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Abstract

Most human concepts elude precise definition, as they have fluid boundaries and context-
dependent meaning. We call such concept flexible, in contrast to crisp concepts that are well-
defined and context-independent. Machine learning research has so far concentrated on learning
crisp concepts, and learning flexible concepts emerges as new fundamental challenge to the field.

This chapter describes an approach to learning flexible concepts that employes the idea of two-
tiered representation, in which the meaning of a concept depends on two components: the base
concept representation (BCR), and the inferential concept interpretation (ICI). The BCR (the 1st
tier) expresses the general, typical and easy-to-define concept meaning, while the ICI (the 2nd tier)
defines allowable modifications of the typical meaning, the matching procedures, context-
dependency, and describes special cases. In matching an instance with a concept, the ICI may
employ deductive, analogical or inductive inference.

In the method desribed, the BCR is determined in two steps. First, a complete and consistent
concept description is induced from concept examples using a domain-independent learning
program AQ15. This description is then reduced and optimized according to a description qualiry
measure. The ICI is given to the system in the form a procedure for a simple flexible matching,
which determines the "closeness” between an instance and the BCR of a concept.

Early experiments with this methodology have shown that by shifting a large part of the concept
meaning from the BCR to the ICI, the amount of memory needed for concept representation can be
greatly reduced, without decreasing its performance accuracy on new examples. This surprising
and potentially significant result opens a new avenue for research. In particular, new research is
needed to determine the generality of these ideas across different domains and consistency of the
results. Further research is also required to explore more advanced two-tiered knowledge
representations and methods of applying them in learning systems.

1. Introduction

Machine learning research has so far focused primarily on learning concepts that have precise and
context-independent meaning. Such crisp concepts are represented by well-defined symbolic
structures, which specify precisely the concept boundaries, and thus hold either true or false for
any given object or observation. It is also often assumed that all instances of a concept are equally
representative, and that the meaning of a concept is independent of the context of discourse.
Examples of such representations include logical expressions, semantic networks and frames.
Relevant references, can be found, e.g., in (Michalski, Carbonell and Mitchell, 1983 and 1986).

The above-mentioned assumption that concepts are crisply defined is not limited to machine
learning research. In fact, the tendency to use crisp concepts has been characteristic of every



scientific activity. The precision of concepts and the clarity of their interrelationships has
traditionally been and remains a clear mark of quality of scientific theories.

Yet, most human concepts characterizing objects in the real world and our activities in it are
flexible, as they have fluid, imprecisely definedboundaries and context-dependent meaning. Note
how difficult is to define precisely concepts such as chair, key, space, game, freedom, mechanism
or the like, that we regularily use in our communication. Even concepts that have been given a
formal scientific definition are often used flexibly and with context-dependent meaning.

Consider, for example, the well-defined concept of a triangle. It is typically used to describe a
geometrical configuration, but it can also be used to characterize a configuration of streets, a
relationship among people, or a shape of a musical instrument (that has the name based on its
shape). In all these usages some common core properties are preserved, but the specific meaning
depends on the context in which the concept is used.

Moreover, even the mathematical meaning of a triangle allows one to distinguish between more or
less typical triangles. There is, generally, a perceived distinction in the representativeness of
different instances for any given concept. As an example, consider the concept of a bird. A
sparrow is viewed as a more typical representative of a bird in our country than, say, an ostrich or
kiwi. In most machine learning programs, however, the distinction between the degrees of
typicality of different concept examples has not been taken into consideration. Except for a few
efforts, for example, the idea of near miss (Wiston, 1970), or the method of outstanding
representatives for selecting "best" learning examples (Michalski and Larson, 1978), the issue of
typicality of examples recieved little attention in machine learning research.

