3-2: A diagram illustrating the concept of R-ball

also that we assume that an instance is classified as an R-ball, if it gives a degree of
match with the description equal to or greater than 24.

The above interpretation, as it can be easily verified, gives a classification of
instances into R-balls and not-R-balls exacily the same as the description in equation
(2). Thus, we have two logically equivalent representations of R-balls: one, that ex-
plicitly describes all concept instances; and the second, that describes explicitly only
a subset of the instances, and takes care of the remaining examples implicitly, by the
matching procedure. Table 3—1 summarizes information about the two representa-
tions, denoted as CR1 and CR2.

In Table 3-1, “rules” are single conjunctions of conditions associated with a
given concept. Although representations CR1 and CR2 are logically equivalent, they
are pragmatically different. The first representation, CR1, is significantly more com-
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SHAPE BOUNCES

A

round

not round

light dark light dark COLOR

SIZE

small large

Aepresentation:

SHAPE =round & BOUNCES =yes & SRE = medium or large

interpretation: Concept membership:

8= AVG Yes, if degree ol match = 2/3
No, otherwise

Figpure 3-3: A subset of examples of the R-ball

plex than CR2. The BCR of the first representation consists of three rules, while the
BCR of the second representation consists of only one rule. To compute the degree
of match (DM), the ICI of the first representation uses a conventional interpretation
of logical connectives (applicable also to multiple-valued conditions); while the ICI
of the second representation uses a less conventional interpretation.

The above two concept representations ilustrate two different “distributions™
of the concept meaning between the BCR and the ICIL In general, there can be a
range of logically equivalent concept descriptions that differ in the distribution of the
meaning between the BCR and the ICL The ICIs presented here are just an illustra-
tion. A more elaborate interpretation method, called flexible matching, is discussed
in Section 3.6.
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Table 3-1: A comparison between two representations of the concept of R-ball

CR1 CR2
BCR ICI BCR ICY
& = MIN & = AVG
g mle;itions ¥ ‘}, ﬁditims V=MAX
eon DM=1 DM 2/3

3.5 LEARNING TWO-TIERED REPRESENTATIONS

The method of learning two-tiered concept representations from examples pro-
posed below utilizes our previous work on inductive concept leaming. In the
methed, learning the BCR of a concept consists of two phases. In the first phase, a
complete and consistent (CC) concept description is induced from a set of positive
and negative examples of the concept. This phase is performed by using a standard
AQ inductive learning methedology, such as implemented in the program AQ135 (see

below).

| The second phase reduces the so-obtained CC description to a simpler descrip-
tion that maximizes a criterion of description quality. Such a criterion evaluates vari-
ous properties of the description from the viewpoint of the goals of learning (Section
3.5.2). The description reduction is done using the so-called TRUNC method, which
iteratively removes components of the description, from the least “important”™ to the
most “important” (Section 3.5.2). A reduced description that scores best on the as-
sumed quality measure is taken as the base concept representation (BCR).

To determine the ICI, one needs to develop a matching procedure that would
handle all positive examples of the concept that do not match BCR, and all negative
examples that match BCR. In general, such a procedure needs to involve varions
context-dependent inference rules. In the method described here, we limit ourselves
only to a very simple ICI, based on a flexible matching procedure (Section 3.6).

The above method of learning TT descriptions has been implemented in the
leaming system AQTT-15. The system integrates the AQ15 learning program with
the TRUNC procedure and flexible matching. The next two sections give a brief de-
scription of the AQ15 module and the TRUNC procedure, respectively.

3.5.1 An Overview of the AQ15 Module

AQ15 is a descendant of the AQ family of inductive learning programs (e.g.,
{Michalski, 1972; Michalski and Larson, 1975; Mozetic and Hong, 19841). From the
viewpoint of its capabilities, AQ15 is a highly advanced program for learning attri-
butional descriptions from examples, which can serve as a mini-laboratory for ex-
ploring various aspects of inductive learning.
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Different versions of the AQ family were experimentally applied to a variety of
practical tasks, such as leamning criteria for discriminating between cancer of the
pancreas and cancer of the liver [Michalski, 1973}, defining provably correct general
characterizations of the “win”™ and “draw™ positions in a chess endgame [Negri and
Michalski, 1977], determining rules for plant disease diagnosis [Michalski and
Chilausky, 1980], and automatically creating a knowledge base for diagnosing car-
diac arthythmias from electrocardiograms [Mozetic, 1986; Bratko, Mozetic, and
Lavrac, 1989]. The latter work is one of the most advanced and most interesting ap-
plications of machine learning to a practical problem.

The AQ programs are based on the AQ algorithm for a quasi-optimal solution
of the general covering problem, originally developed by the author [Michalski,
1969]. (For a more tutorial presentation, see [Michalski and McCormick, 1971].)
The algorithm generates the near-minimum or minimnem number of general rules
distinguishing between a set of positive examples and a set of negative examples.
The complete version of the algorithm also produces an upper bound on the maximal
difference in the number of the rules between the obtained solution and the minimal
one. This upper bound allows the algorithm to produce a provably minimal solution
for some classes of covering problems {which are NP-complete} in the polynomial
time. While the complete version of the algorithm is more interesting from a theoret-
ical viewpoint, for machine learning problems a simplified version seems to be more
useful. The simplified version does not produce the upper bound on the complexity
of the solution, but it is easier to implement and faster to run. Here is the basic struc-
ture of a simplified version of the AQ algorithm:

1. A single positive example, called a seed, is selected (randomly or by design)
from the available positive examples, and a set of aliernative, most general
rules (conjunctive descriptions) characterizing this example is computed. The
limits to which the rules are generalized are defined by negative examples. The
obtained set is catled a star for the seed.

2. The most preferred rule is selected from the star according o a rule preference
criterion (see below). If this rule, jointly with any previously generated rules,
covers all positive examples, the algorithm stops.

3. Otherwise, a new seed is selected among the examples uncovered so far, and
steps ! and 2 are repeated until all examples are covered.

