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ABSTRACT

This paper outlines basic assumptions and a theoretical basis for multistrategy task-adaptive
learning (MTL) methodology, which aims at ultimately integrating a spectrum of learning
strategies, such as empirical leaming, constructive induction, abduction, analytic leamning,
learning by analogy, and reinforcement leaming. In MTL, in response to an input, a leamer
detemines the strategy, or a combination of strategies, that is most appropriate for the learning
task. This detemination is based on the relationship between the input, the leamer's background
knowledge and the leamner’s task. By means of a simple example we show how an MTL learner
can employ, depending on the above relationship, emprical leamning, constructive inductive
generalization, abduction, explanation-based learning and abstraction.

1. INTRODUCTION

In view of an immense diversification of research in machine leaming, there is a need for
developing frameworks that would clarify relationships among different leaming paradigms and
strategies, and provide a theoretical basis for their integration. In the last few years, several
integrated systems have been developed, for example, Unimem (Lebowitz, 1986), Odysseus
(Wilkins, Clancey, and Buchanan, 1986), Prodigy (Minton et al., 1987), DISCIPLE-1
(Kodratoff and Tecuci, 1987), GEMINI (Danyluk, 1987), OCCAM (Pazzani, 1988), IOE
(Dietterich and Flann, 1988), and ENIGMA (Bergadano et al., 1990). With some exceptions,
these systems typically integrate some simple empirical approach with an analytic approach, and
do it in a predefined way. An open problem is how to develop a system that would integrate the
whole spectrum of learning strategies, and would decide by itself which strategy(ies) is most
suitable in a given situation.

This paper gives a brief account of our first efforts toward such a goal, and outlines 2
multistrategy task-adaptive learning (MTL) methodology, that aims at ultimately integrating all
major learning strategies, such as empirical leaming, constructive induction, explanation-ba
leamning, constructive deduction, leaming by analogy, and reinforcement leaming. For any given
learning situation, the system analizes the relationship between the input, the system's priof
knowledge, and the current task, and then determines which strategy, or a combination of
strategies, to apply. : .

Due to the space limitations, many underlying concepts and technical details have been omitted.
For those the reader can consult (Michalski, 1989 & 1990, Michalski and Ko, 1990). The
presented work is an extension of the ideas presented earlier in (Michalski and Ko, 1988; and
Michalski and Watanabe, 1988).

2. UNDERLYING THEORETICAL ASSUMPTIONS

Among the currently two most active methodologies for building symbolic leaming programs are
empirical leamning, which primarily exploits data, and analytical leaming, which primarily
exploits the leamer's prior knowledge. These methodologies are complementary, and theu
usefulness depends on the specific domain of application. Most of the leaming problems in the
real world, however, do not seem to fit well either the empirical or the analytic mold- This 1S
because most practical leamning problems require an intricate and mutually interdependent
interaction between the new facts available to the leamer, and the leamer’s prior knowledge. The
latter is rarely complete, directly relevant to the task and/or totally correct, and a leaming process
may have to simultaneously create new knowledge, debugg prior knowledge, or reformulate 1t
into a better form.

© 1990 by Etsevier Science Pudlishing Co.. Inc.
Methodologies for [ntelligent Systems, S
ZW. Ras, M. Zemankova, and M.L. Emnch, Editors



405

The objective of research on MTL is to develop a methodology, which for any leaming task can
recognize what leaming strategy, or combination thereof, is likely to be the most effective for
solving it (hence, the term “task-adaptive™). The key idea is that any learning process can be
viewed as a derivation of desired knowledge from the input information according to the

inciple of computarional economy. What 1s "desired" knowledge depends on the task the
mcr wants to perform. How the learner proceeds to obtain this knowledge (leamning strategy)
depends on what is the most éffective way to utilize the available information and the leamner's

or knowledge. Recent experiments in cognitive science show that when people have to reason
in order to answer a question, they utilize knowledge that is most easily available to them. For
example, when they have a choice of the knowledge source, they ically rely on their personal
knowledge rather than on the knowledge supplied to them external y (Michalski, Boehm-Davis
and Dontas, 1989).

