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Abstract

Genetic Algorithms (GAs) have traditionally been
used for non-symbolic leaming tasks. In this paper
we consider the application of a GA to a symbolic
learning task, supervised concept leaming from
examples. A GA concept leamer (GABL) is imple-
mented that leamns a concept from a set of positive
and negative examples. GABL is run in a batch-
incremental mode to facilitate comparison with an
incremental concept leamer, ID5R. Preliminary
results support that, despite minimal system bias,
GABL is an effective concept leamer and is quite
competitive with IDSR as the target concept
increases in complexity.

1. Introduction

There is a common misconception in the machine
leaming community that Genetic Algorithms (GAs) are
primarily useful for non-symbolic leaming tasks. This
perception comes from the historicaily heavy use of GAs
for complex parameter optimization problems. In the
machine learning field there are many interesting parame-
ter tuning problems 1o which GAs have been and can be
applied, including threshold adjustment of decision rules
and weight adjustment in neural networks. However, the
focus of this paper is to illustrate that GAs are more gen-
eral than this and can be effectively applied to more tradi-
tional symbolic leaming tasks as well.t

To support this claim we have selecied the well-
studied task of supervised concept leaming [Mitchell78,
Michalski83, Quinlan86, Rendell89]. We show how con-
cept leaming tasks can be represented and solved by GAs,
and we provide empirical results which illustrate the per-
formance of GAs relauve 10 a more traditional method.
Finally, we discuss the advantages and disadvantages of
this approach and describe future research activities.

For an invoduction 0 Genetic  Algonthms, please  see
{Goldberg89).
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2. Supervised Concept Learning Problems

Supervised concept leaming involves inducing con-
cept descriptions from a set of examples of a target con-
cept (i.e., the concept to be leamed). Concepts are
represented as subsets of points in an n-dimensional
feature space which is defined a priori and for which all
the legal values of the features are known.

" A concept leaming program is presented with both
a description of the feature space and a set of correctly
classified examples. of the concepts, and is expected 1o
generate a reasonably accurate description of the
(unknown) concepts. Since concepts can be arbitrarily
complex subsets of a feature space, an important issue is
the choice of the concept description language. The
language must have sufficient expressive power to
describe large subsets succinctly and yet be able to cap-
ture irregulanitics. The two language forms generally
used are decision trees [Quinlan86) and rules [Michal-
ski83]. ‘

Another important issue arises from the problem
that there is a large (possibly infinite) set of concept
descriptions which are consistent with any particular
finite set of examples. This is generally resolved by intro-
ducing either explicitly or implicitly a bias (preference)
for certain kinds of descriptions (e.g., shorter or less com-
plex descriptions may be preferred). '

Finally, there is the cifficult issue of evaluanng and
comparing the performance of concept leaming algo-
rithms, The most widely used approach is a baich mode
in which the set of examples is divided into a training set
and a test set. The concept leamner is required to produce
a concept descripion from the training examples. The
validity of the description produced is then measured by
the percentage of correct classifications made by the sys-
tem on the second (test) set of examples with no further
leaming,

The alternative evaluation approach is an incremen-
tal mode in which the concept leamer is required 10 pro-
duce a concept description from the examples seen so far
and to use that description to classify the next incoming
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exampic. In this mode leaming never stops, and evalua-
uon 1s in terms of leaming curves which measure the
pred:cuve performance of the concept learmer over tume.

3. Genetic Algorithms and Concept Learning

In order to apply GAs to a partcular problem, we

need 1 select an intemal representation of the space to be

rcned and define an external evaluation funcuon which

assigns utility to candidate solutions. Both components

are criucal to the successful applicauon of the GAs to the
probizm of interest.

3.1. Representing the Search Space

The traditional internal represeniation used by GAs
invoives using fixed-length (generally binary) strings to
represent points in the space to0 be searched. This
representation maps well onto parameter optimization
problems and there is considerable evidence (both
theoretical and empirical) as to the effectiveness of using
GAs to search such spaces [Holland75, Delong85, Gold-
berg89, Spears90]. However, such representations do not
appear well-suited for representing the space of concept
descriptions which are generally symbolic in nature,
which have both syntactic and semantic constraints, and
which can be of widely varying length and complexity.

