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Abstract

This chapter presents DISCIPLE, a mulustrategy, integrated lcaming system

illustrating a theory and a methodology for leaming expert knowledge in the context
of an imperfect domain theory. DISCIPLE integrates a leaming system and an empty
expert system, both using the same knowledge base. It is initially provided with an
imperfect (nonhomogeneous) domain theory and leams problem-solving rules from
the problem-solving steps received from its expert user, during interactive problem-
solving sessions. In this way, DISCIPLE evolves from a helpful assistant in problem
solving to a genuine expert. The problem-solving method of DISCIPLE combines
problem reduction, problem solving by constraints, and problem solving by analogy.
The learning method of DISCIPLE depends on its knowledge about the problem-
solving step (the example) from which it leamns. In the context of a complete theory
about the example, DISCIPLE uses explanation-based leaming to improve its per-
formance. In the context of a weak theory about the example, it synergistically com-
bines explanation-based learning, learning by analogy, empirical learning, and learn-
ing by questioning the user, developing its competence. In the context of an
incomplete theory about the example, DISCIPLE lecamns by combining the above-
mentoned methods, improving both its competence and performance.
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19.1 INTRODUCTION

The present success of Al is mostly due to the knowledge-based systems that
proved to be useful almost anywhere. As the name suggests, the power of a knowl-
edge-based system comes from its knowledge. However, building a knowledge base
for such a system is a very complex, time-consuming, and error-prone process.
Moreover, the resulting system lacks or has only poor abilitics to update its knowl-
edge or to acquire new knowledge.

One promising solution to this “knowledge-acquisition bottleneck™ is repre-
sented by the Leaming Apprentice Systems (LAS). An LAS is an interactive knowl-
edge-based consultant that is provided with an initial domain theory and is able to
assimilate new problem-solving knowledge by observing and analyzing thc prob-
lem-solving steps contributed by its users, through their normal use of the systcm
[Mitchell, Mahadevan, and Steinberg, 1985].

Representative examples of this approach are the systems LEAP [Mitchell,
Mahadcvan, and Steinberg, 1985] and GENESIS {DeJong and Mooncy, 1986].
LEAP’s domain of expertise is the VLSI design and GENESIS’s is story understand-
ing. A common fecaturc of LEAP and GENESIS is that they arc based on a strong
(complete) domain theory that allows them to leam a general rule or schemata from
a single example by reducing lcaming to deductive reasoning.

Nevertheless, such beautifully tailored domains are scldom available. A typical
real-world domain theory is nonhomogeneous in that it provides complete descrip-
tions of some parts of thc domain, and only incomplete or cven poor (weak) descrip-
tions of other parts of thec domain. A lcarning cpisode, however, uscs only onc part of
the domain theory; and this part may have the featurcs of a complete, incomplcte or
weak theory even if, globally, the theory is nonhomogeneous. Thercfore, a lcaming
system should be able to lcam a general rule or concept not only when disposing of a
complete theory about an example, but also when disposing of an incomplete or even
weak theory about it. An illustration of such a learning system is DISCIPLE. D/SCI-
PLE is a multistrategy, integrated learning system. It has the same general purpose

_ as a learning apprentice system, but it is based on a multistrategy approach to leamn-

ing, instead of on deductive reasoning.

DISCIPLE is a tool for building practical expert systems. It integrates an empty
expert system and a learning system, both using the same knowledge base. To build
an expert system with DISCIPLE, one has to first introduce elementary knowledge
about an application domain into DISCIPLE’s knowledge base—knowledge consti-
tuting a nonhomogeneous theory of the domain. Next, DISCIPLE may be used to
solve problems interactively, according to the following scenario: _

The user gives DISCIPLE the problem to solve, and the expert subsystem starts
solving this problem by showing the user each problem-solving step (which we shall
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call partial solution). The user may agree with or reject it. In the latter case, or when
DISCIPLE is unable to propose any partial solution, the user is compelled to give his
own solution. Once this solution is given, a learning process will take place. DISCI-
PLE will try to learn a general rule so that, when faced with problems similar to the
current one (which it has been unable to solve), it will become able to propose a
solution similar to the solution, given by the user, to the current problem. In this way,
DISCIPLE progressively evolves from a useful assistant in problem solving to a gen-
uine expert.

19.2 DISCIPLE AS AN EXPERT SYSTEM

In DISCIPLE we have adopted a problem-reduction approach to problem solv-
ing. That is, a problem is solved by successively reducing it to simpler subproblems,
This process continues until the initial problem is reduced to a sct of clementary
problems; that is, problems with known solutions. Morcover, the problem to solve
may be initially impreciscly formulated, becoming better and better formulated as
the problem-solving process advances. To this purposc, DISCIPLE formulates, prop-
agates, and cvaluates constraints [Tecuci, 1988; Tecuci, er al., 1987).

Problem reduction is a gencral method, suitable for solving a large vancty of
problems. In the following, however, we shall consider only problems of designing
action plans for achicving partially specified goals. These problems are similar to
thosc solved by PLANX10 (Sridharan and Bresina, 1982], NONLIN ([Tate, 1977],
and others. An example of such a problem is:

* given the incomplete specifications of a loudspeaker;
* design the actions needed to manufacture the loudspeaker.

DISCIPLE may start with the following top-level operation, which can be seen
as the current goal:

MANUFACTURE OBJECT loudspeaker

It will try to solve this problem by successive decompositions and specializations, as
illustrated in Figure 19-1 and in Figure 19-2. DISCIPLE will combine such decom-
positions and specializations, building a problem-solving tree like the one in Figure
19-3. This process continues until all the leaves of the tree are elementary actions,
that is, actions that can be executed by the entity manufacturing the loudspeaker.

Figure 19-3 shows a standard AND tree, the solution to the problem from the
top of this tree consisting of the leaves of the tree. That is, to manufacture the loud-
speaker, one has 1o perform the following sequence of operations:

FIX OBJECTS contacts ON chassis
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or whep In order to solve the problem
give his MANUFACTURE OBJECT loudspeaker
DISCL solve the subproblem
Ir 10 the 1. MAKE OBJECT chassis-assembly
opose 3 In order to solve this subproblem solve the sub-subproblems
1S way, 1.1 FIX OBJECT contacts ON chassis
Jagen- 1.2 MAKE OBJECT mechanical-chassis-asscmbly
1.3 FINISHING-OPERATIONS ON entrefer
In order to solve this subproblem solve the sub-subproblems
1.3.1 CLEAN OBJECT entrefer
1 solv- 1.3.2 VERIFY OBJECT enuefer
blems, 2. MAKE OBJECT membrane-assembly
‘e’“ffy 3. ASSEMBLE OBJECT chassis-assembly WITH membrane-assembly
) solve ‘
ited as In order to solve this subproblem solve the sub-subproblems
. prop- 3.1 ATTACH OBJECT mcmbranc-assembly ON chassis-assembly
3.2 ATTACH OBIJECT ring ON chassis-membranc-assembly
et
gnyir:)f In order to solve this subproblem solve the sub-subproblems
Tr Kg} . 32.1 APPLY OBJECT mowicoll ON ring
977], 3.2.2 PRESS OBJECT ring ON chassis-membrane-asscmbly
4. FINISHING-OPERATIONS ON loudspcaker
Figure 19-1:  Problem-solving operations: Decompositions of problems into simpler sub-
problems
seen In order to solve the problem
CLEAN OBJECT entrefer
solve the specialization
5, as CLEAN OBJECT entrefer WITH air-jet-device
om- In order to solve this problem solve the specialization
sure CLEAN OBJECT entrcfer WITH air sucker
ans, ‘
In order to solve the problem
the APPLY OBJECT mowicoll ON ring
wud- solve the specialization
APPLY OBJECT mowicoll-C107 ON ring
Figure 19-2:  Problem-solving operations: specializations of problems
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W
MAKE MAKE ASSEMBLE FINISHING-
OBIECT OBJECT OBJECT OPERATIONS
chassis- membrane- chassis- ON
assgmbly assembly assembly loudspeaker
WITH
membrane-
assgmbly
FIX MAKE FINISHING- |
OBIJECTS OBJECT OPERATIONS
contacts mechanical- ON
ON chassis- enjrefer ATTACH ATTACH
chassis assembly OBJECT OBJECT
mcmbrance- ring
assembly QN
OBJECT OBJECT chassis- mcmbrane-
entrefer cntrefer assembly assembly
CLEAN APPLY PRESS
OBJECT OBIECT OBIECT .
cntrefer mowicoll ring
WITH N QN
air-jet-device ring chassis-
membranc-
L L assembly
CLEAN ‘ APPLY
OBJECT OBJECT
entrefer : mowicoll-C107
WITH N
air-sucker ‘ ring

Figure 1§—3: A problem-solving tree. It was built by usi;xg the decompositions and the
specializations from Figures 19~1 and 19-2.

