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Abstract 

Genetic Algorithms (GAs) have traditionally been 

used for non-symbolic learning tasks. In this paper 

we consider me application of a GA to a symbolic 

learning task, supervised concept learning from 

examples. A GA concept learner (GABL) is imple­

mented ahat learns a concept from a set of positive 

and negative examples. GABL is run in a batch­

incremental mode to facilitate comparison with an 

incremental concept learner, IDSR. Preliminary 

results suppon ahat. despite minimal system bias, 

GABL is an' effective concept learner and is quite 

competitive with IDSR as me target concept 

increases in complexity. 


1. Introduction 

There is a common misconception in the machine 
learning community ahat Genetic Algorithms (GAs) are 
primarily useful for non-symbolic learning tasks. This 
perception comes from the historically heavy use of GAs 
for complex parameter optimization problems. In me 
machine learning field mere are many interesting parame­
ter tuning problems to which GAs have been and can be 
applied, including threshold adjustment of decision rules 
and weight adjustment in neural networks. However, me 
focus of this paper is to illustrate ahat GAs are more gen­
eral than this and can be effectively applied to more tradi­
tional symbolic learning tasks as well. t 

To suppon this claim we have selected the well­
studied task of supervised concept learning (Mitche1l78, 
Michalsld83. Quinlan86, RendeU89]. We show how con­
cept learning tasks can be represented and solved by GAs, 
and we provide empirica.l results which illustrate the per­
fonnance of GAs relative to a more trnditional method. 
Finally, we discuss the advantages and disadvantages of 
this approach and describe future research activities. 

For an inlroductioo to Genetic Algonlhms. please see 
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2. Supervised Concept Learning Problems 

Supervised concept learning involves inducing con­
cept descriptions from a set of examples of a target con­
cept (i.e.• me concept to be learned). Concepts are 
represented as subsets of points in an n-dimensional 
feature space which is defined a priori and for which all 
the legal values of me features are known. 

A concept learning program is presented with both 
a description of me feature space and a set of cooectly 
classified examples of the concepts, and is expected. to 
generate a reasonably accurate description of the 
(unknown) concepts. Since concepts can be arbitrarily 
complex subsets of a feature space, an imponant issue is 
the choice of the concept description language. The 
language must have suflkient expressive power to 
describe large subsets succinctly and yet be able to cap­
ture i.Iregularities. The two language forms generally 
used are decision IreeS [Quinlan86} and rules [Michal­
skiS3}. 

Another imponant issue arises from the problem 
that there is a large (possibly infinite) Set of concept 
descriptions which are consistent with any particular 
finite set of examples. This is generally resolved by intro­
ducing eilher explicitly or implicitly a bias (preference) 
for certain kinds of descriptions (e.g., shoner or less com­
plex descriptions may be preferred). 

Finally, there is the Ciflku!t issue of evaluating and 
comparing me performance of concept learning algo­
rithms. The most widely used approach is a batch mode 
in which me set of examples is divided into a training set 
and a test set The concept learner is required to produce 
a concept description from the training examples. The 
validity of the description produced is then measured by 
the percentage of correct classifications made by the sys­
tem on the second (test) set of examples with no funher 
learning. 

The aJternati\-e evaJuation approach is an incremen­
tal mode in which the concept learner is required to pro­
duce a concept description from the examples seen so far 
and to use ahat description to classify the next incoming 
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exarr.pl::. In this mode learning never stops. and evalua­
uon LS in terms of learning curves which measure the 
preci..;:uve performance of the concept learner over time. 

3. G1:netic Algorithms and Concept Learning 

In order to apply GAs to a particular problem. we 
need to select an internal representation of the space to be 
sear.:ned and define an external evaluation function which 
asslg:n.s utility to candidate solutions. Both comJX>llents 
are cTitical to the successful application of the GAs to the 
probiem of interest. 