The MTL methodology postulates that a learner should be able 1o leam something from any input
information, even from the facts that it already “knows.” Depending on the interrelationship
among the input information, the leamner's prior knowledge and the given task, the learner
constructs either new knowledge and/or better knowledge (by modifying the prior knowledge).
The task may be defined by a specification of the desired knowledge, a g;rformanoc measure, or
may be derived from the general goal(s) of the learner. Another postulate is that whatever was
leamed in the previous act of learning should be reusable in subsequent learning. This implies
that any knowledge leamed must be expressed in the form compatible with the form in which any
other knowledge is stored. Thus, a segment of knowledge in BK can itself be an input to a
leaming process. This aspect is called “closed-loop” leaming. An interesting consequence of the
above assumptions is that to sarisfy them, a new form of knowledge representation has to be
employed (Michalski, 1989, 1990).

Given some input, the leamner first analizes how it relates to the background knowledge (BK) in
the context of the task to be performed. If the input represents “novel” information that is relevant
to the task, and is not inconsistent with BK, it is assimilated within the BK. This process may
involve a generalization of appropriate segments of BK, as well as recording the input
("replication™). If the input is recognized to be already a part of the leaner's BK, is implied by it,
or implies it, the relevant segments are reinforced or restructured to facilitate their future use
("reformularion” or "wning"). If the input is inconsistent with BK, but is believed to be correct,
the appropriate pans of BK undergo modification. This process may involve specialization,
storing exceptions, or weakening certainty parameters associated with relevant knowledge
segments (“tuning”). If the input is similar to some component of KB, this component may be
used to created desired knowledge. The results of any such a transformation are evaluated form
the viewpoint of the learner's task, and stored if they pass the test.

To perform above knowledge transformations different inference types need 10 be employed. To
determine if the input is a special case of what the leamer already knows or to reformulate a
segment of BK to make it more efficient or directly applicable to a given task, the system
performs deductive inference. To synthesize new knowledge that entails the input facts, but is
not a logical consequence of them, the system preforms inductive inference. To modify some
exisiting knowledge so that it is useful for some new P , analogical inference is employed.
The results of any inference are tested for their usefulness, and if they pass the test, are
assimilated into BK. The next act of leamning should be able to take advantage of the modified
BK. A process in which results of one act of leamning can be used in some subsequent act of
leaming is called closed-loop learning.

In summary, in MTL, learning is viewed as a task-oriented inference process that generates
desired knowledge from available premises, and stores it for future use. Not all knowledge
generated is stored, but only this that is evaluared as potentially useful for some future tasks. It
may appear that viewing learning as an inference process does not apply to non-symbolic
learning methods, such as those used in connectionist Systems or genetic algorithms, because
these systems do not seem to perform inference in the conventional sense. A shor answer is that
they do apply, because both the larter approaches do peform generalization, specialization or
other knowledge transformarions, except that they do them implicitly rather than explicitly.



3. THE METHODOLOGY

As indicated above, the basic question in implementing MTL is how to develop a mechanism for
recognizing what strategy, or strategies, may be most appropriate for a given combination of the
input information, the leamner’s goal and the background knowledge (BK). Given an input (an
example, a fact, a rule, eic.), one can distinguish five types of relationship between the input and
the leamer’s BK. First, the input may represent new or partially new information to the leamer,
neither confirming nor disconfirming the leamner's BK. In the case when it is not economical to
make a complete test for this property, one assumes that the input is new. Second, the input may
be entailed For may entail) some segment of the leamer's BK. Third, the input may contradict
some segment (a rule or a ruleset) of the leamer’s BK. Fourth, the fact may be similar in certain
aspects (in particular, in terms of abstract relations, rather than low level attributes) to some
segment of the learner’s knowledge. Fifth and finally, the fact may be already known to the
leamer (i.e., strictly match some knowledge segment).

