
Using Genetic Algorithms For Supervised Concept Learning

William M. Spears

Navy Center for Applied Research in AI

Naval Research Laboratory

Washington, D.C. 20375

SPEARS@A1C.NRL.NAVY.Mll.

Abstract

Genetic Algorithms (GAs) have traditionally been

used for non-symbolic learning tasks. In this paper

we consider me application of a GA to a symbolic

learning task, supervised concept learning from

examples. A GA concept learner (GABL) is imple­

mented ahat learns a concept from a set of positive

and negative examples. GABL is run in a batch­

incremental mode to facilitate comparison with an

incremental concept learner, IDSR. Preliminary

results suppon ahat. despite minimal system bias,

GABL is an' effective concept learner and is quite

competitive with IDSR as me target concept

increases in complexity.

1. Introduction

There is a common misconception in the machine
learning community ahat Genetic Algorithms (GAs) are
primarily useful for non-symbolic learning tasks. This
perception comes from the historically heavy use of GAs
for complex parameter optimization problems. In me
machine learning field mere are many interesting parame­
ter tuning problems to which GAs have been and can be
applied, including threshold adjustment of decision rules
and weight adjustment in neural networks. However, me
focus of this paper is to illustrate ahat GAs are more gen­
eral than this and can be effectively applied to more tradi­
tional symbolic learning tasks as well. t

To suppon this claim we have selected the well­
studied task of supervised concept learning (Mitche1l78,
Michalsld83. Quinlan86, RendeU89]. We show how con­
cept learning tasks can be represented and solved by GAs,
and we provide empirica.l results which illustrate the per­
fonnance of GAs relative to a more trnditional method.
Finally, we discuss the advantages and disadvantages of
this approach and describe future research activities.

For an inlroductioo to Genetic Algonlhms. please see
(Goldbc:rg891.

Kenneth A. De long

Computer Science Depanment

George Mason University

Fairfax, VA 20030

KDEJONG@A1C.GMU.EDU

2. Supervised Concept Learning Problems

Supervised concept learning involves inducing con­
cept descriptions from a set of examples of a target con­
cept (i.e.• me concept to be learned). Concepts are
represented as subsets of points in an n-dimensional
feature space which is defined a priori and for which all
the legal values of me features are known.

A concept learning program is presented with both
a description of me feature space and a set of cooectly
classified examples of the concepts, and is expected. to
generate a reasonably accurate description of the
(unknown) concepts. Since concepts can be arbitrarily
complex subsets of a feature space, an imponant issue is
the choice of the concept description language. The
language must have suflkient expressive power to
describe large subsets succinctly and yet be able to cap­
ture i.Iregularities. The two language forms generally
used are decision IreeS [Quinlan86} and rules [Michal­
skiS3}.

Another imponant issue arises from the problem
that there is a large (possibly infinite) Set of concept
descriptions which are consistent with any particular
finite set of examples. This is generally resolved by intro­
ducing eilher explicitly or implicitly a bias (preference)
for certain kinds of descriptions (e.g., shoner or less com­
plex descriptions may be preferred).

Finally, there is the Ciflku!t issue of evaluating and
comparing me performance of concept learning algo­
rithms. The most widely used approach is a batch mode
in which me set of examples is divided into a training set
and a test set The concept learner is required to produce
a concept description from the training examples. The
validity of the description produced is then measured by
the percentage of correct classifications made by the sys­
tem on the second (test) set of examples with no funher
learning.

The aJternati\-e evaJuation approach is an incremen­
tal mode in which the concept learner is required to pro­
duce a concept description from the examples seen so far
and to use ahat description to classify the next incoming

33~

CH2915-71901000010335$01.00 ~ 1990 IEEE

http:CH2915-71901000010335$01.00
mailto:KDEJONG@A1C.GMU.EDU
mailto:SPEARS@A1C.NRL.NAVY.Mll

exarr.pl::. In this mode learning never stops. and evalua­
uon LS in terms of learning curves which measure the
preci..;:uve performance of the concept learner over time.

3. G1:netic Algorithms and Concept Learning

In order to apply GAs to a particular problem. we
need to select an internal representation of the space to be
sear.:ned and define an external evaluation function which
asslg:n.s utility to candidate solutions. Both comJX>llents
are cTitical to the successful application of the GAs to the
probiem of interest.

