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INTEGRATING QUANTITATIVE AND
QUALITATIVE DISCOVERY IN THE
ABACUS SYSTEM

Brian C. Falkenhainer
{Xerox Palo Alto Research Center)

Ryszard S. Michalski
{George Mason University)

Abstract

Most research on inductive learning has been concerned with qualitative learn-
ing that creates conceptual, logic-style descriptions from the given facts. In contrast,
quantitative learning deals with discovering numerical laws characterizing empirical
data. This research attempts to integrate both types of learning by combining newly
developed heuristics for formulating equations with the previously developed con-
cept learning method embodied in the inductive leaming program AQ11. The result-
ing system, ABACUS, formulates equations characterizing observed data, and de-
rives explicit, logic-style descriptions stating the applicability conditions for these
equations. Several new techniques for quantitative learning are introduced. Units
analysis reduces the search space of equations by examining the compatibility of
variables’ units. Proportionality graph search addresses the problem of identifying
relevant variables that should enter equations. Suspension search focuses the search
space through heuristic evaltuation. The capabilities of ABACUS are demonstrated
by several examples from physics and chemistry.

6.1 INTRODUCTION

Research on inductive learning investigates the principles that govern the pro-
cess of constructing knowledge from observed data. Significant progress has been
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154 CHAPTER 6: INTEGRATING QUANTITATIVE AND QUALITATIVE DISCOVERY

achieved in developing methods for inducing symbolic, logic-style descriptions that
characterize classes of examples or observations. Reviews of some such methods
can be found in Dietterich and Michalski [1981] and Mitchell [1982], However, with
the rapid expansion of expert systems applications, it is becoming clear that there is a
need for utilizing in them not only qualitative knowledge, as has been the main thrust
so far, but also quantitative, numerical knowledge [Kowalik, 1986). This suggests
that research in machine learning should develop methods for quantitative discovery,
capable of automatically constructing numerical descriptions of the given phenom-
ena. Such numerical knowledge would be a part of a deep model of the knowledge
of an cxpert system.

There are also other reasons for research on quantitative discovery. For exam-
ple, in many fields of science (especially in the life sciences), researchers gather em-
pirical data as a prerequisite for building models and developing principles that ex-
plain the phenomena under study. Their tool box for analyzing the data has
traditionally contained various statistical techniques, including regression analysis,
numerical taxonomy, dimensional analysis, and the like. These methods manipulate
numbers, equations, and similar structures without explicitly involving symbolic
knowledge that represents domain constraints, control heuristics, underlying as-
sumptions, etc. Symbolic knowledge, if it ever enters the process, must be supplied
by a data analyst. A given statistical procedure can only cope with specially prepared
and interpreted numbers. Therefore, it seems very desirable o develop AI methods
for data analysis, which can reduce the amount of expert analysis currently required.

Some pioneering work in this direction has been done by Langley, Bradshaw,
and Simon [1983a] with their BACON systems. Even earlier work has been done by
Hajek [1978] on the GUHA method of data analysis and by Zagoruiko and Lbov
[1976, 19851 on the SPAR [1968] and PINCH [1978] systems. The SPAR system
predicts a value of a variable, and the PINCH system selects the most informative
attributes from the set of initial attributes.

This chapter provides a comprehensive review of the issues in quantitative em-
pirical learning and presents a methodology of such leaming implemented in the
program ABACUS. The ABACUS system is novel in two important ways. First, it is
able to discover muitiple mathematical equations for numeric data and derives ex-
plicit, logic-style descriptions stating preconditions for the application of the equa--
tions. Previous programs have typically worked under the assumption that a single
equation will completely describe an observed set of events. Second, ABACUS was

developed with a motivation to improve methods for exploring the space of possible
equations. As a result, several new search techniques particularly suited o quantita-
tive Jearning were developed. Units analysis enables the system to greatly reduce the
size of the search space by examining the compatibility of variables® units. Two new
search algorithms, proportionality graph search and suspension search address some
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of the unique search problems associated with guantitative leaming. Section 6.2 out-
lines the issues that arise in quantitative discovery. Section 6.3 discusses related
work in the field, and Section 6.4 introduces the new approach taken in the ABA-
CUS system. Sections 6.5 and 6.6 discuss the way in which ABACUS discovers
equations and formulates preconditions for these equations. Several examples illus-
trating the performance of ABACUS are presented in Section 6.7. Finally, Section
6.8 summarizes the ABACUS methodology and suggests directions for future re-

gearch.

6.2 GOALS FOR QUANTITATIVE DISCOVERY

At the heart of quantitative discovery is the desire to induce mathematical de-
scriptions that characterize the behavior of numerical observations. Independent of
the technique used, there are a number of issues that any work in this area must ad-
dress. Established disciplines, such as regression analysis, require the data analyst to
resolve many of these issues. Al techniques attempt to automate this phase of the
analysis. We therefore outline the following criteria for evaluating research on quan-
titative discovery.

1. Coping with irrelevant varigbles. In many discovery tasks, it is difficult to
know which available variables are relevant to describing the observed events
and which are not. A discovery program should be able 1o decide for itself what
is relevant,

2. Coping with incorrect and irrelevant observations, In empirical data, it is often
the case that some of the data is not representative of the process being ob-
served. There are two common situations that give rise to this. First, some ob-
servations may simply be erroneous. Second, the process may not be defined
outside a given range of values, such as the pressure being too high or the sub-
stance being in the wrong state.

3. Discovering multiple equations characterizing a collection of data and stating
the conditions under which the equations apply. It may often be the case that
more than one equation is required to adequately describe a given set of obser-
vations. In these situations, the observations should be clustered around the
various equations 10 form subsets of the original events. Conditions should be
placed on each equation to describe when it is applicable.

4. Handling different types of variables. Often, the observable variables in a given
situation are both numeric and symbolic. When a discipline is young, for ex-
ample, it may not be known that a given symbolic value has a one-to-one cor-
respondence with an as-yet-undiscovered physical constant. A quantitative
discovery system should take into account the symbolic information available.
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5. Imprecision and errors in the duta. The inaccuracy of experimental observa-
tions has always been a problem in science, and the discovery system should
not be crippled because of it.

6. Integrating with other learning systems. While quantitative knowledge is quite
valuable, it is only a part of the total knowledge available. Other types of
knowledge might include knowledge of qualitative dependencies among vari-
ables, including causal dependencies. A quantitative discovery system should
be able to interact with discovery programs for acquiring different types of
knowledge.

7. Robustness and efficiency. Discovery is inherently prone to combinatorial ex-
plosion. This, combined with the difficulties introduced by the criteria defined
above, make efficiency considerations particularly important for quantitative
discovery. We want to be able to discover complicated equations and yet ac-
complish this in a reasonable amount of time.

6.3 RELATED WORK

Numerical data analysis and equation formation has traditionally used such
standard techniques as regression analysis, numerical taxonomy, and dimensional
analysis (e.g., [Chatterjee and Price, 1977; Daniel and Wood, 1971; Huntley, 1952;
Langhaar, 1951]). These methods are very useful when the domain is well under.
stood and when the observations correspond closely to the process being analyzed.
For many situations, however, these methods are either difficult to use, requiring a
great deal of human analysis, or they are simply inadequate. First, we are interested
in discovering multiple equations in data when no single equation exists. Stepwise
regression analysis is based on the implicit assumption that there is one best equation
[Daniel and Wood, 1971]. It will attempt to fit a single equation to the set of ob-
served data, no matter how complicated the resulting equation. This leads to our sec-
ond concern, comprehensibility. It is important that the resulis of a learning program
be easy to understand. This is especially important in situations where a set of data
may be described by two or more succinct equations or approximated by one com-
plicated one. Third, regression analysis assumes that the data are a representative
sample of the process being observed. Techniques are described in the standard texts
to remove, by hand, nontypical data points, called outliners [Daniel and Wood, 1971;
Chatterjee and Price, 1977]. We are interested in the automatic removal of these data
points. Fourth, we are interested in minimizing the amount of analysis required by
the user. For the standard techniques, numbers and equations must be specially pre-
pared and interpreted by the data analyst. Finally, we are interested in the smooth
integration of quantitative and qualitative knowledge. Regression analysis uses indi-
cator variables, which take on values of 0 or 1 to represent different qualitative cate-



FALKENHAINER & MIGHALSKI] 157

gories. We would like to see qualitative variables explicitly included in the discovery
program ’s hypotheses.