The ruleset assembled from nules selected in each step constitutes a complete
and consistent concept description and optimizes the assumed description preference
criterion.

Typically, sopplied examples are insufficient for uniquely defining a concept
description. Therefore, one needs a criterion that would enable one to choose among
alternatives, which represent different generalizations of positive examples. In the
AQ approach, such a criterion is not viewed as a “bias,” which might imply that the
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choice 13 arbitrary, but is supposed to reflect the requirements of the problem do-
main. For example, if costs of measuring attributes vary significantly in the given
problem domain, it may be desirable to choose a description that is more complex
(e.g., has more components), but which involves “inexpensive” attributes, and thus
is less costly overall. If input examples are “noisy” and/for the overall efficiency and
accuracy of concept recognition is the primary goal, then it may be desirable to
chose a description that is incomplete and/or inconsistent with regard to the training
examples (see Section 3.5.2, and [Bergadano, et al., 1990]).

The rule preference criterion used in selecting a rule from a star is assumed to
produce a concept description that will score high on a description quality criterion.
That is, the rule preference criterion should reflect the desirable properties of the
goal concept description, according to the requirements of the problem domain. For
example, if the description quality criterion requires descriptions to have the mini-
mum number of rules, then the rule preference criterion might rank high the rules
that individually cover the maximum number of examples. If each rule covers many
examples, then it is likely that fewer rules will be needed to cover all examples,

The rule preference criterion is defined by a list of elementary criteria assem-
bled by a user from a set of predefined criteria. In AQ135, the predefined criteria re-
late to various measurable properties of a rule, such as the coverage (the number of
positive examples covered by a rule), the simplicity (measured by the number of at-
tributes involved in the rule}, the cost (the sum of the measurement costs of individ-
ual variables), an estimate of generality (such as the ratio of the number of possible
examples to the number of actually observed examples covered by the rule), and oth-
ers.

To determine the “best” rule, the elementary criteria on the list are applied one
by one to individual mles in the star, and the rule that best satisfies all criteria within
a certain tolerance range is selected. Such a multicriterion measure for selecting the
best alternative from a set of alternatives is called a lexicographic evaluation func-
tional or LEF [Michalski, 1973; 1983].

AQ programs express concept descriptions using the variable-valued logic sys-
tem I (VL,), which is a multiple-valued logic extension of the proposition calculus
with typed variables [Michalski, 1974]. 1t is an easy-to-interpret, highly concise and
powerful language for expressing any relationship among multivalued and multitype
attributes,

‘The simplest expression in VL, is an elementary condition, called selector,
which relates a variable or an attribute to a value or an internal disjunction of values,
for example, [color = blue or red] or [height = 3 inches]. A conjunction of such con-
ditions forms a complex, which can be viewed as a rule for partially or completely
defining a concept. For example, suppose that the complex {weight = high] &
[length = 2..5 meters] describes (some or all) examples of the class “big objects.”
Such a complex can be viewed as a rule [weight = high] & {length = 2..5 meters] =
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(class = big objects]. A set of complexes (rules) can be expressed as a disjunctive
normal expression, in which individual complexes are linked by disjunction.

From now on, by rules we will mean VL complexes associated with an appro-
priate decision class, and by conditions (briefly, conds) we will mean VL, selec;tors.
By a concept (class) description we will mean a set of rules (a ruleset) whose right-
nand side points to that concept. A ruleset that describes all positive examples and
1one of the negative examples is a complete and consistent (CC) concept description
(such a ruleset is also called a cover).

The AQ15 module is capable of incremental learning with full memory of past
examples. In this type of incremental learning, the process of modifying the current
hypothesis 0 accommodate new facts takes into consideration all past examples
[Reinke and Michalski, 1988]. This way, it can be guaranteed that any so-modified
concept description {hypothesis) is always complete and consistent with regard to all
examples. Such a method can therefore produce higher quality concept descriptions
than incremental methods with ro memory of past examples (e.g., [Winston, 1970;
Michalski and Larson, 1976; Gross, 1988; Iba, Woogulis, and Langley, 1988]). Be-
cause the costs of computer memories are decreasing, the need for storing past ex-
amples is not considered a strong disadvantage of such incremental learning.

In the sense that this method keeps past concept examples, it is related to exem-
plar-based leamning, in which concepts are represented by positive examples (e.g.,
[Bareiss, Porter, and Craig, 1990—Chapter 4, this volume]). The principal difference
hetween the two approaches is, however, that the method represents concepts by
“oplimized” general descriptions rather than by examples. As mentioned earlier,
keeping a general concept description facilitates a number of operations, such as de-
termining the relationship between the concept and other concepts, incrementally
modifying the concept, elc.

The program also has a “generality parameter,” which enables it to generate
descriptions of different generality from the same input examples. Depending on the
setting of this parameter, the generated concept description may be maximally gen-
eral, maximally specific or intermediate. The defanlt value of the parameter pro-
duces a maximally general description, which covers the maximum number of in-
stances, observed or hypothetical, without covering any negatve examples. By
specializing such a description, one can produce another extreme; i.e., a maximally
specific description, which cannot be more specialized without “uncovering” some
positive examples.

Because the program can learn incrementally, it allows a user to supply some
initial, partially correct decision rules, which are then improved in the process of
applying them to new examples. The program can also perform constructive induc-
tion, in which domain background knowledge is used to generate new concepts (e.g.,
attributes) that are not initially specified, but may produce a better final description.
Such domain knowledge can be expressed using two types of rules: L-rules, which
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are in the form of logical assertions or if-then rules, and A-rules, which are in the
form of arithmetic functions or term-rewriting rules. A more detailed description of
AQ15 can be found in [Michalski, ez al., 1989h].

