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ABSTRACT 

This paper presents a method for applying inductive learning techniques to texture description. 

Local features of texture described as eight attributes have been extracted for each pixel from 

small w:ndows (5x5, 7x7 or 9x9) centered around the pixel and extra ninth attribute is 

computed from larger global area (25*25) as co-occurrence matrix parameter. All nine 

attributes form an event, which is essentially a point in a 9-dimensional attribute space. Sets of 

such events are computed for different texture classes, and the inductive learning AQ algorithm 

is used to generate a given class description. Such learned descriptions are evaluated using new 

qifferent texture samples. Results of experiments performed on eight textural images are 

presented. 
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1 INTRODUCTION 

Among the most informative pro~erties th:!: playa role in recognizing ",,'isual objects 

are their color and texture. The different textures in an image are usually very apparer.t to a 

human observer, but an automatic description of these patterns has proven to be complex, 

Texture provides very useful information for the automatic interpretation and recognition of 

the image by a computer. Textural features can be crucial for the segmentation of an image 

and can serve as the basis for classifying image parts. Many, if not most, objects in one's 

familiar environment can be recognized on the basis of just these two properties; Le., without 

information about their shape, size or other characteristics. While measuring color is 

relatively easy, "measuring" texture is·difficuit. Texture may be described as the pattern of 

the spatial arrangement of different intensities (or colors) with two major characteristics; its 

coarseness and its directionality. 

Traditionally, all methods of textural analysis have taken either the statistical approach 

[8], in which the statistical properties of the spatial distributions of the gray levels are used as 

the texture descriptors, or the structure [17] approach which conceives texture as an 

arrangement of a set of spatial subpatterns according to a certain placement rules. The 

statistical approach is usually motivated by a lack of strong regular patterns that are obvious 

in natural textures, and by a conjecture by lulesz [10,11] that second-order probability 

distributions suffice for human discrimination between two texture patterns. 

The structural texture models are best suited to situations in which complete 

descriptions of individual texture primitives are derivable from the image. This usually means 

that the texture primitives consist of relatively large numbers of pixels. and that the 

boundaries of the primitives are consistently discernable. The statistical model usually 

describes texture by statistical rules governing the distribution and relation of gray levels. 

This class of models involves the use of statistical tools. The statistical texture models are 

suitable when the sizes of the texture primitives tend to be on the order of few pixels. The 

statistical approach works well for many textures which have barely discernible primitives .. 

However, i~ can also be effective in cases of large texture primitives if the boundaries of the 

primitives are highly convoluted. or if the interior areas are not completely homogeneous in 

intensity. A disadvantage of ~s statistical method is that it is highly dependent on the chosen 

resolution. 



The dichotomy between these two classes, however, is not clear-cut, since statistical 

tools and concepts are introduced into models which are basically structural, and statistical 

models can describe pattern-like textures cnd vice versa. This division is therefore sometimes 

artificial. 

Our interest in this work is to produce symbolic descriptions of texture that are usable 

at the higher levels of a symbolic reasoning based vision system. These symbolic 

descriptions are used to isolate the texture primitives themselves in the original texture image. 

Once the texture primitives have been isolated, we compute "placement rules" via inductive 

learning techniques. We use this method for both regular and irregular (random) patterns, as 

we incorporate statistical features of an image. The structural features are derived for each 

pixel from a small a window using neighboring pixel gray level values as the primitives of an 

image. As the statistical texture feature, parameters derived from co-occurrence matrices were 

chosen as the most powerful ones. 

The method described in this paper has been tested on a number of different texture 

images from the Brodatz Album of Textures [4]. We present results of recognition only for 

eight homogeneous. noisy textures. The results show that the low-level vision symbolic 

computation can be successfully performed even on those kind of textural images. 

Since the co-occurrence matrix techniques for texture description are crucial for our 

method, the next chapter describes these techniques thoroughly. 