The equation formation part of our research is related to the BACON project at
CMU [Langley, 1979, 1981; Langley, et al., 1981; 1983; 1986; 1987}, the COPER
system (Kokar, 1981; 1986], the Hotep system [EI-Shafei, 1986), and the FAHREN-
HEIT system [Zytkow, 1987]. The precondition formation part is based on the meth-
ods of inductive learning developed by Michalski and his collaborators {(e.g., [Mi-
chalski and Larson, 1978; Michalski, 1983]).

The BACON project began in 1978 with the construction of BACON.1; the
most recent system is BACON.6. The basic approach taken in the early versions was
to formulate empirical laws through the repeated application of hypothesis genera-
tion rules. Thus the ideal gas law (PV/NT = 8.32) would be formed in a layered
fashion by creating the term Pv, using this and the directly observed atiribute T to
form a more general term PV/T, and finally using this to formulate pv/NT, which
summarizes all of the given data. A variety of additions were subsequently made o
this basic methodology. BACON.4 was able to postulate intrinsic properties for sym-
bolic entities and could detect when common divisors existed for a variable’s values.
BACON.5 included a simple method for learning by symmetry. BACON.6 [Langley,
et al., 1983b; 1986] deviated from the methodology of the previous systems. ‘The
major difference was that forms of the law must be provided by the user, allowing
the system to formulate more complex laws including trigonometric and algebraic
functions.

While BACON compares well with the above criteria for quantitative discov-
ery, several weaknesses can be pointed out. One limitation is that it cannot derive
multiple equations to describe different subsets of the data. The issues of data clus-
tering and the formulation of preconditions are not addressed. The data is assumed to
be correct and relevant to a single process and the user must state which variables are
dependent and which are mdependent. The equation formation techniques used in
BACON.6 appear to'be quite powerful, enabling the system to derive rather compli-
cated laws in a straightforward manner. However, much of this power is achieved by
requiring the user to provide a form of the answer.

A different approach to quantitative discovery is taken by Kokar [1981; 1986]
and EI-Shafei {1986]. Central to this approach is the application of dimensional anal-
ysis {Langhaar, 1951; Huniley, 1952]. Considering units of measuremenits, this anal-
ysis creates the set of all possible dimensionless products of variables provided in the
data. These products are then used to form equations explaining the data. Traditional
dimensional analysis requires that the relevant variables are known prior to applica-
tion of the procedure, thus requiring extensive domain knowledge. Kokar solves the
irrelevant variables problem by first trying to determine the completeness of the set
of variables characterizing the given physical process. This step precedes the equa-
tion formation step and is able to discard irrelevant variables as well as detect when a
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needed relevant variabie is missing. EI-Shafei effectively ignores the need for deter-
mining variable relevancy prior to dimensional analysis by using regression analysis
to form the desired equation from the set of dimensionless terms. He assumes that
terms involving irrelevant variables will automatically dropout during the regression
analysis. This may be an oversimplification of the problem since great care is given
to variable selection using classical regression analysis techniques {Daniel and
Wood, 1971; Chatterjee and Price, 1977].

These sysiems are quite robust in that they will find an equation to fit the data,
no matter how complex that equation may be. Therein lies one of the problems with
these techniqgues. Because only a single equation is fit to the data, these systems can-
not detect cases where the data could be better described piecewise by two or more
equations. In addition, these systems fail to take into account the symbolic informa-
tion available as well as having problems with situations requiring dimensional con-
stants. In the following sections, we describe an approach to quantitative discovery
that contains aspects of BACON, dimensional analysis, and symbolic approaches to
inductive learning.

6.4 THE ABACUS APPROACH TO QUANTITATIVE DI.SCOVEFIY

There are many strategies for deriving an equation or set of equations summa-
rizing the behavior of some physical process. In choosing a particular strategy, one
must weigh the gains from the use of that strategy against the losses. The approach
taken in ABACUS has been o satisfy as many criteria from our list for quantitative
discovery as possible, and to reduce the user-supplied information to a minimum.
ABACUS can handle irrelevant variables, symbolic variables of different types, and
a cértain degree of noise. Its great advantage is that it is able to discover multiple
equations and ignore irrelevant observations. The only information required from the
user besides the actnal observations is a list of the attributes, their type (numeric or
symbolic), and optionally their units {e.g., meters/second). The program is never told
which variables to treat as dependent and which to treat as independent. In achieving
these abilities, some sacrifices have had to be made in robustness and efficiency. The
experimental results described in Section 6.7 indicate that the system is both general
and powerful.

The ABACUS method of quantitative discovery consists of two steps. First, the
equation discovery module analyzes the original empirical data and attempts to de-
rive equations summartzing the observed behavior, If more than one equation is re-
quired to describe the observations, the data are divided into disjoint subsets, and
equations are determined for each subset. The second step passes the resulting sub-
sets to the precondition generation module. This module derives a logic-style de-
scription for each subset. Such a description is used as a precondition for each equa-
tion. The result is a series of if-then rules in which the “if part” states the
precondition for applying the rule specified in the “then part.”
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The equation learning module searches for the best equation to describe the
given empirical data.! If the discovered equation holds for all events, the leaming
task is completed, and no preconditions need to be generated. However, if the equa-
tion describes only a subset of the events then the subset described is removed from
the list of events and associated with the equation describing it. Sometimes several
classes of events can be described by one expression that evaluates to different val-
pes. When this occurs, a number of classes are formed, one for each value of the
expression. Remaining events are passed to the equation learning procedure again in
order to determine a separate equation for them. This iterative process repeats until
all events arc accounted for. When no equation can be determined for some events,
they are placed in a “miscellaneous” class.

Once the data have been divided into classes, the precondition generation algo-
rithm is used to create discriminant descriptions for these classes. The resulting logi-
cal expressions can be used to predict which equation should apply to a newly ob-
served event. The following example is ased to illustrate the general algorithm used
in ABACUS,

Suppose the system is given the data depicted in Figure 6-1(a). Observed val-
ues for x and y, are read in and the equation discovery module is invoked. As there
are only two variables, the space of possible equations is small. The best equation
found, which describes 70% of the data, is x* = y (a discussion of the equation for-
mation technique is in Section 6.5). Evénts covered by the equation are put in a class
associated with this equation. The equation discovery module is invoked again to
analyze the remaining events. This time, x + y = 30 is found to hold for all events,
and a class set 1s created for these events. Because all observations are accounted for,
the equation discovery step is completed, and the precondition module is called. This
module scarches for properties of the data that distinguish between the two classes.
The results are presented in Figure 6-1(b). They state that when x is below 5, the
equation is y = x*, and when x is between 5 and 30, the equation x + y = 30 holds.

6.5 DISCOVERING EQUATIONS

The technique used in ABACUS depicts quantitative discovery as a search
through the space of equations that could possibly describe the behavior of the ob-
served data. This search process mathematically combines variables representing
terms 10 form new terms. For example, x and v might be combined to form x + .
Search in this domain is different than in many other domains because new nodes are

1

There are many ways to determine the best equation. Here we refer to the equation describing
the largest subset of the data (i.e., the most general). It is also important 1o consider syntactic
and domain-dependent criteria, such as the equation’s simplicity or its relation to known phys-
ical phenomena, but the current work has not yet addressed these methods.
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ii l:O 1:5 frD 2;5

[b} Rule A i !T. = 9,10 .. SMI
THEN =y

Rule B IF [x = 5.10 .. 30.00]
THEN x4 y=30.00

Figure 6-1: ABACUS analysis of graph example

formed by the combination of existing nodes rather than by node expansion. In addi-
tion, we have not been able to derive a good heuristic evaluation function which can
accurately indicate the possibility that a given node lies on a promising path. Before
describing the search algorithms used in ABACUS, we first discuss how nodes in the
search tree are formed, how search through a potentially exponential search space is
constrained, and how the goal node 1s recognized once it 1s found.