There are two general approaches one might take to
resolve this issue. The first involves changing the funda-
mental GA operators {(crossover and mutation) 10 work
effecuvely with complex non-string objects [Rendeil85).
This must be done carefully in order to preserve the pro-
perties which make the GAs effective adaptive search pro-
cedures (see [DeJong87] for a more detailed discussion).
Alternatively, one can attempt to construct a string
representation which minimizes any changes to the GAs
without adopting such a convoluted representation as 1o
render the fundamental GA operators useless.

We are interested in pursuing both approaches. Our
ideas on the first approach will be discussed briefly at the
end of the paper. In the following sections we will
describe our results using the second approach.

3.2. Defining Fixed-length Classifier Rules

Our approach 1o choosing a representation which
results in minimal changes to the standard GA operators
involves carefully selecting the concept description
language. A natural way to express complex concepts is
as a disjunctive set of (possibly overlapping)
classification rules (DNF). The left-hand side of each rule
(disjunct) consists of a conjunction of one or more tests
involving feature values. The right-hand side of a rule
indicates the concept (classification) to be assigned to the
examples which match its left-hand side. Collectively, a
set of such rules can be thought of as representing the
(unknown) concepts if the rules correctly classify the
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elements of the feawre space.

If we allow arbitrarily complex terms in the con-
junctive left-hand side of such rules, we will have a very
powerful descripuon language which will be difficult o
represent as strings. However, by restricung the complex.-
ity of the elements of the conjunctions, we are able 10 use
a sinng representation and standard GAs, with the only
negative side effect that more rules may be required to
express the concept. This is achieved by restricung each
element of a conjunction 10 be a test of the form:

return true if the value of feature i of the example
is in the given value set, else return false.

For example, rules might take the following symbolic
forms: ‘

if F1 = blue thenit's a block
or : )
if (F2 = large) and (F5 = tall or thin)
then it's a widget
or :
if (F1 = red or white or blue) and (10 < F4 < 20)
then it's a clown

Since the left-hand sides are conjunctive forms with inter-
nal disjunction, there is no loss of generality by requiring
that there be at most one test for each feature (on the left
hand side of a rule).

With these restrictions we can now construct a
fixed-length internal representation for classifier rules.
Each fixed-length rule will have N feawre tests, one for
each feature. Each feawre test will be represented by a
fixed length binary string, the length of which will depend
of the type of feature (nominal, ordered, eic.).

For nominal features with k values we use £ bits, 1-
for each value. So, for example, if the legal values for F1
are the days of the week, then the pattern 0111110 would
represent the test for Fi being a weekday.

intervals for features taking on numeric ranges can
also be encoded efficiently as fixed-length bit strings, the
details of which can be seen in [Booker82]. For simpli-
city, the examples used in this paper will involve features
with nominal values.

So, for example, the left-hand side of arule foras
feature problem would be represented internally as:

Fl F2 F3 F F5
0110010 1111 01 111100 11111

Notice that a feawre test involving all 1's matches any
value of a featre and is equivalent to "dropping” that
conjunctive term (i.e., the feature is irrelevant). So, in the
above example only the values of F1, F3, and F4 ar®
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relevant. For completeness, we allow patterns of all 0's
which match nothing. This means that any rule contain-
ing such a pattern will not match (cover) any points in the
feature space. While rules of this form are of no use in
the final concept description, they are quite useful as
storage areas for GAs when evolving and testing sets of
rules.

The right-hand side of a rule is simply the class
(concept) to which the example belongs. This means that
our "classifier system” is a "stimulus-response” system
with no internal memory.

3.3. Evolving Sets of Classifier Rules

Since a concept description will consist of one or
more classifier rules, we still need to specify how GAs
will be used to evolve sets of rules. There are currently
two basic strategies: the Michigan approach exemplified
by Holland’s classifier system [Holland86], and the Piuts-
burgh approach exemplified by Smith's LS-1 system
{Smith83]. Systems using the Michigan approach main-
tain a population of individual rules which compete with
each other for space and priority in the population. In
contrast, systems using the Pitsburgh approach maintain
a population of variable-length rule sets which compete
with each other with respect to performance on the
domain task.

Very little is currentdy known concerning the rela-
tive merits of the two approaches. As discussed in a later
section, one of our goals is to use the domain of concept
leaming as a testbed for gaining more insight into the two
approaches. In this paper we report on results obtained
from using the Piusburgh approach.t That is, each indivi-
dual in the population is a variable length string
representing an unordered set of fixed-length rules (dis-
juncts). The number of rules in a particular individual is
unrestricted and can range from 1 o a very large number
depending on evolutionary pressures.