MAKE OBJECT mechanical-chassis-assembly

CLEAN OBJECT entrefer WITH air-sucker

VERIFY OBJECT entrefer

MAKE OBJECT membrane-assembly

ATTACH OBJECT membrane-assembly ON chassis-assembly
APPLY OBJECT mowicoll-C107 ON ring

PRESS OBJECT ring ON chassis-membrane-assembly
FINISHING-OPERATIONS ON loudspeaker
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Let us notice that the decompositions and the specializations model, in fact, the
main operations used in design, where one usually starts with a very general specifi-
cation of an object, successively imposes different constraints on the specification,
and reduces object design to subparts design.

19.3 THE LEARNING PROBLEM

The decompositions and the specializations from Figure 19-3 were the result
of the application of general reduction rules or werc directly indicated by the user.
From cach solution received from the user, DISCIPLE is trying to lcamn a general
problem-solving rule. Thercfore, the lcaming problem of DISCIPLE may be formu-
lated as shown in Figurc 19-4.

For instance,

Given:

The theory of loudspeaker manufacturing;

The problem of attaching two parts of the loudspeaker (the ‘ring’ and the
‘chassis-membranc-assembly’) and the decomposition of this problem into
two simpler subproblems cxpressing the gluing of the two parts with
‘mowicoll’ (scc Figure 19-5).

Determine:
A gencral decomposition rule indicating the conditions under which one may
reduce an ‘attachment’ problem to a process of gluing (scc Figure 19-6).

As onc may noticc, the structurc of General Rule 1 in Figurc 19-6 ts identical
with the structure of Example 1 in Figurc 19-5. Therefore, rule lcaming is reduced
to lecarning the features that the objects ‘x’, ‘y’, and ‘z’ should have so that the attach-
ment of ‘x’ and ‘y’ may be reduced to a process of gluing them with ‘z’. Otherwisc
stated, one should learn the concepts represented by these objects.

The method of leaming this rule depends on the system’s theory (knowledge)
about Example 1. We distinguish between three types of theories: complete, weak,
and incomplete.

A complete theory about Example 1 consists of the complete descriptions of
the objects and actions from this problem-solving episode. In such a case, DISCIPLE
uses an explanation-based learning method, being able to learn at once a general rule
from Example 1 alone.

A weak theory about Example 1 consists only of incomplete descriptions of the
objects. It differs qualitatively from a complete theory in that it does not contain ac-
tion descriptions. In this case, DISCIPLE uses an intcractive learning method that
synergistically combines explanation-bascd leamning, leamning by analogy, empirical
leaming, and learning by questioning the uscr.
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Given:
Domain Theory

The domain theory contains:
o a specification of the types of objects in the world and their propertics and
relations;

o a set of inference rules for inferring properties and relations from other
properties and relations;

o a set of action models describing the actions that may be performed in the
domain. An action model specifies the preconditions of the action (i.e., the
states of the world in which the action may be exccuted), the effects of the
action (i.e., the states that result after the execution of the action), as well as
the objects that may play certain roles in the action (the agent executing the
action, the object on which the action is performed, the instrument used,
etc.).

Problem-Solving Episode

It consists of
o P, a problem to solve, and

8,2 (partial) solution to P.

Determine:

A General Problem-Solving Rule.

According to this rulc, problcms similar to P will reccive solutions similar
to S.

Figure 19—4:  The lcaming problem of DISCIPLE

Example 1:
Solve the problem

ATTACH OBIJECT ring ON chassis-membrane-assembly
by solving the subproblems

APPLY OBJECT mowicoll ON ring

PRESS OBJECT ring ON chassis-membrane-assembly

Figure 19-5: A decomposition indicated by the user

The intermediate case, between a complete theory and a weak theory, is the
incomplete theory. It contains incomplete descriptions of the objects and the actions
from Example 1. In the case of an incomplete theory about Example 1, DISCIPLE
lcams a general rule by combining the method corresponding to the weak theory
with the one corresponding to the complete theory.
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IF
(x TYPE solid) & (y TYPE solid) & (x PARTIALLY-FITS y) &

(z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y)

THEN
General Rule 1:
solve the problem
ATTACH OBJECT xONy

by sol ving the subproblems
APPLY OBJECT z ON x

PRESS OBJECTxONy

Figure 19-6:  The general decomposition rule lcarned from Example 1: If *x" and 'y’ are
two solid objects that parually fit each other, and there is a fluid adhesive ‘2’
that glues both *x' and 'y’, then one may attach 'x’ on 'y’ by first applying
‘z’ on 'x’ and then by pressing ‘x"on 'y'

A side cffect of rule lcaming in the context of a weak or incomplete theory is
that of developing the domain theory. In the following sections we shall present
thesc three lcarning mcthods of DISCIPLE.

19.4 LEARNING IN A COMPLETE THEORY DOMAIN
19.4.1 A Sample of a Complete Theory

In the case of DISCIPLE, a complete theory of a domain consists of complete
descriptions of all the objects and actions of the domain. In particular, a complete
theory about the problem-solving episode in Figure 19-5, contains the complete dc-
scripions of the objects ‘ring’, ‘chassis-membrane-assembly’, and ‘mowicoll’, as
well as the complete descriptions (models) of the actions ‘ATTACH’, ‘APPLY’, and
‘PRESS’. )

The objects are described by specifying all the relevant factual properties and
relations. Some of these may be explicitly specified, as indicated in Figure 19-7.

Other properties and rclations may be implicitly specified by using inference
rules for deducing them from other properties and relations, as indicated in Figure
19-8.