3.1. Representing tbe Searcb Space

The traditional internal representation used by GAs
invoives using fixed·length (genera1Jy binary) strings to
represent points in the space 10 be searched. This
representation maps well onto parameter optimization
problems and there is considerable evidence (both
theoretical and empirical) as to the effectiveness of using
GAs to search such spaces [Holland7S, DeJong8S, Gold·
berg89. Spears90]. However, such representations do not
appear well·suited for representing the space of concept
descriptions which are generally symbolic in nature,
which have both syntactic and semantic constraints. and
which can be of widely varying length and complexity.

There are two general approaches one might take to
resolve this issue. The first involves changing the funda­
mental GA operators (crossover and mutation) to work
effectively with complex non·saing objects [Rende1l8S].
This must be done carefully in order to preserve the pm.
perties which make the GAs effective adaptive search pm.
cedures (see [DeJong87] for a more detailed discussion).
Alternatively, one can attempt to construct a string
representation which minimizes any changes to the GAs
without adopting such a convoluted representation as 10

render the fundamental GA operators useless.

We are interested in pursuing both approaches. Our
ideas on the first approach will be discussed brieOy at the
end of the paper. In the following sections we will
describe our results using the second approach.

3.2. 	Defining Fixed-length Classifier Rules

Our approach 10 choosing a representation which
results in minimal changes 10 the standard GA operators
involves carefully selecting the concept description
language. A natural way to express complex concepts is
as a disjunctive set of (possibly overlapping)
cJassification rules (DNF). The left·hand side of each rule
(disjunct) consists of a conjunction of one or more tests
involving feature values. The right·hand side of a rule
indicates the concept (classification) to be assigned 10 the
examples which match its left·hand side. Collectively. a
set of such rules can be thought of as representing the
(unknown) concepts if the rules correctly classify the

336

elements of the feature space.

If we allow arbitrarily complex u:nns in the con­
junctive left-band side of such rules. we will have a very
powerful description language which will be difficult to

represent as strings. However. by restricting the complex­
ity of the elements of the conjunctions, we are able to use
a string representation and standard GAs, with the only
negative side effect that more rules may be required to
express the concepL This is achieved by resaicting· each
element of a conjunction to be a test ofthe fonn:

return uue if the value of feature i of the example
is in the given value set. else return false.

For example, rules might take the following symbolic
forms:

ifFI =blue then it'sa block
or

if (F2 =large) and (F5 =tall or thin)
then it's a widget

or
if (Fl = red or white or blue) and (10 < F4 < 20)
then it's a clown

Since the left-hand sides are conjunctive forms with inter­
nal disjunction, there is no loss of generality by requiring
that there be at most one test for each featu.re (on the left
hand side of a rule).

With these resaictions we can now consuuct a
fixed-length internal representation for classifier rules.
Each fixed-length rule will have N feature tests, one for
each feature. Each feature test will be repreSented by a
fixed length binary string. the length of which will depend
of the type of feature (nominal. ordered, ele.).

For nominal features with k values we use k bits. 1
for each value. So, for example, if the legal values for Fl
are the days of the week. then the pattern 0111110 would
represent the test for FI being a weekday.

Intervals for features taking on numeric ranges can
also be encoded efficiently as fixed·length· bit sttings, the ..~
details of which can be seen in [Booker82]. For simpli­
city, the examples used in this paper will involve feawres .!::~

..:\..:.:-.;.:.;with nominal values.

"~,~ "So, for example. the left·hand side of a rule for a 5
feature problem would be represented internally as:

~4
Fl F2 F3 F4 FS

0110010 1111 01 111100 11111
 .. ~1
Notice that a feature test involving all l's matches any ~

>'~~1
value 	of a feature and is equivalent to "dropping" that
conjunctive term (i.e., the feature is irrelevant). So, in the

.,T:.:..
....