Owr goal was to achieve a representation that
required minimal changes to the fundamental genetic
operators. We feel we have achieved this with our
variable-length string representation involving fixed-
length rules. Crossover can occur anywhere (i.e., both on
rule boundanes and within rules). The only requirement
is that the corresponding crossover points on the two
parents "match up semantically”. That is, if one parent is
being cut on a rulc boundary, then the other parent must
. be also cut on a rule boundary. Similarly, if one parent is
being cut at a point 5 bits to the night of a rule boundary,
then the other parent must be cut in a similar spot (i.e., 5
bits to the right of some rule boundary).

Previous GA concept leamers have used the Michigan approsch.
See {(Wilson87] and [Booker89] for detauis.

The mutation operator is unaffected and performs
the usual bit-level mutations.

3.4. Choosing a Payoff Function

In addition to selecting a good representation, it is
important to define a good payoff function which rewards
the right kinds of individuals. One of the nice feamres of
using GAs for concept leaming is that the payoff function

_is the natural place to centralize and make explicit any
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biases (preferences) for certain kinds of concept descrip-
tions. It also makes it easy to study the effects of different
biases by simply making changes to the payoff function.

For the experiments reported in this paper, we
wanted 10 minimize any a priori bias we might have. So
we selected a payoff function involving only classification
performance (ignoring, for example, length and complex-
ity biases). The payoff (fitness) of each individual rule set
is computed by testing the rule set on the current set of
examples and letting:

payoff (individual i) = (percent correct)®

This provides a non-linear bias toward correctly classify-
ing all the examples while providing differential reward
for imperfect rule sets.

3.5. The GA Concept Learner

Given the representation and payoff function
described above, a standard GA can be used to evoive
concept descriptions in several ways. The simplest
approach involves using a baich mode in which a fixed set
of examples is presented, and the GA must search the
space of variable-length strings described above for a set
of rules which achieves a score of 100%. We will call this
approach GABL (GA Baich concept Learner).

Due 10 the stochastic nature of GAs, a rule set with .
a perfect score (i.e., 100% carrect) may not always be
found in a fixed amount of time. So as not to introduce a
strong bias, we use the following search termination cri-
terion. The search terminates as soon as a 100% ccrrect
rule set is found within a user-specified upper bound on
the number of generations. If a correct rule set is not
found within the specified bounds or if the population
loses diversity (> 70% convergence [De Jong75]), the GA
simply returns the best ruie set found. This incorrect (but
often quite accurate) rule set is used to predict (classify)
future examples.t

The simplest way to produce an incrementil GA
concept leamer is to use GABL incrementally in the fol-
lowing way. The concept leamer initially accepts a single
example from a pool of examples. GABL is used to

In our experiments our upper bound was high enough that e GA
always found % rule set with a perfect score. However, this slowea down
rumming ume dramancaily.



create a 100% correct rule set for this example. This rule
set is used 1o predict the classification of the next exam-
ple. If the prediction is incorrect, GABL is invoked to
evolve a new rule sct using the two examples. If the pred-
iction is correct, the example is simpiy stored with the
previous example and the rule set remains unchanged. As
each new additonal instance is accepted, a prediction is
mads, and the GA is re-run in bawh if the prediction is
incorrect. We refer 1o this mode of operaunon as batch-
incremental and we refer to the GA baich-incremental
concept ieamer as GABIL.

4. Empirical Studies

4.1. Evaluating Concept Learning Programs

As suggested in the introducton, there are many
ways 10 evaluate and compare concept leaming programs:
in either batch or incremental modes. We tend to favor
incremental leaming systems since the world in which
most learning systems must perform is generally dynamic
and changing. In this context we prefer the use of leam-
ing curves which measure the change in a system’s perfor-
mance over time in a (possibly) changing environment.

In the domain of supervised concept leaming, this
means that we are interested in situations in which exam-
ples are accepted one at a time. In this mode, a concept
leamer must use its current concept descriptions o clas-
sify the next example. The concept learner then compares
its classification with the actual class of the example.
Based on this comparison the concept leamer may add
that example to the existing sct and attempt to reformulate
new concept descriptions, or it may leave the current
descriptions unchanged.

