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Abstract 

This chapter presents DISCIPLE. a multistrategy. integrated learning system 
illustrating a theory and a methodology for learning expert knowledge in the context 
of an imperfect domain theory. DISCIPLE integrates a learning system and an empty 
expert system. both using the same knowledge base. It is initially provided with an 
imperfect (nonhomogeneous) domain theory and learns problem-solving rules from 
the problem-solving steps received from its'expert user, during interactive problem­
solving sessions. In this way, DISCIPLE evolves from a helpful assistant in problem 
solving to a genuine expert The problem-solving method of DISCIPLE combines 
problem reduction, problem solving by constr:lints. and problem solving by analogy. 
The learning method of DISCIPLE depends on its knowledge about the problem­
solving step (the example) from which it learns. In the context of a complete theory 
about the example, DISCIPLE uses explanation-based learning to improve its per­
formance. In the context of a weak theory about the example, it synergistically com­
bines explanation-based learning, learning by analogy, empiricalleaming, and learn­
ing by questioning the user, developing its competence. In the context of an 
incomplete theory about the example. DISCIPLE learns by combining the above­
mentioned methods. improving both its competcncc and performance. 
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19.1 INTRODUCTION 

The present success of AI is mostly due to the knowledge-based systems that 
proved to be useful almost anywhere. As the name suggests, the power of a knowl­
edge-based system comes from its knowledge. However, building a knowledge base 
for $uch a system is a very complex, time-consuming, and error-prone process. 
Moreover, the resulting system lacks or has only poor abilities to update its knowl­
edge or to acquire new knowledge. 

One promising solution to this "knowledge-acquisition bottleneck" is repre­
sented by the Learning Apprentice Systems (LAS): An LAS is an interactive knowl­
edge-based consultant that is provided with an initial domain theory and is able to 
assimilate new problem-solving knowledge by observing and analyzing the prob­
lem-solving steps contributed by its users, through their nonnal use of the system 
[Mitchell, Mahadevan, and Steinberg, 1985]. 

Representative examples of this approach are the systems LEAP [Mitchell,'* Mahadevan, and Steinberg, 19851 and GENESIS [Dejong and Mooney, 19861. 
LEAP's domain of expertise is the VLSI design and GENESIS's is story understand­
ing. A common feature of LEAP and GENESIS is that they are based on a strong 
(complete) domain theory that allows them to learn a general rule or schemata from 
a single example by reducing learning to deductive reasoning. 

Nevertheless, such beautifully tailored domains are seldom available. A typical 
real-world domain theory is nonhomogeneous in that it provides complete descrip­
tions of some parts of the domain, and only incomplete or even poor (weak) descrip­
tions of other parts of the domain. A learning episode, however, uses only one part of 
the domain theory; and this part may have the features of a complete. incomplete or 
weak theory even if. globally. the theory is nonhomogeneous. Therefore. a learning 
system should be able to learn a general rule or concept not only when disposing of a 
complete theory about an example. but also when disposing of an incomplete.or even 
weak theory about it. An illustration of such a learning system is DISCIPLE. DISCI­
PLE is a multistrategy, integrated learning system. It has the same general purpose 

. as a learning apprentice system, but it is based on a multistrategy approach to learn­
ing. instead of on deductive reasoning. 

DISCIPLE is a tool for building practical expert systems. It integrates an empty 
expert system and a learning system. both using the same knowledge base. To build 
-an expert system with DISCIPLE, one has to fust introduce elementary knowledge 
about an application domain into DISCIPLE's knowledge base-knowledge consti­
tuting a nonhomogeneous theory of the domain. Next. DISCIPLE may be used to 
solve problems interactively, according to the following scenario: 

The user gives DISCIPLE the problem to solve, and the expert subsystem starts 
solving this problem by showing the user each problem-solving step (which we shall 
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call partial solution}. The user may agree with or reject it. In the latter case, or when 
DISCIPLE is unable to propose any partial solution, the user is compelled to give his 

sown solution. Once this solution is given, a learning process will take place. DISCI­
PLE will try to learn a general rule so that, when faced with problems similar to the 
current one (which it has been unable to solve), it will become able to propose a 
solution similar to the solution, given by the user, to the current problem. In this way, 
DISCIPLE progressively evolves from a useful assistant in problem solving to a gen­
uine expert. 

19.2 DISCIPLE AS AN EXPERT SYSTEM 

In DISCIPLE we have adopted a problem-reduction approach to problem solv­
ing. That is, a problem is solved by successively reducing it to simpler subproblems. 
This process continues until the initial problem is reduced to a set of elementary 
problems; that is, problems with known solutions. Moreover, the problem to solve 
may be initially imprecisely formulated, becoming better and better formulated as 
the problem-solving process advances. To this purpose, DISCIPLE formulates. prop­
agates. and evaluates constraints [Tecuci, 1988; Tecuci, et ai.• 1987]. 

Problem reduction is a general method, suitable for solving a large variety of 
problems. In the following, however. we shall consider only problems of designing 
action plans for achieving partially specified goals. These problems are similar to 
those solved by PLANXI0 [Sridharan and Bresina. 19821. NONLIN [Tate. 1977], 
and others. An example of such a problem is: 

• given the incomplete specifications of a loudspeaker; 
• design the actions needed to manufacture the loudspeaker. 

DISCIPLE may start with the following top-level operation. which can be seen 
as the current goal: 

MANUFACTURE OBJECT loudspeaker 

It will try to solve this problem by successive decompositions and specializations. as 
illustrated in Figure 19-1 and in Figure 19-2. DISCIPLE will combine such decom­
positions and specializations. building a problem-solving tree like the one in Figure 
19-3. This process continues until all the leaves of the tree are elementary actions, 
that is, actions that can be executed by the entity manufacturing the loudspeaker. 

Figure 19-3 shows a standard AND tree. the solution to the problem from the 
top of this tree consisting of the leaves of the tree. That is, to manufacture the loud­
speaker. one has to perform the following sequence of operations: 

FIX OBJECTS contacts ON chassis 
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In order to solve the problem 
MANUFACTURE OBJECT loudspeaker 
solve the subproblem 

1. MAKE OBJECT chassis-assembly 
In order to solve this subproblem solve the sub-subproblems 

1.1 FIX OBJECT contacts ON chassis 

1.2 MAKE OBJECT mechanical-chassis-assembly 

1.3 FIN1SHING-OPERATIONS ON entrefer 

In order to solve this subproblem solve che sub-subproblems 
l.3.1 CLEAN' OBJECT entrefer 

1.3.2 VERIFY OBJECT entrefer 

2. MAKE OBJECT membrane-assembly 

3. ASSEMBLE OBJECT chassis-assembly \VITH membrane-assembly 

In order to solve this subproblem solve the sub-subproblems 
3.1 ATIACH OBJECT membrane-assembly ON chassis-assembly 

3.2 ATIACH OBJECT ring ON chassis-membrane-assembly 

In order 10 solve this subproblem solve Ihe sub-subproblems 
3.2.1 APPLY OBJECT mowicoH ON ring 

3.2.2 PRESS OBJECT ring ON chassis-membrane-assembly 

4. FINISHING·OPERATIONS ON loudspeaker 

Figure 19-1: 	 Problem-solving operations: Decompositions of problems into simpler sub­
problems 

In order to solve the problem 
CLEAN OBJECT entrcfer 
solve the specialization 
CLEAN OBJECT entrefer WITH air-jet-device 

In order to solve this problem solve lhe specialization 
CLEAN OBJECT entrefer WITH air sucker 

In order to solve the problem 
APPLY OBJECT mowicoll ON ring 
solve the specialization 
APPLY OBJECT mowicoll-C107 ON ring 

Figure 19-2: 	 Problem-solving opcr3tions: specializations of problems 
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Figure 19-3: 	 A problem-solving tree. It was built by using the decompositions and the 

specializations from Figures 19-1 and 19-2. 