.. ;iabove example only the values of Fl. F3. and F4 are ::~'~-

:'
-,....j•.....
'.

http:featu.re
http:exarr.pl

relevant For completeness, we allow pauems of all O's
which malCh nothing. This means that any rule contain­
ing such a pattern will not maach (cover) any points in the
feature space. While rules of this form are of no use in
the final concept description, they are quite useful as
storage areas for GAs when evolving and testing sets of
rules.

The right-hand side of a rule is simply the class
(concept) to which the example belongs. This means that
our "classifier system" is a "stimulus-response" system
with no internal memory.

3.3. Evolving Sets or Classifier Rules

Since a concept description will consist of one or
more classifier rules, we still need to specify how GAs
will be used to evolve sets of rules. There are currently
two basic stra1egies: the Michigan approach exemplified
by Holland's classifier system [Holland86], and the Pitts­
burgh approach exemplified by Smith's LS·I system
[Smith83]. Systems using the Michigan approach main­
tain a population of individual rules which compete with
each' other for space and priority in the population. In
conuast, systems using the Pittsburgh approach maintain
a population of v.ariable-Iength rule sets which compete
with . each other with respect to performance on the
domain task.

Very little is currently known concerning the rela­
tive merits of the two approaches. As discussed in a later
section, one of our goals is to use the domain of concept
learning as a testbed for gaining more insight into the two
approaches. In this paper we repon on results obtained
from using the Pittsburgh approach. t That is, each indivi­
dual in the population is a variable length string
representing an unordered set of fixed-length rules (dis­
juncts). The number of rules in a particular individual is
unrestricted and can range from 1 to a very large number
depending on evolutionary pressures.

Our goal was to achieve a representation that
required minimal changes to the fundamental genetic
operators. We feel we have achieved this with our
variable-length string representation involving ftxed­
length rules. Crossover can occur anywhere (Le., both on
rule boundaries and within rules). The only requirement
is that the corresponding crossover points on the two
parents "match up semantically". That is, if one parent is
being cut on a rule boundary, then the other parent must
be also cut on a rule boundary. Similarly, if one parent is
being cut at a point 5 bits to the right of a rule boundary,
then the o!.her parent must be cut in a similar spot (i.e., 5
bits to the right of some rule boundary).

Ptevious GA COrtcqx learners have used the Michigan approacb.
See (Wilson87J and (Bookcr89J for dcuili.

The mutation operator is unaffected and performs
the usual bit-level mutations.

3.4. ChOO5ing. Payoff Function

In addition to selecting a good representation. it is
imponant to define a good payoff function which rewards
the right kinds of individuals. One of the nice features of
using GAs for concept learning is that the payoff function

. is the natural place to centralize and make explicit any
biases (preferences) for cenain Icinds of concept descrip­
tions. It also makes it easy to study the effects of different
biases by simply making changes to the payoff function.

For the experiments reported in this paper, we
wanted to minimize any a priori bias we might have. So
we selected a payoff function involving only classification
performance (ignoring. for example, length and complex­
ity biases). The payoff (fitness) of each individual rule set
is computed by testing the rule set on the current set of
examples and letting:

payoff (individUIJI i) = (percent correct)2

This provides a non-linear bias toward correctly clas:s:ify­
ing all the examples while providing differential reward
for imperfect rule sets.

3.5. The GA Concept Learner

Given the representation and payoff function
described above, a standard GA can be used to e\'olve
concept descriptions in several ways. The simplest
approach involves using a balCh mode in which a fixed set
of examples is presented, and the GA must search !.he
space of variable-length strings described above for a set
of rules which achieves a score of 100%. We will call this
approach GABL (GA BalCh concept Leamer).

Due to the stochastic nature of GAs, a rule set with
a perfect score (i.e., 100% correct) may not always be
found in a fixed amount of time. So as not to introduce a
strong bias. we use the following search termination cri­
terion. The search terminates as soon as a 100% ccrrect
rule set is found within a user-specified upper bound on
the number of generations. If a correct rule set is not
found within the specified bounds or if the population
loses diversity (> 70% convergence [De 10ng75)), the GA
simply returns the best rule set found. This incorrect ~but
often quite accurate) rule set is used to predict (classify)
future examples. t

The simplest way to produce an incrementaI GA
concept learner is to use GABL incrementally in the iol­
lowing way. The concept learner initially accepts a smgle
example from a pool of examples. GAEL is used to

In our experiments our upper bound was high enough thai :.::c GA
always found a Nie set with a perfect score. However. this slowea '::own
running o.me dramaucaily.