Empirical leaming and constructive induction systems are concerned primarily with handling the
first and the third cases. “Pure” explanation-based learning is concemned with the second case.
The more recent methods of explanation-based leaming attempt to address situations in which the
learner’s knowledge is incomplete (first case), or inconsistent with the BK (third case), or
intractable (first case). Leamning by analogy and case-based reasoning are concemed with
handling the fourth case. The fifth case is handled by symbolic leaming methods usually by
ignoring such inputs (with some exceptions, e.g., Slimmer and Granger, 1986). In neural
networks and genetic algorithms repeated inputs are not ignored; they are handled, however, as
any other inputs. The multistrategy task-adaptive leaming methodology is intended to ultimately
handle all five cases.

Let us explain how the MTL methodology could handle these cases. It is assumed that the input
may be a specific fact, a concept example or a rule supplied by an external source, or information
resulting from an impasse in processing of an input according to some strategy. The latter case
may require activating another learning strategy. For example, in the process of determining if a
fact is implied by BK (i.e., in attempting to explain the fact), the leamer may find that some parts
of it are explainable by BK, and some other parts represent new information. The parts that are
explainable are processed by an analytical leaming strategy, and the parts that are new would
activate a synthetic leaming process. It is also assumed that in the absence of a specific task, the
learner uses a general default goal, which is to derive “useful” information from the input, make
"sense” of it, and assimilate it into the knowledge base. More specific leaming tasks, such as to
generalize facts to generate a rule, to create a conceptual classification of given facts, to
reformulate a part of BK into a more efficient knowledge, to determine new knowledge on the
basis of an analogy between the input and past knowledge, etc. are supplied from a supervisory
control system.

Presented ideas are concemed only with aspects of building or updating a knowledge base, and
not with issues of using the knowledge for problem solving. Given any input information, the
leamer analizes its relationship to BK and to the leaming task in order to determine which of the
five cases above (“processing methods™) is involved. The rules and segments in BK are indexed
in various ways to facilitate this process. The leamer performs a “deductive” matching of the
information with BK to determine if it satisfies (or is satisifed by) some rule, or at least is
consistent with the rules. Such matching is called “deductive” because it may involve several
steps of deduction. It is assumed that a limited amount of resources is available for this process,
and if they are exceeded, a failure is communicated. In such a case, the information is assumed to

be (pragmatically) new to the system.
1. The input represents pragmatically new information

Generally, this case handles situations that require some form of synthetic leaming (empirical
leamning or constructive induction), or learning by instruction. Given an input, the leamner
searches for a part of BK that is “hierarchically related™ to it. For example, it may be a part
describing the concept being exemplified by the input, but neither entailing it, nor contradicting
it. If this effort succeeds, the relevant par is generalized, so that it accounts for this input and
possibly other information stored previously. The resulting generalizations and the input facts are
evaluated for “importance,” and those that pass an imporiance criterion, are stored (a process



that involves storing representative past facts is called learning with partial memory of the past).
If there is no knowledge “hierarchically related” to the input, the input is stored, and the control
is passed to case 4.

2. The input is implied by, or implies a part of BK
This case represents a situation when it is determined that there is a part of BK that accounts for
the input, or is a special case of it. The leamer creates a derivational explanatory structure that
links the input with the involved BK part. Depending on the leaming task, this structure can be
used to create a new (“operational”) lmowledge that is more adequau: for future handling of such
cases. If the new knowledge passes an “importance criterion,” it is stored for future use. This
mechanism is related to the ideas on the utility of explanation based- leammg (Minton, 1988). If
the input represents a “useful” result of a problem solving activity, e.g.,” for given state x, it was
found that a useful action is y”, then storing such a fact as a rule is similar to chunking in SOAR
(Laird, Rosenbloom, and Ncwcll 1986). lf the input information (e.g., a rule supplied by 2
teacher) implies some part of BK, then an “importance criterion” is applied to it. If the input
asses this criterion, it is stored, and an appropriate link is made to the part of BK that is implied
y f. In general, this case handles situations requiring some form of analytic leaming.

3. The input contradicts some part of the learner’s BK

The system identifies the part of BK that is contradicted by the input information, and then
artempts to specialize this pant. If the specialization involves too much restructuring, and/or the
confidence in the input is low, no change to this part of BK is made, but the input is stored.
When some part of BK has been restructured to accommodate the input, the input is also stored,
but only if it passes an “importance criterion.” If contradicted knowledge is a specific fact, this is
noted, and any knowledge that was generated on the basis of the contradicted fact may have to be
revised. In general, this case handles situations requiring a correction of BK through some form
of synthetic learning and, generally, managing inconsistency.