A related and also relatively little explored issue is how to take into consideration the accuracy or
precision with which individual examples are described or represented. For example, a triangle
may be drawn in many different ways, for example, with dotted lines or lines made of other
shapes, or can be projected as a shadow on a wall, and still recognizable as a triangle. Thus,
examples may vary greatly in the forms they are presented, be strongly distorted or modified but
nevertheless may represent the same concept. Determining a definition of a flexible concept that
would capture all its possible forms and permissible modifications is a very difficult and
unresolved problem.

Finally, the complete meaning of a concept to a person depends on the amount of knowledge this
person possesses about it. Clearly, the conceptualization of a triangle by a layperson is different
from that of a mathematician specializing in geometry. The difference is in the amount facts they
know, and the depth of understanding they have of the concept and its properties. Such
background knowledge-dependency in understanding a concept indicates that human concepts are
personalized, living and growing constructs, rather than fixed and stable entities that mean exactly
the same thing to all people using them. The meaning of a concept changes not only from an
individual to an individual, but also evolves in time. Note how even scientific concepts have
changed and evolved, for example, the concept of energy, force, light, gravitation, atom, or
electricity. Non-scientific concepts are almost always flexible, rather than crisp. Thus, human
concepts are, in general, very different from concepts used in today's computer systems, which are
well-defined and context-independent.

Some authors have relaxed crisp concept representations by associating with them a probability or
set membership distribution (e.g., Zadeh, 1976). These methods can handle some aspects of
flexible concepts and have found a number of applications. Their ability to adequately capture the
immense fluidity, context-modifiability and background knowledge-dependency of human
concepts is, however, limited. There is a growing realization that the imprecision of human
concepts stems not so much from their statistical nature or from some undesirable vagueness of our
definitions, but rather from the need for cognitive economy. By allowing concepts to be flexible



and context-dependent, we can extend their expressive power, and by this improve cognitive
economy of our descriptions of the world (Michalski, 1986).

It should be noted, however, that although concepts may be individually flexible, sentences
consisting of such concepts may convey precise meaning in a given context. For example, the
sentence "this tall man in the group of people in the room" conveys precise meaning (i.e.,
precisely identifies the man), if there is only one man visibly taller than others, although the
concept "tall" by itself is flexible.

If machine learning is to provide useful mechanisms for real-world concept acquisition, and to
resolve the knowledge acquisition bottleck that plagues artificial intelligence systems, it has to
solve the problem of representing and learning flexible concepts. Further development of practical
inductive learning programs capable of acquiring concepts from their instances is also predicated
upon a solution of this problem. Learning flexible concepts is thus a fundamental, yet unsolved
problem in machine learning.

This chapter describes an approach to learning flexible concepts based on the recently proposed
idea of two-tiered concept representation (Michalski, 1986). It presents basic ideas, a
computational method and briefly describes the inductive learning program AQ15, which is the
major component of the method. We also present some results from early experiments with the
method. A detailed desciption of the program AQ15 and the experimental results are in [(Michalsk,
Mozetic & Hong 86; and Hong, Mozetic & Michalski 86]. New improvements to the method and
further experimental results with two tiered representation are in [Bergadano at al, 1988a,b].

2. Two-Tiered Concept Representation

Concepts can be viewed as symbolic structures denoting classes of entities united by some
principle. The principle may be specified in a wide range of forms: from an explicit definition to a
weak implication by the context and the useage of the concept. Typically, for concepts relating to
the events in the real world, the boundaries of these classes are flexible. The flexibility of the
meaning depends on the context of discourse and on the intepreter's background knowledge related
to the concept. A simple introspection tells us that there can be a different degree of match between
our internal representation of a concept and an observed concept instance, and performing such a
match may involve inference (see, e.g., examples below). There can be great diversity in the
meaning of some concepts depending on the situation and the context in which they are used.

How, then, concepts with an imprecise, variable and context-dependent meaning can be learned
and represented?  This chapter attempts to shed light on this problem by employing the idea of
" nwo-tiered concept representation, introduced by the author (Michalski, 1986). This idea is
illustrated by examples, both hypothetical and practical, mostly taken from the medical domain.We
also present a computational method employing this idea.