3.1. Representing tbe Searcb Space 

The traditional internal representation used by GAs 
invoives using fixed·length (genera1Jy binary) strings to 
represent points in the space 10 be searched. This 
representation maps well onto parameter optimization 
problems and there is considerable evidence (both 
theoretical and empirical) as to the effectiveness of using 
GAs to search such spaces [Holland7S, DeJong8S, Gold· 
berg89. Spears90]. However, such representations do not 
appear well·suited for representing the space of concept 
descriptions which are generally symbolic in nature, 
which have both syntactic and semantic constraints. and 
which can be of widely varying length and complexity. 

There are two general approaches one might take to 
resolve this issue. The first involves changing the funda­
mental GA operators (crossover and mutation) to work 
effectively with complex non·saing objects [Rende1l8S]. 
This must be done carefully in order to preserve the pm. 
perties which make the GAs effective adaptive search pm. 
cedures (see [DeJong87] for a more detailed discussion). 
Alternatively, one can attempt to construct a string 
representation which minimizes any changes to the GAs 
without adopting such a convoluted representation as 10 

render the fundamental GA operators useless. 

We are interested in pursuing both approaches. Our 
ideas on the first approach will be discussed brieOy at the 
end of the paper. In the following sections we will 
describe our results using the second approach. 

3.2. 	Defining Fixed-length Classifier Rules 

Our approach 10 choosing a representation which 
results in minimal changes 10 the standard GA operators 
involves carefully selecting the concept description 
language. A natural way to express complex concepts is 
as a disjunctive set of (possibly overlapping) 
cJassification rules (DNF). The left·hand side of each rule 
(disjunct) consists of a conjunction of one or more tests 
involving feature values. The right·hand side of a rule 
indicates the concept (classification) to be assigned 10 the 
examples which match its left·hand side. Collectively. a 
set of such rules can be thought of as representing the 
(unknown) concepts if the rules correctly classify the 
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elements of the feature space. 

If we allow arbitrarily complex u:nns in the con­
junctive left-band side of such rules. we will have a very 
powerful description language which will be difficult to 

represent as strings. However. by restricting the complex­
ity of the elements of the conjunctions, we are able to use 
a string representation and standard GAs, with the only 
negative side effect that more rules may be required to 
express the concepL This is achieved by resaicting· each 
element of a conjunction to be a test ofthe fonn: 

return uue if the value of feature i of the example 
is in the given value set. else return false. 

For example, rules might take the following symbolic 
forms: 

ifFI =blue then it'sa block 
or 

if (F2 =large) and (F5 =tall or thin) 
then it's a widget 

or 
if (Fl = red or white or blue) and (10 < F4 < 20) 
then it's a clown 

Since the left-hand sides are conjunctive forms with inter­
nal disjunction, there is no loss of generality by requiring 
that there be at most one test for each featu.re (on the left 
hand side of a rule). 

With these resaictions we can now consuuct a 
fixed-length internal representation for classifier rules. 
Each fixed-length rule will have N feature tests, one for 
each feature. Each feature test will be repreSented by a 
fixed length binary string. the length of which will depend 
of the type of feature (nominal. ordered, ele.). 

For nominal features with k values we use k bits. 1 
for each value. So, for example, if the legal values for Fl 
are the days of the week. then the pattern 0111110 would 
represent the test for FI being a weekday. 

Intervals for features taking on numeric ranges can 
also be encoded efficiently as fixed·length· bit sttings, the ..~ 
details of which can be seen in [Booker82]. For simpli­
city, the examples used in this paper will involve feawres .!::~ 

..:\..:.:-.;.:.;with nominal values. 

"~,~ "So, for example. the left·hand side of a rule for a 5 
feature problem would be represented internally as: 

~4 
Fl F2 F3 F4 FS 


0110010 1111 01 111100 11111 
 .. ~1 
Notice that a feature test involving all l's matches any ~ 

>'~~1
value 	of a feature and is equivalent to "dropping" that 
conjunctive term (i.e., the feature is irrelevant). So, in the 

.,T:.:.. 
.... 