4. The input evokes an analogy to a part of BK

This case represents a situation when the input does not match any background fact or rule
exactly, nor is "hierarchically” related to any part of BK, but there is a similanty between the fact
and some part of BK at a higher abstraction level. That is, unlike in case 1, in which the system
tries to directly match the fact with a knowledge segment, in this case, matching is done at a
higher level of abstraction, using generalized attributes or relations. If the fact is “sufficiently
important” it is stored with an indication of an similarity (analogy) to a background knowledge
segment, and with the specification of the aspects (abstract attributes or relations) defining the
analogy. For example, an input describing a lamp may evoke an analogy to the part of BK
dcscnbmg the sun, because both lamp and sun match in terms of an abstract attribute “produces

light.”
5. The input is already known to the learner

This case occurs when the input matches exactly some part of BK (a stored fact, a rule or a
segment). In such a situation, a measure of confidence associated with this part is updated

Summarizing, in multistrategy task-adaptive learning, any act of receiving informarion activates
some learning strategy. The leamner employs deductive inference when an input fact is consistent
with, implies, or is implied by the background knowledge; analogical inference when it is similar
to some part of past knowledge; and inductive inference when there is a need to hypothesize a
new and})or more general knowledge. It also leamns when input facts confirm its knowledge, by
reinforcing current beliefs.

4. SIMPLE EXAMPLE

To illustrate some of the ideas described above, let us use a well-known example of leaming the
concept of “cup” (Mitchell, Keller and Kedar-Cabelli, 1986). The example is not very realistic,
but illustrates well the ideas (Figure 1).

<
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Cup(oby)
Abstract CD: T \
Open-vessel(obj) Stable(obj) Liﬁable(obj?
Open-vessel(obj) Stable(obj) Liftable(obj)
Domain rules:
Up-concave(obj) Has-flat-bottom(obyj) Is-light(obj) &

Has-handle(obj)

Example (Specific OD):
Upconcave(OBJ) & Has-flat-bottom(OBJ) & Is-light(OBJ) & Has-handle(OBJ)
& Color(OBJ) =red & Owner(OBJ) = RSM & Made-of(OBJ) = glass &...<---> Cup(OBJ)

Abstract OD:
Open-vessel(OBJ) & Stable(OBJ) & Liftable(OBJ) & Has-handle(OBJ) & ... <---> Cup(OBJ)

Operational CD:
Up-concave(obj) & Has-flat-bottom(obj) & Is-light(obj) & Has-handle(obj) <---> Cup(obj)

Constructive Deduction Example
(Abstraction) Doman rules b Absmact OD
. Abstract CD

Explanation- ;
based Learning g:na;?enua b Operational CD
Empirical Induction Examples .

4 Paial BK' < Operational CD
Constructive Induction Domain rules
(Generalization) Example(s) '< Abstrac: D
Constructive Induction Example(s) . .
(Abduction) Abstract CD |< Domain rules
Multistrategy Any of the above and other combinations, depending on
Constructive what is the input, what the learer knows already
Learning and what is to be leamed

OD and CD denote object and concept descritpion, respectively. OBJ stands for a specific object; obj denotes
avarisble. BK' denotes some partial background knowledge, e.g., a specification of the value sets of the att-
ributes and the type of the auributes. Operators b and k< denote decuction and induction, respectively.

Figure 1. Leaming various aspects of the concept of “cup” using different strategies.