The action models describe the actions that may be performed in the domain. A
complete action mode! specifies all the necessary preconditions of the action (i.e., all
the states of the world in which the action may be executed), all its effects (i.c., the
States that result after the cxccution of the action), as well as all the objects that may
play certain roles in the action (the agent exccuting the action, the object on which
the action is performed, the instrument used, ctc.).
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adhesive solid ack
SOURCE E QO
1ZA . ‘
mopicoll CLUES pring PART-OF >!okpcakcr
. \
TYPE GL PARTIALLY-FITS
' T-OF
fluid
TYPE

chassis-membrane-asscmbly » solid

Figure 19-7: A hierarchical semantic network containing explicit representations of ob-
ject properties and relatons

Vx Vy [(x GLUED-ON y) = (x ATTACHED-ON y)]

Vx Vy Vz [(z ISA adhesive)&(z GLUES x)&(z GLUES y)&
(z BETWEEN x y) =(x GLUED-ON y)]

Vx Vy [(x GLUES y) = (x ADHERENT-ON y)}

Figure 19-8: Inference rules for deducing new properties and relations of objects

Action Preconditions Effects

{(x TYPE solid) &
(y TYPE solid)

‘ATTACH OBJECT x ONy (x ATTACHED-ON y)

' (z TYPE fluid) &
APPLY OBJECT zONx - (zADHERENT-ONx) & (z APPLIED-ON x)
(x TYPE solid)

(z APPLIED-ON x) &
PRESSOBJECTxONy (x PARTIALLY-FITS y) & (zBETWEEN x y)
(y TYPE solid)

Figure 19-9:  Action models

Figure 19-9 presents the models of the actions from the problem-solving epi-
sode in Figure 19-S. For instance, the action ‘APPLY’ may be performed if and only
if ‘x’ is a solid object and ‘Z’ is a fluid object that is adherent on ‘x’. As an effect of
performing this action, ‘z’ will be applied on ‘x’. Notice that the necessary featurcs
of the objects are specified in the action’s preconditions.
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19.4.2 General Presentation of the Learning Method

In the case of a complete theory about Example 1, the leaming method of DIS-
CIPLE follows the explanation-based leaming paradigm developed by [DeJong and
Mooney, 1986; Fikes, Hart, and Nilsson, 1972; Mitchell, Keller, and Kedar-Cabelli,
1986] and others:

1. Prove that the solution indicated by the user is indeed a solution of the problcm
to solve. This proof isolates the relevant features of the objects in Example 1;
that is, those features that will be present in the condition of General Rule 1.

2. Generalize the proof tree as much as possible so that the proof still holds. This
is done as in [Mooney and Bennet, 1986] by replacing each instance of action
model or inference rule with its general pattern and by unifying these patterns.
By generalizing the proof tree, one generalizes the problem, its solution, and
the relevant features.

3. Formulate the leamed rule from the generalized proof by extracting the gener-
alized problem, its generalized solution, and the gencralized relevant features,
which constitute the applicability condition of the rule.

In the folloWing sections we shall briefly illustrate this method with the aid of
Example 1 (Figurc 19-5).

19.4.3 Proving the Example

To prove Example 1 means to show that the sequence of the actions

APPLY OBJECT mowicoll ON ring

PRESS OBJECT ring ON chassis-membrane-assembly achicves
the goal of the action

ATTACH OBJECT ring ON chassis-membrane-assembly that is,
achieves the goal

(ring ATTACHED-ON chassis-membrane-assembly).

The proof is indicated in Figure 19-10. It was obtained by using the object
descriptions in Figure 19-7, the inference rules in Figure 19-8, and the action mod-
els in Figure 19-9.

The leaves of the tree in Figure 19-10 are those features of ‘ring’, ‘chassis-
membrane-assembly’, and ‘mowicoll’ that allowed one to reduce the problem of at-
taching the ‘ring’ on the ‘chassis-membrane-assembly’ to the process of gluing them
with ‘mowicoll’. Thus, by proving the example, one isolates the relevant features of
it (see Figure 19-11). The ‘color’ of the ‘ring’ or the ‘source’ of the ‘mowicoll’ were
not useful in proving the validity of the example. Therefore, these features are not
important for this example.
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(ring  ATTACHED-ON chassis-membranc-assem bly)

t

(ring GLUED-ON chassis-mcmbranc-asscmbly)

{(mowicoll {(mowicoll
ISA GLUES
adhesive) chassis-membra

(mowicoll

BETWEEN

-asscmbly) ring
chassxs~mcmbranc-asscmbly)

f

PRESS OBIJECT ring ON chassis-mcmbmnc-asscmbly

(chassis-membranc-as embly (ring

{mowicoll
TYPE PARTIALLY-FITS APPLIED-ON
solid) chassis-membranc-assembly) ring)

APPLY OBJECT mowicoll ON ring

{mowicoll (mowicoll (ring
TYPE ADHERENT-ON TYPE
fluid) ~pfing) sofid)
(mowicoll GLUES ring)
Figure 19-10: A complete proof of Example 1
adhegsive soljd
PE
IZA
movicoll GLUES - ring
% ~ PARTIALLY-FITS
fluid
chassi.\-mcmhr:mc-asscmbly TYPE » solid

Figure 19-11:  The relevant feaures of Example 1
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(x ATTACHED-ON y)

(x GLUED-ON y)

(z 1SA- adhesive) (z GLUES y) (z BET.VEEN x y)

PRESS OBJECT x ONy

(y TYPE solid) (x PARTIALLY-FITS v) (z APPLTED-ON x)

APPLY OBJFCT 2zONx
(2 TYPE tluid) (z ADHERENT-ON x) (x TYPE solid)

(z GLUES x)

Figure 19-12:  The gencralization of the proof in Figure 19-10

19.4.4 Generalization of the Proof

The next step consists in the generalization of the proof, as much as possible.
so that the proof still holds. Since the proof in Figure 19-10 was obtained by using
instances of inference rules and action models, one may generalize the proof by gen-
eralizing these instances. One way to do this is to first replace cach instantiated infer-
ence rule or action model with its general pattern, and then to unify these patterns
{Mooney and Bennet, 1986] (see Figure 19-12). The leaves of this generalized tree
represent a justified generalization of the relevant features in Figure 19-11:

(x TYPE solid) & (y TYPE solid) & (x PARTIALLY-FITS y) &
(z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y)

They also represent a general precondition for which the sequence of the ac-

; tons ‘APPLY OBJECT z ON x’, ‘PRESS OBJECT x ON y’ achieves the goal of the
* action ‘ATTACH OBJECT x ON y’. That is, one has learned the general decomposi-

tion rule in Figure 19-6.
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adhesive _ solid ack
E O
1ZA
mowicoll GLUES —p TN E PART-OF plou‘(kpcakcr
~a
GL
T-OF

chassis-membranc-assembly TYPE - solid

Figure 19-13: | Fragmém of a weak theory

19.5 LEARNING IN AWEAK THEORY DOMAIN

19.5.1 A Sample of a Weak Theory

A weak theory about the problem-solving cpisode in Figurc 19-5 (Examplc 1)
consists of the incompletc descriptions of the objccts from this cpisode. It docs not
contain any action modcl. A sample of such a theory is represented in Figure 19-13.

Considering such a theory is justificd because it is very difficult for an expert to
describe the actions in terms of their preconditions and cffects. On the other hand, it
is much casicr for him (o describe the objects and 10 give examples of decomposi-
tions and specializations. ‘

Therefore, instead of forcing the expert to completely formalize his knowledge,
we decided to accept the theory that was easily provided by him and to learn the rest
of the necessary knowledge.

19.5.2 General Presentation of the Learning Method

In the context of a weak theory, DISCIPLE will try to balance the lack of
knowledge by using an integrated learning method whose power comes from the
synergism of different learning paradigms: explanation-based learning, leaming by
analogy, empirical learning, and leamming by questioning the user. Rule leaming
takes place in several stages, which are illustrated in Figure 19-14.