6.5.1 Variable Dependencies and Proportionality Graphs

At the heart of quantitative discovery is the concept that one variable’s values
may be dependent in some way upon the values of another variable. The early
BACON systems lock for monotonic relationships in the data to create new hypoth-
eses [Langley, 1981a; 1983a]. Michalski (1983] defines the M-descriptor stating that
if two variables exhibit a monotonic relationship, one should investigate the proper-
ties of their product. In the strict sense, variable x monotonically increases with y if
the values of x always nise when the values of y rise while holding ail other variables
constant. There are two problems with such a strict definition. First, for a given set of
data, it is not always possible to observe changing values for x and y while holding
all other variables constant. Second, we must allow for inaccuracies and errors in
experimental data. As a result, we are interested in the degree with which x is pro-
portional to y rather than detecting if x exhibits a monotonic relationship to y for all
of the data. With this in mind, we say that x is qualitatively proportional to y if, for a
given percentage of the events (user specifiable), the values of x rise when the values
of y rise while certain specified variables are held constant. Similarly, x and y are
inversely qualitatively proportional if x decreases as y rises for a majority of the
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events under the same conditions.” There are then four assertions possible as the re-
sult of a qualitative proportionality measurement:

Prop’ (x,y) xandy are qualitatively proportional tc a user-specifiable
degree

Prop {(x,y) xandy areinversely qualitatively proportional o a
user-specifiable degree

Prop’ (x,y) insufficient data to determine if x and y are related

Norel {x,y) X andy are not related

To make a qualitative proportionality assertion about variables x and v, ABA-
CUS looks for general trends in the data. Since it is not always possible to hold all
other variables constant, an exclusion set is defined to be the set of altributes that
does not need to be held constant and is constructed by the program and the user. On
rare occasions, the user must recognize which variables simply cannot or should not
be held constant. Similarly, when measuring the proportionality between variables x
and v, the program recognizes that if x is a program-generated variable composed of
user-defined variables v and w, then v and w should be removed from the set of vari-
ables that must be held constant. Since they are necessarily dependent upon x, it
would be impossible to hold v and w constant while changing x. The wend detection
algorithm determines whether v rises or decreases as x rises when ail user-defined
variables not in the exclusion set are held constant. It never tries to hold program-
generated variables constant. If no groups can be found where all of these variables
remain constant, then Prop® must be asserted. For each of the groups found, a mea-
surement is made of the monotonic relationship between x and v from which an av-
erage is obtained and used as the degree of proportionality between x and v. This
measure is then used to assert Prop*, Prop™, or Norel. The proportionality criterion
has a margin of tolerance, allowing a moderate degree of noise and a limited amount
of conflicting proportionalities. Conflicting proportionalities occur when some of
the data indicates Prop* (x, v} and some indicates Prop (x,y).InFigure 6-1(a),
there were 16 points given for the curve (Prop® (x,y))and seven given for the line
(Prop™ (x,y)) causing the program to initially assert Prop® (x,y}. We are devel-
oping an algorithm to handle the conflicting proportionalities problem in a more
general manner, based on determining breakpoints in the monotonic refationship be-
tween variables. For the data in Figure 6-1(a), it would first determine the breakpoint
A, and then process points to the left and right of A independently.

From these proportionality assertions we may construct an undirected graph,
called a proportionality group, where the nodes represent variables, and edges indi-

; _

Natice that no dependency ordering is implied here and thus no causual relation in the sirict
sense. Forbus [1984] defines the qualitative proportionality, Prop {x, y) to read “v caitses the
value of x to change.” His more restricted interpretation is not required for our use.
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Figure 6-2: Proportionality graph

cate the presence of a qualitative proportionality relation between their incident ver-
tices (Figure 6-2). For our purposes, edges shall only be consiructed for Prop* and
Prop™ relationships, and Prop’ will effectively be treated as Norel. In Figure 6-2,
a is proportional (+ or ) to b but not proportional to <. Notice that proportionality is
not necessarily transitive, as one might expect. For example, d is proportional to e,
but not proportional to £ or b. As described, proportionality assertions are based on a
rather loose, average degree of proportionality. Thus some edges may be incorrectly
missing from the graph {e.g., between a and e) or incorrectly present (e.g., between
d and e) due to noise or conflicting proportionalities.

As explained in Section 6.5.5, we are interested in nodes that form cycles in
such a graph. In this context, the term cycle refers to any biconnected components
[Aho, 1974] that may exist. A biconnected component refers only to the maximal
cycles in the graph, or in other words, only those cycles that are not a subset of some
other cycie. In Figure 6-2, the single maximal cycle {or biconnected component)
consists of the setof nodes {ab e f}.

6.5.2 Equation Formation—A Search for Constancy

The existence of qualitative proportionalities between variables suggests the
possibility of causal or other relationships between them, For example, if we knew
that the value of x always goes down when the value of y goes up, then the relation
xy = constant might be binding these variables. This may be generalized to a rule:

If Prop™ (%, y) then create a variable equal to xy

Such a variable is more likely to take on a constant value than x or y independently.
Expanding on this concept, the following heuristics are formulated:

IfProp+ (x,v) then
Generate a variable equal to a quotient relation between x and y (3.1)
Generate variables equal to difference relations between x and v
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Ifprop {x,y) then
Generate a variable equal to a product relation between x and y (5.2)
Generate variables equal to sum relations between x and y

With these heuristics in mind, search in quantitative discovery involves the
continual combination of qualitatively proportional variables to form new variables
in the hope of finding one that takes on a constant value. Notice that application of
the above heuristics tends to create variables with the same or higher degrees of con-
stancy than the original variables.

The variables created from product and quotient relations are what one would
expect. A variety of sum and difference refations may be formed, however, including
x +y,%x2 =y, and x" + y". Those actually generated will depend upon the units
involved as well as other domain-independent constraints discussed below. Using
these rules, the system can generate many new variables when qualitative relation-
ships are detected among the current variables. In addition, ABACUS provides a fa-
cility for the user to predefine arbitrary functions or transformations on input vari-
ables that operate before the equation discovery module is called. For example, the
gser may instruct the program to replace all values of x with log(x) ortocreate a
new input variable whose values are determined from a supplied function of existing
variables.

6.5.3 Domain-Independent Constraints

Several domain-independent constraints are used to limit the large scarch space
associated with quantitative learning. These constraints involve eliminating mathe-
matically redundant expressions and physically impossible relationships. The con-
straints are divided into three categories:

¢ Units compatibility rule
e Redundancy detection
» Tautology detection

Below we discuss each of these in turn.

6.5.3.1 Units Compatibility Rule

When the system decides to create new variables by firing the rules presented
in the previous section, the additive relation rules will attempt to create a variety of
new variables. Were all of these variables created every time one of the rules fired,
the number of variables would explode, and the search space would become un-
manageably large. However, a simple physical constraint drastically limits the possi-
ble choices. For two entities to be added or subtracted they must be of the same type;
that is, they should have the same physical units. One may divide meters by seconds,
but one may not subtract seconds from meters. Therefore, any action that violates
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this units compatibility rule is blocked. This is similar in intent to the dimensional
cohesiveness requirement of dimensional analysis {Langhaar, 1951; Huntley, 1952).
All equations generated by ABACUS are guaranteed to be dimensionally cohesive if
units are specified for each variable.

When attempting to generate sum relations between two variables x and v, if
the units of x and y are equal, then terms such as x + y and x* + v* will be created.
if, on the other hand, the units of x and v are not the same, but differ only in expo-
nent such that the units of x" is compatible with the units of y™, then the term x” + "
(where n # m), would be created and terms like x + y would be blocked.? Finally, if
the units are not equal and cannot be made compatible by exponentiation, then no
sum relations will be created, effectively blocking all instantiations of the sum gen-
eration rule. In practice, this is the usual case. It should be pointed out that these
constraints only test the identity of units and provide no semantic interpretation to
guide the search. In the future we would also like to use constraints stemming from
the physical properties of entities involved, such as trying 1o add the velocity of two
unrelated entities.

6.5.3.2 Formula Redundancy

A common side effect of combining existing variables to form new ones is the
possibility that for any new variable, a mathematically equivalent yet syntactically
. different expression defining a variable may have already been created. This is espe-
cially likely since variables created at one level in the search may be combined with
existing variables from any other level. For example, say variable x represents the
relation:

ab

* 7 (cd)

where the parentheses show that x was created by dividing a variable ab by another
cd. Further, suppose during the course of the search the variable b/ (cd; had been
created. At some point, the system will then iry to create a new variable y:

_ .l b
Y7 % (eq)

As we can see, x and y represent the same variable, so creating vy is redundant. From
a purely syntactic examination, however, = and y are not equal. The solution fo this
problem is to use a canonical form for expressions so that equivalent formulas will

always be syntactically equal. The form we use expresses all equations as a sum-of-
products [Falkenhainer, 1985b]. Thus

3 : . o
A further constraint requires that the exponents n and m be less than 4. This is a heuristic
limitation, but seems reasonable given that higher powers are rare in the natural sciences.
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L {a - b)
y

would be expressed as
ax _bx
Yy ¥

A canonical sum-of-products representation has also been used in the BACON sys-
tems to detect redundancy [Langley, 1981].