3.5.2 The TRUNC Procedure

The purpose of the TRUNC procedure is to determine the “best distribution” of
the concept description between the explicit base concept representation (BCR) and
the inferential concept interpretation (ICI) [Michalska, 1986a; 1986b]. The procedure
starts with a complete and consistent concept description, whose rules have been or-
dered on the basis of their “impartance” from the most important to the least impor-
tant. This description is then reduced, by truncating one rule at each step, starting
with the least important rules. After each step, a “quality” of the reduced description
is measured. The description that has the highest quality is chosen as the base con-
cept representation (BCR). To measure the description quality, the method takes into
consideration the description complexity and its performance on testing examples. In
general, 2 number of other factors can be taken into consideration in evaluating a
description (&.g., [Zhang and Michalski, 1989]).

To determine the importance of a rule, each rule in the description is associated
with a pair of weights, ¢ and , representing the fotal number of training examples
covered by the rule, and the number of training examples covered uniquely by that
rule, respectively. Obviously, the t-weight is always greater or equal to the u-weight
of a rule, and the difference between the two indicates the degree of overlap between
the rule and other rules in the description. The t-weight of a rule can be interpreted as
a measure of its representativeness as a concept description, and the u-weight as a
measure of its interrelationship with other rules, The rule with the highest t-weight
may be viewed as characterizing the most typical concept properties, and thus serve
as its prototypical description. The rules with the low t-weight describe rare, excep-
tional cases. If training examples are noisy, such “light” rules are indicative of errors
in the data. A rule with a large u-weight (and consequently large t-weight) is a highly
representative and irreplaceable component of the concept description. A rule with
zero u-weight is redundant. A rule with a large t-weight and a small u-weight is a
good candidate for a merger with another rule.

Let us now describe the TRUNC procedure in more detail and illustrate it with
an example. The procedure starts with a complete and consistent (CC) description
obtained from the AQ15 module. The rules in the CC description are linearly ordered
from those with the highest t-weight to those with the lowest t-weight. (If two rules
have the same t-weight, the one with the higher u-weight has precedence; if they also
have the same u-weight, the order is arbitrary.}

Figure 3—4 illustrates such an ordering. A consistent and complete description
consists of four rules, depicted as rectangles. The rectangles overlap because rules
may logically intersect; i.e., some training examples may be covered by more than
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Rule 1 Rule 2 Rule3 Ruled
1} i 3
: = :
(21.13) o] i cIicy]
Cut3 Cut2 Cut 1

Figure 3—4:  An illustration of a t-ordered concept description

yne rule. In each pair (x.y), x denotes the t-weight, and y denotes the u-weight of the
sorresponding rule. |

The procedure proceeds by removing at each step a rule that in the currently
~onsidered description has the smallest t-weight. In Figure 34, first rule 4 is re-
moved, then rule 3, etc., until only one, rule 1, is left. The description consisting of
the last remaining rule, i.e., the rule with the highest t-weight, is called the *top rule”
description.

In Figure 3—4, cuts 1, 2 and 3 mark consecutive truncations, producing descrip-
tions with the number of rules equal to 3, 2, and 1, respectively.

Removing a rule from a description is equivalent to removing a disjunctively
linked condition from a description. Such a process specializes the knowledge repre-
sentation [Michalski, 1983] and produces an incomplete concept description (one
that does not cover some positive training examples).

All so-reduced descriptions are evaluated according to a description quality
criterion. A simple form of such a criterion i3 to require the description to perform
well on testing examples and to have low complexity. Indicators of complexity are
the number of rules in the description and the total number of conditions in these
rules. The description that best satisfies the assumed description quality criterion is
taken as the BCR.

The criterion of description quality should reflect the needs of the problem at
hand and can depend on many factors. For more details about this topic, see
{Bergadano, ef al., 1988a; Zhang and Michalski, 1989].

Intuitively, one might expect a trade-off between the simplicity of a description
(a reciprocal of complexity) and its performance. Such an expectation is justified
because simplifying the description (by removing a rule) uncovers some training ex-
amples. To test this hypothesis, we have performed a series of experiments with data
from the area of medical diagnosis. Results of these experiments have been quite
surprising. They are described in Section 3.7. The problems of other potential trade-
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offs characterizing concept descriptions are studied in variable precision logic fMi-
chalski and Winston, 1986].

In summary, the TRUNC method reduces the initial CC concept description 1o
the “best” description, which is used as the BCR of the concept.

3.6 RELATING INSTANCES TO CONCEPTS: FLEXIBLE MATCHING

We now turn to the topic of inferential concept interpretation (ICI) of a concept
description. In order to determine the identity of an unknown instance, the instance
needs to be matched against a set of candidate concept descriptions. One can distin-
guish between two basic methods for matching an instance with a set of descriptions:
the sufficient match and the best maich.

In the suofficient match method, the properties of the instance are matched
against conditions in the candidate descriptions to determine which description is
satisfied. An instance may satisfy a description either completely (a crisp match) or
“sufficiently” (a satisficing match). Assuming that an instance can belong to only
one candidate concept and that the descriptions are logically disjoint, then any de-
scription that is found to be satisfied determines the instance identity. In such a sima-
tion, there is no need to test other candidate descriptions. This property has been
explored in dynamic recognition, which tries 10 achieve an instance recognition with
the minimum number of operations and without actually matching individual rules
[Michalski, 1989].

In the best match approach, one determines a degree of “fit” or “similarity™
between the instance and candidate descriptions, and selects the description that pro-
vides the closest match. Determining a “similarity” between a description and an in-
stance can be accomplished in a variety of ways, ranging from an approximate
matching of feature values to *“conceptual cohesiveness” [Michalski and Stepp,
1983].