More formally, the learning method is the following one:

Explanation-based Mode

1. Find an explanation of the user’s solution (Example 1) and call it Explanation
1.
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Explanation Analogy
Based mode Based mode
reduced
explxnalio'* .(vcrsion spacc)<
VAN
/ \ narrow
+ version  space
probllcm rule rule . olr .
uscrsolution Instance, fnstanccen examples
i
Empirical Learning mode
Figure 19-14:  The learning method in the context of a weak theory. First DISCIPLE
looks for a shallow explanation of the user’s solution. Then it uses this ex-
planation to formulate a reduced version space for the rule to be learned.
Each rule in this space covers only instances analogous to the user's exam-
ple. DISCIPLE carcfuly generates analogous instances to be characterized
le 1) as positive examples or as negative examples by the user. These are used -
; not to further narrow the version space until it contains only the rule illustrated
13 by the user’s solution.
Tt to
d, it
08i- Analogy-based Mode
2. Overgeneralize Example 1 by simply turning all the objects into variables, and
ige, call it General Rule 1. :
rest 3. Take Explanation 1 as a Lower Bound for the applicability condition of Gen-
eral Rule 1.
4. Overgeneralize Explanation 1 to the most general expression that may still be
accepted by the user as an explanation of General Rule 1.
;f 5. Take the overgeneralized explanation as an Upper Bound for the applicability
be condition of General Rule 1. The Upper Bound, the Lower Bound, and the
,ny General Rule 1 define a reduced version space for the rule to be leamed.
i . .
& 6. Look in the knowledge base for tuples of objects that satisfy the Upper Bound
but do not satisfy the Lower Bound.
If there are such objects then call Explanation-i the properties of these objects
that were used to prove that they sausfy the Upper Bound and go to step 7.
on If there are no such objects then show the Upper Bound, the Lower Bound, and

the General Rule 1 to the user as an uncertain rule and stop.
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7. Use the objects found in step 6 to generate an instance of General Rule 1. Call
it Instance-i. This instance is analogous to Example 1.

8. Propose Instance-i to the user and ask him to characterize it as a valid or as an
invalid reduction. If Instance-i is rejected by the user then go to step 9. Other-
wise go to step 14. ‘

Explanation-based Mode

9. Take Instance-i as a near miss (negative example) of the rule to be learned.

10. Find an explanation of why Instance-i was rejected by the user and call it Fail-
ure-Explanation-i.

Empirical Learning Mode

11. Specialize the Upper Bound as little as possible, so that not to cover Failure-
Explanation-i.
If the new Upper Bound is identical with the Lower Bound then take it as a
necessary and sufficient condition of General Rule 1, show them to the user
and stop, else go to step 12.

12. Specialize (if nccessary) the Lower Bound as little as possible, so that not 1o
cover Failure-Explanation-i.
13. Goto step 6.

14, Take Instancc-i as a new positive example of the rule to be lcamed and Expla-
nation-i as a truc explanation of Instance-i.

15." Look for a maximally specific common generalization of the Lower Bound and
Explanation-i. Two cases may occur:

* if this generalization is not identical with the Upper Bound, then take it as the
new Lower Bound and go to step 6;

* if this generalization is identical with the Upper Bound, then take it as a neces-
sary and sufficient condition of General Rule 1, show them to the user and stop.

In the following sections we shall illustrate and justify this learning method by
using again Example 1 from Figure 19-5.

19.5.3 Explanation-based Mode

In its first leaming step, DISCIPLE enters the explanation-based mode and
tries to find an explanation (within its weak domain theory) of the validity of the
solution in Figure 19-5.

— o ——
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We shall first define what we mean by an explanation in a weak theory and
then we shall indicate a heuristic method to find such explanations.

19.5.3.1 Explanations in a Weak Theory Domain

Let ‘P’ be the problem to solve and ‘S’ a solution to this problem. As has been
shown in Section 19.4, an explanation of the problem-solving episode ‘solve P by §’
is a proof that ‘S’ solves ‘P’.

In the case of a complete theory about this problem-solving episode, the learn-
ing system is able to find itself such a proof. In the case of a weak theory, however,
the system is no longer able to find such a proof because it lacks the modcls of the
actions from ‘P’ and ‘S’. In such a case, the explanation may be regarded as being
the premisc of a single infcrence whose conclusion is ‘S solves P’. ’

For instance, in the context of a weak theory, a complete explanation of the

: problem-solving episode in Figure 19-5 would be the network from Figure 19-11.

Indeed, the fact that the ‘ring’, the ‘chassis-membranc-assembly’, and the
‘mowicoll” have the featurces in Figure 19-11 “explains” (in a weak theory) why the
process of gluing the ‘ring’ and the ‘chassis-membrane-assembly’ with ‘mowicoll’

g solves the problem of attaching them together.

19.5.3.2 A Heuristic to Find Explanations

The explanation of Example 1 consists of the lecaves of the proof tree in Figure
19-11. Since such a tree cannot be built in a weak theory, DISCIPLE uses heuristics
to proposc plausiblc partial explanations to be validatcd by the user who may hersell
indicate other picces of explanations. Onc heuristic is 10 look for an explanation ¢x-
pressible in terms of the relations berween the objects from the example, ignoring
object features. Therefore, to find an explanation of Example 1, DISCIPLE will look
in its knowledge base for the links and for the paths (i.e., sequences of links) con-

f: necting ‘ring’, ‘chassis-membrane-assembly’, and ‘mowicoll’, and will proposc the
* found connections as pieces of explanations of the Example 1. It is the user’s task to

validate them as true explanations:

Do the following justify your solution:

mowicoll GLUES ring? Yes

mowicoll GLUES chassis-membrane-assembly? Yes
ring PART-OF loudspeaker &
chassis-membrane-assembly PART-OF loudspeaker? No

All the pieces of explanations marked by a user’s yes form the explanation of
Example 1 (see Figure 19-15).
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Explanation 1:
GLUES ing
mowicoll

GLU hassis-membranc-assembly

Figure 19-15:  The explanation of Example 1

Notice that this explanation is incomplete. This is partially a consequence of
using heuristics, and partially a consequence of the incompleteness of the domain
theory (which may not contain all the relevant object properties and rclations). Nev-
ertheless, it shows some important features of the objects, features justifying the
uscr’s solution.

This explanation will be used in the next leaming mode (the analogy-based
modc), which will be described in the following section. There we shall also give a
justification of the heuristic presented above.

19.5.4 Analogy-based Mode

The central intuition supporting the lcaming by analogy paradigm is that if two
entities are similar in some respects then they could be similar in other respects as
well. An important result of the lcaming by analogy rcscarch [Barciss and Porter
1987; Burstein, 1986; Carbonell, 1983; 1986; Chouraqui, 1982; Gentner, 1983;
Kedar-Cabelli, 1985; Kodratoff, 1988; Russcl, 1987; Winston, 1986] is that the anal-
ogy involves mapping some underlying causal network of relations between analo-
gous situations. The idea is that similar causes are expected to have similar effects.

In DISCIPLE, the explanation of a problem-solving operation may be regarded
as a cause for performing the operation. Therefore, two similar explanations are sup-
posed to ‘cause’ similar problem-solving episodes. Morcover, the explanations are
considered to be similar if they are both less general than an overgeneralized expla-
nation that is taken as the analogy criterion.

Figure 19-16 contains an example of such an analogy. The fact that the
‘mowicoll’ glues both the ‘ring’ and the ‘chassis-membrane-assembly’ ‘CAUSED’
the reduction of the problem of attaching the ‘ring’ to the ‘chassis-membrane-
assembly’ to a process of gluing them with ‘mowicoll’. Because the ‘neoprene’ glues
both the ‘screening-cap’ and the ‘loudspeaker’ we may expect (reasoning by anal-
ogy) to be able to reduce the problem of attaching the ‘screening-cap’ and the
‘loudspeaker’ to a process of gluing them with ‘neoprene’.
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jng screpning-cap
G GLES
mow|goll 4—SIMILAR —p ncopgenc
chassis-membranc-asscmbly loudspeaker
CAUBE CAUBE?
Solve the problem Solve the problem

ATTACH OBIJECT ring

ATTACH OBIJECT screening-cap
ON chassis-membranc-asscmbly

ON loudspcaker
4—SIMILAR o p

By solving the subproblems By
APPLY OBIJECT mowicoll

ON ring
PRESS OBJECT ring

ON chassis-membranc-asscmbly

solving  the  subproblems

APPLY OBIJLECT ncoprene
ON scrcening-cap

PRESS OBIJECT scrcening-cap
ON loudspeaker

Figure 19-16:  An example of analogy

According to the structure-mapping theory of Gentner (1983), analogy usually
involves mapping higher order relatons (as the ‘CAUSE’ relation, in our case).
Looking for an explanation in terms of relations between objects, DISCIPLE ensurcs
that the *CAUSE’ relation, which it imports by analogy, is a higher order relation.