2 STATISTICAL METHODS OF 'CO-OCCURRENCE MATRICES 

In these methods texture is defined by a set of statistics extracted from a large 

ensemble of local picture properties [8]. Limited set of textures can be classified by some 

very simple statistics such as the gray level first-order statistics. It has been shown that 

humans are sensitive to second-order statistics. According to Julesz the texture discrimination 

has revealed the existence of a separate "pre attentive visual system" that cannot process 

complex fonns, yet can, almost instantaneously and without effort, recognize differences in a 

few local features, regardless of where they occur. These features have been called "textons" 

and are elongated blobs. Examples of the second-order statistics are the gray level co­

occurrence matrix and the gray level difference histogram. The spatial gray level dependence 

method is based on the estimation of the second-order joint conditional probability density 



functions/{iJ/d, 0). Each/{..) is the probJbility of going from gray level i to gray level}, 

given the intersample spacing d and the direction is given by the angle o. The estimated 

values can be \vritten in matrix form, the so-called co-occurrence marrix. Let d=(cb.:, dy) be a 

vector in the (x,),) plane. For any such vector and for any image /(X,y) , we can compute the 

joint probability density of the pairs of gray levels that occur at pair of points separated by d. 

This joint density takes the fonn of an array m, where m(i,l) is the probability of the pair of 

gray levels (i,)) occurring at separation d. This array is M*M, where M is the number of 

possible gray levels. For discrete image it is easy to compute this array/matrix, by counting 

the number of times each pair of gray levels (iJ) occur at separation d=(dx,dy). For example, 

if an image is 
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and (dx,dy)=(l,O), then the corresponding co-occurrence matrix is, 

1 2 1 o 
o 1 3 o 
o o 3 5 
o o 2 2 

where the entry in row i and column j is the nwnber of times gray levels i occurs horizontally 

adjacent and to the left of gray level j. From a co-occurrence matrix a nwnber of features can 

be derived. If a texture is coarse, and d is small compared to the sizes of the texture elements, 

the pairs of points at separation d usually should have similar gray levels. This means that the 

high values in the m should be concentrated on or near its main diagonal. For a fme texture, 

ifd is comparable to the texture element size, then the gray levels of points separated by d 

should often be quite different, so that the high values in m should be spread o~t relatively 

uniformly. Thus a good way to analyze texture coarseness would be to compute, for various 

values of the magnitude d, some measure of the scatter of the m values around the main 

diagonal. Similarly, if a texture is directional, i.e., coarser in one direction than another, then 

the degree of the spread of the values around the main diagonal in m should vary with in the 



diIection of d. Thus texture directionality can be analyzed by comparing the spread measures 


of m for various directions. A set of 14 textural features can be extracted from the co­


occurrence matrix. These features contain information about such image textural 


characteristics as homogeneity, gray-tone linear dependencies (linear structure), contrast, 


number and nature of boundaries present, and the complexity of the image. Usually four 


features are derived from the co-occurrence matrix (these four have been used in experiments 


to find out the one that is mot useful). These are: 


Contrast, Angular Second Momentum, Entropy, and Correlation. 


1. Contrast: CON=L (i-j)2m(ij) 
TIlls is essentially the moment of inertia of the matrix around 
its main diagonal: it is a natural measure of the degree of 
spread of the matrix values. 

2. Angular Second 

Momentum : ASM=L m(i,j)2 
This measure is smallest when the m(ij) are all as equal as 
possible; it is larger when some values are high and others are 
low, as when the values are clustered near the main diagonal, 
for example. 

3. Entropy: ENT=-L m(i,j)logm(iJ) 
This measure is the largest for equal m(ij) and smallest when 
they are very unequal. 

4. Correlation : COR=L [ijm(ij)-dxdy]/(sxsy)' where rlx and Sx 
are the standard deviations of the row sums of matrix m and 
d." and Sy are analogous statistics of the column sums. 
This measures the degree to which the rows (or columns) of 
the matrix resemble each. It is high when the values are 
uniformly distributed in the matrix, and low otherwise. 