6.5.3.3 Numerical Tautologies

Another problem with combining mathematical formulas is the possibility that
a mathematical cancellation may result, causing the program to effectively take a
step backwards. Suppose, for example, the program discovers Prop™ {a/b, bc).
Creating a new variable

&
—bc
(o]

would result in b canceling out. Were such operations allowed to go unchecked, the
system may soon discover that

abc

abc
always equals 1 for any data given.

ABACUS allows no action that would result in a mathematical cancellation.
Using the canonical form for formulas mentioned in the previous section, a check for
tautologies is reducible to a set of simple logical conditions. If the tautology condi-
tion for a given operation holds, the proposed action is blocked.

6.5.4 Recognizing the Goal

Because a valid equation may describe only a subset of the events, recognizing
when a good equation has been found and when 10 terminate search is not as casy as
it would be otherwise. There are three types of goal nodes recognized by the system.
The first type corresponds 10 a term that describes all events; i.e., one that evaluates
to the same value for every event (within a percentage range of uncertainty modifi-
able by the user). Such a goal is easily recognized and search terminates when one is
discovered.

The second type of goal node is based on the notion of 2 nominal (symbolic)
subgroup of events and also canses immediate cessation of the search process. A
nominal subgroup is defined to be a set of events that are equal on all nominal attri-
butes. If a term is found that evaluates to a single value for a nominal subgroup,
search terminates on the assumption that an equation of significance has been found.
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Table 6-1: Sample goal node recognition

(a)
ahject X ¥ XAy
¢irche : : I
circle 1. 3 1'-}
cirche b b L3
T e S S .
! box 2 ’ 2
i by 4 L 2
! box ® - 2
i bux b 3 :
trizngle 3 2) 1.5
tnangle N 3 1.6
100% Constaney an a Nominal Subgroup
(b)
obyect X ¥ Xy
circle 2 : !
circle 4 2 2
circle 4 A 2
box . 2 i
hox 4 : 2
box 3 2.3 .
hox b 3 2
Erinnple 3 2 L5
3 3 1.

triangle

6% Constancy for Entre Event Space

For example, in Table 6-1(a), x/y has the same value for all events in the nominal
subgroup corresponding to the object “box.”

The third type of goal node does not halt the search algorithm. As each new
variable is created, its degree of constancy is measured, and the variable having the
largest degree of constancy is stored. The degree of constancy is defined 1o be the
percentage of the data for which the function evaluates to a single value within a
percentage range of uncertainty modifiable by the user. In Table 6-1{(b), x/v has a
67% constancy because six out of the nine events are equal to 2. If two variables
have the same constancy value, only the first discovered is remembered, since it is
more likely to be of a simpler, and thus more desirable form. A more thorough ap-
proach would examine the equations according to various syntactic criteria and keep
those that are both general and appealing. If search exceeds the allowed limit, the
term having the highest degree of constancy is returned. If its constancy is greater

than a user-modifiable threshold, the resulting equation is reported. Otherwise, the
program states that no formuola could be found.
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6.5.5 Search

ABACUS discovers equations by searching through the space of possible
terms that relate the user-supplied variables. These terms are formed by applying the
variable generation rules to the current set of proportionality assertions. Even with
domain-independent constraints, a search space¢ generated in this manner can be-
come quite large. In an effort 1o counter this problem, ABACUS uses a combination
of two search algorithms that have been designed with quantitative learning in mind.
The first algorithm, proportionality graph search, uses the graphical nature of the
proportionality assertions to guide the search path and discriminate against irrelevant
variables. The second algorithm, suspension search, enables the program to reduce
the number of terms being examined by deferring those that do not look promising
until all other possibilities have been exhausted.

In this section we will examine only the search process itself, ignoring opera-
tions done once a final term has been selected. For illustration, two examples will be
used. The first example deals with discovering the ideal gas law:

PV _
;&——8.32

where P 1s the pressure of the gas, V is the volume, T is the temperature in degrees
Kelvin, and n is the number of moles. The ideal gas law equation belongs to the class
of relations consisting solely of multiplication and division, and whose variables are
all of degree 1. It is a law that has been discovered in a variety of ways by the
BACON programs [Langley, 1981; 1986].

The other example is the non-vector form of the conservation of momentum
law:

mlvl + m2V2 = I'['I:l_"'i@"l"r +m2’V2'

This relation represents those equations that include addition and subtraction. It
states that when two particles collide while traveling along the same line, their total
momentum 1s the same before and after the collision. To complicate the example, the
masses m; * and m," will be allowed to change after impact producing m, * and ,’ .
When the masses do not change, reducing the number of variables to 6, ABACUS
discovers the equation in much less time.

6.5.5.1 Proportionality Graph Search

Experience has shown that in terms of difficulty, the types of equations ABA-
CUS is able to discover may be divided into two categories. Equations composed
solely of multiplication and division tend to be easiest to discover, while those in-
cluding other operators, such as addition and subtraction, tend to be more difficult
[Falkenhainer, 1984; 1985b). Proportionality graph search is designed to handie
equations falling in the first category. They correspond to a large percentage of the
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physical laws round in elementary physics and chemistry texts. Proportionality
graph search is based on the observation that these equations will form a cycle in the
corresponding proportionality graph, barring the presence of an exorbitant number
of Prop’ assertions, As an example, equation (5.3) below represents a general equa-
tion of this type.

2

l;::; = Constant {5.3)
Holding the four variables u, v, w, and x in (5.3} constant and varying y will neces-
sarily cause z to vary as well, in a direction that is completely predictable given the
direction of change of y. This is true for equation (5.3) no matter which four vari-
ables are held constant and which two are allowed to vary. In the absence of Prop’
assertions, each variable is therefore qualitatively proportional (+ or -) to the other
five. For the given problem, which may have more observables than the six appear-
ing in (3.3), the subgraph for vertices (u, v, w, x, y, 2) must therefore be strongly
connecied, and these nodes will thus form a cycle. This introduces another observa-
tion about the proportionality graph for such an equation. Irrelevant variables are
more likely to be excluded from the above cycle and may often be incident on only
one edge.

The proportionality graph search technique directs its search to the interrela-
tions of variables forming a cycle and avoids variables that are not contained in a
cycle. The algorithm consists of the repeated application of the following steps:

1. Form a proportionality graph for the current set of variables, both those pro-
vided by the user and those generated by the program. Exclude all edges that
occurred in previonsly generated graphs.

2. Extract the cycles (biconnected components) and represent each cycle by the
set of nodes it contains,

3. Search each cycle in a depth-first manner for a depth given by the cardinality
of the set.

‘This process repeats until a suitable relation is found up to a maximum of K
times." For each graph, the cycle sets are sorted in decreasing order under the as-
sumption that the largest cycles will prove to be the most promising. A cycle (e.g.,
{V, N, P, T})is searched in a depth-first manner by first removing two nodes that
are proportional and combining them according to the equation formation heuristics
to form new terms (e.g., V/N). The remaining nodes {e.g., {P, T}) are then tested
one at a time against these terms to form new terms, For the set {P, T} and the

4
The default search depth, K, is 4 since powers greater than 4 are seldom seen in the natural
sciences.
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(a)

Cycle Sets:
(&) (PVIPNET)VNVT)NT}
(Y V)
{ (NM}}

Figure 6-3:  Proportionality graph for ideal gas law (PV/NT = 8.32)

current node V/N, P would be tested against v/ N to possibly create new terms such
as pv/N. If backtracking occurred, then T would be tested against v/N. This process
repeats until either a solution has been found or until all combinations have been
exhausted. Becaunse nodes are removed from the cycle setas search progresses, pow-
ers of variables are not possible after the first round of search.

As an example of the heuristic power of this search techaique, a sample pro-
portionality graph is shown in Figure 6-3(a) for the ideal gas law, where a total of six
attributes were initially provided by the user. As can be seen, the irrelevant vanable
v is independent of pressure, volume, and temperature, but is estimated to be propor-
tional to the number of moles of gas present. Furthermore, the variable 2 is found o
pe independent of the other five. The 2 cycles of the graph are given in Figure
6-3(b), where solitary edges are simply treated as “cycles” having only one edge.
Figure 6-4 shows the search tree result from the above strategy applied to this exam-
ple. The nodes shown were the only ones examined by ABACUS. For the ideal gas
law, the program generated the minimum number of nodes possible to arrive at the
- correct solution.