An incremental concept leamer will make a predic-
tion for each new instance seen. Each prediction is either
correct or incorrect. We are interested in examining how
an incremental sysiem changes its predictive performance
over time. Suppose each outcome (correct or incorrect) is
stored. We could look at every outcome 1o compute per-
formance, but this would only indicate the global perfor-
mance of the leamer (a typical batch mode statistic).
Instead, we examine a small window of recent outcomes,
counting the correct predictions within that window. Per-
formance curves can then be generated which indicate
whether a concept leamner is getting any better at correctly
classifying new (unseen) examples. The graphs used in
the experiments in this paper depict this by plotting at
each time step (after a new example arrives) the percent
correct achieved over the last 10 amrivals (recent
behavior).

4.2. Implementation Details

All of our experiments have been performed using a
C implementation of the GAs. In all cases the population
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size has been held fixed at 100, the vanable-length 2-
point crossover operator has been applied at a 60% rate,
the mutation rate is 0.1%, and selection is performed via
Baker’'s SUS algorithm [Baker87).

43. Initial Experiments

The experiments described in this secuon are
designed 1o demonstrate the predictive performance of
GABIL as a function of incremental increases in the size
and complexity of the target concept. We invented a 4
featre world in which each feature has 4 possible distinct
values (i.e., there are 256 instances in this world). This
means that rules map into 16-bit strings and the length of
individual rule sets is a multiple of 16.

In addition to- studying the behavior of our GA-
based concept leamer (GABIL) as a function of increas-
ing complexity, we were also interested in comparing its
performance with an existing algorithm. Utgoff's IDSR
[Utgoff89], which is a well-known incremental concept
leamning algorithm, was chosen for comparison. ID5R
uses decision trees as the description language and always
produces a decision tree consistent with the instances
seen.

We constructed a set of 12 concept leaming prob-
lems, each consisting of a single target concept of increas-
ing complexity. We varied the complexity by increasing
both the number of rules (disjuncis) and the number of
relevant features per rule (conjuncts) required to correctly
describe the concepts. The number of disjuncts ranged
from 1 to 4, while the number of conjuncts ranged from 1
to 3. Each target concept is labelled as nDmC, where n is
the number of disjuncts and m is the number of conjuncts.

Each target concept is associated with one experi-
ment. Within an experiment the number of disjuncts and
conjuncts for the target concept remains fixed. The varia-
tion in target concept occurs between experiments. For
each of the concepts, a set of 256 unique, noise free exam-
ples was generated from the feature space and labeled as
positive or negative examples of the target concept. For
the more complex concepts, this resulted in learning pri-
marily from negative examples.

For each concept, the 256 examples were randomly
shuffied and then presented sequentially as described
above. This procedure was repeated 10 times for each
concept and for each leaming algorithm. The perfor-
mance curves presented are the average behavior exhi-
bited over 10 runs.} '

IDSR and GABIL use significantly different
approaches to concept learning. Therefore, we expect
their performance behaviors to differ. As the number of

1t is not always possible for IDSR 10 make s prediction based on
the decision tree. If it cannot use the tree 1o predict we Jet IDSR make 2
random prediction.



disjuncts and conjuncts increases, the target concept
(viewed syntactically as a logical DNF expression)
. becomes more difficult. In general, a more complex target
concept requires a larger decision tree (although this is
not always true). ID5R relies upon Quinlan's information
theoretic entropy measure to build its decision trees. This
measure works well when individual features are mean-
ingful in distinguishing an example as positive or nega-
tive. As the number of disjuncts and/or conjuncts
increases, individual features become less informative,
resulting in larger decision trees and poorer predictive.
performance. ID3SR’s information theoretic biases will
therefore perform better on simpler target concepts.

GABIL, however, should perform uniformly well
on target concepts of varying complexity. GABIL should
not be affected by the number of conjuncts, since with our
fixed-length rule representation, large conjunctions are no
more difficult to find than small ones. There is also no bias
towards a small number of disjuncts. Given these biases
(and lack of biases), then, it is natural 1o expect that while
IDSR will outperform GABIL on the simpler concepts,
there will exist a frontier at which the siwmation will
reverse,

For the sake of brevity we present graphs of 7 of the
12 experiments. Figure 1 depicts the comparative results
on target concept 2D1C, It is representative of the results
on all the 1 and 2 disjunct concepts. Figures 2 - 7 present
the comparative results of applying both GABIL and
ID5R to the more difficult concepts (3 and 4 disjuncts),
Recall that each point on a curve represents the percent
correct achieved over the previous 10 instances (and aver-
aged over 10 runs). Note that this implies that the curves
can only remain at 100% if the algonthms have learned
the target concept by the 255th instance.