The rust, and second-order statistics (co-occurrence matrices) are by far the most 

used statistical methods for texture discrimination. One problem with the co-occurrence 

matrices is related to the need to define the distance d and angle (J which will fully specify the 

method. An additional problem related to the nth order statistics in general and the second 

order in particular is the fact that they depend only on the relative position of the n points, but 

not on their absolute position. For cloud patterns or blood. smears this might be a reasonable 

assumption, since objects can occur anywhere in the scene. For other type of textures as 
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encountered; for example, in chest x-rays or portrait photographs it would not be reasonable 

to aSSllme position independence. The other problem is that not all fe~ltures derived from co­

occurrence matrix are invariant under monotonic gray-tone transformation. Texture is 

independent of tone. Of 14 textural features from co-occurrence matrix, the Angular-Second 

Momentum, the Entropy, the information measure of correlation have the invariance 

property. 

3 STRUCTURAL METHODS 

The structural approach assumes that a set of primitive units ("patterns") can be easily 

identified. It then defines the texture as a combination of such primitives according to 

different placement rules. The rules of placement of texture primitives are viewed. as the rules 

of grammar. Texture classification is then the detennination of whether or not a particular 

texture exhibits a pattern which belongs to a given language. Structural approaches differ in 

their choice of primitives, such as pixels, gray level peaks, line segments, or tiles. 

One of the early examples of the structural approach is Tomita; et al [19]. They defme 

a texture element ("primitive") as the connected set of pixels. The primitives are characterized 

in terms of the following properties: brightness,· area, size, directionality and curvature. 

According to these properties the elements are classified into a number of classes, and the 

above properties are used as the textural features. In recognition of an unknown sample, the 

textural features are evaluated. and compared against those of each learned. texture class. Lu 

and Fu [6] have proposed. a texture model in which a texture pattern is divided into fixed-size 

windows. A tree grammar is used to characterize windowed patterns of the same class. This 

model was used for texture synthesis as well as discrimination. 

Structural methods are appropriate for highly patterned textures, with regular repeated 

structures. These methods can be divided into the following two classes: 

1 . 	 Placement rules; 
A grami:nar is used to describe and build the rules that govern textural structure. The 

grammar describes how to generate patterns by applying rewriting rules to a small 

number of symbols. Through a small number of rules and symbols, the grammar can 

generate complex textural patterns. 
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2 . 	 Primitive extraction; 

Different primitive features are measured (area, perimeter, direction, etc.) To 

discriminate between textures, features derived from the property value histograms 

can be used. 

There are some major problems with structural methods. First, it is not easy to 

identify the primitives unless the texture is anificial or not complex. Secondly, the definition 

that the patterns are repeated according to some prespecified rules should allow for a 

stochastic change in the replication process, and the same should apply for the patterns 

themselves. 

4 A MACHINE LEARNING APPROACH TO TEXTURE CLASSIFICATION 

This approach of texture description employs inductive learning techniques. These 

techniques are used for automatically extracting the most significant spatial properties of a 

surface and texture. This method was originally proposed by Michalski [12], and was tested 

using ILLIAC ill computer facilities. Early experiments produced very good results in 

discriminating even between very similar structural textures. Subsequently, this approach 

was applied to determine faults in laminates for aircraft wings using ultrasound images [2]; in 

the TEXPERT system. Recently, a newer version of this system (presented in this paper), 

that combines structural and statistical features, has been implemented. TEXPERT is 

designed for recognizing objects by the properties of their surfaces and textures on the basis 

of two-dimensional digital images (Figure 1). Given a series of images classified by a human 

tutor into named surface and textural regions, TEXPERT generates a procedure for 

classifying pixels into these regions. Such a procedures consists of a sequence of operators 

that transform any given texture into a uniform set of labels characterizing the individual 

texture type. The major step in the procedure is the formulation of rules characterizing spatial 

properties of a texture. This is performed by the inductive learning program AQ15 [14] (see 

appendix). To generate the whole procedure, the system first searches for the most 

discriminatory image quantization levels (a parameter that represents a inconsistency of class 

descriptions is used. to guide changes of quantization levels so that inconsistency is below the 

threshold value of this parameter, the highest possible number of quantization levels for the 

AQ15 attribute is 55). The system then extracts a set of spatial texture samples (events) from 

different texture regions. These events are supplied to the learning program that formulates 



the rules. In the testing phase, the system applies the procedure to unclassified images and 

partitions them into different texture regions. 