While the proportionality graph search is quite adept at locating relations like
the ideal gas law, this example happens to be ideally suited to such a search tech-
nigue. Other types of relations, even those composed solely of multiplication and
division but with higher powers, are not so well suited to proportionality graph
search. For each iteration of the search algorithm, a new proportionality graph is
constructed. The difficulty begins with the second graph constructed, and becomes
increasingly worse with successive graphs. After completion of the first search pass,
a large number of terms may exist in the system, many of which differ only slightly.
Consequently, the second proportionality graph constructed has a much larger num-
ber of nodes than the first and, due to the similarity of the nodes, the graph tends to
be highly interconnecied. Therefore, the extracted cycles are quite large, sometimes
encompassing the entire graph. As the depth of each search cycle is given by the
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Figure 6-4: Proportionality graph search path for ideal gas law example

number of nodes in the cycle and backtracking must be aliowed, a great deal of time
is wasted exploring very deep levels of the search tree.

6.5.5.2 Adding Suspension Search

To avoid the problems caused by repeated applications of proportionality graph
search, ABACUS uses only one iteration of the algorithm. If no law is found, then
the program employs a technique called suspension search. This algorithm is able to
remove nodes from consideration, yet allows their return should they be needed. It
combines the benefits of a beam approach with the allowances for faulty heuristics
provided by backtracking. Suspension search begins as a normal breadth-first search.
At each level, however, the values for each node are examined. As the ultimate goal
is to find a variable whose values are constant or nearly constant, nodes possessing
some degree of constancy are more likely to lie on a terminating path than are nodes
that lack any degree on constancy. To this end, when each level is created, all nodes
on that level are divided into active nodes and suspended nodes. Suspended nodes
are those whose constancy is less than a low threshold, which is roughly 5% of the
events. Search then procecds on to the next level, where only the active nodes of
previous levels are visible to the search algorithm. The next level is created by test-
ing the proportionality between the new active nodes of the current level and all ac-
tive nodes of the current and previous earlier levels. If no relation has been found by
the time the depth limit (user specifiable) is reached, the best relation found so far is
returned if its level of constancy is above a user-supplied threshold. If not, search
backtracks 10 the previous level where its snspended nodes are now activated and
related to each other, its old set of active nodes, and those active nodes of earlier
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Table 6-2:  Suspension search algorithm

——_

FUNCTION Suspension {active_ancestor_nodes, active-nodes, suspended
nodes, environment) : boolean;
» If the search-depth limit has been reached
then return true if the best constancy found is greater than a threshold
else return false
« If new active or suspended nodes can be created from the current list of
active nodes
then return true if one of these has a constancy of 100%
or return true if a call to Suspension using the new nodes returns true

e If the filter depth has been reached
then save the environment and return false

« If new active or suspended nodes and be created from the current hist of
suspended nodes
then return true if one of these has a constancy of 100%
otherwise save the environment
and return true if a call to Suspension using the new nodes returns true

« Save the environment and return false

jevels. Search then returns to the next level with a new set of active nodes. If still no
relation is found, backtracking will go back farther, and the process will repeat as
before. An environment of each level is maintained to enable the program to remem-
ber which nodes were previously active and suspended when search returns, The
suspension search algorithm is presented in Table 6-2. When invoked initiaily, nodes
created during proportionality graph search join the user defined variables in level 1
to form the initial set of active and suspended nodes.

Because suspended nodes are ignored, fewer nodes are involved in the search
at any one time. Therefore, search may be allowed to explore deeper than it couid
otherwise. A second search-depth limit is defined, called the filter depth, which cites
a limijt shallower than that of the absolute depth limit. Search may proceed beyond
the filter-depth fimit, but only active nodes are allowed for levels beyond this limit.
Suspended nodes created at these levels are permanently discarded.

A partial suspension search tree for the example is given in Figure 6-5, involv-
ing the discovery of the law of conservation of momentum. The dashed horizontal
line represents the filter-depth limit which has been set to three. A number of nodes
may be eliminated as a result of this technique, considerably reducing the search
COst.
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i
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filter depth
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Figure 6-5: Partial suspension search tree for conservation of momentum

¢ > — Active Nodes
¢~ — Suspended Nodes

Combining the proportionality graph search algorithm with the suspension
search algorithm favors quick discovery of laws that are composed solely of multi-
plication and division while still being adept at discovering more complicated equa-
tions in a reasonable amount of time, As cycles in the first pass can never be larger
than the number of given attributes, the depth-first search of the first phase is not
deep for most problems, thus creating variables that would normally be created for
more complicated examples anyway.

6.5.5.3 Analysis

Search algorithms representing all the possible combinations of proportionality
graph search, breadth-first search, and suspeasion search have been constructed and
directly tested in the ABACUS system. Empirical evidence has shown that among
these, the most powerful strategy is the combination of algorithms presented above
[Falkenhainer, 1985b]. Search strategies not including the proportionality graph
search algorithm tended to be slower for examples such as the ideal gas law, while
the algorithm by itself was slower on most other examples. Suspension search

proved to be equivalent to breadth-first search on small examples and superior on
large examples.
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The method shown is quite flexible. Where it falls short is in robustness. The
only equations that can be discovered are those composed of variables raised to
some integer power and combined through the use of multiplication, division, addi-
tion, and subtraction. While this is usually sufficient for introductory treatments of
the physical sciences, we would like to strengthen this aspect of the current imple-
mentation in future research.

6.6 FORMULATION OF QUALITATIVE PRECONDITIONS

When multiple equations are discovered for a given set of data, ABACUS gen-
erates a logical procondition for each equation that describes when the formula is
applicable. Deriving preconditions for disjoint sets of events is an example of the
general covering problem described by Michalski [1969] and Michalski and Larson
[1978]: Given a list of observed events divided into classes, form a general descrip-
tion of each class in terms of the given concepts such that it covers every event in the
class and distinguishes this class from the events in other classes. These results are
called discriminant descriptions and can be used to predict the class membership of
any new event. For example, suppose we are presented with examples of two classes
as in Figure 6-6(a). An algorithm known as A* would generate the descriptions in
Figure 6-6(b) [Michalski, 1969; 1983; Becker, 1985a]. The description for class A
speifies that objects in this group consist solely of clear circles or any kind of trian-
gle. Similarly, class B contains either striped circles or any squares or pentagons.
These sets of conditions uniquely determine whether an object belongs to class A or
¢class B.

(a) ClassA
Clas=B
f nacn QY s
SSNE
Yt N
(b) Class A Cover:  [Object == circle] [Filler = clear| v

[Object = triangle]

Class B Cover:  [Object = circle] [Filler = striped} v
{Object = square \/ pentagon]

Figure 6-6: A simple classification problem
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6.6.1 The A9 Algorithm

The knowledge representation language used in our implementation of Alis a
variable-valued logic system known as V1, [Michalski and Larson, 1978]. Simple
descriptions in this language are shown in Figure 6—6(b). Each term in square brack-
ets specifying the value or values of an individual variable is called a selector (e.g.,
[Object = circle]). A conjunction of selectors, represented by writing them together
on a single line, is called a complex and forms a partial description of a given class
set. The entire description of the class is given by a disjunction of such complexes
and is called its cover. Thus, VL, class descriptions are represented in disjunctive
normal form (DNF).

The main generalization operator in A% is ExtendAgainst at [Michalski, 1983].
To extend selector A against selector B, where A and B represent different selectors
for the same attribute, generalize the list of possible values for A without including
any values B currently possesses. The result of each selector operation is one or
more generalized, single selector complexes. Variables may have nominal, linear, or
stractured domains and the operation is defined differently for each.

The A9 method consists primarily of two high-level algorithms. The first is
Cover, which takes each event set representing a class in turn and generates a dis-
criminant cover for the set (Table 6-3). When a cover is being generated for a class,
its events are designated the positive examples, and the events from all the other
classes are collectively considered as the negative examples. Cover first selects a
single positive event, the seed, and passes this to the Star algorithm along with the
list of negative events. The Star algorithm returns a list of complexes that represent
maximally general descriptions of the seed that do not cover any of the negative

Table 6-3: Cover algorithm

FUNCTION Cover (positive_events, negative_events : events) : cover,
While there are still uncovered positive events

 choose a seed event from the uncovered positive events

» generate a star from the seed against the negative events, using the lexical eval-
uation function (LEF) to limit the size of the star.

+ use the LEF to choose the best complex from the star and add it disjunctively to
the cover.

» modify the list of uncovered positive events to reflect the addition of the new
complex.