MAKE OBJECT mechanical-chassis-assembly 
CLEAN OBJECT entrefer Willi air-sucker 
VERIFY OBJECT entrefer 
MAKE OBJECT membrane-assembly 
ATTACH OBJECT membrane-assembly ON chassis-assembly 
APPLY OBJECT mowicoll-C107 ON ring 
PRESS OBJECT ring ON chassis-membrane-assembly 
FINISHING·OPERATIONS ON loudspeaker 
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Let us notice that the decompositions and the specializations model, in fact, the 
main operations used in design, where one usually starts with a very general specifi­
cation of an object, successively imposes different constraints on the specification, 
and reduces object design to subparts design. 

19.3 THE LEARNING PROBLEM 

The decompositions and the specializations from Figure 19-3 were the result 
of the application of general reduction rules or were directly indicated by the user. 
From each solution received from the user, DISCIPLE is trying to learn a general 
problem-solving rule. Therefore, the learning problem of DISCIPLE may be formu­
lated as shown in Figure 19-4. 

For instance. 

Given: 
The theory of loudspeaker manufaclwing; 
The problem ofauaching two parts of the loudspeaker (the 'ring' and the 
'chassis-membrane-assembly') and the decomposition oflhis problem into 
two simpler subproblems expressing the gluing of the two parts with 
'mowicoll' (sec Figure 19-5). 

Determine: 
A !jeneral decomposilion rule indicating the conditions under which one m:.ly 
reduce an 'attachment' problem to a process of gluing (see Figure 19-{}). 

As one may notice, the structure of General Rule 1 in Figure 19-6 is idcntic:.ll 
with the structure of Example 1 in Figure 19-5. Therefore, rule learning is reduced 
to learning the features that the objects 'x', 'y'. and 'z' should have so that the attach­
ment of 'x' and 'y' may be reduced to a process of gluing them with 'z'. Otherwise 
stated, one should learn the concepts represented by these objects. 

The method of learning this rule depends on the system's theory (knowledge) 
about Example 1. We distinguish between three types of theories: complele, weak, 
and incomplete. 

A complete theory about Example 1 consists of the complete d~riptions of 
the objects and actions from this problem-solving episode. In such a case, DISCIPLE 
uses an explanation-based learning method, being able to learn at once a general rule 
from Example 1 alone. 

A weak theory about Example 1 consists only of incomplete descriptions of the 
Objects. It differs qualitatively from a complete theory in that it does not contain :.lC­
tion descriptions. In this case, DISCIPLE uses an interactive learning method that 
synergistically combines explanation-based learning. learning by analogy, empirical 
learning, and learning by questioning the user. 

http:idcntic:.ll
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Given: 
Domain Theory 
The domain theory contains: 

o a specification of the types of objects in the world and their properties and 
relations; 

o a set of inference rules for inferring propenies and relations from other 
propenies and relations; 

o a set of action models describing the actions that may be performed in the 
domain. An action model specifics the preconditions of the action (i.e., the 
states of the world in which the action may be executed), the effects of the 
action (i.e., the states that result after the execution of the action), as well as 
the objects that may play certain roles in the action (the agent executing the 
action, the objcct on which the action is performed, the instrument used, 
etc.). 

Problem-Solving Episode 
It consists of 

o P, a problem to solve, and 

o S, a (panial) solution to P. 

Determine: 

A General Problem-Solving Rule. 

According to this rule, problems similar to P will receive solutions similar 

to S. 


Figure 19-4: The learning problem of DISCIPLE 

Example 1: 
Solve the problem 

ATIACH OBJECf ring ON chassis-membrane-assembly 
by solving the subproblems 

APPLY OBJECT mowicoll ON ring 
PRESS OBJECT ring ON chassis-membrane-assembly 

Figure 19-5: A decomposition indicated by the user 

The intermediate case, between a complete theory and a weak theory, is the 
incomplete lheory. It contains incomplete descriptions of the objects and the actions 
from Example 1. In the case of an incomplete theory about Example 1, DISCIPLE 
learns a general rule by combining the method corresponding to the weak theory 
with the one corresponding to the complete theory. 
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IF 
(x TYPE solid) & (y TYPE solid) & (x PARTIALLY-FITS y) & 
(z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y) 

THEN 

General Rule 1: 

solve the problem 

ATTACH OBJECT x ON y 

by solving the subproblems 
APPLY OBJECT z ON x 

PRESS OBJECT x ON Y 


Figure 19-6: 	 The general decomposition rule learned from Example 1: If • x' and . y' are 
two solid objects that partially fit each other. and there is a fluid adhesive' z' 
that glues both 'x' and 'y'. then one may attach 'x' on 'y' by flI'St applying 
'z'on 'x'andthenbypressing 'x'on 'y' 

A side effect of rule learning in the context of a weak or incomplete theory is 
that of developing the domain theory. In the following sections we shall present 
these three learning methods of DISCIPLE. 

19.4 LEARNING IN A COMPLETE THEORY DOMAIN 

19.4.1 A Sample of a Complete Theory 

In the case of DISCIPLE. a complete theory of a domain consists of complete 
descriptions of all the objects and actions of the domain. In particular. a complete 
theory about the problem-solving episode in Figure 19-5. contains the complete de­
scriptions of the objects 'ring', 'chassis-membrane-assembly'. and 'mowicoll'. as 
well as the complete descriptions (models) of the actions' ATTACH', 'APPLY'. and 
'PRESS'. . 

The objects are described by specifying all the relevant factual propenies and 
relations. Some of these may be explicitly specified, as indicated in Figure 19-7. 

Other propenies and relations may be implicitly specified by using inference 
rules for deducing them from other propenies and relations, as indicated in Figure 
19-8. 

The action models describe the actions that may be performed in the domain. A 
complete action model specifies all the necessary preconditions of the action (Le.• all 
the states of the world in which the action' may be executed), all its effects (i.e.. the 
states that result after the execution of the action). as well as all the objects that may 
play certain roles in the action (the agent executing the action, the object on which 
the action is performed. the instrument used, etc.). 
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Figure 19-7: 	 A hierarchical semantic network containing explicit representations of ob­
ject properties and relations 

'Ix 'ty [(x GLUED-ON y) ~ (x ATIACHED-ON y)] 
'Ix 'ty 'tz [(z ISA adhcsive)&(z GLUES x)&(z GLUES y)& 


(z BEnvEEN x y) ~(x GLUED-ON y)1 

'Vx 'ty [(x GLUES y) =(x ADHERENT-ON y)] 

FI~ure 19-8: 	 Inference rules for deducing new properties and relations of objects 

Action Preconditions EfTccL'i 

ATTACH OBJEer x ON y (x TYPE solid) & 
(y lYPE solid) 

(x ATTACHED·ON y) 

APPLY OBJEer z ON x 
(z TYPE fluid) & 
(z ADHEREXf-ON x) & 
(x TYPE solid) 

(z APPl.lED·ON x) 

PRESS OBJEer x ON y 
(z APPl.lED·ON x) & 
(x PARTIALLY-fITS y) & 
(y TYPE solid) 

(z BElWEE'-l x y) 

Figure 19-9: 	 Action models 

Figure 19-9 presents the models of the actions from the problem-solving epi­
sode in Figure 19-5. For instance, the action • APPLY' may be performed if and only 
if 'x' is a solid object and 'z' is a fluid object that is adherent on ·x'. As an effect of 
performing this action, 'z' will be applied on 'x'. Notice that the necessary fealures 
of the objects are specified in the action's preconditions. 
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19.4.2 General Presentation of the Learning Method 

In the case of a complete theory about Example 1, the learning method of DIS­
CIPLE follows the explanation-based learning paradigm developed by [DeJong and 
Mooney, 1986; Fikes, Han, and Nilsson, 1972; Mitchell, Keller, and Kedar-Cabelli, 
1986J and others: 

1. 	 Prove that the solution indicated by the user is indeed a solution of the problem 
to solve. This proof isolates the relevant features of the objects in Example 1; 
that is. those features that will be present in the condition of General Rule 1. 