The concept descriptions learned by AQl5 are represented in VLI, which is a 

simplified version of the Variable-Valued Logic System VL, and are used to represent 

attributional concept descriptions. A description of a concept is a disjunctive nonnal fonn 

which is called a cover. A cover is a disjunction of complexes. A complex is a conjunction of 

selectors. A selector is a form: 

[L # R] 

where, 

L is called the referee, which is an attribute. 

R is called the referent, which is a set of values in the domain of the attribute in L. 

# is one of the following relational symbols: =, <, >, >=, <=, <>. 

In the AQ15 program, each generated complex is associated with a pair of weights: roral (t­

weight) and unique (u-weight). The following is the example of a complex: 

[xl=1..3][x2=l][x4=O][x6=1..7][x8=1] (tot81:6, unique:2) 

The t-weight of a complex is the number of positive examples covered by the complex, and 

the u-weight is the number of the positive examples uniquely covered by the complex. The 

complexes are ordered according to decreasing values of the t-weight. There are two methods 

for recognizing the concept membership of an instance: the strict match and the flexible 

match. In the strict match, one tests whether an instance strictly satisfies the condition part of 

a rule (a complex). In the flexible match, one determines the degree of closeness between the 

instance and the condition part. 

In TEXPERT we use truncated descriptions of a given class. The truncated 

description is the one that has some of its complexes with the lowest u-weight removed. 

Such a truncated description will not strictly match events that uniquely satisfy the truncated 

complex. We have found out through different experiments that the truncated description 

improves the performance of texture classification by reducing the noisy data coverage. The 

quantitative relationship between the complex truncation and the noise reduction in textural 

images is not yet known and is a subject for further research. 

A special tool, ATEST [16], developed to apply testing examples for assessing rules 

base performance, is used in this phase. A TEST provides the domain expen with two very 

imponant capabilities. First. it allows the expen to rapidly test a rule base on numerous 
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examples under a variety of evaluation schemes. These evaluation facilities provide 

infonnation about the overall perfonnance of specific rules or examples. This featL.::e is 

extensively used in the texture discrimination phlse. Second, A TEST provides routines th:n 

check a rule base 

for consistency and completeness. These routines can be used to point out problem areas in 

the rule base and to help the expen generate new examples. Rule perfonnance is measured by 

the degree of agreement between the system's and expen's classifications. If the procedure 

applied to the testing area proouces a high degree of agreement with a classification done by 

an expen, then it is assumed that future images can be processed without the assistance of an 

expen. 

Learning 


Testing
IMAGE ACQUIsmON 

IMAGE REDUCIlON 

EVFNfGENFRATION 

RULEACQusmON 

RULE APPUCATIONS 

TRANSFORMED IMAGE 
TESTING MODULE 

IMAGE REGENERATING 

Figure 1. TEXPERT architecture. 
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5 METHODOLOGY FOR FEATURE EXTRACTIO:\ 

Many possibilities exist for computing features to recognize texture. The best 

features will be those which define an attribute space which easily lends itself to panitioning 

performed by the learning algorithm. This section describes the methodology of computing 

and combining two categories of features described in previous sections: structural features 

of neighboring gray-level values and statistics obtained from co-occurrence matrices. This 

method is the result of numerous experiments performed in the AI Center at George Mason 

University and is a part of a large research project on learning in robotic vision. 

In all experiments we have used textural images acquired by the Perceptics system. 