Return the cover.
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ats. The Cover algorithm then selects the best complex according to a user-speci-
1, lexicographic evaluation function (LEF), adds this disjunctively to the current
er, and removes from the list of positive events those described by the new com-
«. If any events remain uncovered, a new seed is chosen, and the process repeals.
sodified version of Al (called A%RU), used in the current ABACUS implementa-
1, was borrowed from Becker’s [1985] ExceL system. This system was designed
earn rules with exceptions. For a more detailed discussion of these algorithms see
ichalski, 1983; Becker, 1985; Falkenhainer, 1985b].

2 A91n ABACUS

The covers generated by A have two possible uses in the ABACUS system.
st, the combination of logical conditions with mathematical equations gives the
uits predictive power. Suppose one were able to only obtain values for n— 1 vari-
es of an n variable equation. By knowing which equation should apply prior to
JIuating it, one could determine the nth attribute from the other n — 1 attributes.
-ond, stating logical conditions for applying an equation often provide additional
1ceptual meaning for the user. For example, Coulomb’s law relating the force of
caction, F, of two particles with charges q; and q,, respectively, separated by a
tance r may be stated as

‘r?'r;E

q,4,

= 41e

ere € is defined to be the permittivity of the surrounding medium. The corre-
snding law obtained by ABACUS is shown in Table 6-4.” The results show that
of the data obey the same general equation, but the constant in each case is depen-
nt on the surrounding medium. The value of the constant was determined by the
sgram for each medium. The changes in the value suggest that there may be some
yperty associated with each substance that affects the electrical attraction of two
arged particles,

7 EXPERIMENTS

‘Some example experiments will now be discussed to show what types of prob-
ns ABACUS is able to solve. These experiments investigate:

he current implementation of ABACUS actually outputs an equation for each substance, as
the example shown in Figure 6-1. The summarized results given here represent what would
displayed by a postprocessor we have designed for the program.
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Table 6-4: ABACUS analysis of Coulomb’s Law.

Fxrzlqlxqz=cl

If [substance = water] Then C, = 8897.352
If {substance = air] Then C, = 111.280

If [substance = silicon] Then C, = 1312.363
If [substance = germanium] Then C; = 1779015

» Gravitational attraction and Stoke’s Law for viscous fluids
» The law of conservation of kinetic energy
« Analysis of chemical compound data

The first two are experiments designed to illustrate the capabilities of the program.
The data used for these were generated by hand with a knowledge of the correct
answer. The final chemistry example represents an experiment run on data provided
by members of the University of Illinois chemistry department. |

6.7.1 Galilean Experiment on Free-Falling Bodies

When Galileo was studying the motion of projectiles, he concluded that the
flight of ail projectiles could be viewed as two completely separate motions, one in a
horizontal direction, which is unaffected by the pull of the Earth, and the other up
and down, controlled by the Earth’s attraction. His dilemma then was how to de-
scribe this vertical component of motion, which is so firmly tied to the downward
pull of the earth. By dropping various objects through different fluids, he noticed that
~ objects of different weights fell at more nearly the same rate when fluids of lower
density were used. From this he deduced that in a vacuum all objects fall at the same
rate. Stoke later expanded on this by formulating a law that related the retarding
force of a liquid to its viscosity. We presented ABACUS with a set of data to simu-
late these experiments. The dropped balls came in three sizes, for which there was a
rubber ball and a clay ball in each size. The six balls were dropped from rest through
three different media—namely glycerol, castor oil, and a vacuum—once each for
two different size containers. The experiment was conducted in Death Valley and in
Denver, and the temperature was maintained at 20° C at both locations. The mea-
sured attributes consist of the height of the container, the mass of the ball, its radius,
the duration of the fall, and the velocity with which it strikes the bottom of the con-
tainer (Figure 6-7). In addition, the substance through which the ball fell has been
measured attributes consist of the height of the container, the mass of the ball, its
radius, the duration of the fall, and the velocity with which it strikes the bottom of
the container (Figure 6-7). In addition, the substance throngh which the ball fell has
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Event i
velocity: 18.084 m/s
radius: 0.05 m
mass: 0.94 kg
time: 0.055 s h

height: 1.0m
substance: Glycerol
location: DeathValley

lv" |

Figure 6-7:  Results of one experiment with a falling body

heen noted along with the location of the experiment. Samples of the measurements
taken are given in Figure 6—7.% Each ball was dropped once through each medium
for both containers at each location for 2 total of 72 experiments.

ABACUS was run twice on the obtained data. First, the default +2% margin of
error was used, resulting in the following rules:

Rule A IF [substance = Yacuum]
THEN v=9.8175xt

Rule B IF [substance = Glycerol]
THEN vxXr=09556xm

Rule C IF [substance = CastorOil]

THEN vXxr=0.7336xXm

The rules indicate that the equations are dependent on the medium through which the
balls fall. ABACUS was then run a second time using a margin of error of £0.2% and
the following results were reported:

Rule A IF [location = Death Valley][substance = Vacuum]
THEN v=98453xt
Rule B IF [location = Denver][substance = Vacuum]

THEN v=97898 x1

GOE course, the correct measurements were calculated by hand for this experiment. The mass
of each ball was derived from the chosen radius and the standard densities for rubber and clay,
Likewise. the standard viscosity for each substance was used. Gravitational acceleration was
chosen to be 9.845 ™/s% in Death Valley and 9.79 ™s* in Denver to teflect the fact that the
force of gravity decreases at higher altitudes.
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Rule C 1F [location = Death Valley]{substance = Glycerol]
THEN vxr=0.9583xm

Rule D IF [location = Denver]{substance = Glycerol]
THEN vxr=0.9530xm

Rule E TF flocation = Death Valley]{substance = CastorOil]
THEN wvxr=0.7356xXm

Rule F IF [location = Denver]{substance = CastorQil]

THEN vxr=0.7315Xm

This time each equation is dependent upon both the medium through which the balls
fall and the location of the experiment. In cases represented by rules A and B, it
would appear that the behavior is independent of the characteristics of the balls used.
Interpreting these findings, we observe that an object undergoes a constant accelera-
tion due to earth’s gravity and that an object under constant acceleration will change
speed proportional to the length of time it undergoes this acceleration. This may be
stated as Av = aAt and corresponds to the cases of the balls falling in a vacuum. The
constants for these cases simply represent the earth’s gravitational acceleration at the
two different locations. When we take the resistance of the medmim into account,
however, as we must do for glycerol and castor oil, the retarding force of the medium
becomes involved and is stated by Stoke’s Law as:

F,=-6mnNrv

where 1 is the viscosity coefficient of the fluid. Because of this added force, the
object will reach a constant terminal velocity given by

VTI' - E%]-E m
where g is the gravitational acceleration. This corresponds to the equation reported
by ABACUS (v X r = Constant X m) for the glycerol and castor oil cases. In these
cases, the constant combined values for 1 and g, and this explains why the values
reported for rules C through F in the second example were dependent on both the
type of liquid (m) and the location (g). If the location and substance variables had
been replaced by the numeric variables g and 1 respectively, those variables would
have shown up explicitly in the equations. This would reduce rules C through F to a
single rule with the constant equaling 6r. Knowing when to explicitly represent con-
ceptual constants such as 7 would be an interesting topic for future rescarch.

This experiment points out a number of properties of ABACUS. First, two dif-
ferent equation forms were discovered, each having only the velocity attribute in
common. This demonstrates the program’s ability to discover multiple equations for
different groups of events, even when variables pertinent to one are irrelevant to an-
other, Secondly, the necessity and power of the logical preconditions can be seen
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nere. Finally, it points out the problems encountered when working with real num-
pers, noise, and uncertainties. The resulis obtained for the H).2% case were more
interesting and correct than for the £2% experiment. However, common sense and
the presence of noisy data would generally rule out using +0.2%.

.7.2 Conservation of Kinetic Energy

The law of conservation of energy states that energy can neither be created nor
destroyed. Therefore, when two bodies collide, the total energy of the system before
ihe time of collision will be the same as the total energy after the collision. For in-
elastic collisions, some of this energy is converted to heat during the collision and so,
at a macroscopic level, an apparent encrgy loss is observed. For perfectly elastic col-
lisions, however, the sum of the balls’ individual energies, namely their kinetic ener-
gies, will remain constant before and after their collisions:

hmlv% + bﬁmzvi = l&mlv,’z + %mlvz"z (7.1)

Converting these concepts into an experiment for ABACUS 1o examine, data
was constructed for a series of observations of various objects colliding. The data
consisted of seven attributes and 12 events, where the seven attributes consisted of
the masses of the two balls, their four corresponding velocities (magnitudes), and a
nominal variable which described the observed collision as either elastic or inelas-
tic.” For this data set, ABACUS produced the following results:

Rule A IF fcollision - type = elastic]
THEN m,{v,? - v/2) = my(v,* - v,))
Rule B IF fcollision — type = inelastic]

THEN No formula was found

An equation equivalent to (7.1) was found to hold for those events corresponding to
an elastic collision. No equation could be found for the remaining “inelastic” events.
ABACUS was not only able to discover the desired equation, but was also able to
specify that the equation only held for elastic collisions. As we show later, ABACUS
found this law rather difficult to discover because it contains subtraction.