In the two-tiered approach, an instance is matched against the BCR (base con-
cept representation) of candidate concepts, using the ICI {inferential concept inter-
pretation). In the method described here, the ICI consists of a flexible matching pro-
cedure, which applies the best match approach and does not involve any explicit
rules of inference. If there is no crisp match with the BCR of just one description, the
procedure measures the fit between an instance and the candidate BCRs, and
chooses the concept that provides the best fit. A more advanced ICI is considered in
[Bergadano, et al., 1990],

As describaed before, the BCR of a concept is a logic-style description consist-
ing of one or more rules {a ruleset}. When matching a new example against such a
ritleset, three outcomes are possible: There may be only one match (one ruleset is
satisfied), more than one, or there is no match. These three types of outcomes are
called single-match, multiple-match, and no-match, respectively (Figure 3-5).
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Single Multiple No match

Figure 3.5:  Anillustration of sin gle-match, multiple-match, and no-match

In the implemented flexible matching pracedure, each type of match involves a
different decision assignment procedure. When there is a single-match case, the in-
stance is immediately assigned the concept associated with the matched BCR. The
decision is counted as correct, if it is equal to the expert-given classification of the
testing example, and as incorrect otherwise. If there is multiple match or no-match,
the system makes the decision on the basis of the best match. This decision is com-
pared with an expert decision and evaluated as correct or incorrect.

There are potentially many ways to define a measure of fit between an instance
and a description, Below are simple heuristic measures, one for the multiple-match
case, and the other for the no-match case.

Let Cy.....Cpn denote concepts (decision classes) and e denote an event (in-
stance) to be recognized. For each concept C;, we have a BCR consisting of one or
more rules. Each rule is a conjunction of conditions (Conds). For generality, it is not
assumed that BCRs of different concepts are logically disjoint.

The Multiple-Match Case 'When an event matches the BCR of more than one con-
cept, the system selects the concept whose BCR provides the highest degree of fit
with the event. To determine such a degree, we first define the degree of fit,
F(e, Rule;), between an instance ¢ and a Rule;. If the instance satisfies the Rule;, then
F(e, Rule;) is equal to the significance of the rule, otherwise 0. The rule significance
is defined as the ratio of the t-weight(Rule;); i.e., the number of training examples

covered by the Rule;, by the total number of fraining examples (#examples). Thus,
we have:

t-weight(Rule;)#examples, if e satisfies Rule;
F(e, RUIGJ) =
0, otherwise. 4

A justification for this measure is that if an event satisfies a rule that describes a
large proportion of training examples, then it is likely that this event belongs to the
class implied by the rule.
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The degree of fit, F(e, C)), between the instance ¢ and the concept description
C.. is the probabilistic sum of the degrees of fit between e and rules in C;. If C; con-
sists of just two rules, Rule; and Rule;, we have:

F(e, C) = Fle, Rule;) + F(e, Ruley) - F(e, Rule,) x F(e, Rule,) (5

If C; consists of more than two rules, equation (3) 1s iteratively applied. The
reason for using the probabilistic sum is that individual rules may logically intersect.
The most plausible concept is defined as the one with the largest degree of fit.

The No-Match Case If an event does not satisfy the BCR of any concept (ruleset)
under consideration, but it is assumed that it belongs to one of the candidate con-
cepts, the degree of fit between the event and a ruleset depends on the degree of
“aloseness” between attribute values in the event and those in the ruleset, and on the
prior probability of the concept.

For illustration, we will use here a measure of fit described in the study by [Mi-
chalski, et al., 1986]. First, we define the degree of fit, F(e, Cond, ), between event ¢
and condition Cond,. This measure takes value 1, if the condition is satisfied; other-
wise, it is proportional to the relative size of the attribute’s domain covered by the
condition:

1 if condition Cond, is satisfied by €
F(e, Condy) =
#values/DomainSize, otherwise. {6)

In (6), #values is the number of alternative attribute values in the condition, and
DomainSize is the total number of attribute’s possible values. For example, if Cond,
is [attribute = 2..51, the #values is 4,

A justification for this measure is that conditions in which an attribute can take
many values are viewed as weaker than conditions in which it can take only one or
few values. For example, if an event does not satisfy condition [blood type = A v Ol..
than this should cause a lower loss in confidence than if it does not satisfy condition.
[blood type = Al.

The degree of fit, F(e, Rule;), between an event e and the Rule; is the product of
degrees of fit between e and conditions in the rule, weighted by the ratio of t-
weight(Rule;)) over the total number of training examples:

F(e, Rule;) = ]| F(e, Cond,) x (t-weight(Rule;}#examples)
k (7)

The above measure is based on the assumption that individual conditions m a
rule are independent, which is justified, because the induction algorithm tends to
form rules with independent conditions. This measure can be viewed as a combina-
tion of a “closeness™ of the event to a rule and an estimate of the prior probability of
the rule in the description. This measure could be further refined by replacing a dis-
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crete degree of satisfaction of a condition by a continuous degree, such as described
in IMichalski and Chilausky, 1980].

The measure of fit, F(e, C)), between the event € and a concept C; 1s defined as
the probabilistic sum of the Fs of rules in the concept description, the same way as in
the multiple match case {equation (5)).

3.7 EXPERIMENTS WITH AQTT-15

The presented method of learning concept descriptions from examples com-
bhines a conventional inductive learning approach with ideas of TT representation, It
has been implemented in the system AQTT-15, whose major components include the
AQ15 inductive learning program, the TRUNC method of description reduction and
a procedure for flexible matching.

To illustrate the performance of the system, this section presents results from
its experimental application to learning diagnostic rules in three medical domains:
tymphatic cancer, prognosis of breast cancer recurrence, and location of primary
tumor. All the data were obtained from the Institute of Oncology of the University
Medical Center in Ljubljana, Yugoslavia [Kononenko, Bratko, and Roskar, 1984].

Lymphatic Cancer In this domain there were four possible diagnoses; i.e., decision
classes. The available data consisted of descriptions of about 148 patients and their
diagnosis. Each patient was described in terms of 18 multivalued attributes. The di-
agnoses were not verified independently. A specialist’s estimation is that intemnists
diagnose this kind of disease correctly in about 60% of the cases, and specialists in
about §5% of the cases.

Prognosis of Breast Cancer Recurrence There were two decision classes. The
available data described 286 patients with known diagnostic status five years after
the operation. Each patient was characterized by nine multivalued attributes. The set
of attributes was incomplete; i.¢., the measured attributes were insufficient to always
completely discriminate between patients with different diseases. Diagnosing on the
basis of these attributes therefore has to produce a certain amount of error. Five on-
cologists of the Institute of Oncology in Ljubljana were tested, and they gave correct

prognoses in 64% of the cases. There is no estimate of the performance of internists
in this domain.