337

create a 100% COl'T'eCt rule set for this example. This rule
set is used to predict the classification of the next exam­
ple. If the prediction is incorrect, GABL is invoked to
evolve a new rule set using the two examples. If the pred­
iction is correct, the example is simply stored with the
prevIous example and the rule set remains unch~ge:ct. As
each new additional instance is accepted, a predicuon IS

made, and the GA is re-run in balch if the prediction is
incorrect. We refer to this mode of operation as balch­
incremental and we refer to the GA batch-incremental
concept learner as GABll..

4. Empirical Studies

4.1. Evaluating Concept Learning Programs

As suggested in the introduction, there are many
ways to evaluate and compare concept learning programs:
in either batch or incremental modes. We tend to favor
incremental learning systems since the world in which
most learning systems must perform is generally dynamic
and changing. In this context we prefer the use of learn­
ing curves which measure the change in a system's perfor­
mance over time in a (possibly) changing environmenL

In the domain of supervised concept learning. this
means that we are interested in siwations in which exam­
ples are accepted one al a time. In this mode, a concept
learner must use its current concept descriptions to clas­
sify the next example. The concept learner then compares
its classification with the actual class of the example.
Based on this comparison the concept learner may add
that example to the existing set and altempt to reformulate
new concept descriptions, or it may leave the current
descriptions unchanged.

An incremental concept learner will make a predic­
tion for each new instance seen. Each prediction is either
correct or incorrect We are interested in examining how
an incremental system changes its predictive performance
over time. Suppose each outcome (COJ:1'eCt or incorrect) is
stored We could look al every outcome to compute per­
. fonnance, but this would only indicate the global perfor­
mance of the learner (a typical batch mode swistic).
Instead, we examine a small window of recent outcomes,
counting the correct predictions within that window. Pel·
fonnance curves can then be generated which indicate
whether a concept learner is getting any better at correctly
classifying new (unseen) examples. The graphs used in
the experiments in this paper depict this by plotting al
each time step (ariel' a new example arrives) the percent
correct achieved over the last 10 arrivals (recent
behavior).

4.2. Implementation Details

All of OlD' experiments have been perfonned using a
C implementation of the GAs. In all cases the population

size has been held fixed at 100, the variable-length 2­
point crossover operator has been applied at a 607£: rate,
the mutation rate is 0.1 %. and selection is performed via
Baker's SUS algorithm rBaker87].

4.3. Initial Experiments

The experiments described in this section are
designed to demonstrate the predictive performance of
GABll... as a function of incremental increases in the size
and complexity of the target concept. We invented a 4
feawre world in which each feawre ha.<. 4 possible dtstinct
values (i.e., there are 256 instances in this world). This
means that rules map into 16-bit strings and the length of
individual rule sets is a multiple of 16.

In addition to studying the behavior of ourGA­
based concept learner (GABll...) as a function of increas­
ing complexity, we were also interested in comparing its
performance with an existing algorithm. Utgoff's ID5R
[Utgo089], which is a well-known incremental concept
learning algorithm. was chosen for comparison. IDSR
uses decision trees as the description language and always
produces a decision tree consistent with the instances
seen.

We constructed a set of 12 concept learning prob­
lems, each consisting of a single target concept of increas­
ing complexity. We varied the complexity by increasing
both the number of rules (disjuncts) and the number of
relevant features per rule (conjWlcts) required to correctly
describe the concepts. The number of disjuncts ranged
from 1 to 4, while the number of conjuncts ranged from 1
to 3. Each target concept is labelled as nDme, where n is
the number of disjuncts and m is the number of conjunclS.

Each target concept is associated with one experi­
menL Within an experiment the number of disjuncts and
conjuncts for the target concqJt remains fixed. The varia­
tion in target concept occurs between experiments. For
each of the concepts, a set of 256 unique. noise free exam­
ples was generated from the feature space and labeled as
positive or negative examples of the target concept For
the more complex concepts. this resulted in learning pri­
marily from negative examples.