In two-tiered representation, the meaning of a concept is defined by two components: the base
concept representation (BCR), and the inferential concept interpretation (ICI). The base concept
representation (1st tier) includes assertions describing the general and easy-to-define meaning of
the concept, and its typical purpose or use. It may also include representative examples and
counter-examples of the concept, as well as observed exceptions from its typical meaning. The
BCR is thus an explicit memorized set of basic facts about a concept.

The inferential concept interpretation (2nd tier) specifies how to match the concept with instances,
what are the allowable modifications of the typical meaning, how the concept depends on the
context, and how to handle special cases. The ICI may employ deductive, analogical or inductive
inference.The interpretation method may use the concept metaknowledge, for example, the



importance of concept attributes, observed frequencies of concept occurence, the context of the
discourse, and the interpreter's background knowledge. This way the actual meaning of any
concept can be flexibly modified or extended by varying the context and/or the method of
interpretation, without changing the base concept representation. By evaluating the amount of
inference involved in matching a concept with an instance one may also produce a qualitative or

numerical estimation of the typicality or certainty that an instance is a member of the concept ina
given context (a "concept membership function”).

The above remark points to the principal difference between this approach and, for example, the
fuzzy logic approach (Zadeh, 1976) to representing imprecise concepts. In fuzzy logic, a concept 1s
associated with a numeric membership function, defined by a human. In the proposed approach,
we have a set of inference rules and an interpretation method (2nd tier) associated with a concept.
These rules and the method could be used to compute the membership function in different
contexts. The rules are modifiable and can grow with the usage of a concept. Figure 1 illustrates
the relationship between BCR and ICI in a two-tiered concept representation.

Figure 1. An illustration of the relationship between the base concept representation (BCR)
and inferential concept interpretation (ICI).

Learning a concept using a two-tiered representation consists of two parts: one - to acquire the base
representation, and the second - to acquire the interpretation method and inference rules in various
contexts. The interpretation method can be shared by concepts in the same class, or inherited from
a superclass. By sharing complete or partial ICI, a significant economy of the concept
representation can be achieved. Let us now illustrate the idea of two-tiered representation by a few
examples.

Example 1: Concept of fish

Typical characteristics of fish are that they live in water and they swim. This information. as well
as information about their typical shape, physical properties and other relevant facts would be
_stored in the base concept representation.

Suppose someone found an animal that matches many physical characteristics of fish, but which
does not swim. Suppose that this animal appears to be sick. The inferential concept interpretation
would involve background knowledge that sick animals may not be able to move, and that
swimming is a form of moving.



By deductive reasoning from these facts one concludes that apparent lack of ability to swim should
not be taken as negative evidence for the animal being a fish. To the contrary, the fact that the
animal does not swim might even add to the confidence once the animal was recognized as being
sick (a sick-looking toy-fish may still "swim" if its motor is ok). The rules for such reasoning
would not be stored with the concept of fish, but would be a part of the concept interpretation
method. The method could be associated with the concept of animal, and by inheritance applied to
the concept of fish.

Example 2: Concept of sugar maple

Our prototypical image of a sugar maple is that it is a tree with three- to five-lobed leaves that have
V-shaped clefts. Some of us may also remember that the teeth on the leaves are coarser than those
of red maple, that slender twigs turn brown, and the buds are brown and sharp-pointed. As a tree,
a maple has, of course, a trunk, roots and branches.

Suppose that while strolling on a nice winter day someone tells us that a particular tree is a sugar
maple. A simple introspection tells us that the fact that the tree does not have leaves would not
strike us as a contradiction of what we know about sugar maples. Yet, clearly, the presence of
leaves of a particular type is deeply embedded in our typical image of a maple tree. The two-tiered
theory of concept representation explains this phenomenon simply: the inferential concept
interpretation associated with the general concept of deciduous trees evokes a rule "in winter trees
lose leaves." By deduction based on the subset relationship between maple trees and deciduous
trees, the rule would be applied to the former. The result of this inference would override the
stored standard information about maple trees, and the inconsistency would be resolved.