.. ;iabove example only the values of Fl. F3. and F4 are ::~'~-

:' 
-,....j•.....
'. 
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relevant For completeness, we allow pauems of all O's 
which malCh nothing. This means that any rule contain­
ing such a pattern will not maach (cover) any points in the 
feature space. While rules of this form are of no use in 
the final concept description, they are quite useful as 
storage areas for GAs when evolving and testing sets of 
rules. 

The right-hand side of a rule is simply the class 
(concept) to which the example belongs. This means that 
our "classifier system" is a "stimulus-response" system 
with no internal memory. 

3.3. Evolving Sets or Classifier Rules 

Since a concept description will consist of one or 
more classifier rules, we still need to specify how GAs 
will be used to evolve sets of rules. There are currently 
two basic stra1egies: the Michigan approach exemplified 
by Holland's classifier system [Holland86], and the Pitts­
burgh approach exemplified by Smith's LS·I system 
[Smith83]. Systems using the Michigan approach main­
tain a population of individual rules which compete with 
each' other for space and priority in the population. In 
conuast, systems using the Pittsburgh approach maintain 
a population of v.ariable-Iength rule sets which compete 
with . each other with respect to performance on the 
domain task. 

Very little is currently known concerning the rela­
tive merits of the two approaches. As discussed in a later 
section, one of our goals is to use the domain of concept 
learning as a testbed for gaining more insight into the two 
approaches. In this paper we repon on results obtained 
from using the Pittsburgh approach. t That is, each indivi­
dual in the population is a variable length string 
representing an unordered set of fixed-length rules (dis­
juncts). The number of rules in a particular individual is 
unrestricted and can range from 1 to a very large number 
depending on evolutionary pressures. 

Our goal was to achieve a representation that 
required minimal changes to the fundamental genetic 
operators. We feel we have achieved this with our 
variable-length string representation involving ftxed­
length rules. Crossover can occur anywhere (Le., both on 
rule boundaries and within rules). The only requirement 
is that the corresponding crossover points on the two 
parents "match up semantically". That is, if one parent is 
being cut on a rule boundary, then the other parent must 
be also cut on a rule boundary. Similarly, if one parent is 
being cut at a point 5 bits to the right of a rule boundary, 
then the o!.her parent must be cut in a similar spot (i.e., 5 
bits to the right of some rule boundary). 

Ptevious GA COrtcqx learners have used the Michigan approacb. 
See (Wilson87J and (Bookcr89J for dcuili. 

The mutation operator is unaffected and performs 
the usual bit-level mutations. 

3.4. ChOO5ing. Payoff Function 

In addition to selecting a good representation. it is 
imponant to define a good payoff function which rewards 
the right kinds of individuals. One of the nice features of 
using GAs for concept learning is that the payoff function 

. is the natural place to centralize and make explicit any 
biases (preferences) for cenain Icinds of concept descrip­
tions. It also makes it easy to study the effects of different 
biases by simply making changes to the payoff function. 

For the experiments reported in this paper, we 
wanted to minimize any a priori bias we might have. So 
we selected a payoff function involving only classification 
performance (ignoring. for example, length and complex­
ity biases). The payoff (fitness) of each individual rule set 
is computed by testing the rule set on the current set of 
examples and letting: 

payoff (individUIJI i) = (percent correct)2 

This provides a non-linear bias toward correctly clas:s:ify­
ing all the examples while providing differential reward 
for imperfect rule sets. 

3.5. The GA Concept Learner 

Given the representation and payoff function 
described above, a standard GA can be used to e\'olve 
concept descriptions in several ways. The simplest 
approach involves using a balCh mode in which a fixed set 
of examples is presented, and the GA must search !.he 
space of variable-length strings described above for a set 
of rules which achieves a score of 100%. We will call this 
approach GABL (GA BalCh concept Leamer). 