Location of Primary Tumor Physicians distinguish between 22 locations of a pri-
mary tumor. The available data characterized 339 patients with known locations of
primary tumors. Each patient was described in terms of 17 attributes. As in the prog-
nosis of breast cancer recurrence, the set of attributes was also incomplete. Four in-
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ternists (who were tested) determined the correct location of the primary tumor in
129 of the cases, and four oncologists in 42% of the cases.

All the data used in the experiments are summarized in Table 3-2. Individual
columns represent respectively: the disease type; the number of avaifable examples
for this disease type; the number of different diseases of the given type (decision
classes); the number of attributes used to characterize a patient, and the average
number of values per attribute for each of the disease types.

Table 3-2: A characterization of three problem domains
Di.sease type #Examples| #Classes | #Attrs | #Vals/Altr
Lymphalic cancer 148 4 18 33
Breast cancer 286 2 9 5.8
Primary tumor 339 2 17 2.2

For all three domains (disease types), 70% of the examples were selected for
tearning diagnostic descriptions of diseases, and the remaining 30% were used for
testing the learned descriptions.

The first phase of the experiment was to induce complete and consistent (CC)
descriptions from training examples for all decision classes (diseases) in each do-
main. The results are summarized in Table 3-3.

Table 3-3: The average complexity of complete and consistent descriptions( i.e., before
truncation)
Discase type #Rules/Class #Conds/Rule | #Values/Attr  |#Examples/Rule
Lymphatic
o et 3.0 3.1 1.8 8.0
Breast cancer 20.0 39 1.7 5.0
Primary tumor 5.2 53 1.0 23

Individual columns list, respectively: the disease type, the average number of
rules in the description of each decision class, the average number of conditions per
rule, the average number of attribute values in a condition {i.e., values linked by the
internal disjunction), and finally, the average number of training examples covered
by one rule. One can see that in the domain of lymphatic cancer, rules cover on the
average eight examples, which indicates the presence of relatively strong patterns.
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On the other hand, in the domain of primary tumor, the rules cover on the average
only slightly more than two examples, which suggests an absence of strong patterns.
" " The second part of the experiment was to apply the TRUNC method to reduce
(he above CC descriptions and to determine the best candidate for a BCR of each
decision class. The quality of initial and reduced descriptions was evaluated in terms
of their complexity and their performance on testing examples. The description com-
plexity was measured by the number of rules in the description and the total number
of conditions in it.

Results reported here compare three types of descriptions. The first type were
the initial CC descriptions induced from training examples of each decision class.
The second type descriptions consisted of only those rules in CC descriptions that
covered uniquely more than one training example (the “unique>1" case}; all other
rules were removed. (Notice, that the removed rules could cover several fraining ex-
amples, because the removal condition relates only to uniquely covered examples).
The third type descriptions consisted of only “top rules” for each class; i.e., rules that
cover the largest number of training examples in each class. Such descriptions can be
viewed as covering only the most “typical” examples.

The experiment was performed four times, using randomly chosen training and
testing examples. The results describing the average of the four experiments are pre-
sented in Table 3—4. A more detailed description of the experiments is in [Michalski,
et al., 1986].

Table 3-4:  Results of testing three types of diagnostic rules generated by AQTT-15

Discase Description Complexity Diagnostic | Experts’ | Random
type type #Rules #onds | Accuracy | internists { decision
Complete 12 37 $1%
Lymphatic cancer Unique>1 10 34 80% 85/60% 25%
Top rule 4 10 82%
Complete | 41 160 66%
Breast cancer Unique>1 32 128 68% 64% 50%
Top rule “2 7 68%
Complete 104 551 39%
Primary tumor Unique>1 | 42 257 a1% 42/32% 5%
Top nule 22 112 29% |
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The column “Description Type” indicates the type of the description used in
testing. The types are:

“Complete”  Original CC description of the each decision class

“Unique>1" Description with rules that cover uniquely more than one
training example

“Top rule” Description with only one rule covering the largest number
of examples.

The bold description represents a suggested candidate for the BCR of each de-
cision class, assuming that the diagnostic accuracy takes precendence over the sim-
plicity.

The column “Complexity” gives a characterization of the complexity of a con-
cept description in terms of the number of rules in it and the total number of condi-
tions in all rules. The column “Diagnostic Accuracy” specifies the percentage of cor-
rect diagnoses made by the descriptions for testing cases (where the “correctness™ is
defined as the agreement of the rule-based diagnosis with the diagnosis stated in the
data). The column “Experts/Internists” gives an estimate of the percentage of correct
diagnoses made by specialists in the given domain and intemists, respeciively
[Kononenko, Bratko, and Roskar, 1986). The column “Random Decision” indicates
the probability that a decision taken at random is correct.

Some results shown in Table 3-4 seem to be rather surprising. One striking
case concerns the diagnosis in the domain of lymphatic cancer. The *top rule” de-
scription gave the highest diagnostic accuracy (82%) among all descriptions, al-
though it was the simplest (it had three times fewer rules than the CC description). A
similar phenomenon occurred in the breast cancer domain, where the diagnostic ac-
curacy of the “top rule” description was 68% versus 66% of the “complete” descrip-
tion; while it had about 20 times fewer rules (two rules versus 41). Thus, in both
cases, the “iop rule” description is the clear candidate for the BCR of the concepts,
as it gives both the highest diagnostic accuracy and the simplest concept representa-
t10on.