Suppose further that when reading our first book on computer data structures we encounter a
drawing of an acyclic graph structure of points connected by straight lines, which the author calls a
tree. Again, calling such a structure a tree does not evoke in us a strong objection, because we can
see in it some abstracted features of a biological tree. Here the matching process involves inductive
generalization.

Example 3. Concept of a triangle

Let us go back to the concept of a triangle. Formally, it can be described as a geometrical figure
consisting of three non-colinear points connected by straight lines. Using notation of annotated
predicate calculus (APC), which is equivalent to predicate calculus, but permits one to write logical
statements in a more compact form and facilitates processes of generalizing expressions
(Michalski, 1983), one can write:

Triangle(T, P1, P2, P3) <= Consists(T, P1 & P2 & P3) &
ConnectedBy(P1,P2 & P1,P3 & P2,P3) = StraightLine &
RelationType(P1, P2, P3) = non-colinear

In the above expression, the symbol "&" denotes the internal conjunction, i.e., conjunction of
terms (rather than predicates). For example, the predicate "consists(T, P1 & P2 & P3)" states that
the triangle T consists of the point Pland P2 and P3.

Suppose someone tells us that three trees in his yard form a triangle. Obviously, the meaning of the
triangle in this statement differs from that in the formal descritpion. To match the two, one needs to
make the following assumptions:



a. In the context of describing a configuration of real objects, such as trees, the individual objects
play the role of the nodes. Thus, the matching operation involves drawing an analogy between the
abstract nodes and the trees. This analogy can be viewed as consisting of one step of generalization

(GEN):

Point ----GEN----> Object
and one step of specialization (SPEC):

Object ----SPEC----> Tree

b. In the context of trees, the presence of "straight line" is imaginary, i.e., there is not physical
connection, but one could imagine a line between the objects (trees). The condition "ConnectedBy"
is satisfied in such an abstract sense. This is an operation of generalization. Thus, matching the
statement about a triangle arrangement of three trees with formal definition of a triangle requires
various operations of generalization and specialization.

The examples presented above illustrate the ideas behind the two-tiered presentation, and show that
relating concept instances to concept representations is more than matching features and
determining a numerical score, as done in various mechanized decision processes, €.g., €Xpert
systems. It shows that it may involve performing various forms of inference.

3. The Interrelationship between BCR and ICI

To illustrate the idea of two-tiered representation, and a trade-off between the BCR, let us consider
an imaginary concept, which we call an "R-ball." Suppose that the meaning of this concept is
defined by the diagram in figure 2.

Figure 2. A diagram illustrating the concept of R-ball.

Each "1" in the diagram describes an instance of the R-ball, by defining specific values of atrributes
for this instance. The set of all instances of the R-ball depicted in the diagram constitutes the
concept of R-ball. A complete and consistent description of the concept (i.e., a one that covers all
"1"s, and only them) is:

shape=round & bounces or
shape=round & size=medium or large or
bounces=yes & size = medium or large (1)



Any instance that matches the above description is recognized as an R-ball (assuming that "&" is
interpreted as logical conjuntion, and "or" as logical disjunction).

Let us now consider the diagram in figure 3, in which there are only four examples (the four "1"s).

Figure 3. A subset o examples of the R-ball.
A complete and consistent description of the examples is:
shape=round & bounces=yes & size=medium or large 2)

If interpreted the same way as above, this description covers only a subset of R-bails. Suppose,
however, that we interprete the "&" not as conjunction, but as the average function, and the
individual conditions (e.g., shape is round), as taking value 1 when satisfied (matched), and value
0 when not satisfied by an instance of the ball. Let us assume that a ball is classified as an R-ball, if
the average of the degrees of match (DM) of the three conditions is equal or greater than 2/3. Itis
easy to notice that with such an interpretation of the description, the ultimate classifitaion of
different instances into R-balls and not-R-balls will be exactly the same as in the first case (eq. 1).