Due to the stochastic nature of GAs, a rule set with 
a perfect score (i.e., 100% correct) may not always be 
found in a fixed amount of time. So as not to introduce a 
strong bias. we use the following search termination cri­
terion. The search terminates as soon as a 100% ccrrect 
rule set is found within a user-specified upper bound on 
the number of generations. If a correct rule set is not 
found within the specified bounds or if the population 
loses diversity (> 70% convergence [De 10ng75)), the GA 
simply returns the best rule set found. This incorrect ~but 
often quite accurate) rule set is used to predict (classify) 
future examples. t 

The simplest way to produce an incrementaI GA 
concept learner is to use GABL incrementally in the iol­
lowing way. The concept learner initially accepts a smgle 
example from a pool of examples. GAEL is used to 

In our experiments our upper bound was high enough thai :.::c GA 
always found a Nie set with a perfect score. However. this slowea '::own 
running o.me dramaucaily. 
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create a 100% COl'T'eCt rule set for this example. This rule 
set is used to predict the classification of the next exam­
ple. If the prediction is incorrect, GABL is invoked to 
evolve a new rule set using the two examples. If the pred­
iction is correct, the example is simply stored with the 
prevIous example and the rule set remains unch~ge:ct. As 
each new additional instance is accepted, a predicuon IS 

made, and the GA is re-run in balch if the prediction is 
incorrect. We refer to this mode of operation as balch­
incremental and we refer to the GA batch-incremental 
concept learner as GABll.. 

4. Empirical Studies 

4.1. Evaluating Concept Learning Programs 

As suggested in the introduction, there are many 
ways to evaluate and compare concept learning programs: 
in either batch or incremental modes. We tend to favor 
incremental learning systems since the world in which 
most learning systems must perform is generally dynamic 
and changing. In this context we prefer the use of learn­
ing curves which measure the change in a system's perfor­
mance over time in a (possibly) changing environmenL 

In the domain of supervised concept learning. this 
means that we are interested in siwations in which exam­
ples are accepted one al a time. In this mode, a concept 
learner must use its current concept descriptions to clas­
sify the next example. The concept learner then compares 
its classification with the actual class of the example. 
Based on this comparison the concept learner may add 
that example to the existing set and altempt to reformulate 
new concept descriptions, or it may leave the current 
descriptions unchanged. 

An incremental concept learner will make a predic­
tion for each new instance seen. Each prediction is either 
correct or incorrect We are interested in examining how 
an incremental system changes its predictive performance 
over time. Suppose each outcome (COJ:1'eCt or incorrect) is 
stored We could look al every outcome to compute per­
. fonnance, but this would only indicate the global perfor­
mance of the learner (a typical batch mode swistic). 
Instead, we examine a small window of recent outcomes, 
counting the correct predictions within that window. Pel· 
fonnance curves can then be generated which indicate 
whether a concept learner is getting any better at correctly 
classifying new (unseen) examples. The graphs used in 
the experiments in this paper depict this by plotting al 
each time step (ariel' a new example arrives) the percent 
correct achieved over the last 10 arrivals (recent 
behavior). 

4.2. Implementation Details 

All of OlD' experiments have been perfonned using a 
C implementation of the GAs. In all cases the population 

size has been held fixed at 100, the variable-length 2­
point crossover operator has been applied at a 607£: rate, 
the mutation rate is 0.1 %. and selection is performed via 
Baker's SUS algorithm rBaker87]. 

4.3. Initial Experiments 

The experiments described in this section are 
designed to demonstrate the predictive performance of 
GABll... as a function of incremental increases in the size 
and complexity of the target concept. We invented a 4 
feawre world in which each feawre ha.<. 4 possible dtstinct 
values (i.e., there are 256 instances in this world). This 
means that rules map into 16-bit strings and the length of 
individual rule sets is a multiple of 16. 