2. 	 Generalize the proof tree as much as possible so that the proof still holds. This 
is done as in [Mooney and Bennet, 1986J by replacing each instance of action 
model or inference rule with its general pattern and by unifying these patterns. 
By generalizing the proof tree, one generalizes the problem, its solution, and 
the relevant features. 

3. 	 Formulate the learned rule from the generalized proof by extracting the gener­
alized problem, its generalized solution, and the generalized relevant features. 
which constitute the applicability condition of the rule. 

In the following sections we shall briefly illustrate this method with the aid of 
Example 1 (Figure 19-5). 

19.4.3 Proving the Example 

To prove Example 1 means to show that the sequence of the actions 

APPLY OBJECT mowicoll ON ring 
PRESS OBJECT ring ON chassis-membrane-assembly achieves 
the goal of the action 
ATIACH OBJEer ring ON chassis-membrane-assembly that is, 
achieves the goal 
(ring ATTACHED-ON chassis-membrane-assembly). 

The proof is indicated in Figure 19-10. It was obtained by using the object 
descriptions in Figure 19-7, the inference rules in Figure 19-8. and the action mod­
els in Figure 19-9. 

The leaves of the tree in Figure 19-10 are those features of 'ring', 'chassis­
membrane-assembly', and 'mowicoU' that allowed one to reduce the problem of at­
taching the 'ring' on the 'chassis-membrane-assembly' to the process of gluing them 
with 'mowicoll'. Thus, by proving the example. one isolates the relevant features of 
it (see Figure 19-11). The 'color' of the 'ring' or the 'source' of the 'mowicoll' were 
not useful in proving the validity of the example. Therefore, these features are not 
important for this example. 

I 
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(ring ATTACHED-ON chassis-membranc-asscmbly) 

t 


(mowicoll 
ISA 
adhesive) 

(ring GLUED-ON chassis-membrane-asscmbly) 

PRESS OBJECT 

ri n g 
chassis-membrane-assembly) 

t 
ON chassis-mcmbr:me-assembly 

(c hass is -mem brane - as (r i n g (mowicollTYPE 
solid) PARTIALLY -FITS APPLIED-ON 

chassis-membrane-assembly) ring) 

~ 
APPLY OBJECT mowicoll ON ring 

(mowicoll (mowicoll 
T'tPE ADIIERENT-ON 
nuid) ring) 

( r in l! 
TYPE 
solid)L-~~------

(mowicoll GLUES ring) 

Figure 19-10: A complete proof of Example} 
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Figure 19-11: The relevant features of E\JJT1plc 1 
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(x ATIACfED.ON Y) 

(x GLUED· ON y) 

(z ISA adhesive) 

(y TYP solid) 

(z G t:ES y) ~EEN' yl 

PRESS OBJECT x ON Y 

solid) 

(7. GLUES xl 

Figure 19-12: The generalization of lhe proof in Figure 19-10 

19.4.4 Generalization of the Proof 

The next step consists in the gencr.llization of the proof, as much as possibk. 
so that the proof still holds. Since the proof in Figure 19-10 was obtained by using 
instances of inference rules and action models, one may generalize the proof by gcn­
eralizing these instances. One way to do this is to frrst replace each instantiated infer­
ence rule or action model with its general pattern, and then to unify these patterns 
[Mooney and Bennet, 19861 (see Figure 19-12). The leaves of this generalized tree 
represent a justified generalization of the relevant features in Figure 19-11: 

(x TYPE solid) & (y TYPE solid) & (x PARTIALLY·FITS y) & 
(z ISA adhesive) & (z TYPE fluid) & (z GLUES x) & (z GLUES y) 

They also represent a general precondition for which the sequence of the ac­
't tions 'APPLY OBJECT z ON x'. 'PRESS OBJECT x ON y' achieves the goal of the 
; 	 action' ATTACH OBJECT x ON y'. That is, one has learned the general decomposi­

tion rule in Figure 19-6. 

http:ATIACfED.ON
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Figure 19-13: . Fragment of a weak theory 

19.5 LEARNING IN A WEAK THEORY DOMAIN 

19.5.1 A Sample of a Weak Theory 

A weak theory about the problem-solving episode in Figure 19-5 (Example 1) 
consists of the incomplete descriptions of the objects from this episode. It does not 
contain any action model. A sample of such a theory is represented in Figure 19-13. 

Considering such a theory is justified because it is very difficult for an expert to 
describe the actions in terms of their preconditions and effects. On the other hand, it 
is much easier for him to describe the objects and to give examples of decomposi­
tions and specializations. 

Therefore, instead of forcing the expert to completely formalize his knowledge, 
we decided to accept the theory that was easily provided by him and to learn the rest 

.: 

of the necessary knowledge. 

: , 19.5.2 General Presentation of the Learning Method 
, i .. 

In the context of a weak theory, DISCIPLE will try to balance the lack of 
knowledge by using an integrated learning method whose power comes from the 
synergism of different learning paradigms: explanation-based learning. learning by 
analogy. empirical learning. and learning by questioning the user. Rule learning 
takes place in several stages. which are illustrated in Figure 19-14. 

; !. 
More formally. the learning method is the following one: 

Explanation-based Mode 
: 1 

" 1. Find an explanation of the user's solution (Example 1) and call it Explanation 
1. 

I 

I 

I 

I 
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Figure 19-14: 	 The learning method in the context of a weak theory. First DISCIPLE 
looks for a shallow explanation of the user's solution. Th<.'t1 it uses this ex­
planation to formulate a reduced version space for the rule to be leamed. 
Each rule in this space covers only instances analogous to the user's exam­
ple. DISCIPLE carefuly generates analogous instances to be characterized 
as positive examples or as negative examples by the user. These are used 
to further narrow the version space until it contains only the rule illustrated 
by the user's solution. 

Analogy-based Mode 

2. 	 Overgeneralize Example 1 by simply turning all the objects into variables, and 
call it General Rule 1. 

3. 	 Take Explanation 1 as a Lower Bound for the applicability condition of Gen­
eral Rule 1. 

4. 	 Overgeneralize Explanation 1 to the most general expression that may still be 
accepted by the user as an explanation of General Rule 1. 

5. 	 Take the overgeneralized explanation as an Upper Bound for the applicability 
condition of General Rule 1. The Upper Bound, the Lower Bound, and the 
General Rule 1 define a reduced version space for the rule to be learned. 

6. 	 Look in the knowledge base for tuples of objects that satisfy the Upper Bound 
but do not satisfy the Lower Bound. 

If there are such objects then call Explanation-i the properties of these objects 
that were used to prove that they satisfy the Upper Bound and go to step 7. 

If there are no such objects then show (he Upper Bound, the Lower Bound, and 
the General Rule 1 to the user as an uncertain rule and stop. 
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7. 	 Use the objects found in step 6 to generate an instance of General Rule 1. Call 
it Instance-i. This instance is analogous to Example 1. 

8. 	 Propose Instance-i to the user and ask him to characterize it as a valid or as an 
invalid reduction. If Instance-i is rejected by the user then go to step 9. Other­
wise go to step 14. 