Thus, we have two logically equivalent representations of R-balls, as summarized in Table 1. The
first representation, CR1, is significantly more complex than the second, CR2, as it consists of 3
conjunctions (in BCR), while the second consists of only 1 conjunction. A price for the memory
saving in CR2 is a slightly more complex interpretation method (ICI) of the second description. In
general, there can be a range of logically equivalent descriptions that differ in the relative
proportion of BCR and ICIL

The method of learning two-tiered concept representations to be described later is based on a
general inductive learning program, AQ15. Before introducing the method, we first briefly
describe this program.

4. An Overview of AQ15

The program AQ15 is a descendant of the the AQ1-AQ11 series of inductive learning programs
(e.g., Michalski,1972; Michalski & Larson 75), and more recently of the GEM program (Mozetic
& Hong, 1984). Various versions from the AQ family were experimentally applied to many
practical problems, such as learning criteria for discriminating between cancer of the pancreas and
cancer of the liver (Michalski, 1973), determining rules for plant disease diagnosis (Michalski &



Chilausky 80), describing "win" and "draw" positions in chess end-games (Negri and Michalski,
1977), and more recently for automatically creating a knowledge base for diagnosing cardiac
arrhythmias from electrocardiograms (Mozetic, 1986).

The above-mentioned series of programs are based on the AQ algorithm, which generates the
minimum or near minium number of general decision rules characterizing a set of instances, as
originally described in (Michalski 69; Michalski & McCormick 71). While a complete description
of the algorithm is somewhat complicated, its basic structure is simple.

1. A single positive example, called a seed, is selected, and a set of most general conjunctive
discriptions of this example is computed (such a set is called a szar for the seed). Each of these
descriptions must exclude all negative examples.

2. Using a description preference criterion (described below), a single description is selected from
the star, called the "best" description. If this description covers all positive examples, then the
algorithm stops, as this description is a complete and consistent characterization of all training
examples.

3. Otherwise, a new seed is selected among the unexplained (uncovered) examples, and steps 1
and 2 are are repeated until all examples are covered.

The disjunction of the descriptions selected in each step constitues a complete, consistent and
general description of all examples. The preference criterion used in selecting a description from a
star is expressed as a list of elementary criteria that are applied lexicographically and with a certain
tolerance. The criteria may include the simpllicity of description (measured, e.g., by the number of
variables used), the cost (the sum of measurement costs of individual variables), an estimate of
generality (e.g., the ratio of the number of all possible examples covered to the number of training
examples covered), or other criteria (Michalski, 1973, 1983).

The conjunctive descriptions are expressed using the variable-valued logic system I (VL,), which
is a multiple-valued logic propositional calculus with typed variables (e.g., Michalski, }974). In
VL,, the simplest statement is a selector , which relates a variable to a value or a disjunction of
values, for example, [color = blue or red], or [x > 3]. A conjunction of selectors forms a complex,
which represents a conjunctive description. A cover of a concept is a disjunction of complexes
describing all positive examples and none of the negative examples of the concept. Thus, a cover
can be viewed as the condition part of a rule that defines a concept.

By modifying a "generality parameter" AQ1S can produce rules of different degrees of generality
(e.g., rules may be most general, most specific or intermediate). The basic mode of the program
produces the most general rules, i.e., rules (complexes) that cover the maximum number of
instances (observed or hypothetical), without covering any negative examples. By specializing
such rules one can reach the other extreme, i.e., rules that cannot be more specialized without
increasing the number of rules or "uncovering" some examples.

The program is also capable of incremental learning with perfect memory. In this type of leamning,
the process of modifying the current hypothesis to accommodate new facts takes into consideration
all past examples (Reinke & Michalski 86). Thus, past examples must be stored, but the advantage
is that the modified hypothesis is guaranteed to be always complete and consistent with regard to
all the examples, and therefore such a method is potentially capable of producing higher quality
rules than methods that remember only the current hypothesis. An incremental AQ-based learning
program that does not store past examples is described in (Michalski and Larson, 1976).