Images are 512 by 512 pixels by 8 bits. The main work involved developing the methods to 

build the most representative texture features for the TEXPERT system. A good set of 

features applied during the learning phase can reduce the amount of texture infonnation that a 

system must store. Textural features are very critical for proper "tuning" of TEXPERT. 

A technique has been developed that uses co-occurrence matrices and structural 

information derived from small windows (5x5, 7x7 or 9x9) centered around the pixels. 

These windows are scanned through pixel position of the learning area and for each pixel, 

nine attributes are extracted in the following 5 steps: 

Step 1: 	 The image is input to a reduction module to optimize vertical and horizontal 

resolutions. 

Step 2: 	 A learning area is chosen, and two square windows are scanned through all 

pixel positions in this area. (Figure 2 ). 

Step 3: 	 A large window (usually 20x20 pixels) is used to compute four co-occurrence 

matrices. Each matrix is computed for one of four vector directions (Figure 

3).For each matrix, Correlation. Entropy. Contrast, and Angular Second 

Momentum are calculated. 
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abed - area used to compute 4 co-occurance matrices 

w - small window used to derive local attributes 


Figure 2. Two windows for attribute derivation. 

Step 4: 	 A decision is made as to which of four sets of parameters (for which of four 

directions) derived from co-occurrence matrices are used to enter a set of 

attributes. The correlation parameter COR is used (a measure of gray-tone 

linear-dependencies in the image) to make this decision, and the direction 

with the highest COR is chosen. The Angular Second Momentum (a measure 

of homogeneity of the image) enters the set of eight attributes as the additional 

ninth attribute. (A large number of experiments performed on Sun 3 

workstations using different texture images proved that the Angular Second 

Moment was the most useful feature). IT no direction is found in the image the 

ASM with the highest value is chosen. This attribute is scaled into 50 different 

levels. 

Step S: 	 A smaIl window is chosen according to the direction of texture found in the 

step 4. The smaIl window cut-out 8 gray level pixel values from pixels around 

the pixel for which this window is used. The local attributes derived from this 

window correlate to the attribute derived from the larger (20 x20) area 

obtained from cQ-QCcurrence matrix. This is accomplished by enhancing the 

pixel gray levels in the "besf' vector direction found from co-occurrence 

matrices. 
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Figure 3. Small windows for local attribute (neighboring gray-level values) extraction. 

(a) pixels 1 and 5 are O· (vertical) nearest neighbors at the distance d to the pixel * 
; pixels 2 and 6 are 45· nearest neighbors; pixels 4 and 8 are 135· nearest 
neighbors. (Note the distance d depends on the window size. for the 5 by 5. 7 by 
7. and 9 by 9 windows the d is 2.3. and 4. respectively. (b) the O· window is 
used to extract eight attributes for the pixel *, if the directionality of texture is 
calculated (using co-occurrence matrix parameters derived from the larger 
window) to be the nearest to O· Each pixel's gray level value is derived with 
different weights (1,0.5,0.3). (c) If there is no direction found, this window is 
applied. (d) the 45· window. 

The following is the beginning of the input file for the learning module (x9 is the co­
occurrence matrix attribute). 

parameters 
run echo maxstar Wie trim mode ambig 

1 pv 10 epx gen de neg 

variables 
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# t)'pe levels cost name 
1 lin 10 1.000 xl 
2 lin 10 1.000 x2 
3 lin 10 1.000 x3 
4 lin 10 1.000 x4 
5 lin 10 1.000 x5 
6 lin 10 1.000 x6 
7 lin 10 1.000 x7 
8 lin 10 1.000 x8 
9 lin 50 1.000 x9 

10-events 
xl x2 x3 x4 xS x6 x7 x8 x9 
1 4 8 S 8 4 4 8 12 
1 8 6 7 4 6 3 8 12 
4 7 4 S 6 6 3 2 11 
3 6 S S 4 3 2 8 12 
6 6 S 7 4 9 6 S 13 
S 4 3 6 8 4 3 S 14 
9 7 S 0 S 9 4 4 15 