Explanation-based Mode 

9. Take Instance-i as a near miss (negative example) of the rule to be learned. 

10. 	 Find an explanation of why Instance-i was rejected by the user and call it Fail­
ure-Explanation-i. 

Empirical Learning Mode 

11. Specialize the Upper Bound as little as possible, so that not to cover Failure­
Explanation-i. 


If the new Upper Bound is identical with the Lower Bound then take it as a 

necessary and sufficient condition of General Rule 1, show them to the user 

and stop, else go to step 12. 


12. 	 Specialize (if necessary) the Lower Bound as little as possible, so that not to 
cover Failure-Explanation-i. 

13. Go to step 6. 

14. 	 Take Instance-i as a new positive example of the rule to be learned and Expla· 
nation-a as a true explanation of Instance-i. 

15.· 	 Look for a maximally specific common generaHzation of the Lower Bound and 
Explanation-i. Two cases may occur: 

J 
,.. 	 • if this generalization is not identical with the Upper Bound, then take it as the 
I 

. 

.' 

I 

\ 	
new Lower Bound and go to step 6; 

• 	if this generalization is identical with the Upper Bound, then take it as a neces­
sary and sufficient condition of General Rule 1, show them to the user and stop. 

In the following sections we shall illustrate and justify this learning method by 
using again Example 1 from Figure 19-5. 

19.5.3 Explanation-based Mode 

In its first learning step, DISCIPLE enters the explanation-based mode and 
tries to find an explanation (within its weak domain theory) of the validity of the 
solution in Figure 19-5. 
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We shall rust defiRe what we mean by an explanation in a weak theory and 
then we shall indicate a heuristic method to find such explanations. 

19.5.3.1 Explanations In a Weak Theory Domain 

Let 'P' be the problem to solve and'S' a solution to this problem. As has been 
shown in Section 19.4, an explanation of the problem-solving episode 'solve P by S' 
isaproofthat 'S'solves 'P'. 

In the case of a complete theory about this problem-solving episode, the learn­
ing system is able to find itself such a proof. In the case of a weak theory, however. 
the system is no longer able to find such a proof because it lacks the models of the 
actions from 'P' and'S'. In such a case, the explanation may be regarded as being 
the premise of a single inference whose conclusion is'S solves P'. 

For instance, in the context of a weak theory, a complete explanation of the 
t: problem-solving episode in Figure 19-5 would be the network: from Figure 19-11. 

Indeed, the fact that the 'ring', the 'chassis-membrane-assembly.. and the 
'mowicoll' have the features in Figure 19-11 "explains" (in a weak theory) why the 
process of gluing the 'ring' and the 'chassis-membrane-asscmbly' with 'mowicoll' 

f solves the problem of attaching them together. 

19.5.3.2 A Heuristic to Find Explanations 

The explanation of Example 1 consists of the leaves of the proof tree in Figure 
19-11. Since such a tree cannot be built in a weak theory, DISCIPLE uses heuristics 
to propose plausible partial explanations to be validated by the user who may herself 
indicate other pieces of explanations. One heuristic is to look for an explanation ex­
pressible in terms of the relations between the objects from the example ignoringI 

, 
object features. Therefore, to find an explanation of Example I, DISCIPLE will look 
in its knowledge base for the links and for the palhs (i.e .• sequences of links) con­
necting 'ring', 'ehassis-membrane-assembly', and 'mowicoll\ and will propose the 
found connections as pieces of explanations of the Example 1. It is the user's task to 
validate them as true explanations: 

Do lhe following justify your solution: 
~; mowicoll GLUES ring? Yes 
~. mowicoll GLUES chassis-membrane-assembly? Yes 

ring PART-OF loudspeaker & 
r 

chassis-membmne-assembly PART-OF loudspeaker? No 

All the pieces of explanations marked by a user's yes form the explanation of 
Example 1 (see Figure 19-15) . 

.' 
;!;., 
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Explanation 1: 

~ing 

mowicoll 

~haSSis-mcmbranc-aSSCmbIY 
Figure 19-15: The explanation of Example 1 

Notice that this explanation is incomplete. This is partially a consequence of 
using heuristics, and panially a consequence of the incompleteness of the domain 
theory (which may not contain all the relevant object properties and relations). Nev­
enheless, it shows some imponant features of the objects, features justifying the 
user's solution. 

This explanation will be used in the next learning mode (the analogy-based 
mode), which will be described in the following section. There we shall also give a 

I 

" justification of the heuristic presented above. I 
I 

t! 19.5.4 Analogy-based ModeI 

The central intuition supporting the learning by analogy paradigm is that if two 
entities are similar in some respects then they could be similar in other respects as 
well. An important result of the leaming by analogy research [Bareiss and Poncr 
1987; Burstein, 1986; Carbonell, 1983; 1986; Chouraqui. 1982; G(!ntner, 1983; 
Kedar-Cabelli, 1985; Kodratoff. 1988; Russel, 1987; Winston, 19861 is that the anal­
ogy involves mapping some underlying causal network of relations between analo­
gous situations. The idea is mat similar causes are expected to have similar effects. 

In DISCIPLE. the explanation of a problem-solving operation may be regarded 
as a cause for perfonning the operation. Therefore, two similar explanations are sup­
posed to 'cause' similar problem-solving episodes. Moreover, the explanations are 
considered to be similar if they are both less general man an overgeneralized expla­
nation that is taken as the analogy criterion. 

Figure 19-16 contains an example of such an analogy. The fact that the 
'mowicol1' glues both the 'ring' and the 'chassis-membrane-assembly' 'CAUSED' 
the reduction of the problem of attaching the 'ring' to the 'chassis-membrane­
assembly' to a process of gluing them with 'mowicoll'. Because the 'neoprene' glues 
both the 'screening-cap' and the 'loudspeaker' we may expect (reasoning by anal­
ogy) to be able to reduce the problem of attaching the 'screening-cap' and the 
'loudspeaker'to a process of gluing them with 'neoprene'. 
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loudspeakerchassis -mem brane - assem b I Y 

Solve the problem Solve !he problem 

ATTACH OBJECT ring ATTACH OBJECT screcning-c:.lp 
t ON chassis-membrane-assembly ON loudspeaker 

...e---'i I MI L,\ R '-+ 
By solving the subprobkms By ,olving ths: ,UbNOplpns 

APPL Y OBJECT mowicoll APPL Y OBJ ECT neoprene 
ON ring ON screening-cap 

PRESS OBJECT ring PRESS OBJECT screening·cap 
ON chassis-membrane-assembly ON loudspeaker 

Figure 19-16: An examp,le of analogy 

According to the structure-mapping theory of Gentner (1983). analogy usually 
involves mapping higher order relations (as the 'CAUSE' relation. in our case). 
Looking for an explanation in terms of relations between objects. DISCIPLE ensures 
that the 'CAUSE' relation~ which it imports by analogy, is a higher order relation. 

19.5.4.3 Determining a Reduced Version Space for the Rule to Be 
Learned 

The purpose of the previous sections was to justify the following procedure for 
determining a reduced version space for the rule to be learned. 

http:screcning-c:.lp
http:7ning-c:.lp
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First of all DISCIPLE overgeneralizes Example 1 by turning all the objects into 
variables, thus obtaining: 

General Rule 1: 

solve the problem 

ATTACH OBJECT x ON Y 

by solving the subproblems 

APPLY OBJECT z ON x 
PRESS OBJECT x ON y 

Next Explanation 1 is rewritten as a lower bound of the applicability condition 
of General Rule 1 (S bound in Figure 19-17). Notice that it is indeed a lower bound 
because it reduces General Rule 1 to Example 1, which is known to be true. Further, 
DISCIPLE determines an analogy criterion that will allow it to generate instances 
analogous to Example 1. 