19.5.4.3 Determining a Reduced Version Space for the Rule to Be
Learned

The purpose of the previous sections was to justify the following procedure for
determining a reduced version space for the rule to be learned.
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First of all DISCIPLE overgeneralizes Example 1 by turning all the objects into
variables, thus obtaining:

General Rule 1:
solve the problem
ATTACHOBJECT xONy

by solving the subproblems
APPLY OBJECT z ON x
- PRESS OBJECTxONy

Next Explanation 1 is rewritten as a lower bound of the applicability condition
of General Rule 1 (S bound in Figure 19-17). Notice that it is indced a lower bound
because it reduces General Rule 1 to Example 1, which is known to be true. Further,
DISCIPLE determines an analogy criterion that will allow it to generate instances
analogous to Example 1.

The analogy criterion is a generalization of Explanation 1. In the case of our
cxample, it was obtaincd by simply transforming the constants of Explanation 1 into
variables, or, if we consider the form of Explanation 1 in Figure 19-17, by dropping
the ‘ISA' predicates.

In genceral, the analogy criterion should be the most general generalization of
Lxplanation 1 that may still be accepted by the user as an explanation of General
Rulel. The analogy criterion is taken by DISCIPLE as an upper bound for the appli-
cability condition of General Rule 1 (G bound in Figure 19-17). Thus, the analogy
criterion, Explanation 1, and General Rule 1 define a reduced version space [Mitch-
cll, 1978] for the rule to be lcarned.

IF
G:upper bound (analogy criterion)
(zGLUES x) & (z GLUES y)

S:lower bound (Explanation 1)
(x ISA ring) & (y ISA chassis-membrane-assembly) & (z ISA mowicoll)
& (z GLUES x) & (z GLUES y)

THEN
General Rule 1:

solve the problem
ATTACH OBJECT x ON 'y

by solving the subproblems
APPLY OBJECT z ON x

PRESS OBJECT x ON y

Figure 19-17: A reduced version space for the rule to be leamed
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Each rule in this space has an applicability condition that is less general than
the analogy criterion and more general than Explanation 1. Therefore, it covers only
instances that are analogous to Example 1.

19.5.4.4 Generation of instances

To search the rule in the space from Figure 19-17, DISCIPLE needs positive
and negative instances of it. These instances may be provided by future problem-
solving episodes or may be generated by the system itself.

To generate an instance, DISCIPLE looks in the knowlcdge base for objccts
saLxsfymg the analogy criterion. The objects ‘screening-cap’, ‘loudspeaker’, and

‘neoprene’ are such objects. DISCIPLE calls Explanation-i the properties of thcse
objects that were used to prove that they satisfy the analogy criterion:

Explanation i:
GLUES screening-cap

ncoprcne

GLU loudspecaker

It uses the found objects to generate an instance of General Rule 1 (see Figure
19-17) and asks the user to validate it (scc Figurc 19-18).

19.5.5 Empirical Learning Mode

The instances generated in the analogy mode arc accepted or rejected by the
aser, being thus characterized as positive examples or as negative examplcs of the
rule to be lcamned. These instances are used to scarch the rulc in the version spacc
from Figure 19-17. '

19.5.5.1 The Use of the Positive Exambles

Each positive example shows a true explanauon. All these explanations arc
generalized [Kodratoff and Ganascia, 19861, and the obtained generalization is used
as a new lower bound of the condition version space.

May I solve the problem
ATTACH OBIJECT screening-cap ON loudspeaker

by solving the subproblems
APPLY OBJECT neoprene ON screening-cap

PRESS OBJECT screening-cap ON loudspeaker ? Yes

Figure 19-18:  An instance generated by analogy with Example |
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Let us suppose, for instance, that the user accepts the decomposition in Figure
19-18. Then, Explanation-i, computed in Section 19.5.4.4, is a true explanation that
may also be rewritten as a lower bound for the applicability condition of General
Rule 1:

Explanation i:
(x ISA screening-cap) & (y ISA loudspeaker) & (z ISA neoprene) &
(zGLUES x) & (z GLUES y)

Therefore, DISCIPLE computes a maximally specific, common generalization
of the lower bound in Figure 19-17 and of Explanation-i and takes it as a new lower
bound of the condition to be lcarned:

IF
G:upper bound
(z GLUES x) & (zGLUES y)

S:lowe;- bound )
(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) &
(z GLUES x) & (zGLUES y)

THEN

General Rule 1:

solve the problem
ATTACHOBJECT xONy

by solving the subproblems
APPLY OBJECT z ON x
PRESS OBJECT x ON.y

Notice that DISCIPLE generalized ‘(z ISA mowicoll)’ and ‘(z ISA neoprene)’
to ‘(z ISA adhesive)’, by applying the well-known rule of climbing the generaliza-
tion hierarchies [Michalski, 1983]. But it generalized ‘(x ISA ring)’ and ‘(x ISA
screening-cap)’ to ‘(x TYPE solid)’ because there is no common generalizaton of
‘ring’ and ‘screening-cap’, and the only relevant property common to ‘ring’ and
‘screening-cap’ is that they are both ‘solid’. Another common property of ‘ring’ and
‘screening-cap’ is that they are both PART-OF ‘loudspeaker’. DISCIPLE considers
that this property is not relevant because it was not accepted as explanation of Exam-
ple 1 (see Section 19.5.3.2).

Notice also that the new lower bound is always more specific than the upper
bound because both the previous lower bound and Explanation i are less general than
the upper bound. However, the gencralization of the lower bound was made in the
context of an incomplete knowledge. Therefore it could be an overgeneralization, to
be later particularized when new knowlcdge becomes available.
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May I solve the problem
ATTACH OBJECT screening-cap ON loudspeaker

by solving the subproblems
APPLY OBJECT scotch-tape ON screening-cap

PRESS OBJECT screening-cap ON loudspeaker? No

Figure 19-19: A negative example of the rule to be learned

19.5.5.2 The Use of the Negative Examples

Each negative example shows the incompleteness of Explanation 1 and of its
overgeneralization (the analogy criterion). The explanation of why the instance is a
negative example points to the features that were not present in Explanation 1. These
new features are uscd to particularize both bounds of the version space.

Let us consider the objects ‘screening-cap’, ‘loudspeaker’ and ‘scotch-tape’ (an
adhesive tape). They also satisfy the analogy criterion (the upper bound of the condi-
tion version space) but the corresponding instance is rejected by the user (see Figure
19-19).

In this case, DISCIPLE looks for an explanation of the failure because this ex-
planation points to the important objcct features that were not contained in Explana-
tion 1. The cxplanation is that ‘scotch-tape’ is not fluid (thercfore, it might not be
applied on a curved surface):

Failure Explanation: NOT (scotch-tapc TYPE fluid)

That is, the concept represented by ‘2’ must be fluid. Thercfore, DISCIPLE will
specialize both bounds of the version space by adding the ‘(z TYPE fluid)’:
IF
G:upper bound
(z GLUES x) & (z GLUES y) & (z TYPE fluid)

S:lower bound
(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) &
(z GLUES x) & (z GLUES y) & (z TYPE fluid)

THEN

General Rule 1:
solve the problem

ATTACHOBJECT xONy
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by solving the subproblems
APPLY OBJECT z ON x
PRESS OBJECTxONy

In another situation, failing to glue two objects whose surfaces do not fit each
other, DISCIPLE discovers the condition that the objects should partially fit:
IF
G:upper bound _
(z GLUES x) & (zGLUES y) & (z TYPE fluid) &
(x PARTTIALLY-FITS y)
S:lower bound :
(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) &
(z GLUES x) & (z GLUES y) & (z TYPE fluid) &
(x PARTIALLY-FITS y)
THEN
General Rule 1;
solve the problem
ATTACHOBJECT xONy

by solving the subproblems
APPLY OBJECT z ON x
PRESS OBJECT xONy

The learning process decreases the distance between the two bounds of the ver-
sion space. This process should, in principle, continue until the lower bound be-
comes identical with the upper one.