In addition to studying the behavior of ourGA­
based concept learner (GABll...) as a function of increas­
ing complexity, we were also interested in comparing its 
performance with an existing algorithm. Utgoff's ID5R 
[Utgo089], which is a well-known incremental concept 
learning algorithm. was chosen for comparison. IDSR 
uses decision trees as the description language and always 
produces a decision tree consistent with the instances 
seen. 

We constructed a set of 12 concept learning prob­
lems, each consisting of a single target concept of increas­
ing complexity. We varied the complexity by increasing 
both the number of rules (disjuncts) and the number of 
relevant features per rule (conjWlcts) required to correctly 
describe the concepts. The number of disjuncts ranged 
from 1 to 4, while the number of conjuncts ranged from 1 
to 3. Each target concept is labelled as nDme, where n is 
the number of disjuncts and m is the number of conjunclS. 

Each target concept is associated with one experi­
menL Within an experiment the number of disjuncts and 
conjuncts for the target concqJt remains fixed. The varia­
tion in target concept occurs between experiments. For 
each of the concepts, a set of 256 unique. noise free exam­
ples was generated from the feature space and labeled as 
positive or negative examples of the target concept For 
the more complex concepts. this resulted in learning pri­
marily from negative examples. 

For each concept, the 256 examples were randomly 
shuffled and then presented sequentially as described 
above. This procedure was repeated 10 times for each 
concept and for each learning algorithm. The perfor­
mance curves presented are die average behavior exhi­
bited over 10 runs.t 

IDSR and GABa use significantly different 
approaches to concept learning. Therefore, we expect 
their performance behaviors to differ. As the number of 

h is DOl alwlYS pouilie for IDSR 10 make I prcdictiOll based 011 
the dcc:isiOll IrCc. If it cannot use the tree 10 predict we Jet IDSR make I 
nndom PftdictiOl1. 
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disjuncts and conjuncts inc~, the target COl1:ept 
(viewed syntactically as a logical DNF expression) 

. becomes more difficult In general, a more complex target 
concept requires a larger decision tree (although this is 
not always true). IDSR relies upon Quinlan's infonnation 
theoretic entropy measure to build its decision trees. This 
measure woIts well when individual features are mean­
ingful in distinguishing an example as positive or nega­
tive. As the number of disjuncts and/or conjuncts 
increases, individual features become less infonnative, 
resulting in larger decision trees and poorer predictive. 
performance. IDSR's infonnation theoretic biases will 
therefore perform better on simpler target concepts. 

GABn.. however. should perform uniformly well 
on target concepts of varying complexity. GABa. should 
DOt be affected by the number of conjuncts, since with our 
fixed-length rule representation, large conjunctions are no 
more dil:D;ult to find than small ones. There is also no bias 
towards a small number of disj!U1cts. Given these biases 
(and lack of biases), then. it is natural to expect that while 
IDSR will outperform GABa. on the simpler concepts, 
there will exist a frontier at which the situation will 
reverse. 

For the sake of brevity we present graphs of 7 of the 
12 experiments. Figure I depicts the comparative results 
on target concept 2DIC. It is representative of the results 
on all the 1 and 2 disjunct concepts. Figures 2 - 7 present 
the comparative results of applying both GABa. and 
ID5R to the more dil:D;ult concepts (3 and 4 disjuncts). 
Recall that each point on a curve represents the percent 
correct achieved over the previous 10 instances (and aver­
aged over 10 runs). Note that this implies that the curves 
can only remain at 100% if the algorithms have learned 
the target concept by the 255th instance. 

The graphs indicate that, on the simpler concepts, 
the predictive performance of IDSR improves more 
rapidly than that of GABn.. However, ID5R degrades in 
performance as the target. concept becomes more 
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complex, and GABn. startS to win on the 4 disjunct con­
cepts. We expect this trend to continue with even larger 
numbers of disjuncts and conjuncts. 