The analogy criterion is a generalization of Explanation 1. In the case of our 
example, it was obtained by simply transfonning the constants of Explanation 1 into 
variables, or, if we consider the fonn of Explanation 1 in Figure 19-17, by dropping 
the 'ISA' predicates. 

In general, the analogy criterion should be the most general generalization of 
Explanation 1 that may still be accepted by the user as an explanation of General 
Ru.leI. The analogy criterion is taken by DISCIPLE as an upper bound for the appli­
cability condition of General Rule 1 (G bound in Figure 19-17). Thus. the analogy 
criterion. Explanation 1, and General Rule 1 define a reduced version space [Mitch· 
ell, 19781 for the rule to be leamed. 

IF 
G:upper bound (analogy criterion) 

(z GLUES x) & (z GLUES y) 

S:lower bound (Explanation 1) 


(x ISA ring) & (y ISA chassis-membrane-assembly) & (z ISA mowieoU) 

& (z GLUES x) & (z GLUES y) 


THEN 

General Rule 1: 

solve the problem 

ATIACH OBJECT x ON Y 

by solving the subproblems 
APPLY OBJECT z ON x 

PRESS OBJECT x ON y 


Figure 19-17: A reduced version space for the rule to be learned 

I. 
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Each rule in this space has an applicability condition that is less general than 
the analogy criterion and more general than Explanation 1. Therefore, it covers only 
instances that are analogous to Example 1. 

19.5.4.4 Generation of Instances 

To search the rule in the space from Figure 19-17, DISCIPLE needs positive 
and negative instances of it. These instances may be provided by future problem­
solving episodes or may be generated by the system itself. 

To generate an instance, DISCIPLE looks in the knowledge base for objects 
satisfying the analogy criterion. The objects 'screening-cap'. 'loudspeaker', and 
'neoprene' are such objects. DISCIPLE calls Explanation-i the propenies of these 
objects that were used to prove that they satisfy the analogy criterion: 

l 
Explanation i: 

~ screening-cap 

neop,rene 

... loudspeaker 

It uses the found objccts to generate an instance of General Rule 1 (sec Figure 
19-17) and asks the user to validate it (see Figure 19-18), 

19.5.5 Empfrfcallearnfng Mode 

The instances generated in the analogy mode are accepted or rejected by the 
user, being thus characterized as positive examples or as negative examples of the 
rule to be learned. These instances are used to sca.rch the rule in the version space 
from Figure 19-17. 

19.5.5.1 The Use of the Positive Examples 

Each positive example shows a true explanation ..All these explanations are 
generalized [Kodratoff and Ganascia, 19861, and the obtained generalization is used 
as a new lower bound of the condition version space. 

May I solve the problem 
AITACH OBJEcr screening-cap ON loudspeaker 

by solving the subproblems 
APPLY OBJECT neoprene ON screening-cap 
PRESS OBJECT screening-cap ON loudspeaker? Yes 

.. Figure 19-18: An instance generated by analogy with Example 1 
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Let us SUppose, for instance, that the user accepts the decomposition in Figure 
19-18. Then, Explanation-i, computed in Section 19.5.4.4, is a true explanation that 
may also be rewritten as a lower bound for the applicability condition of General 
Rule 1: 

Explanation i: 
(x ISA screening-cap) & (y ISA loudspeaker) & (z ISA neoprene) & 
(z GLUES x) & (z GLUES y) 

Therefore, DISCIPLE computes a maximally specific, common generalization 
of the lower bound in Figure 19-17 and of Explanation-i and takes it as a new lower 
bound of the condition· to be learned: 

IF 

G:upper bound 

(z GLUES x) & (z GLUES y) 


S:lower bound 
(x TYPE solid) & (y TYPE solid) & (zISAadhcsive) & 
(z GLUES x) & (z GLUES y) 

THEN 
General Rule 1: 
solve the problem 

ATIACH OBJECT x ON y 

by solving the subproblems 
APPLY OBJECT z ON x 
PRESS OBJECT x ON. y 

Notice that DISCIPLE generalized '(z ISA mowicoll), and '(z ISA neoprene)' 
to '(z ISA adhesive)', by applying the well-known rule of climbing the generaliza­
tion hierarchies [Michalski, 19831. But it generalized '(x ISA ring)' and '(x ISA 
screening-cap), to '(x TYPE solid), because there is no common generalization of 
'ring' and ·screening-cap·. and the only relevant propeny common to 'ring' and 
'screening-cap' is that they are both 'solid'. Another common propeny of 'ring' and 
'screening-cap' is that they are both PART-OF 'loudspeaker'. DISCIPLE considers 
that this propeny is not relevant because it was not accepted as explanation of Exam­
ple 1 (see Section 19.5.3.2). 

Notice also that the new lower bound is always more specific than the upper 
bound because both the previous lower bound and Explanation i are less general than 
the upper bound. However. the generJ.lization of the lower bound was made in the 
context of an incomplete knowledge. Therefore it could be an overgcncralization. to 
be later particularized when new know ledge becomes available. 

.~ 
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May I solve the problem 
ATTACH OBJEer screening-cap ON loudspeaker 

by solving the subproblems 
APPLY OBJECT scotch-tape ON screening-cap 
PRESS OBJECT screening-cap ON loudspeaker? No 

Figure 19-19: A negative example of the rule to be learned 

19.5.5.2 The Use of the Negative Examples 

Each negative example shows the incompleteness of Explanation 1 and of its 
overgeneralization (the analogy criterion). The explanation of why the instance is a 
negative example points to the features that were not present in Explanation 1. These 
new features are used to particularize both bounds of the version space. 

Let us consider the objects ·screening-cap·. 'loudspeaker' and 'scotch-tape' (an 
adhesive tape). They also satisfy the analogy criterion (the upper bound of the condi­
tion version space) but the corresponding instance is rejected by the user (see Figure 
19-19). 

In this case. DISCIPLE looks for an explanation of the failure because this ex­
planation points to the important object features that were not contained in Explana­
tion 1. The explanation is that 'scotch-tape' is not fluid (therefore, it might not be 
applied on a curved surface): 

Failure Explanation: NOT (scotch-tape TYPE fluid) 

That is, the concept represented by 'z' must be fluid. Therefore, DISCIPLE will 
l, specialize both bounds of the version space by adding the '(z TYPE fluid)':
" " 

IF 

G:upper bound 

(z GLUES x) & (z GLUES y) & (z TYPE flOid) 


S:lower bound 

(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) & 

(z GLUES x) & (z GLUES y) & (z TYPE fluid) 


THEN 
General Rule 1: 
solve the problem 

ATIACH OBJECT x ON y 

:\i.. 
::r;;. 
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by solving the subproblems 
APPLY OBJECT z ON x 

PRESS OBJECT x ON y 

In another situation, failing to glue two objects whose surfaces do not fj~ each 
other, DISCIPLE discovers the condition that the objects should partially fit: 

IF 
G:upper bound 
(z GLUES x) & (z GLUES y) & (z TYPE fluid) & 
(x PARTIALLY-FITS y) 

S:lower bound 


(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) & 

(z GLUES x) & (z GLUES y) & (z TYPE fluid) & 

(x PARTIALLY-FITS y) 

THEN 
General Rule 1: 

solve the problem 
AITACH OBJECT x ON y 

by solving the subproblems 
APPLY OBJECT z ON x 
PRESS OBJECT x ON y 

The learning process decreases the distance between the two bounds of the ver­
sion space. This process should, in principle, continue until the lower bound be­
comes identical with the upper one. 

In our case, other negative examples will show that 

(x TYPE solid) & (y TYPE solid) & (z ISA adhesive) 

·are necessary features of the objects 'x" 'y', and 'z'. Thus one learns the rule in 
Figure 19-6. 