For each concept, the 256 examples were randomly
shuffled and then presented sequentially as described
above. This procedure was repeated 10 times for each
concept and for each learning algorithm. The perfor­
mance curves presented are die average behavior exhi­
bited over 10 runs.t

IDSR and GABa use significantly different
approaches to concept learning. Therefore, we expect
their performance behaviors to differ. As the number of

h is DOl alwlYS pouilie for IDSR 10 make I prcdictiOll based 011
the dcc:isiOll IrCc. If it cannot use the tree 10 predict we Jet IDSR make I
nndom PftdictiOl1.

338

disjuncts and conjuncts inc~, the target COl1:ept
(viewed syntactically as a logical DNF expression)

. becomes more difficult In general, a more complex target
concept requires a larger decision tree (although this is
not always true). IDSR relies upon Quinlan's infonnation
theoretic entropy measure to build its decision trees. This
measure woIts well when individual features are mean­
ingful in distinguishing an example as positive or nega­
tive. As the number of disjuncts and/or conjuncts
increases, individual features become less infonnative,
resulting in larger decision trees and poorer predictive.
performance. IDSR's infonnation theoretic biases will
therefore perform better on simpler target concepts.

GABn.. however. should perform uniformly well
on target concepts of varying complexity. GABa. should
DOt be affected by the number of conjuncts, since with our
fixed-length rule representation, large conjunctions are no
more dil:D;ult to find than small ones. There is also no bias
towards a small number of disj!U1cts. Given these biases
(and lack of biases), then. it is natural to expect that while
IDSR will outperform GABa. on the simpler concepts,
there will exist a frontier at which the situation will
reverse.

For the sake of brevity we present graphs of 7 of the
12 experiments. Figure I depicts the comparative results
on target concept 2DIC. It is representative of the results
on all the 1 and 2 disjunct concepts. Figures 2 - 7 present
the comparative results of applying both GABa. and
ID5R to the more dil:D;ult concepts (3 and 4 disjuncts).
Recall that each point on a curve represents the percent
correct achieved over the previous 10 instances (and aver­
aged over 10 runs). Note that this implies that the curves
can only remain at 100% if the algorithms have learned
the target concept by the 255th instance.

The graphs indicate that, on the simpler concepts,
the predictive performance of IDSR improves more
rapidly than that of GABn.. However, ID5R degrades in
performance as the target. concept becomes more

100 tOO
r-:f--r"f·"'~.,--:- ~- -.­

.:t.- .--..90 90
• '.::i

80
 80%

70 70
._GABn.. .60 . IDSR 60

;.

50 50
0 50 100 ISO 200 250

Instances Processed

Fig 1. 2DIC

complex, and GABn. startS to win on the 4 disjunct con­
cepts. We expect this trend to continue with even larger
numbers of disjuncts and conjuncts.

Although it is natural to expect that a simple target
concept (from a syntactic viewpoint) would have a small
decision tree representation. this is only a rough generali­
zation. We were surprised to see IDSR suffer the most on
the 4D1C target concept, since syntactically the concept
is only moderately complex. The target concept is of the
form:

if (FI =0001) or (F2:: 0001) or (F3 =0001)
or (F4 =0001) then it's positive

This target concept is represented by IDSR as a
decision tree of over 150 nodes. In fact. each negative
example is represented by a unique leaf node in the deci·
sion tree. For this reason, IDSR cannot generalize over the
negative examples, and has a good chance of predicting
any negative example incorrectly. Furthermore, even the
positive examples are not generalized well, resulting in
prediction errors for positive examples. It is clear that the

. decision ttee representation (which is also a bias) is poor
for representing this particular conCepL Target concept
4DIC represents a worst case, which explains why the
difference between GABn. and IDSR is gre3lest for this
concepL A similar situation occurs for target concepts
3DtC. 4D2C, and 4D3C, although to a lesser degree.

The experiments indicate that ID5R oflen degrades
in performance as the number of disjuncts and conjuncts
increases. ID5R's biases favor concepts that can be
represented with small decision trees. The information
theoretic measure favors those concepts in which indivi·
dual features clearly distinguish target class membership.
GABa. does not have these biases. and appears to be less
sensitive to increasing numbers of disjuncts and con­
juncts. GABn. does not degrade significantly with
increasing target. concept complexity and outperforms
ID5R on 4 disjunct concepts. Since the syntactic com­
plexity of a target concept ccrresponds roughly wilh the
size. of its decision tree representation, we expect this
trend to continue with more difficult target concepts .