In our case, other negative examples will show that

(x TYPE solid) & (y TYPE solid) & (z ISA adhesive)

-are necessary features of the objects ‘x’, ‘y’, and ‘z’. Thus one learns the rule in
Figure 19-6. A

However, since the domain theory is weak, we should expect that this will not
always happen. Therefore, we will be forced to preserve two conditions (the upper
bound and the lower bound), instead of a single applicability condition. We propose
to define such a case as being typical of an uncertain explanation (in which uncer-
tainty is not expressed by numerical means).

19.5.5.3 Active Experimentation

In the analogy-based mode DISCIPLE may generate many instances of the rule
to be learned. However, they are not equally useful for searching the version space.




ZARNING

fit each

T Ver-

e in
not

08
cer-

ule

TECUCI & KODRATOFF 537

Therefore, in the empirical leaming mode, DISCIPLE will determine the features of
the most useful instances, asking for the generation of such instances. Its strategy is
to generalize the lower bound of the version space by generalizing the referred ob-

jects (i.e., ‘mowicoll’, ‘ring’, and ‘chassis-membrane-assembly’). It will therefore

try to climb the generalization hierarchy of these objects in such a way as to prescrve
consistency with the necessary condition. During this gencralization process, several
situations may occur:

e there are different ways to generalize;

* the generalization may cover objects that are not guarantced to produce posi-
tive examples of the rulc.

When faced with such problems, DISCIPLE will ask the user “clever” ques-
tions (as, for instance, in {Sammut and Banerji, 1986]) whosc answers allow it to
take the right decision. This process is illustrated in [Tecuci, 1988].

19.5.6 Developing the Domain Theory

As has been shown in Section 19.5.3.2, DISCIPLE looks for cxplanations in its
knowledge base. Because the domain theory is weak, we may expect that it will not
always contain the right picces of explanations. In such situations the picces of the
explanation must be provided by the uscr.

Let us consider, for instance, that the explanation of the lailure in Figure 19-19
was provided by the uscr. In this casc the domain theory will be enriched by storing
this cxplanation: ‘NOT (scotch-tape TYPE fluid)’.

More significantly, as a conscquence of updating the Lower Bound of the ver-
sion space, the following rclations between the objects that previously generated
positive examples of the rule (and are therefore supposed to satisfy the Lower
Bound) are added to the domain theory: '

(mowicoll TYPE fluid) & (neoprene TYPE fluid).

19.6 LEARNING IN AN INCOMPLETE THEOFiY DOMAIN

19.6.1 A Sampie of an Incomplete Theory -

In the case of DISCIPLE, an incomplete theory of a domain may lack some
object descriptions, inference rules, or action models. Also, it may contain incom-
plete descriptions of these.

An incomplete description of an object lacks certain propertics or relations
with other objects; an incompleic acton model lacks some precondition predicates
or some effect predicates; and an incomplete inference rule lacks some left-hand side
or right-hand side predicates.
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adhesive
/

mowicoll GLUES P ring PART-OF »loudspcakcr
\ mcmbranc-assembly » solid

Vx Vy [(x GLUED-ON y) = (x ATTACHED-ON yj)]

¥x ¥y Yz [(z ISA adhesive)&(z GLUES x)&(z GLUES y)&(z BETWEEN x y)
=>(x GLUED-ON y)]

Vx Yy [(x GLUES y) = (x ADHERENT-ON y)]

Figure 19-20:  Incomplete descriptions of the objects from Example |

Action Preconditions Effects
ATTACII OBJECT x ON y gggg zzﬁg; & (x ATTACIIED-ON y)
APPLY OBJECT z ON x g {r\_‘?gézi:oxﬁ;vox x) & (z APPLIED-ON x)

Figure 19-21:  Incomplete models of two actions from Example 1

A sample of an incomplete theory about Example 1 (Figure 19-5) is given in
the Figures 19-20 and 19-21.

As one may notice, the explicit properties and relations of the objects ‘ring’,
‘chassis-membrane-assembly’ and ‘mowicoll’ are the ones considered in the case of
the weak theory (see Figure 19-13).

Also notice that this incomplete theory lacks entirely the model of the action
‘PRESS’. It also contains an incomplete model of the action ‘APPLY’, model lack-
ing the precondition predicate ‘(z TYPE fluid)’.

19.6.2 General Presentation of the Learning Method

In this case, the learning method combines the two leaming methods presented
previously. First, the system will construct an incomplete proof of Example 1 and
will generalize it, as in a complete theory. In this way, it will determine an over-
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generalized explanation of Example 1. Then, the system will use the overgencralized
explanation as an analogy criterion 1o perform experiments and to synthesize the
general rule, as in a weak theory:

1. Prove that the solution indicated by the user is indced a solution of the problem
to solve. Because the domain theory is incomplete, the system may ask the user
focused questions in order to fill the possible gaps in the proof. The leaves of
the proof tree represents an incomplete explanation of Example 1.

2. If the user’s solution contains new actions, then use the proof found in step 1 in
order to define initial version spaces for the models of these actions. As a side
effect of rule leaming, DISCIPLE will lcarn the modecls of these new actions.

3. Overgeneralize the proof tree found in step 1, as in a complete theory. If an
action model is incompletely learned then use the upper bound of its precondi-
tions and effects. The leaves of the overgeneralized proof tree represent an
overgencralized explanation of Example 1, being taken by DISCIPLE as an
analogy criterion.

4. Formulate a reduced version space for the rule to be leamed, as in a2 weak the-
ory, by using the explanation found in step 1 and the overgencralized explana-
tion found in step 3.

5. Scarch the rule in the version space defined in step 4 by performing experi-
ments, as in a weak theory. Use the overgencralized proof determined in step 3
in order to find the cxplanations of the failurcs.

In the next section we shall illustrate this leamning method.

19.6.3 Incomplete Proving of the Example

Even when the objects, the inference rules, and the actions are incompletely
specified, one may be able to construct a proof tree, which lacks some parts of the
complete proof tree (see Chapter 18, this volume and [Wilkins, 1988]).

When the system lacks inference rules or action models, it will try to sketch the
proof tree both top-down and bottom-up, and will ask the user focused questions, in
order to connect the different parts of the proof.