The top part of Figure 1 presents an abstract concept definition (abstract CD) for the concept
“cup,” the domain rules, a description of one example of a cup (characterized as the "Specific
object description” or OD), an abstract object description (a t OD), and an operational
concept descng@'on (operational CD). The bottom part of the figure summarizes informarion that
is assumed to be given and to be leamned by different leaming strategies: constructive deduction
(abstraction), explanation-based learning, empirical induction, constructive induction (both,
consuuctive generalization and abduction), and the proposed multistrategy task-adaptive



leamning. The example does not illustrate the mechanism of updating the strength of the rules, nor
leaming by analogy. Figure 2 explains the case of constructive leaming based on abduction, It is
assumed that the leamer knows an abstract concept description (Abstract CD), but has an
incomplete domain rules (the rule defining the stability is missing). :

Learning Strategy: EX & AC -> DR

Constructive Induction Example(s) :
(Case of abduction) Absiract CD f<  Domain rules
Given;

1.INPUT New example

Up-concave(CUP1) & Is-light(CUP1) & Has-handle(CUP1) & Owner(CUP1)= Learner &
Color(CUP1)=red & Made-of(CUP1)=glass & Has-flat-bottom(CUP1) <--—-> Cup(CUP1)

2. BACKGROUND KNOWLEDGE

Cupgobj
Abstract CD / pf‘ )] \

Open-vessel(obj) Stable{obj) Liftable(obj)
Open-vessel(obj) f Liftable(obj)
lncongplete
domain rules Up-concave(obj) ?  Is-light(obj) & Has-handle(obj)
Additional knowledge

Stable(obj) <~/~> Owner(obj) & Color(obj) & Material(obj)
Material(obj)=glass <— Made_of(obj)=glass

3. TASK
To extend the background knowledge so that it entails the example.

To be legrned;

A new domain rule: Stable(obj) <~~~ Has-flat-bottom(obj)

STEPS:
1. Determine the relationship between the input and BK
2.If BK is insufficient to entail the example, use the information in the example and BK
to hypothesize an additional rule(s) that together with BK would entail the example.

Figure 2. An illustration of abduction.

The BK includes rules stating that the stability of an object does not depend on who is the

object's owner, on its color nor on its material (the latter is a simplication). The input is an

example of & cup. In order to consolidate the example of a cup with the current definition of the

ﬁp. ¢ leamer creates, by abductive reasoning, a hypothesis that if an object has flat botom
en it is stable.

A more realistic example of some asapects of MTL is described in ((Ko, 1989; Ko and
Michalski, 1989). The example, based on the implemented program NOMAD, shows how a
System can learn a general schema for creating a plan for putting together simple assembilies, for
example, a bell. The schema is developed by an incremental improvement and testing of
intermediate schemas.
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4. CONCLUSION

The proposed MTL methodology stems from the inference-based theory of leamning that
considers leamning as an inference process, whose useful results are stored for future use. Such a
process involves input information, the leamer's background knowledge, and the task of
leaming. It may empioy any kind of inference - deductive, analogical or inductive.

We have outlined a theoretical framework for unifying basic learning strategies, and discussed
several theoretical aspects of implementing an MTL system. This work is motivated by our
belief that machine leamning systems should, ultimately, be capable, like people, of employing
any leanring strategy depending on the task at hand. Among underlying assumptions are that a
leaming system should be capable of acquiring knowledge from any input, and be able to use the
knowledge gained in one leaming task in any new leaming task, i.e., be capable of a “closed-
loop”™ learning.

The MTL methodology is intended to ultimately integrate capabilities for empirical learning,
constructive induction, abduction, analytic leaming, reinforcement learning and leaming by
analogy.The presented ideas are at an early state of development and many issues have not been
resolved. Among the most important unresolved issues are: the development of a method for
automatically determining the most suitable learning strategy in any given sistuation, the design
of a flexible control of the execution of different leaming strategies, handling input information
whose different components need to be processed separately, but in a globally coordinated way,
and the development of an appropriate knowledge representation for supporting the integration of
different strategies (for early ideas on the latter subject see parameterized association rules in
Michalski, 90).

In closing, our goals in developing the MTL methodology are to explore research issues involved
in the integration of diverse leamning strategies, and to understand how various strategies can best
be utilized and how they can support each other in different learning situations. This
understanding is important for building powerful and efficient multistrategy leaming systems.
Such systems are needed for many practical problems in which the process leaming needs to
involve an intricate interaction between new information, background knowledge and the
learner's task. Among examples of such problems are robot navigation, automated assembly,
diagnostic decision making, economical prediction, resource management and sensory signal
interpretation.
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