The following is an example of the output from the learning module. This is already the 
truncated description. 

parameters 
test misclass tau andtype ortype threshold norm cc dweight dropa2 
yes false 0.02 average maximum O.SO no no O.SO 1.00 

domaintypes 
name type levels cost 

variables 
# type levels cost name 
1 lin 10 1.000 xl 
2 lin 10 1.000 x2 
3 lin 10 1.000 x3 
4 lin 10 1.000 x4 
S lin 10 1.000 x5 
6 lin 10 1.000 x6 
7 lin 10 1.000 x7 
8 lin 10 1.000 xl 
9 lin 50 1.000 x9 

10-outhypo 

1 [x1=S.•9] [x3=6••9] [x9:0.. 1S] 

1 [x4:6•.9] [x7;;;6••9] [x9:0 .•16] 

3 [x2=4•.9] [x4:4 ••9] [x6=0 .. S) [x9=O•.IS) 

4 [x3=S.•9] [xS:0.. 6) [x6=0.•6) [x9=O..16] 

S [x3=S .. 9) [x7:7 .•9] [x9=0 .. 15) 

6 (x1=3 .. 9) [x4=0••6) [x6=0 .. S] [x7=0 .. 4] [x9:0.. 16) 

7 [x4=0..4] [x9=0•• 14) 

I (x1=7..9] [x2=S .. 9] [xS:0••7] [x6:0..7] [x9:0•• 16] 

9 [x6=O••6] [xI='••7] [x9=O .. 15) 
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10 [xl=6..9] [x6=7 .. 9] [x7=7 .. 9] [x9:0 .. 151 

11 (x1=8 .. 9] [x7=0 .. 6] [x8:S..9] [x9:0 .. 17j 

12 [x3=0 .. 3] [x4=0 .. 3] [x9=0 .. 1Sj 

13 [x2=0 .. SJ [x5=7 .. 9j [x9=0 .. 151 

14 [x2=0 .. 6J [x3=0.A] [x5=7 .. 9] [x9=0 .. 161 

15 [xl:0..6] [x2=0 .. 4] [x6:7.. 9] [x9=0 .. 16j 

16 [x3=O .. 3] [xS=6 .. 91 Ix9=O .. 161 

17 (x3=0 .. 3j [x8:7 .. 9] 


Il·outbypo 

1 [x4=O .. 8] [x9:17.. 49] 

2 [x1=S••9] [x3=O..81 [x6=S••9] [x8=O •.71 [x9=16 .. 49] 

3 {x1=O.•S] [x3:3••S] [xS:O .. 6] [x6:4..6] [x9=16 .. 49] 

4 [xl=O .. 4] [x3=O••8] [x4=4 .. 9] [x6=S••6] [x7=4 .. 6] [x8=4 .. S] [x9:1S ..49] 

5 (x1=4] [x3=4••8] [xS:O .. 7] [x6=S .. 7] [x7:0..7] [x8=O..S] [x9=lS••49] 

6 [x1=S .. 9] [x3=O••4] [x4=4..9] [x6=7 .. 9] [x8=O .. 7] [x9=lS.. 49] 

7 [x1=O••6] [x2=S••9] [x3=O..5] [x4=O..6] [x6:7] [x7=5 .. 6] 

8 [xl=6] [x3=4] [x6=6] 

9 [x1=4••9] [x3=5] [x6=8] [x7=6] 


The attribute x9 (from the co-occurrence matrix) is present in all complexes but in 17 of the 

class 0 description (lO-outhypo), it is the last selector of a given complex. All but 8 and 9 

complexes include a selector with ~9 in the class 1 description (l1-outhypo). 

6 RESYLTS OF EXPERIMENTS 

The results obtained for eight different images using a small 5x5 window (with eight 

attributes derived from neighboring gray-level values) and 25 by 25 larger window (with one 

attribute derived from a co-occurrence matrix by scaling the Second Angular Momentum 

parameter into 50 levels) are presented in Table 1. Textures that have been used in 

experiments are depicted in Figure 4. 