Using the incomplete theory about Example 1, presented in the previous sec-
tion, the system may build the following proof of Example 1 (see Figure 19-22). The
dotted lines from the proof tree do not result from the domain theory but are hypoth-
eses made by the system and confirmed by the user. For instance, the system makes
the hypothesis that

(mowicoll BETWEEN ring chassis-membrane-assembly)
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(ring ATTACHED-ON chassis-mcembrane-assembly)

¢

(ring GLUED-ON chassis-membrane-assembly)

(mowicoll (mowicoll (mowicoll
ISA GLUES BETWEEN
adhesive) chassis-membra c-assembly) ring

chassis-membranc-asscmbly)
/
PRESS OBIJECT ring ON chassis-membrane-assembly

/’

(mowicoll APPLIED-ON ring)

APPLY OBJECT mowicol!l ON ring

T

(mowicoll (ring
ADHERENT-ON TYPE
ring) solid)

(mowicoil GLUES ring)

Figure 19-22:  An incomplete proof of Example 1

is an effect of the action
PRESS OBJECT ring ON chassis-membrane-assembly
from the fact that all the other left-hand side literals of the inference rule

Vx Vy Vz [(z ISA adhesive) & (z GLUES x) & (zGLUES y) &
(z BETWEEN x y) = (x GLUED-ON y)]

are true in the current situation, that is

[(mowicoll ISA adhesive) & (mowicoll GLUES ring) &
(mowicoll GLUES chassis-membrane-assembly)] = TRUE

and the literal ‘(mowicoll BETWEEN ring chassis-membrane-assembly)’ is not
known to be true.
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Explanation 1:

adhcgive solid
. E
LA
mowicoll . GLLES pring
GLYES

chassis-membrane-assembly

Figure 19-23:  The relevant features of Example 1, revealed by the proof tree in Figure
‘ 19-22

Comparing the proof tree in Figure 19-22 with the compicte onc in Figure 19-
11, onc may casily notice that it lacks some leaves. Nevertheless, the Icaves that are
present represent some important features of the objects from Example 1; featurcs
that in the casc of a weak theory would correspond to the explanation of Example 1
shown in Figurc 19-23. ‘

19.6.4 Defining Version Spaces for the Unknown Actions

The incomplete proof allows onc to definc imitial version spaccs for the models
of the unknown actions uscd in the proof. For instance, onc may define the [ollowing
version space for the action ‘PRESS’:

&

Action Preconditions Effects
upper bound: upper bound:
(z APPLIED-ON x) (zBETWEEN x y)
lower bound: ) lower bound:
PRESSOBJECTxONy (z APPLIED-ONx) & (zBETWEENzxy) &
(xISArnng) & (x ISAring) &
(y ISA chassis-membrane- (y ISA chassis-membrane-
assemnbly) & assembly) &
(z ISA mowicoll) (z ISA mowicoll)

The lower bounds for the preconditioris and effects are taken directly from the
Proof tree. The upper bound of the effects is the generalization of the lower bound
(mowicoll BETWEEN ring chassis-membrane-assembly) taken from the premisc of
the inference rule
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(x ATTACHED-ON y)

(x GLUED-ON y)

(z ISA adhesive) (z GLUES y) (z BETWEEN x y)

PRESS OBJECT x ON y
@ APPL?D-ON x)

APPLY zONx

(z AJERENT-ON x) (x TYPE solid)

{z GLUES x)

Figure 19-24:  The generalization of the proof in Figure 19-22

VxVyVz[(z ISA adhesive) & (z GLUES x) & (z GLUES y) &
(z BETWEEN x y) = (x GLUED-ON y)]

The upper bound of the preconditions is the generalization of the lower bound,
taken from the cffccts of the model of the action ‘APPLY OBJECT z ON x’. During
the lcamning of the deccomposition rule in Figure 19-6, the system will also refine the
model of the action ‘PRESS’.

19.6.5 Generalization of the Incomplete Proof

Once the proof in Figure 19-22 is built, the system will generalize it, as in a
complete theory (see Figure 19-24).

Let us notice that, for generalizing the proof, the system used the upper bounds
of the preconditions and effects of the action ‘PRESS’.

19.6.6 Determining a Reduced Version Space for the Rule to Be
Learned

~As in the case of a weak theory, the Explanation 1 in Figure 19-23 may be
rewritten as a Lower Bound for the applicability condition of General Rule 1 (Figure
19-25). Also, the leaves of the generalized proof tree in Figure 19-24 provide an
overgeneralized explanation of Example 1. This overgeneralized explanation corre-
sponds to the analogy criterion from a weak theory and is taken by DISCIPLE as an
Upper Bound for the applicability condition of General Rule 1 (see Figure 19-25).
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IF
G:upper bound (analogy criterion)
(x TYPE solid) & (z ISA adhesive) & (z GLUES x) &
(zGLUES y)

S:lower bound (explanation 1)

(x ISAring) & (x TYPE solid) &
(y ISA chassis-membrane-assembly) &

(z ISA adhesive) & (z GLUES x) & (z GLUES y)

THEN
General Rule 1:

solve the problem
ATTACHOBJECT xON y

by solving the subproblems
APPLY OBJECT z ON x

PRESS OBJECTxONy

Figure 19-25: A reduced version space for the rule to be lcamed

Thercfore, as in a wcak theory, the system is able to formulate the following version
space for the rule to be lcamcd:

19.6.7 Searching the Rule in the Version Space

As soon as the version space from Figure 19-25 has been determined, rule
leamning will continue as in a weak theory. This time, however, the gencralized proof
tree in Figure 19-24 provides a focus for the process of finding the explanations of
the failures. To illustrate this, let us consider again the failure in Figure 19-19.

In this case, the system generates the instance of the generalized proof in Fig-
ure 19-24, corresponding to this problem-solving episode (by replacing ‘x’, ‘y’, and
‘2’ with ‘screening-cap’, ‘loudspeaker’, and *scotch-tape’, respectively).

The fact that the user rejected the solution proposed by the system proves that
the leaves of the instantiated tree do not imply the top of the tree (the leaf predicatcs
are true but the top predicate is not).

This means that some action models or inference rules are faulty (incomplete,
in our case). To detect them, the system follows the proof tree from bottom up, ask-
ing the user to validate each inference step. If the user says that the effect of an ac-
tion or the conscquent of an inference rule is not true, then the corresponding action
model (inference rule) may be the incomplete one.
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Therefore, in an incomplete theory, finding the explanations of the failures re-
duces to finding the knowiedge that is lacking from the knowledge pieces. In this
case, the generalized proof in Figure 19-24 plays the role of a justification structure
for the rule to be learned, as in [Smith, et al., 1985].

19.7 EXPERIMENTS WITH DISCIPLE

We have implemented a version of DISCIPLE in Common LISP [Stecle, 1984]
and we have used it to learn rules in several domains as, for instance, manufacturing,

commonsense planning, chemistry, and architecture [Kodratoff and Tecuci, 1987,
Tecuci and Kodratoff, 1990].

With a very poor theory of chemistry,! DISCIPLE was able to leamn, starting
from the example of the chemical reaction (NaOH + HCl — H2O + NaCl), that, in
general, (Base + Acid — Water + Salt). More precisely, starting from the example

the problem

COMBINE SUBSTANCE!1 NaOH SUBSTANCE?2 HCI
has the following solution

RESULT SUBSTANCE1 H20 SUBSTANCE2 NaCl

DISCIPLE leamcd the following rulc:

IF
G:upper bound
(b COMPOSED-OF x1) & (b COMPOSED-OF x2) &
(a COMPOSED-OF x3) & (a COMPOSED-OF x4) &
(w ISA water) & (w COMPOSED-OF x1) (COMPOSED-OF x3) &
(s ISA salt) & (s COMPOSED-OF x2) (s COMPOSED-OF x4) &
(s (COMPOSED-OF ANION-OF) 2) &
(s (COMPOSED-OF CATION-OF) b))
S:lower bound
(b ISA base) & (b COMPOSED-OF x1) & (b COMPOSED-OF x2) &
(a ISA acid) & (a COMPOSED-OF x3) & (a COMPOSED-OF x4) &
(w ISA H20) & (w COMPOSED-OF x1) & (COMPOSED-OF x3) &
(s ISA salt) & (s COMPOSED-OF x2) & (s COMPOSED-OF x4) &

(s (COMPOSED-OF ANION-OF) a) &
(s (COMPOSED-OF CATION-OF) b)) &

1
This application was suggested by D. Sleeman.

TE

ti
n
to



ING

i re.
this
re

84]
ng,
87;
ing
,in

.