In the domain of the location of primary tumor, the diagnostic accuracy of all
leamed descriptions was significantly lower than in the previous two cases, ranging
from 29% to 41%. The best performance was achieved by the *“Unique>1” descrip-
tion {41%), which has on the average about two tules per disease (42/22). Although
this is a low performance, it is comparable with that of specialists (42%). The perfor-
mance of the “top rule” description (29%) was significantly lower than both, the
“Unique>1” and the “Complete” descriptions. This indicates that truncating the de-
scription below two rules per class goes too far. As the “top rule™ description is, of
course, the simplest (22 rules; one rule per class), there is a trade-off between the
diagnostic accuracy and the complexity. Assuming the precedence of the diagnostic
accuracy over the simplicity, the “Unique>1" description is chosen as the BCR.
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Wwhy did the “top rule” descriptions give a better diagnostic accuracy than the
CC descriptions in the first two domains? Clearly, these descriptions do not cover
examples that were uniquely covered by the truncated rules (the total eight rules
were removed from CC descriptions in the domain of lymphatic cancer, and 82 rules
in the domain of breast cancer).

One reason for this behavior seems to be the use of flexible matching. Due to
such matching, events that are not covered by a description are still correctly classi-
fied, if they have the “best fit” with the description of the correct class (recall the
example with the R-ball). Since the “1op rule” can be viewed as representing the
«~entral tendency” of examples from the given class, then even examples not cov-
ered by it are likely to fit better to it than to the “top rule” of other classes. Another
reason may be the well-known phenomenon of “overfitting” [Watanabe, 1969]. It
has been observed, that in the presence of noise in the data, a simpler description,
although giving a greater error rate on the observed data, may be a better representa-
tion of the true relationship than a complicated one with a lower etror rate on the
observed data.

In diagnosing the location of primary tumor, the results were generally poor,
which may be attributed to several factors. This domain has significantly more deci-
sion classes than the other two domains (22 versus four in lymphatic cancer and two
in breast cancer), and relatively few examples per class were available (about 15 ver-
sus 37 in lymphatic cancer and 143 in breast cancer}. The set of available attributes
was relatively small (17) for such a large number of classes, and incomplete (i.e., the
attributes were insufficient to discriminate completely between different classes).
The attributes were mostly binary, and thus less informative than those in the other
two domains (the average number of possible aftribute values was over three in the
domain of lymphatic cancer, and about six in breast cancer). The available data can
then be classified as being of a substantially lower quality than the data in the other
two domains. Individual rules in the CC description covered only few examples (2.3
on the average), in contrast to rules in the other two domains (in lymphatic cancer,
eight examples per rule, and in breast cancer, five examples per rule). Thus, the rules
have covered only small portions of the examples in the description space.

The above indicates an absence of a single, strong pattern in this domain,
which explains why the “iop rule” description gave a poor diagnostic accuracy, The
relatively high performance of the “Unique>1" descriptions (with two rules per
class) indicates that there were on the average two relatively important patterns in
this domain. |

3.8 A COMPARISON WITH THE ASSISTANT PROGRAM

A popular approach to empirical leaming from examples is based on building a
decision-tree representation of a group of related concepts (e.g., [Quinlan, 1983;
Chapter 5, this volume]}. This section discusses representational issues of the rule-
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based method implemented in AQTT-15, and the decision-tree-based method, imple-
mented in ASSISTANT [Cestnik, et al., 1986), a descendant of ID3 {(e.g., [Quinlan,
1983]). It also presenis results from applying ASS ISTANT to the same medical prob-
lems as above [Kononenko, Bratko, and Roskar, 1986].

In the decision-tree representation, individual nodes correspond to single attri-
butes, the branches from the nodes 10 the values of the attributes, and the leaves o
individual concepts (decision classes). The process of creating a decision tree in-
volves an iterative application of an attribute-selection technique. At each step, the
“best” attribute {c.g., the most predictive as to the identity of examples) is selected
from a given set of attributes and assigned to a node of the generated tree, until the
leaves of the tree give a unique classification of the training examples. Such a pro-
cess is simple to implement, since it does not involve any complex reasoning or tak-
ing into consideration an explicitly defined domain knowledge.

Like AQTT-15, ASSISTANT creates first a description (here, 2 decision tree)
that gives a complete and consistent classification of training examples for all con-
cepis (decision classes). This tree is then reduced by a tree-pruning technique, in
order to maximize the classification accuracy on testing examples (see also Chapter
5 of this book).

The tree-pruning technique removes certain subtrees from the given decision
tree, and replaces them with leaves. Each leaf so created is assigned the most domi-
nant concept among the concepts associated with the leaves of the removed subtree.
For this dominant concept, such pruning is equivalent to removing conjunctively
linked conditions from a concept description, and thus represents a generalization
operation [Michalski, 1983].

For other concepts associated with leaves of the pruned subtree, the pruning is
equivalent to removing disjointly linked conditions from a description, and thus rep-
resents a specialization operation. Notice, that the training examples of these other
concepts have no longer any representation in the tree. Therefore, the so-pruned tree
will necessarily misclassify some of the training examples. From the standpoint of
the TT representation, a pruned tree can be viewed as a special case of the BCR of a
class of concepts represented by the tree.

As indicated above, the tree-pruning technique performs an interdependent
generalization and specialization of the initial knowledge representation. It moves
the boundaries of a partition of the whole description space, but it cannot indepen-
dently modify the boundaries of individual concepts; i.e., 10 independently general-
ize or specialize individual concepts. Therefore, pruning a subtree may improve per-
formance for one decision class, but may decrease it for other classes.

In the rule-based represeatation used in AQTT-15, concept descriptions can be
independently modified. The TRUNC procedure removes individual rules from a de-
scription, which is a specialization operation. This operation is done independently
for each decision class. The union of the conditions of the rules does not have to
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cover the whole description space. Instances that do not maitch any rule to a suffi-
cient degree can be assigned the “undecided” decision. In contract, a decision tree
always partitions the whole description space. Thus, if there are undecided instances,
one needs to introduce an explicit “undecided™ class, which will be associated with
some leaves. Therefore, the decision tree representation may be overly complex in
decision problems where there are many undecided cases. Also, for a similar reason,
it is usnally not possible to add a new concept to a decision tree without building a
new tree from scratch. Adding new concepts using a rule representation, may be
done by adding new rules.