However, since the domain theory is weak, we should expect that this will not 
always happen. Therefore, we will be forced to preserve two conditions (the upper 
bound and the lower bound) .. instead of a single applicability condition. We propose 
to define such a case as being typical of an uncertain explanarion (in which uncer­
tainty is not expressed by numerical means). 

19.5.5.3 Active Experimentation 

In the analogy-based mode DISCIPLE may generate many instances of the rule 
to be learned. However, they are not equally useful for searching the version space. 
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Therefore, in the empirical learning mode, DISCIPLE will determine the features of 
the most useful instances, asking for the generation of such instances. Its strategy is 
to generalize the lower bound of the version space by generalizing the referred ob­
jects (i.e., 'mowicoll', 'ring', and ·chassis-membrane-assembly'). It will therefore 
ttY to climb the generalization hierarchy of these objects in such a way as to preserve 
consistency with the necessary condition. During this generalization process, several 
situations may occur: 

• there are different ways to generalize; 

• the generalization may cover objects that are not guaranteed to produce posi­
tive examples of the rule. 

When faced with such problems, DISCIPLE will ask the user "clever" ques­
tions (as, for instance, in [Sammut and Banerji, 1986]) whose answers allow it to 
take the right decision. This process is illustrated in [Tecuci, 1988]. 

19.5.6 Developing the Domain Theory 

As has been shown in Section 19.5.3.2, DISCIPLE looks for explanations in its 
knowledge base. Because the domain theory is weak, we may expect that it will not 
always contain the right pieces of explanations. In such situations the pieces of the 
explanati.on must be provided by the user. 

Let us consider, for instance, that the explanation of the failure in Figure 19-19 
was provided by the user. In this case the domain theory will be enriched by storing 
this explanation: 'NOT (scotch-tape TYPE fluid),. 

More significantly, as a consequence of updating the Lower Bound of the ver­
sion space, the following relations between the objects that previously generated 
positive examples of the rule (and are therefore supposed to satisfy the Lower 
Bound) arc added to the domain theory: 

(mowicoll TYPE fluid) & (neoprene TYPE fluid), 

19.6 LEARNING IN AN INCOMPLETE THEORY DOMAIN 

19.6.1 A Sample of an Incomplete Theory 

In the case of DISCIPLE, an incomplete theory of a domain may lack some 
object descriptions, inference rules, or action models. Also, it may contain incom­
plete descriptions of these. 

An incomplete description of an object lacks certain properties or relations 
with other objects; an incomplete action model lacks some precondition predicates 
or some effect predicates; and an incomplete inference rule lacks some left-hand side 
or right-hand side predicates. 

http:explanati.on
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'<Ix. '<Iy [(x. GLUED·ON y) ~ (x ATTACHED·ON y») 

'<Ix '<Iy '<Iz {(z ISA adhesive)&(z GLUES x)&(z GLlJES y)&(z BETWEEN x y) 
~(x. GLUED·ON y)] 

'<Ix. '<Iy [(x. GLUES y) ~ (x. ADHERENT-ON y)J 

Figure 19..:.20: Incomplete descriptions of the objects from Ex.ample 1 

Action Preconditions Effects 

ATTACH OBJECT It OS y (x TYPE solid) & 
(y TYPE solid) 

(x ATTACHED·ON y) 

APPLY OHmer z ON x. (z ADI mRENT-ON x) & 
(x TYPE solid) 

(z APPLIED·ON x.) 

Figure 19-21: Incomplete models of two actions from Example 1 

A sample of an incomplete theory about Example 1 (Figure 19-5) is given in 
the Figures 19-20 and 19-2l. 

As one may notice, the explicit properties and relations of the objects 'ring', 
'chassis-membrane-assembly' and 'mowicoll' are the ones considered in the case of 
the weak theory (see Figure 19-13). 

Also notice that this incomplete theory lacks entirely the model of the action 
·PRESS'. It also contains an incomplete model of the action' APPLY', model lack­
ing the precondition predicate '(z TYPE fluid)'. 

19.6.2 General Presentation of the Learning Method 

In this case, the learning method combines the two learning methods presented 
previously. First, the system will construct an incomplete proof of Example 1 and 
will generalize it, as in a complete theory. In this way, it will determine an over-
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generalized explanation of Example 1. Then, the system will use the overgeneralized 
explanation as an analogy criterion to perfonn experiments and to synthesize the 
general rule, as in a weak theory: 

1. 	 Prove that the solution indicated by the user is indeed a solution of the problem 
to solve. Because the domain theory is incomplete, the system may ask the user 
focused questions in order to fill the possible gaps in the proof. The leaves of 
the proof tree represents an incomplete explanation of Example 1. 

2. 	 If the user's solution contains new actions, then use the proof found in step 1 in 
order to define initial version spaces for the models of these actions. As a side 
effect of rule learning, DISCIPLE will learn the models of these new actions. 

3. 	 Overgeneralize the proof tree found in step 1, as in a complete theory. If an 
action model is incompletely learned then use the upper bound of its precondi­
tions and effects. The leaves of the overgeneralized proof tree represent an 
overgeneralized explanation of Example 1, being Laken by DISCIPLE as an 
analogy criterion. 

4. 	 Formulate a reduced version space for the rule to be learned, as in a weak the­
ory, by using the explanation found in step 1 and the overgeneralizcd explana­
tion found in step 3. 

5. 	 Search the rule in the version space defined in step 4 by perfonning experi­
ments, as in a weak theory. Use the overgeneralized proof detennined in step 3 
in order to find the explanations of the failures. 

In the next section we shall illustrate this learning method. 

19.6.3 Incomplete Proving of the Example 

n Even when the objects, the inference rules, and the actions are incompletely 
specified, one may be able to construct a proof tree, which lacks some parts of the 
complete proof tree (see Chapter 18, this volume and [Wilkins, 1988]). 

, When the system lacks inference rules or action models, it will try to sketch the 
proof tree both top-down and bottom-up, and will ask the user focused questions, in 

n order to connect the different parts of the proof. 
Using the incomplete theory about Example 1, presented in the previous sec­

tion, the system may build the following proof of Example 1 (see Figure 19-22). The 
dotted lines from the proof tree do not result from the domain theory but are hypoth­
eses made by the system and confinned by the user. For instance, the system makes 
the hypothesis that 

(mowicoll BETWEEN ring chassis-membrane-assembly) 
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(ring ATTACHED-ON chassis-membrane-assembly) 

~ 
(ring GLUED-ON chassis-membrane-assembly) 

(mowicoll 
ISA 
adhesive) chassis-membra e-assembly) ring 

c hassi s-mem b rane -asscm b 1 y) 

/ 
OBJECT ring ON chassis-membrane-asscmbly 

/' 
APrGED-ON ring) 

t 

APPLY OBJECT mowicoll ON ring 

(r i n g 
TYPE 
solid) 

(mowicoll 

(mowicoll 
ADHERENT-ON 

(mowicoll GLUES ring) 

Figure 19-22: An mcomplete proof of Example 1 

is an effect of the action 

PRESS OBJECT ring ON chassis-membrane-assembly 

from the fact that all the other left-hand side literals of the inference rule 

'r:/x 'r:/y 'r:/z [(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 
(z BETWEEN x y) =<> (x GLUED-ON y)] 

are true in the current situation, that is 

[(mowicoll ISA adhesive) & (mowicoll GLUES ring) & 
(mowicoll GLUES chassis-membrane-assembly)] = TRUE 

and the literal '(mowicoll BETWEEN ring chassis-membrane-assembly)' is not 
known to be true. 
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Explanation 1: 


ad/ive 


fA 
mow ico ll __.-....;G;;.,;L;;.,;L;;.,;1:;;,;S;....-__....... r I n g 


chassis-membrane-assembly 

Figure 19-23: 	 The relevant fealures of Example 1. revealed by the proof tree in Figure 
19-22 

Comparing the proof tree in Figure 19-22 with the complete one in Figure 19­
11, one may ~sily notice that it lacks some l~ves. Nevertheless, the leaves that are 
present represent some important features of the objects from Example 1; features 
that in the case of a weak theory would correspond to the explanation of Example I 
shown in Figure 19-23. 