TECUC! & KODRATOFF 545

(x]1 ISAOH) & (x2 ISAMETAL) & (x3ISAH) &
(x4 ISA METALLOID)

THEN
General Rule
the problem
COMBINE SUBSTANCE! b SUBSTANCE2 a
has the following solution
RESULT SUBSTANCE1 w SUBSTANCE2 s

The lower bound of this rule says that all the positive examples share the struc-
wre (Basc + Acid — Water + Salt), together with the appropriate components: For
instance, x2 is the metal of the base b (because “b COMPOSED-OF x2") that will go
to the salt s (because s COMPOSED-OF x2").

The upper bound of the rule says that none of the ncgative examples mct
shared the structure (Something + Something — Water + Salt) together with the ap-
propriatc componcnts; i.c., there might be compounds leading to water and salt,
other than bases and acids.

The application from architecture? consists in designing a building. In this ap-
plication, DISCIPLE may lcam rules to refine specifications of objects. For instance,
starting from an cxamplc of a door scparating a hall from a slecping room (for which
thc expert cstablished that it should be opened towards the slecping room), DISCI-
PLE lcamed a general rule for establishing the direction of opening of the doors: “A
door scparating a housc-picce from a room should be opened towards the room.”

From these experiments we have learned the following:

* It is fairly casy to define a small initial domain theory for DISCIPLE;

* Although DISCIPLE has knowledge to generate hundreds of examples it actu-
ally generates a few of them only in order to leamn a rule.

 19.8 CONCLUSIONS

Trying to cope with the complexity of the real-world applications, we have
made the hypothesis that DISCIPLE's domain theory is nonhomogeneous, describ-
ing completely some parts of the domain, but only incompletely or even poorly, the
other parts. The use of DISCIPLE is tuned to problem-solving situations in which
some variabilization is meaningful. For instance, a set of zeroth-order rules solving a
problem will not yield interesting results under DISCIPLE.

2
Suggested by F. Guena and K. Zreik.
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We have shown how the system is able to learn the same general rule from the
same example, by using a method corresponding to its theory about the example.

In the context of a complete theory, DISCIPLE uses explanation-based learn-
ing. It is thus able to learn a justified rule from a single example and may also reject
incorrect examples.

“The learning method in the context of a weak theory integrates different learn-
ing paradigms: explanation based learning, leaming by analogy, empirical learning,
and learning by questioning the user. Among thc most relevant features of this leamn-
ing method one could mention: :

* the notion of “explanation” in a weak theory and a heuristic method to find
such explanations,

» the use of analogy to define a reduced version space for the rule to be lcarned,

» the use of both the explanations of the successes and the explanations of the
failures to search the rule in its version space,

» the formulation of “clever” questions in order to extract uscful knowledge (rom
the expert,

« the possibility of hiding the lcarned rules from the expert,
» a great confidence in the human expert.

In the context of an incomplete theory, DISCIPLE lcarns by combining the
mcthod corresponding to the complete theory with the method corresponding to the
weak theory. This method borrows features from both the leamning method in a com-
~ plete theory (may reject incorrect examples, learns justificd rules) and from the
lcamming mcthod in a weak theory (use of analogy, clever questions to the uscr, eic.).

It is intcresting to notice that, although in each of the presented cases the sys-
tcm lcamned the same general rule, the effect of this rule on the futurc behavior of the
system depends of the domain theory: In a complete theory, the learned rule im-
proves only the performance of the system, in a weak theory it develops the compe-
tence of the system, and, in an incomplete theory, it may develop both the perfor-
mance and the competence.

Let us also notice that, by the integration of these three leaming methods, DIS-
CIPLE proposes a solution to the so-called “falling off the knowledge cliff” problem
of current systems. This problem is that a system performs well within the scope of
the knowledge provided to it, but any slight move outside its narrow competence
causes the performance to deteriorate rapidly [Michalski, 1986]. On the contrary, in
DISCIPLE, the move from one part of the application domain, characterized by a
complete theory, to another part, characterized by an incomplete theory or by a weak
theory, causes only a slight deterioration of the performance, this effect being ob-
tained by a corresponding replacement of the learning method used.

There arc also several weaknesses of DISCIPLE, on which will shall direct our
future research. For instance, the expressions DISCIPLE deals with are made of
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predicates, constants, and variables, but no actual function evaluation is going to

* take place.

A semantic limitation comes from the fact that the generality of the learned
rule is limited by the generality of the overgeneralized explanation (the analogy cri-
terion), which may not be in the most general form. However, the rule may be fur-
ther generalized, in response to a problem-solving situation in which the rule does
not apply, and the user says that it should apply. In this case, the condition of the rule
may be generalized to cover the new situation as well.

Also, the method of finding an explanation in a weak theory is not powerful
enough. Other sources of knowledge are nceded, as well as metarules for finding far
off explanations. One possible extension of the current method is suggested by the
way CLINT [De Raedt and Bruynooghe, 1989] changes its description language in
order to be able to learn a concept. DISCIPLE might also use an ordered series of
explanation schemas E1, E2, ... | En, ... . First, it will be looking for an explanation
of the form E1 (for instance, a path of length 1 between two concepts). If no such
explanation is found, then it will be looking for an explanation of the form E2 (for
instance, a path of length 2 between two concepts), and so on.

While DISCIPLE uses control knowledge in the form of metarules [Tecuci,
1988], such knowledge is not lcamed—it must be provided by the user. Therefore, if
two cxperts provide different solutions to the same problem, DISCIPLE simply gen-
erates two different rules. The lcaming mechanisms of DISCIPLE should be used to
proposc explanatons of this difference and find metaexplanations that can become
metaprcconditions on the usc of the rules.

An important futurc dircction of rescarch consists in developing the leaming
methods of DISCIPLE in order to decal with other types of imperfections in the do-
main thcory [Mitchell, Keller, and Kedar-Cabelli, 1986; Rajamoney and DeJong,
1987]. We shall consider, for instance, imperfcctions resulting from the fact that cer-
tain pieces of knowledge (objects, inference rules, action models) contain minor er-

. tors in their definitions in that parts of these definitions may be either more gencral

or less general than they should be. .
A weakness of all the learning apprentice systems is that they need an initial

" domain theory and provide no means of defining it. Although DISCIPLE facilitates

this task by accepting a nonhomogeneous domain theory, the task remains difficult.

- A solution here is that proposed by BLIP [Morik, 1989], which is an interactive

learning system mainly concerned with the construction of a domain theory as a first
Phase of building a knowledge-bascd system. Therefore, a very promising research
direction seems that of building a system incorporating the capabilities of BLIP and
DISCIPLE. Such a system could be an effective tool for building knowledge-based
Systems:

* In the first stage, the system and the user will build together an initial thcory of
the application domain. This theory, containing elementary knowledge about
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the domain (basic concepts and inference rules), will be neither complete ng;
entirely correct;

* In the second stage, the system and the user solve problems together and, dyr.
ing this cooperative problem solving, the system will learn general problem-
solving rules. Since this leaming takes place in the context of an imperfect
domain theory, the learned rules will accumulate exceptions. These exceptions
correspond in fact to lacking concepts in the domain theory. When too many
exceptions are accumulated, the domain theory has to be refined. Therefore,
one reenters the first stage and reformulates the domain theory to better charac-
terize the current knowledge of the system.

There are also scveral lessons we have learned from the design of DISCIPLE,
One is to cope with the complexity of real-world applications, one should use any
available learning technique. Indeed, the different leaming paradigms have many
complementary prerequisites and effects. Therefore they may be synergistically
combined.

Another lesson is that full formalization of imperfect theories is short-time
harmful. Indced, forcing the expert to completely formalize a domain theory (which
may not cven have such a complete theory) may result in a degradation of the knowl-
cdge he provides.

Last, we have discovered that overgeneralization is not only harmless, but also
useful and necessary when interacting with a user, allowing the identification of fea-
tures usually neglected by the expert.
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