6.7.3 Analysis of Chemical Compounds

Figure 6-8 shows the structure of a typical bimetallic coordination compound.
The distance between the central metal atoms in such compounds is important to

7

We recognize that indicating the collision type with a symbolic variable simplifies the data
clustering task. The example is still very interesting as it stands, but we would like to develop
more powerful clustering techniques, as discussed in the section on future research.
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Figure 6-8: Bimetallic coordination compound in eclipsed conformation

)

~hemists, but it is difficult and expensive t0 measure. At present, there is no known
way to predict this distance given the values of other attributes, providing a unique
challenge for testing the usefulness of ABACUS and thus revealing its strengths and
weaknesses.

The compounds are symmetric around the central covalent bond, each side
consisting of a primary metal atom and up to five ligand molecules joined by ionic
bond to the primary atom. Data for the experiment consisted of the values of 13 attri-
butes for 30 different observed compounds as gamered from various chemical re-
search articles.! The full collection of data is reproduced in Table 6-5, where the
compound formula has been added for thoroughness, “Metal” is the name of the two
central metal atoms, “Ox” is the oxidation state of the metals, “Rad” is the radius of
one metal atom in angstroms, and “eM” represents the number of electrons per
metal. The formal bond order of the covalent bond is given by “BO,” *MMdist”
gives the distance between the metals in angstroms, “Q” is the total charge of the
molecnle in units of electron charge, and the conformation (indicating the molecule’s
alignment) is shown by “Conf.” In Figure 6-8, the molecule is in the eclipsed con-
formation because the ligand molecules of each side line up when viewed from on
end. Finally, “L1” through “LS5"” are the names of the ligand molecules.

The experiment began by running ABACUS using all default parameter values.
The response was that no relation could be found. A further examination of the out-
put revealed that no nodes were created, thus indicating that either there were no
relations in the data or that all proportionality tests returned Prop- and thus no ex-
amples could be obtained. The latter situation would occur if the presence of a large

3
“Data were collected by J M. Hanckel and Theodore L. Brown of the University of llinois
Chemistry Department.



Table 5-6: Experimental data for bimetallic coordination compounds

Compound Metal  Ox MMdist Rad  Q eM €Conl BU LI L2 L3 L4 1.5
{Cr(CHAY |~ Cr 1l 1.98(} 129 —4 12 eclip 4 Mc Me Mc hilc None
IMo2C18]4- Mo il 203 A -4 12 eclip 4 i Cl Cl Cl None
[Mo(CH3)EH - Mo 11 2148 .40 -4 12 cchip 4 Me Me Me Me None
Mo2Brd(p-McCSHANM - Mao 1 2150 140 O 12 ecip 4 Br NR3 Br NR3  None
Mo2CI(p-MeCSHANM - Mo 1 2,153 140 O 12 cddip 4 Cl NR3 Cl NR3 None
Mo2{CH2SiMe3o Mo L 2167 140 0 Y slag 3 CH2SiR3  CH2SiR3  CH2S5R3I  None  None
Muo2{NMe2) 412 Mo i 2.2 .40 O Y stag a NMe? NMe?2 1 Nonc  Nong
Mo2{NMe2 HMel Mo I 2.20) .40 0 9 stag 3 NMe2 NMc2 Me None  None
Mol (NMe2)6 Ma [H il .40 O g s1ag 3 NMe?2 NMe2 NMc2 None  None
Re2CIH| PEL3]2 Re i 2292 1.37 0 12 eclip 4 PEL3 Cl Cl Cl None
Mo2(QCH2CMeR)6 Mo i 2222 b 0 o Slag R OCRA OCR3 QCR3 None  None
Re2CHP(ENAM Re H 2232 1.37 0 14 ecip 4 Cl PL13 Cl PE1}  Nong
C[Re2CIR|2- Re e 2.4 .37 -2 12 ecdip d Cl Cl Cl Cl None
Mo2{OSiMe)eHNME2 Ao HI 2242 1) B | I Stag 3 OSiR3 ()SIR3 OS5iR3 NR3 Nong
W2ICH2ZSHCH )Y e W Bl 2255 40 2 stag 3 CH2SIR3  CH2SIRY  CH2SiIR3  None  Noae
[Re2Br8|2- Re nro 227 .37 =2 12 weclip 4 Br Br Br Br None
W2 NMe2 412 W' HL 2283 141 0 8 stag 3 NMe2 NMe2 {1 None  None
WHNEL2 M2 W L 2241 141 0 Y stitg 3 NEt2 NEt2? Mo None  Nong
WHNMe2I6 W I 2.204 .41 (i 9 stig R NMe2 NMeg2 MMce2 None None
WUNELZHIZ W 1 2249 1.4 0 Y stag 3 NLt2 NEL? | None  None
W2ICIHNED )4 W e 2,301 141 0 g sty 3 Cl NEL2 NE12 None  Nong
WIINE2MBR2 W HI 2.3 L4 0 Y st 3 NEL2 NE!L2 Br None  Nong
W2IOCHMeDbipyvr)2 W e 2.332 {41 1 sty 3 (QCR3 (JCR} (OCR3 NR3 Nonu
Ca(CO0|Ptn-Bn)3)2 Cu () 2603 1.2 1 17 stag ; O 0 O None  PE3
Mn(CO)E| P2 Mo () 2913 .37 0 17 stag ! QO CO CQO o PEL3
Mn2(CO} D Mn O 29l 1.37 0 17 stag | 0 O CO () (S
Cr20CO3 0 Cr -1 297 1.2 -2 17 stag l CO O CO CO CO
Re21COQD Ry 0 3000 1.3%7 v 17 S HTH 1 Q) CO ¢ O CO
Te2(CO T 0 3.036 .35 0 17 slig I CO O QO O CO
Mo2{C{n 10 Mo -1 1421 |40 =2 17 stilg I CO CcO CO 0 QO

DISTYHOIW 8 HINIVHNIA TV

4:18
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Table 6-6: Initial results with margin of error at 8%

Rule A 1F [L2 = CH2SiR3 v NE2 v NMe2]
L1 = OCR3][1L.4 = None]
THEN MMdist=0.2502 xeM

Rule B IF [L1 = OSiR3 v PEQ]
1.2 = Br]
L2 = Cl v OCR3]{Metal = Re v W]
THEN MMdist=0.1954 xeM

Rule C 1F [L2 = CO v Me v NR3 v PEL3]
[OX =11]
THEN MMdist=0.1735 xeM

number of nominal variables was interfering with the numerical relation-finding pro-
cess. As a result, the program was instructed to ignore all nominal variables when
trying to hold variables constant for the proportionality test. This time, nodes were
created but still no relation was found to hold for the 40% default constancy crite-
rion. A 40% constancy criterion coupled with a 2% margin of error appears oo strict.
Since actual measured data might contain a reasonable amount of noise, the decision
was made to loosen the defaunlt margin of error of 2% to 5% and then again to 8%.
Results now began to be reported (shown in Table 6-6). What is most promising
about them is that the same equation was found 10 hold for all of the data, with only
the constant differing. This suggests the discovery of some type of physical phenom-
enon more strongly than if different equations were uncovered.

After conducting numerous ¢xperiments in this manner, the most promising re-
sults were shown to the members of the chemistry department for their opinion.
While the results looked promising, the conclusion was that these relations did not
coincide conceptually with any known physical phenomenon and the margin of error
used was far too high for these data. However, the chemists suggested trying the log-
arithm of the bond order as this type of term appears often in empirical bond order—
bond-length correlations. Continuing with the experimentation, the program was in-
structed to replace Bond Order by log(Bond Order), a variety of parameter settings
were tried, and the conclusions of Table 6-7 were obtained. As before, these results
looked promising, but the margin of error was still too high.