The following textures from the Brodatz Album ofTextures have been used: 

1. Woolen cloth 

2. Fur 

3. Pigskin 

4. Water 

5. Pressed cork 

6. Grass lawn 

7. European marble 

8. Japanese rice paper 
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Figure 4. Textures used in experiments. 

All images have been acquired. as the 512 by 512 by 8 bits image files on the Perceptic 

system. The learning area occupied 120 by 120 pixels of the 512 by 512 image plane. 
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ASSIGNED CATEGORY 


2 41 5 83 6 7 

Table 1. Classification results-confusion matrix. 

7 CONCLUSION 

We have presented a system for generating descriptions of natural textures which can 

be used to test the effectiveness of machine learning in a textural vision domain. A 

combination of structural and statistic features was used to tune the image and learning 

algorithm to produce acceptable rules. The experiments described in the previous chapter 

show the capabilities and effectiveness of inductive learning techniques in a low-level vision 

domain. Reasonable accurate rules were able to be learned. Effective rules were generated 

using only a small percentage of the actual pixels in the image. 

Although test results are promising, they are by no means conclusive (because of the 

small number of textures tested). There is also a question of efficiency for real-time 

applications. Currently, testing is done with acceptable efficiency, but learning rules used in 
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APPENDIX 

AQ1S ALGORITHM 

In generating the description of a texture class we have been using Michalski's AQ 

inductive learning module [13] to incrementally generate map descriptions. The AQ algorithm 

is essential to our method of texture classification. This appendix gives an overview of the 

AQ algorithm. 

The AQ15 program is based on the AQ algorithm, which generates decision rules 

from a set of examples. When building a decision rule, AQ performs a heuristic search 

through a space of logical expressions to determine those that account for all positive 

examples and no negative ones. Because there are usually many such complete and consistent 

expressions, the goal of AQ is to find the most preferred one, according to flexible extra­

logical criteria. 

Learning examples are given in the form of events, which are vectors of attribute 

values. Attributes may be of three types: nominal, linear or structured (hierarchical). Events 

represent ,different decision classes or, more generally, concepts. Events from a given class 

are considered its positive examples, and all other events are considered its negative 

examples. For each class a decision rule is produced that covers all positive examples and no 

negative ones. Rules are represented in VL1 (Variable-valued Logic system 1). VLI is a 

multiple-valued logical attributional calculus with typed variables. These multi-valued 

variables are expressed by using selectors which are two-valued functions. Examples of 

selectors are: 

[x7=2,5.6] 

[weather_type=cloudy or rain] 


Conjunctions of selectors form complexes. An example of a complex is: 

[x3=2,3,5][xl=3,7] 

Complexes are assembled into covers. A cover is a disjunction of complexes describing all 

positive examples and none of the negative examples of the concept A cover is fonned for 

each decision class separately. It defmes the condition part of a corresponding decision rule. 

The following are two examples of decision rules: 
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[transport=car] <= [weather_type:c1oud)' or rain] or [Temp:40•.60] 
[transpor !=bike1 <: fweather_type=sun liTe m p>60] 

The major idea behind the covering algorithm is to generate a cover in steps, each step 

producing one conjunctive tenn (complex) of the cover. 

A condition is represented by a VLl [Michalski, 1975] complex. A VL1 complex is a 

conjunction of relational statements called selectors. A selector, representing a logical 

statement concerning the value range of an attribute, is of the following fonn: 

[attribute=Jower.range.•upper-range] 

where both lower-range and upper-range are integer numbers. For example, the VLl 

complex [x=1O..13][y=1..5][d=2] indicates that the value of the attribute x falls inclusively 

in the range between 10 and 13, the value of y falls inclusively in the range between 1 and 5, 

and the d attribute represents direction value 2. 
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