When there are many concepts differing only slightly from each other, a deci-
gsion tre¢ may praduce a very compact and efficient representation, because classes
will share many of the same nodes. On the other hand, if there are few concepts, but
each described by somewhat different sets of attributes, the decision tree may be
very complex. The complexity of rule representation depends directly on the number
of concepts (unless rules are organized into a hierarchy).

In a decision tree, a classification decision is determined by a sequential testing
of attributes assigned to the nodes from the root io the leaves. Each node represents a
clear-cut test, which results in the selection of one specific branch 1o follow. Such a
process can be quite efficient, if the values of all relevant atiributes are known. If
some atribute value is unknown, however (e.g., the value of the attribute corre-
sponding to the root), it is difficult to derive a classification decision. In the rule-
based representation, the evaluation order of attributes is unimportant. Because rules
are independent units of knowledge, a decision can often be reached without know-
ing the values of many attributes.

From the logical viewpoint, rulesets and trees are equivalent representations. A
ruleset can be represented as a logically equivalent decision tree, and vice versa.
(This is true, of course, only in the case of atributional rules; i.e., rules that involve
only attributes, as opposed to multiargument predicates or relations. Siructural rules,
which involve predicates and quantifiers, cannot be represented as a decision tree.)

Given a decision tree, by tracing paths from the root to individual leaves, one
can determine an equivalent set of rules. Each path generates one rule. Given a set of
rules, one can also determine a logically equivalent decision tree. The latter process
can be done simply by using decision diagrams (¢.g., [Michalski, 1978a; 1978b]).

From the pragmatic viewpoint, however, the rule representation has greater ex-
pressive power than the decision tree representation. This means, that a ruleset may
be significantly simpler than a logically equivalent decision tree. As a simple illus-
tration of this, consider representing the following ruleset as a decision tree:

a&b => Class 1
c&d => Class 1
~a&~c&d => Class 2;
Otherwise, the class is U, (8)
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The simplest decision tree (i.e., with the smallest number of nodes; there are
few equivalent such trees), which is logically equivalent to this ruleset is shown
Figure 3-6. The left branch stemming from a node denotes the “false™ value, and the
right branch, the “true” value of the attribute assigned to this node.

Reexpressing this tree as a ruleset by tracing different paths from the root to the
Jeaves gives the following rules:

a&hb => Class 1
a&~b&c&d =>Class 1
~a&d&c => Class 1
~a&d &~ => Class 2
Otherwise, the class is U. &)

Comparing (8) with (9), one can see that the ruleset produced from the tree has
more rules than the original ruleset, and that some rules in it have more conditions
than corresponding rules in (8). For example, the second rule for Class 1 in (9) in-
volves four conditions. Out of these four conditions, two are redundant {a and ~b).
This means, the Class 1 decision can be assigned in some cases without knowing
values of attributes a and b, contrary to what is stated by the second rule in {9). Thus,
a ree representation may be misleading as to the logical dependence of a decision
class on some attributes.

As mentioned above, using a tree for decision making requires a sequential
testing of attributes. Because of this, the decision-tree approach makes it difficult to
determine a fit (or similarity) between an instance and the whole concept description

Figure 3-6: A decision tree logically equivalent to the ruleset in equation (8)
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(a path through the tree). Therefore, it seems difficult to use a flexible matching tech-
nique (like the one described here) with a decision-tree representation (unless one
ransfers the tree to a ruleset).

To decrease the inflexibility of “clear-cut” tests of decision trees, Quinlan
(Chapter 5 of this book) describes a method of “soft thresholds,” which is somewhat
similar to the method of determining a “degree of consonance” between an atiribute
value and a test [Michalski and Chilansky, 1980]. In a decision iree, the evaluation
considers only one attribute at a time, and therefore the decision-tree approach 1s
inherently more sensitive to small variations of the attribute values than a rule-based -
approach.

The technique used in ASSISTANT nevertheless often leads to an improve-
ment of accuracy in classifying testing examples, which can be attributed to the pre-
viously mentioned phenomenon of “overfitting.” More general descriptions {due to
pruning) may avoid misclassifications produced by overly specific descriptions.

Table 3-5 presents the complexity and diagnostic accuracy of decision trees
generated by ASSISTANT, with and without the tree-pruning mechanism, from the
same data as used in the experiments with AQTT-15 [Kononenko, Bratko, and
Roskar, 1986]. It should be noted, however, that although the training and testing
examples were drawn from the same data, the specific examples used for training
and testing by AQTT-15 and ASSISTANT were different, and therefore the results
listed in Table 3-5 are not totally comparable with those in Table 3-4.

Table 3-5:  Results from the ASSISTANT program

Disease Tree Complexity Diagnostic
type type #leaves #Nodes accuracy
] Complete 22 38 76%
Lymphatic cancer
Pruned 14 25 7%
Complete 63 120 : 67%
Breast cancer
Pruned 9 16 T2%
_ Complete 90 188 | 41%
Primary tumor
Pruned 18 35 46%

To compare the relative complexity of rulesets generated by AQTT-15 with
that of the corresponding decision tree, one may compare the total number of rules
with the number of leaves in the tree. {As mentioned before, a decision tree can be
turned into a ruleset by tracing paths from the root to individual leaves, and each
such path comresponds to one rule. Notice, however, that comparing the number of
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conditions in a collection of rulesets with the number of nodes in a tree is not very
meaningful, because an attribute assigned to a node in the tree will be repeated sev-
eral umes in the corresponding ruleset).

Comparing results in Table 3-5 with those in Table 3-4, in the first two do-
mains the diagnostic accuracy of the selected rule representation (*“top rule™) and the
pruned decision tree is roughly similar (82% versus 77% for lymphatic cancer, and
68% versus 72% for breast cancer). The striking difference is in terms of complexity.
In both domains, the complexity of the rule representation is substantially lower than
that of the pruned decision tree (four rules versus 14 leaves for lymphatic cancer;
two rules versus nine leaves for breast cancer). In the domain of primary tamor, the
pruned decision tree and the chosen rule representation (unique>1) were relatively
close in terms of accuracy (46% versus 41%), and comparable to the performance of
specialists (42%), but in terms of complexity, the pruned decision tree was consider-
ably simpler (18 leaves versus 42 rules). Notice, however, that the pruned tree has
only 18 leaves, while the number of decision classes is 22. This means, that for four
diagnostic classes there are no corresponding leaves; i.e., these diagnostic classes
have no representation, and instances from these classes cannot be recognized by the
decision tree.