5. Further Analysis and Comparisons

We plan to perform additional experiments involv­
ing the comparison ofGAB a. with other concept learning
programs such as Michalski' s AQI5 [Michalski86J,
Quinl3.l1 's C4.5 [Quinl3.l189J, 3.l1d Clark's CN2 [CIark89J
on anificial concepts as well as on some of the classical
test sets such as the breast ~cer data and the soybean
plant disease data.

339

http:Quinl3.l1

100

90

C;c 	 80

70

60

50

100

90

% 80

70

60

•.~-______=----""- 100

A J #'V 90

~

I !

80

70

60

I
 l. 	 50

o 50 100 150 200 250

Instances Processed
Fig 2. 3DIC

-r.....------~~~~100
,":., ~..::"'.!• '&oo.t _ t"...

tA..,=..r-"--.

90

80

70

.: _IDSR 60

50~~~----~--~--~--~50
o 50 100 150 200 250

Instances Processed
Fig4.3D2C

90

80

100 r\.J-----.:r- 100

90

80
%

70
 70

_GADa.

60
 _lDSR 60

50.....l.-_-'-_...l.-_...L.-_.l.-__Ju- 50
o 50 100 150 200 250

Instances Processed
Fig6.3D3C

We also plan to implement and analyze other GA­
based concept learners. The first is a variation of the
current one which is ttuly incremental rather than batch­
incremental. We feel that this change will smooth out
many of the bumps in the learning curves currently due to
completely reinitializing the population when an incorrect
classification is made on a new example.

We are also very interested in understanding the
difference between using the Piusburgh approach and the
Michigan approach in this problem domain. The current
fixed-length rule representation can be used directly in
Michigan-style classifier systems. We plan to implement

340

100

90

% 	 80

70

60

50

100

90.

% 	 80

70

60

.:.. ~ ..'\..'1 100

,,""-.,.":-.\.,-_

_: J

u !~,,/'"
".. .- F"

:~~J~~~ V,

:. , ... GABn..
• IDSR

-r
: I I

o 50 100 150 200

Instances Processed
Fig 3. 4DIC

90

[so

L, 70
I

, 60

1 I

~ 50

250

100

90

80

70

60

50~-~--~--.l.-~~~~50
o 50 100 150 200 250

Instances Processed
Fig5.4D2C

100
 100

90
 90

80
% 	 80

70
 70

60
 60

50~--~--~--.J.---~~~50
o 50 100 150 200 250

Instances Processed
Fig 7. 4D3C

such a system and compare the two approaches.

Finally, we noted early in the paper that there were
two basic strategies for selecting a representation for the
concept description language. In this paper we developed
a representation which minimized the changes to standard
GA implementations. We also plan to explore the alterna­
tive strategy of modifying the basic GA operators to deal
effectively with non-saing representations. In particular.
we plan to use MichaIsld's VL1 language and compare
this approach to using GAs with the current work.

6. Conclusions

This paper presents a series of initial results regard­
ing the use of GAs for symbolic learning tasks. In partic­
ular, a GA-based concept learner is developed and
analyzed. It is interesting to note that reasonable perfor­
mance is achieved with minimal bias. There is no prefer­
ence for shoner rule sets, unlike most other concept learn­
ing systems. The initial results suppon the view that GAs
can be used as an effective concept learner although they
may not outperform algorithms specifically designed for
concept learning when simple concepts are involved.

This paper also sets the stage for additional com­
parisons between GAs and other concept learning algo­
rithms. We feel that such comparisons are important and
encourage the research community to develop additional
results on these and other problems of interesL

Acknowledgements

We would like to thank Diana Gordon for her sup­
pon and for many discussions on the biases in supervised
concept learning systems. Diana was also instrumental in
helping us design our experimental methodology. We
would also like to thank John Grefenstette and Alan
Schultz for many useful comments about GABIL and
crossover.