After further analysis of the data by hand, it was reasoned that perhaps there
was too much redundancy in the original data. For example, each metal atom has a
unique radius associated with it. Therefore, our chemistry expert suggested that we
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Table 6~7: Results using log{BondOrder)

——

Rule A IF [OX = IINJ{L4 = BR v Cl v Me v PE13 v None]
THEN MMidst x log(BO) = 0.1180 x eM
Rule B iF [L4 = Me v NR3 v PE(3]
1Q = -4.0000]

THEN MMdist x log(BO)=0.1031 x eM

Table 6-8:  Results using reduced data set with margin of error at 2%

Rule A IF [L1= COJ[RAD =129 .. 1.35]
[L1 = CO][Rad = 14)
THEN MMdist = 2.2606 x Rad

Rule B 1F {eM* = 18.0]
THEN MMdist=2.149 x Rad
Rule C IF L.2 = Br v OSiR3 v PE13]
[L4 = Cl}[Rad = 1.37]
{Rad = 1.41]
THEN MMdist=1.6279x Rad
Rule D IF [1.2 = Me v NR3]

[Rad = 1.4][L4 = Cl v None]
THEN MMdist= 1.5528 x Rad

reduce the number of attributes to nine, consisting of the radius, the metal to metal
distance, the bond order, the five ligand names, and a new electrons-per-metal value
(eM*) calculated by adding the bond order to the old value. Since a somewhat new
data set was being used, the margin of error was returned to its default value of 2%,
and no variables were to be ignored. On the first run, the equations of Table 6-8 were
obtained. Our chemistry expert, Professor Ted Brown from the University of Illinois
Department of Chemistry, has judged these equations to be quite interesting, since
they hold with only a 2%, margin of error. However, he still considers them incon-
clusive because they need physical explanation. He suggested further analysis to un-
cover an underlying commonality between the compounds of each class that could
explain these findings. Nevertheless, this experiment demonstraies that ABACUS is
a useful new tool for analyzing real-world data and searching for unknown laws.
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6.8 DISCUSSION OF METHODOLOGY

The experiments presented in Section 6.7 suggest that ABACUS could be used
for discovering empirical laws in a variety of domains. This section SUMMArizes its
performance on different examples, and outlines several problems for future re-
search.

6.8.1 Analysis of Experimental Results

ABACUS runs on a Sun Microsystems workstation running Franz LISP under
2 UNIX environment. A variety of examples have been presented, representing dif-
ferent complexities of equations and preconditions. Table 6-9 shows a comparison
of how complex all of our examples turned out to be. Equations composed solely of
multiplication and division have been shown to be quite simple discovery tasks. This
is exhibited by the small number of nodes required for ail of the examples except the
ones for conservation of momentum and kinetic energy. The Coulomb example was
more difficult than the ideal gas law because it contained a squared term, forcing the
proportionality graph search algorithm to exhaustively search the initial, highly in-
terconnected graph. Equations containing addition or subtraction are significantly
more difficult using the methods presented here but are still quite manageable. From
the times, given in CPU seconds, it can be seen that the program was relatively effi-
cient for every example.

Performance is lessened somewhat by large numbers of events. This can be
seen by comparing the time required to generate five nodes for the large set of
Stoke’s Law data against the time required to generate five nodes for the smaller
chemistry example. Other factors, such as the number of proportionality tests per-
formed, should be considered when comparing these times.

Table 6-9: Relevant statistics of the quantitative learning experiments

Number of Number of Total Equation Precondition Total
Example Events Classes Nodes Discovery Time Generation Time Time
Ideal Gas 15 | 3 3 0 3
Momentum 22 3 62 56 12 68
Coulomb 36 5 32 47 27 74
Stoke’s Law 72 6 5 18 31 49
Kinetic Energy 12 2 987 850 5 835
Chemistry 30 4 5 3 28 3

NOTE: All times are given in CPU seconds.
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6.8.2 Limitations

Equations that the current ABACUS can discover are limited to those involv-
ing multiplication, division, addition, and subtraction operators. The equations are of
the form

fix) = Constant

where f{x) is composed solely of user defined variables and operations between
them. General polynominals with coefficients cannot be discovered, preventing the
discovery of a variety of physical laws. In addition, terms such as sin and log cannot
be used unless the user explicitly tells the program to create them,

There are classes of equation forms that cannot be discovered by the methods
used in ABACUS. For example, data corresponding to certain parabolas and oscilla-
tions often appear to be void of qualitative proportionalities due to the problem of
conflicting proportionalities. In addition, the user is not required to supply carefully
prepared data in which some attributes are held constant while others are allowed to
change. This may cause many Prop® assertions, making the problem more difficult
than it would be otherwise.

6.8.3 Current and Future Research

The most challenging assumption in our research was that the system should be
able to discover multiple laws for a collection of data. This single decision prevented
the use of curve-fitting techniques, since they would attempt to fit a single equation
to the entire data set. This in turn eliminated the possibility of discovering a more
general class of equations and made many very interesting relationships more diffi-
cult to discover. The search strategy employed and the trend detection algorithm
used were forced to be quite loose. As a result, the potential search space was in-
creased, irrelevant variables became harder to locate, and conflicting proportionalit-
ies became an issue. A possible solution may be 1o cluster the events prior to invok-
ing the equation discovery module in some manner such that in each set of events,
the events all hold the same set of proportionality assertions. Given this, the more
precise approaches such as regression analysis could be taken once again. The
method would be based on some form of clustering algorithm, much like the concep-
tual clustering described by Michalski [1980] and Stepp [19843, and might be quite
simple, merely forming clustered groups so that all events support the same propor-
tionality assertion. This task has been undertaken by Greg Greene, who at this ime
has reported some preliminary success with his numeric clustering algorithm. As
mentioned earlier, the problem of conflicting proportionalities, such as shown in Fig-
ure 6-1, can be solved for most cases by determining the points where the propor-
tionality between variables changes sign. This may introduce a new problem, that of
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merging two Or more equations into one, as in the case of parabolic or sinusoidal
functions.

Of major importance is recognizing the usefulness of a term once it is created.
When a term is invariant across all events, the task is easy. When only a percentage
of events are covered, when should the search algorithm stop? The problem lies in
the basic ignorance of the program. What is needed is some form of conceptual
knowledge that would enable the program to distinguish between conceptually good
terms and conceptually useless terms. This became quite evident during testing of
the program when occasionally an unexpected answer would be returned, which in
fact covered more events than the desired equation but which was mathematically
far more complicated. We need to develop a method for the program to consider SYR-
tactically desirable equations even when they may not be the most general.

In this work, we investigated what could be accomplished when only minima
information is provided by the user. Previous quantitative discovery systems have
required that the user specify which variables are dependent and which are indepen-
dent. They have also required that all permutations of variable values be given so
that Prop’ assertions will never exist [Langley, 1985]. The later condition means
that the user must generate a great many more events than needed by ABACUS. In
regression analysis, the form of the equation is predefined. In our experiments, how-
ever, it soon became evident that the value of ABACUS as a researcher’s assistant
tool would be enhanced if we allowed additional knowledge to be optional and
didn’t prevent the user from supplying available knowledge. A simple but useful ad-
dition would provide an option for a user to include or exclude specified variables
from the equation discovery or precondition generation processes.

6.9 SUMMARY

The methodology of equation discovery and precondition generation used in
ABACUS has been presented, analyzed, and illustrated through examples. ABACUS
has proved useful for a number of problems in chemistry and physics, and the results
show that it has also been quite efficient for each learning task.

ABACUS measures well against the criteria we proposed for a quantitative dis-
covery system. It handles irrelevant variables, is capable of formulating multiple
equations for characterizing the data and of determining qualitative or logical pre-
conditions for each equation. The technigues of variable combination through
search, as used in the early BACON programs, has been considerably improved by
analyzing the specific search characteristics of the domain. The current version of
ABACUS falls short on two points: It is relatively limited in the kinds of equations

that can be discovered, and it occasionally suffers from the computational cost of
search.
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The work presented here is unique in several ways. First, no prior work has
Iressed the real-world issue of discovering multiple equations to describe different
ects of a physical situation. Even for cases where it appears that a single physical
:nomenon is being observed, as in the falling bodies example, different physical
1ations may exist requiring different equation forms to describe them.

Previous programs have been unable to discover different equations for differ-
. subsets of the given events. Second, the explicit generation of logic-style precon-
ions for the discovered equations is novel. When different physical situations exist
~what appears to be the same phenomenon, preconditions determine when each
1ation applies. Finally, new search techniques for equation discovery have been
ated. In conclusion, the ABACUS system seems to be a useful new too! for ana-
ing experimental data.
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