The discussion above explored some of the aspects of the rule-based and deci-
sion-tree-based approaches. A number of other issues were not considered, such as
leamning and testing efficiency, the extensibility and modifiability of representations,
their cognitive comprehensibility, or the use of background knowledge in learning.
While the analysis of representational aspects of the two approaches does not depend
on the specific application domain, and represents a valid finding, experimental re-
sults should be viewed only as a few datapoints. Further experiments are needed for
making a more conclusive evaluation.

3.9 CONCLUSION AND TOPICS FOR FUTURE RESEARCH

Unlike conventional representations, which try to describe all concept in-
stances in one explicit structure, the proposed two-tiered (TT) representation de-
scribes explicitly only the “first approximation™ of a concept. Finer aspects, less typ-
ical instances and context dependence are defined implicitly, through a matching
procedure and inference rules. The explicit part of a concept description is called the
base concept representation (BCRY); and the implicit part is called the inferential con-
cept interpretation (ICI).

The learning method described is the first and limited implementation of the
idea of TT representation. To determine a concept’s BCR, it first employs a conven-
tional program to learn a consistent and complete (CC) concept description. This CC
description is then reduced by removing from it rules in the increasing order of their
importance (the TRUNC procedure). The truncated description that scores beston a
description quality measure is selected as the BCR.
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The rule truncation is a specialization operation, and therefore all truncated de-
scriptions are incomplete (with regard to training instances). An opposite method
would be to remove individual conditions from the rules and merge identical or
closely related rules, which is a generalization operation. Such a process would pro-
duce inconsistent concept descriptions. One might expect that an application of both,
the specialization and generalization operations, may lead to 2 better concept repre-
sentation than when only one type of operation is used. To test this hypothesis, such
a method has recently been developed. The experimental results have demonstrated
that the resulting descriptions are indeed simpler and give better performance
[Bergadano, et al., 1988b; 1988c; 1990). Future research might explore different
methods of applying specialization and generalization operators to a CC description,
and also address the problem of directly determining the BCR from examples. There
is also a need for applying more advanced description quality measures (e.g., [Zhang
and Michalski, 1989}).

In the method, the ICI consists of a procedure for flexible matching, which
measures a “fit” between an instance and candidate descriptions. Due to this proce-
dure, an incomplete concept description may still classify correctly training exam-
ples. The current method, however, does not address the issue of employing infer-
ence rules for reasoning about concept boundaries and handling context dependence.
These problems are important tasks for future research. Further work may employ
more advanced procedures for flexible matching and may investigate the problem of
automatically determining the “best” interpretation method.

The system AQTT-15, implementing the current method, was experimentally
applied to learning diagnostic rules in three medical domains. Concept descriptions
obtained by the method were substantially simpler than the original CC descriptions,
and at the same time performed better in diagnosing new cases. In all three domains,
the diagnostic accuracy was comparable with that of specialists in these domains.

The rule-based method employed in AQTT-15 was compared with the deci-
sion-tree-based method used in ASSISTANT, a descendant of ID3. Although a
ruleset can be converted to a logically equivalent decision tree, and vice versa, it has
been shown that the rule representation has pragmatically greater representational
power than decision trees. For some problems, a ruleset can be significantly simpler
than the equivalent decision tree. It has been also shown that a decision tree may
suggest a nonexisting dependence of the concept description on some attributes.

The flexible matching procedure may allow an incomplete rule representation
to classify correcily training examples that were “uncovered” by the truncation pro-
cess. Such a procedure does not apply to the decision tree representation, because it
is difficult to measure a fit between an instance and the whole concept description in
a decision tree (unless the tree is transformed to a ruleset). Consequently, truncated
trees cannot avoid producing errors on some training examples.
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Both programs have been experimentally applied to the same problems in three
medical domains. In domains, in which training examples had relatively high quality
and concept descriptions had strong pattems (lymphatic cancer and breast cancer),
the diagnostic accuracy of both representations was high, but the AQTT-15’s rules
were significantly simpler than the ASSISTANT's decision tree. In the domain
where data were of poor quality and there were no strong patierns (location of pri-
mary wmor), the diagnostic accuracy of rules and decision trees was quite low (trees
performed somewhat better than rules), although comparable with that of humans
specialists. The pruned decision tree was considerably simpler than the rule repre-
sentation. It did not provide, however, any representation for four out of 22 diagnos-
tic classes. |

One general conclusion from experimental results seems to be that the pro-
posed method offers significant advantages over conventional methods that use com-
plete and consistent concept representations. Concept descriptions that it produces
may be much simpler, while their performance on classifying new examples may
also be higher. More research is needed to test these conclusions in other domains
and across different application areas.

Knowledge representation used in AQTT-15 is limited to attributional descrip-
tions. To extend the proposed method to learning structural descriptions, one could
replace the AQ15 module by the INDUCE 3 learning program [Hoff, Michalski, and
Stepp, 1983], or its incremental learning version, INDUCE 4 [Mehier, Bentrup, and
Ricdesel, 1986]. There would also be a need to develop a flexible maiching proce-
dure for structural descriptions and to implement a corresponding TRUNC proce-
dure. The current method has concentrated on problems of learning TT representa-
tions of a relatively small class of concepts. Future work might address the problem
of learning TT representations of a large system of concepts, and the related issue of
the inheritance and sharing parts of the BCR and the ICI among different concepts.

Concluding, we would like to emphasize the importance to artificial intelli-
gence and cognitive science of the problem of learning flexible concepts. As most
human concepts are flexible, the issues of their representation, learning, and use in
reasoning constitute a major part of the agenda for future research in these fields.
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