19.6.4 Defining Version Spaces for the Unknown Actions 

The incomplete proof allows one to define initial version spaces for the m(xkls 
ofthe unknown actions used in the proof. For instance. one may define the following 
version space for the action 'PRESS': 

4 
Action Preconditions EfTects 

PRESS OBIEer x ON y 

upper bound: 
(z APPUED-ON x) 

. 
lower bound: 
(z APPUED-ON x) & 
(x ISA ring) & 
(y ISA chassis-membrane­
assembly) & 
(z ISA mowicoll) 

upper bound: 
(z BElWEEN x y) 

lower bound: 
(z BElWEEN x y) & 
(x ISA ring) & 
(y ISA chassis-membrane­
assembly) & 
(z ISA mowicoU) 

The lower bounds for the preconditions and effects are taken directly from the 
proof tree. The upper bound of the effects is the generalization of the lower bound 
(rnowicoll BETIVEEN ring chassis-membrane-assembly) taken from the premise of 
the inference rule 

I 
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(x ATIACrD-ON Y) 

(x GLUED-ON y) 

(z BETfEEN x Y) 

PRESS OBtCT x ON y 

(z APPLfDoON x.) 

APPLY z ON x. 

(z ISA adhesive) 

ERENT-ON x) (x. TYPE solid) 

(z GLUES x) 

Fi~urc 19-24: The generalization of the proof in Figure 19-22 

V'xV'yV'z(z ISA adhesive) & (z GLUES x) & (z GLUES y) & 

(z BETWEEN x y) ::::> (x GLUED-ON y)] 


The upper bound of the preconditions is the generalization of the lower bound, 
taken from the effects of the model of the action ·APPLY OBJECT z ON x'. During 
the lco.rning of the decomposition rule in Figure 19-6, the system will also refine the 
model of the action 'PRESS'. 

19.6.5 Generalization of the Incomplete Proof 

Once the proof in Figure 19-22 is built. the system will generalize it. as in a 
complete theory (see Figure 19-24). 

Let us notice that. for generalizing the proof. the system used the upper bounds 
of the preconditions and effects of the action 'PRESS'. 

19.6.6 Determining a Reduced Version Space for the Rule to Be 
Learned 

As in the case of a weak theory, the Explanation 1 in Figure 19-23 may be 
rewritten as a Lower Bound for the applicability condition of General Rule 1(Figure 
19-25). Also, the leaves of the generalized proof tree in Figure 19-24 provide an 
overgeneraiized explanation of Example 1. This overgeneralized explanation corre­
sponds to the analogy criterion from a weak theory and is taken by DISCIPLE as an 
Upper Bound for the applicability condition of General Rule 1 (see Figure 19-25). 
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IF 

G:upper bound (analogy criterion) 


(x TYPE solid) & (z ISAadhesive) & (z GLUES x) & 

(z GLUES y) 


S:lower bound. (explanation 1) 

(x ISA ring) & (x TYPE solid) & 

(y ISA chassis-membrane-assembly) & 


(z ISA adhesive) & (z GLUES x) & (z GLUES y) 


THEN 

General Rule 1: 

solve the problem 

ATIACH OBJECT x ON Y 

by solving the subproblems 
APPLY OBJECT z ON x 


PRESS OBJECT x ON y 


Figure 19-25: A reduced version space for the rule to be learned 

Therefore, as in a weak theory. the system is able to formulate the following version 
space for the rule to be learned: 

19.6.7 Searching the Rule In the VerSion Space 

As soon as the version space from Figure 19-25 has been determined, rule 
learning will continue as in a weak theory. This time, however, the generalized proof 
tree in Figure 19-24 provides a focus for the process of finding the explanations of 
the failures. To illustrate this, let us consider again the failure in Figure 19-19. 

In this case, the system generates the instance of the generalized proof in Fig­
ure 19-24, corresponding to this problem-solving episode (by replacing 'x', 'y', and 
'Z' with 'screening-cap', 'loudspeaker'. and 'scotch-tape', respectively). 

The fact that the user rejected the solution proposed by the system proves that 
the leaves of the instantiated tree do not imply the top of the tree (the leaf predicates 
are true but the top predicate is not). 

:., This means that some action models or inference rules are faulty (incomplete. 
{ 

in our case). To detect them, the system follows the proof tree from bottom up, ask­
ing the user to validate each inference step. If the user says that the effect of an ac­

-~ .­ tion or the consequent of an inference rule is not true, then the corresponding action 
~ model (inference rule) may be the incomplete one. 
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Therefore, in an incomplete theory, finding the explanations of the failures re­
duces to finding the knowledge that is lacking from the knowledge pieces. In this 
case, the generalized proof in Figure 19-24 plays the role of a justification Structure 
for the rule to be learned, as in [Smith, el al., 1985]. 

19.7 EXPERIMENTS WITH DISCIPLE 

We have implemented a version of DISCIPLE in Common LISP [Steel~, 1984] 
and we have used it to learn rules in several domains as, for instance, manufacturing, 
commonsense planning, chemistry, and architecture [Kodratoff and Tecuci, 1987; 
Tccuci and Kodratoff, 1990]. 

With a very poor theory of chemistry,l DISCIPLE was able to learn, starting 
from the example of the chemical reaction (NaOH + HCI ---1 H20 + NaCl), that, in 
general, (Base + Acid ---1 Water + Salt). More precisely, starting from the example 

the problem 

COMBINE SUBSTANCEl NaOH SUBSTANCE2 HCl 
has the following solution 

RESULT SUBSTANCEl H20 SUBSTANCE2 NaCl 

DISCIPLE learned the following rule: 

IF 
G:upper bound 
(b COMPOSED-OF xl) & (b COMPOSED-OF x2) & 

(a COMPOSED-OF x3) & (a COMPOSED·OF x4) & 

(w I'SA water) & (w COMPOSED-OF xl) (COMPOSED-OF x3) & 

(s ISA salt) & (s COMPOSED-OF x2) (s COMPOSED-OF x4) & 

(s (COMPOSED-OF ANION-OF) a) & 
(s (COMPOSED-OF CATION-OF) b» 

S:lower bound 

(b ISA base) & (b COMPOSED-OF xl) & (b COMPOSED-OF x2) & 


(a ISAacid) & (a COMPOSED-OF x3) & (a COMPOSED-OF x4) & 


(w ISA H20) & (w COMPOSED-OF xl) & (COMPOSED-OF x3) & 


(s ISA salt) & (s COMPOSED-OF xl) & (s COMPOSED-OF x4) & 

(s (COMPOSED-OF ANION-OF) a) & 

(s (COMPOSED-OF CATION-OF) b» & 


I This application was suggested by D. Sleeman. 
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(xl ISA OH) & (x2 ISA METAL) & (x3 ISA H) & 
(x4 ISA tvIETALLOID) 

THEN 
General Rule 
the problem 

COMBINE SUBSTANCEl b SUBSTANCE2 a 
has the following solution 

RESULTSUBSTANCElwSUBST~~CE2s 

The lower bound of this rule says that all the positive examples share the struc­
ture (Base + Acid -+ Water + Salt), together with the appropriate components: For 
instance, x2 is the metal of the base b (because "b COMPOSED-OF x2") that will go 
to the salt s (because "s COMPOSED-OF x2"). 