References

Baker, James E. (1987). Reducing Bias and IneOkiency in
, the Selection Algorithm. Proc. 2nd In(I Conference

on Genetic Algorithms and their Applications. 14­
21.

Booker. Lashon B. (1982). Intelligent Behavior as an
Adaptalion 10 lhe Task. Environment. Doctoral
Thesis. CCS Deparunent, University of Michigan.

Booker. Lashon B. (1989). Triggered Rule Discovery in
Classifier Systems. Proc. 3rd Int'I Conference on
Genetic Algorithms and their Applications.

Clark. P. and Niblett. T. (1989). The CN2 Induction
Algorithm. Machine Learnlng, Volume 3. Number
4.

De Jong. Kenneth A. (1975). An Analysis of the Behavior
.of a Class of Genetic Adaptive Systems. Doctoral
thesis, Dept Computer and Communication Sci­
ences, University of Michigan. Ann Arbor.

De Jong, Kenneth A. (1985). Genetic Algorithms: a 10
Year Perspective. Proc.]st Int'l Con/erence on
Genetic Algorithms and lheir Appiications. 169"-177.

De Jong, Kenneth A.(1987). Using Genetic Algorithms to
Search Progr.un Spaces. Proc. 2nd Inr'/ Conference
on Genetic Algorithms and their Applications.

Goldberg, David E. (1989). Genetic Algorithms in
Search. Optimization &. Machine uarning.
Addison-Wesley Publishing Company. Inc.

Holland, John H. (1975). AJ:kJptanon in Nanual and
Artificial Systems, The University of Michigan Press.

Holland,John H. (1986). Escaping Brittleness: The Pos­
sibilities of General-Purpose Learning Algorithms
Applied to Parallel Rule-Based Systems. In R.
Michalski, J. Carbonell. and T. Mitchell (Eds.),
Machine Learnlng: An Artificial]ntelligence
Approach (Vol. 2). Morgan Kaufmann Publishers,
Los Altos, CA.

Mitchell, T. (1978). Version Spaces: An Approach to
Concept Learning. Doctoral thesis. Stanford
University. Stanford, CA.

Michalski, R. (1983). A Theory and Methodology of
Inductive Learning. In R. MiChalski, J. Carbonell.
and T. Mitchell (Eds.). Machine Learning: An
Artificiol buelligence Approach (VoL 1). Tioga Pub­
lishing Co.• Palo Alto. CA.

Michalski. R.. Mozetic, I.. Hong. J., and Lavrac. N.
(1986). The AQ15 Inductive Learning System: An Over­

view and Experiments. University of Illinois Repon
Number UIUCOCS-R-86-1260.

Quinlan. J. R. (1986). Induction of Decision Trees.
Machine Learnlng. Volume I, Number 1.

Quinlan. J. R. (1989). Documentation and User's Guide
for C4.5. (unpublished).

Rendell. L. (1985). Genetic Plans and the Probabilistic
Learning System: Synthesis and Results. Proc.]st
Im'/ Conference on Genetic Algorithms and their
Applications .

Rendell. L.. Cho. H.• and Seshu, R. (1989). Improving the
Design of Similarity-Based Rule-Learning Systems.
International Journal of apert Systems. Volume 2,
Number 1.

Smith. S. F. (1983). Flexible Learning of Problem Solving
Heuristics Through Adaptive Search, Proc. 8th
JJCAI, August 1983.

Spears. W. M. (1990). Using Neural Networks and
Genetic Algorithms as Heuristics for NP-Complete
Problems, Masters thesis, CS Deparunent, George
Mason University.

Utgoff. Paul E. (1986). Shift of Bias for Inductive Con­
cept Learning. In R. Michalski. J. Car:bonell. and T.
Mitchell (Eds.), Machine Learnlng: An Artificial
Intelligence Approach (Vol. 2). Morgan Kaufmann
Publishers, Los Altos, CA.

Utgoff. Paul E. (1989). Improved Training via Incremen­
ta! Learning. Proc. of the 6th In/'/ Workshop on
Machine Learning. 62-65.

Wilson, S.W. (1987). Classifier Systems and the Animal
Problem, Machine Learning Volume 2. Number 4.

341

http:Progr.un