The graphs indicate that, on the simpler concepts,
the predictive performance of IDSR improves more
rapidly than that of GABIL. However, ID5R degrades in
performance as the target concept becomes more
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complex, and GABIL starts to win on the 4 disjunct con-
cepts. We expect this trend to continue with even larger
numbers of disjuncts and conjuncts.

Although it is natural to expect that a simple target
concept (from a syntactic viewpoint) would have a small
decision tree representation, this is only a rough generali-
zation. We were surprised to se¢ ID5R suffer the most on
the 4DI1C target concept, since syntactically the concept
is only moderately complex. The target concept is of the
form:

if (F1 = 0001) or (F2 = 0001) or (F3 = 0001)
or (F4 = 0001) then it’s positive

This target concept is represented by ID5R as a
decision wee of over 150 nodes. In fact, each negative
example is represented by a unique leaf node in the deci-
sion tree. For this reason, ID5R cannot generalize over the
negative examples, and has a good chance of predicting
any negative example incorrectly. Furthermore, even the
positive examples are not generalized well, resulting in

_prediction errors for positive examples. It is clear that the

decision tree representation (which is also a bias) is poor
for representing this particular concept. Target concept
4D1C represents a worst case, which explains why the
difference between GABIL and IDSR is greatest for this
concept. A similar situation occurs for target concepts
3D1C, 4D2C, and 4D3C, although to a lesser degree.

The experiments indicate that IDSR often degrades
in performance as the number of disjuncts and conjuncts
increases. IDSR's biases favor concepts that can be
represented with small decision trees. The information
theoretic measure favors those concepts in which indivi-
dual features clearly distinguish target class membership.
GABIL does not have these biases, and appears to be less
sensitive to increasing numbers of disjuncts and con-
juncts. GABIL does not degrade significantly with

‘increasing target concept complexity and outperforms

IDSR on 4 disjunct concepts. Since the syntactic com-
plexity of a target concept corresponds roughly with the
size of its decision tree representation, we expect this
trend to continue with more difficult target concepts.

5. Further Analysis and Comparisons

We plan to perform additional experiments involv-
ing the comparison of GABIL with other concept learning
programs such as Michalski's AQIS [Michaiski86], -
Quinian’s C4.5 {Quinlan89], and Clark’s CN2 [Clark89)
on artificial concepts as well as on some of the classical
test sets such as the breast cancer data and the soybean
piant disease data.
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We also plan to implement and analyze other GA-
based concept learners. The first is a variation of the
current one which is truly incremental rather than batch-
incremental. We feel that this change will smooth out
many of the bumps in the leaming curves currently due to
completely reinitializing the population when an incorrect
classification is made on a new example.

We are also very interesied in understanding the
difference between using the Pittsburgh approach and the
Michigan approach in this problem domain. The current
fixed-length rule representation can be used directly in
Michigan-style classifier systems. We plan to implement
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such a system and compare the two approaches.

Finally, we noted early in the paper that there were
two basic strategies for selecting a representation for the
concept description language. In this paper we developed
a representation which minimized the changes to standard
GA implementations. We also plan to explore the alterna-
tive strategy of modifying the basic GA operators to deal
effectively with non-string representations. In particular,
we plan to use Michalski’s VL1 language and compare
this approach to using GAs with the current work.



6. Conclusions

This paper presents a series of initial results regard-
ing the use of GAs for symbolic leaming tasks. In partic-
ular, a GA-based concept leamer is developed and
analyzed. It is interesting to note that reasonable perfor-
mance is achieved with minimal bias. There is no prefer-
ence for shorter rule sets, unlike most other concept leam-
ing systems. The initial results support the view that GAs
can be used as an effective concept leamer although they
may not outperform algorithms specifically designed for
concept leaming when simple concepts are involved.

This paper also sets the stage for additonal com-
parisons between GAs and other concept leaming algo-
rithms. We feel that such comparisons are important and
encourage the research community to develop additional
results on these and other problems of interest.
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