The upper bound of the rule says that none of the negative examples met 
shared the structure (Something + Something -+ Water + Salt) together with the ap­
propriare components; i.e., there might be compounds leading to warer and salt, 
other than bases and acids. 

The application from architecture2 consists in dcsi1:,'Iling a building. In this ap­
plication, DISCIPLE may learn rules to refine specifications of objects. For instance, 
starting from an example of a door separating a hall from a sleeping room (for which 
the expert established that it should be opened towards the sleeping room). DISCI­
PLE learned a general rule for establishing the direction of opening of the doors: "A 
door separating a house-piece from a room should be opened towards the room." 

From these experiments we have learned the following: 

• It is fairly easy to define a small initial domain theory for DISCIPLE; 
• Although DISCIPLE has knowledge to generate hundreds of examples it actu­

ally generates a few of them only in order to learn a rule. 

19.8 CONCLUSIONS 

Trying to cope with the complexity of the real-world applications, we have 
made the hypothesis that DISCIPLE's domain theory is nonhomogeneous, describ­
ing completely some parts of the domain, but only incompletely or even poorly, the 
other parts. The use of DISCIPLE is tuned to problem-solving situations in which 
some variabilization is meaningful. For instance. a set of zeroth-order rules solving a 
problem will not yield interesting results under DISCIPLE. 

2 

Suggested by F. Gucna and K. Zrcik. 
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We have shown how the system is able to learn the same general rule from the 
same example. by using a method corresponding to its theory about the example. 

In the context of a complete theory. DISCIPLE uses explanation-based learn­
ing. It is thus able to learn a justified rule from a single example and may also reject 
incorrect examples. 

"The learning method in the context of a weak theory integrates different leam­
ing paradigms: explanation based le:lI11ing, learning by analogy, empiricalle:lI11ing. 
and learning by questioning the user. Among the most relevant features of this leam­
ing method one could mention: 

• the notion of "explanation" in a weak theory and a heuristic method to find 
such explanations, 

• the use of analogy to define a reduced version space for the rule to be le:lI11ed, 
• the use of both the explanations of the successes and the explanations of the 

failures to search the rule in its version space, 
• the fonnulation of "clever" questions in order to extract useful knowledge from 

the expert, 
• the possibility of hiding the learned rules from the expert, 
• a great confidence in the human expert. 

In the context of an incomplete theory, DISCIPLE le:lI11s by combining the 
method corresponding to the complete theory with the method corresponding to the 
weak theory. This method borrows features from both the learning method in a com­
plete theory (may reject incorrect examples, tearns justified rules) and from the 
learning method in a weak theory (use of analogy, clever questions to the user, etc.). 

It is interesting to notice that. although in each of the presented cases the sys­
tem learned the same general rule. the effect of this rule on the future behavior of the 
system depends of the domain theory: In a complete theory, the learned rule im­
proves only the performance of the system, in a weak theory it develops the compe­
tence of the system, and. in an incomplete theory. it may develop both the perfor­
mance and the competence. 

Let us also notice that. by the integration of these three leaming methods, DIS­
CIPLE proposes a solution to the so-called "falling off the knowledge cliff' problem 
of current systems. This problem is that a system perfonns well within the scope of 
the knowledge provided to it, but any slight move outside its narrow competence 
causes.the performance to deteriorate rapidly [Michalski, 1986]. On the contrary, in 
DISCIPLE, the move from one part of the application domain, characterized by a 
complete theory. to another part, characterized by an incomplete theory or by a weak 
theory, causes only a slight deterioration of the performance, this effect being ob­
tained by a corresponding replacement of the leaming method used. 

There arc also several weaknesses of DISCIPLE, on which will shall direct our 
future research. For instance, the expressions DISCIPLE deals with are made of 
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predicates, constants, and variables, but no actual function evaluation is going to 
. take place. 

A semantic limitation comes from the fact that the generality of the learned 
rule is limited by the generality of the overgeneralized explanation (the analogy cri­
terion); which may not be in the most general fonn. However, the rule may be fur­
ther generalized, in response to a problem-solving situation in which the rule does 
not apply. and the user says that it should apply. In this case, the condition of the rule 
may be generalized to cover the new situation as well. 

Also, the method of finding an explanation in a weak theory is not powerful 
enough. Other sources of knowledge are needed, as well as metarules for finding far 
off explanations. One possible extension of the current method is suggested by the 
way CLINT [De Raedt and Bruynooghe, 1989] changes its description language in 
order to be able to learn a concept. DISCIPLE might also use an ordered series of 
explanation schemas E 1, E2, ... , En, .... First, it will be looking for an explanation 
of the form El (for instance, a path of length 1 between two concepts). If no such 
explanation is found, then it will be looking for an explanation of the form E2 (for 
instance, a path of length 2 between two concepts), and so on. 

While DISCIPLE uses control knowledge in the fonn of metarules [Tecuci, 
1988]. such knowledge is not learned-it must be provided by the user. Therefore, if 
two expens provide different solutions to the same problem, DISCIPLE simply gen­
erates two different rules. The learning mechanisms of DISCIPLE should be used to 
propose explanations of this difference and find metaexplanations that can become 
metapreconditions on the use of the rules. 

An important future direction of research consists in developing the learning 
methods of DISCIPLE in order to deal w.ith other types of imperfections in the do­
main theory [Mitchell, Keller, and Kedar-Cabelli, 1986; Rajamoney and DeJong, 
1987]. We shall consider, for instance. imperfections resulting from the fact that ccr­
tain pieces of knowledge (objects, inference rules. action models) contain minor er­
rors in their definitions in that parts of these definitions may be either more general 
or less general than they should be. 

A weakness of all the learning apprentice systems is that they need an initial 
" domain theory and provide no means of defining it. Although DISCIPLE facilitates 

this task by accepting a nonhomogeneous domain theory. the task remains difficult 
~,. A solution here is that proposed by BLIP [Morik. 1989], which is an interactive 
~ learning system mainly concerned with the construction of a domain theory as a first 
:. phase of building a knowledge-based system. Therefore. a very promising research 

direction seems that of building a system incorporating the capabilities of BLIP and 
_ DISCIPLE. Such a system could be an effective tool for building knowledge·based 
~ systems: 
~:.. 
~. 

• 	In the first stage. the systcm and the user will build together an initiallhcory of 
lhe application domain. This theory, containing elementary knowledge about 
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the domain (basic concepts and inference rules), will be neither complete nOr 
entirely correct; 

,I' • In the second stage, the system and the user solve problems together and, dur­
ing this cooperative problem solving, the system will learn general problem­
solving rules. Since this learning takes place in the context of an imperfect 
domain theory, the learned rules will accumulate exceptions. These exceptions 
correspond in fact to lacking concepts in the domain theory. When too many 
exceptions are accumulated, the domain theory has to be refined. Therefore, 
one reenters the first stage and reformulates the domain theory to better charac­
terize the current knowledge of the system. 

There are also several lessons we have learned from the design of DISCIPLE. 
One is to cope with the complexity of real-world applications. one should use any 
available learning technique. Indeed, the different learning paradigms have many 
complementary prerequisites and effects. Therefore they may be synergistically 
combined. 

Another lesson is that full formalization of imperfect theories is short-time 
harmful. Indeed, forcing the expen to completely formalize a domain theory (which 
may not even have such a complete theory) may result in a degradation of theknowl­
edge he provides. 

Last, we have discovered that overgeneralization is not only harmless. but also 
useful and necessary when interacting with a LL{jer, allowing the identification of fea­
tures usually neglected by the expert. 
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