Although it is natural to expect that a simple target 
concept (from a syntactic viewpoint) would have a small 
decision tree representation. this is only a rough generali­
zation. We were surprised to see IDSR suffer the most on 
the 4D1C target concept, since syntactically the concept 
is only moderately complex. The target concept is of the 
form: 

if (FI =0001) or (F2:: 0001) or (F3 =0001) 
or (F4 =0001) then it's positive 

This target concept is represented by IDSR as a 
decision tree of over 150 nodes. In fact. each negative 
example is represented by a unique leaf node in the deci· 
sion tree. For this reason, IDSR cannot generalize over the 
negative examples, and has a good chance of predicting 
any negative example incorrectly. Furthermore, even the 
positive examples are not generalized well, resulting in 
prediction errors for positive examples. It is clear that the 

. decision ttee representation (which is also a bias) is poor 
for representing this particular conCepL Target concept 
4DIC represents a worst case, which explains why the 
difference between GABn. and IDSR is gre3lest for this 
concepL A similar situation occurs for target concepts 
3DtC. 4D2C, and 4D3C, although to a lesser degree. 

The experiments indicate that ID5R oflen degrades 
in performance as the number of disjuncts and conjuncts 
increases. ID5R's biases favor concepts that can be 
represented with small decision trees. The information 
theoretic measure favors those concepts in which indivi· 
dual features clearly distinguish target class membership. 
GABa. does not have these biases. and appears to be less 
sensitive to increasing numbers of disjuncts and con­
juncts. GABn. does not degrade significantly with 
increasing target. concept complexity and outperforms 
ID5R on 4 disjunct concepts. Since the syntactic com­
plexity of a target concept ccrresponds roughly wilh the 
size. of its decision tree representation, we expect this 
trend to continue with more difficult target concepts . 

5. Further Analysis and Comparisons 

We plan to perform additional experiments involv­
ing the comparison ofGAB a. with other concept learning 
programs such as Michalski' s AQI5 [Michalski86J, 
Quinl3.l1 's C4.5 [Quinl3.l189J, 3.l1d Clark's CN2 [CIark89J 
on anificial concepts as well as on some of the classical 
test sets such as the breast ~cer data and the soybean 
plant disease data. 
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We also plan to implement and analyze other GA­
based concept learners. The first is a variation of the 
current one which is ttuly incremental rather than batch­
incremental. We feel that this change will smooth out 
many of the bumps in the learning curves currently due to 
completely reinitializing the population when an incorrect 
classification is made on a new example. 

We are also very interested in understanding the 
difference between using the Piusburgh approach and the 
Michigan approach in this problem domain. The current 
fixed-length rule representation can be used directly in 
Michigan-style classifier systems. We plan to implement 
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such a system and compare the two approaches. 

Finally, we noted early in the paper that there were 
two basic strategies for selecting a representation for the 
concept description language. In this paper we developed 
a representation which minimized the changes to standard 
GA implementations. We also plan to explore the alterna­
tive strategy of modifying the basic GA operators to deal 
effectively with non-saing representations. In particular. 
we plan to use MichaIsld's VL1 language and compare 
this approach to using GAs with the current work. 



6. Conclusions 

This paper presents a series of initial results regard­
ing the use of GAs for symbolic learning tasks. In partic­
ular, a GA-based concept learner is developed and 
analyzed. It is interesting to note that reasonable perfor­
mance is achieved with minimal bias. There is no prefer­
ence for shoner rule sets, unlike most other concept learn­
ing systems. The initial results suppon the view that GAs 
can be used as an effective concept learner although they 
may not outperform algorithms specifically designed for 
concept learning when simple concepts are involved. 

This paper also sets the stage for additional com­
parisons between GAs and other concept learning algo­
rithms. We feel that such comparisons are important and 
encourage the research community to develop additional 
results on these and other problems of interesL 
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