Because the program can leam incrementally, it allows a user to supply some initial decision rules,
which are then improved by an exposure to new examples. The program can also perform



constructive induction, in which background knowledge is used to generate new attributes, not
present in the original set of examples. The background knowledge is expressed in the form of
rules, which can be one of two types: L-rules that define values of new variables in the form of
logical assertions, and A-rules that introduce new variables as arithmetic functions of original
variables. A detailed description of the program is in (Michalski, Mozetic and Hong, 1989).

5. The TRUNC Method and Flexible Matching

The basic idea behind the TRUNC method is determine the "best" distribution of the concept
description between the explicit base concept representation (BCR) and the inferential concept
interpretation (ICI) [Michalski, 1986a, Michalski, 1986b]. This idea can be simply realized as
described below.

As mentioned before, in AQ15 a concept is represented in the form of a disjunction of conjunctive
statements (complexes). Each complex corresponds to a single rule stating that if conditions in the
complex are satisfied by an event then this event belongs to the concept. The program associates
with every complex a pair of weights: t and u, representing the rotal number of instances (events)
covered by the complex, and the number of events covered uniquely by that complex,
respectively. Thus, the t-weight may be interpreted as a measure of the representativeness of a
complex as a concept description. The u-weight may be interpreted as a measure of importance of
the complex. The complex with the highest t-weight may be viewed as describing the most typical
concept examples, and thus serve as its prototypical description. The complexes with lowest u-
weights describe rare, exceptional cases. If the learning events from which rules are derived are
noisy, such "light" complexes may also be indicative of errors in the data.

We distinguish between two methods for recognizing the concept membership of an instance: the
strict match and the flexible match. In the strict match, one tests whether an instance satisfies
strictly the condition part of a rule (a complex). In the flexible match, one determines a degree of
closeness between the instance and the condition part.

Using the strict match, one can recognize a concept without checking other candidate concepts. In
the flexible match, one needs to determine the most closely related concept. Such a match can be
accomplished in a variety of ways, ranging from approximate matching of features to conceptual
cohesiveness [Michalski & Stepp 83].

The above described concept of t- and u-weights associated with complexes suggests an interesting

possibility. Suppose that we order complexes in a description from those with the highest t-weight
to those with the lowest t-weight. Figure 4 illustrates an ordering on the basis of the t-weight.

In each pair (x, y), x represents the t-weight, and y represents the u-weight.
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Figure 4. An illustration of a t-ordered cover.

Suppose that we remove from such a cover the lightest complex (in figure 4, the complex Cpxy).
The so truncated description will not strictly match the events that uniquely satisfy the removed
complex. However, by applying a flexible match, these events may still come out to be the most
similar to the correct concept, and thus be correctly recognized. Thus, the removal of a complex
does not necessary mean a decrease of the performance of the description on learning examples.
The price for this simplification is a somewhat more complex evaluation of the description.The so
truncated descritpion is applied to a set of teszing events , and the performance score is determined.

Next, the "lightest” complex in the truncated cover is removed, and the performance of the
obtained description on the same testing examples as before is determined. This process is
continued until only one complex remains (the heaviest). In figure 4, cuts a, b and ¢ mark covers
obtained after the 1st, 2nd and 3rd step of truncation (with the number of complexes equal 3, 2 and
1, respectively). The "best" description among the truncated covers generated in consecutive steps
is the one that scores highest on some criterion that pits the reduction in description complexity
against its performance on the training and testing set of examples. The specific form of such a
criterion can be defined appropriately to the problem domain. The above described method of
knowledge reduction by truncating ordered covers, and employing flexible matching for example
recognition, is called TRUNC.

Intuitivelly, one might expect that there is some trade-off between the simplicity of a description
and its performance. An interesting problem is then to test the existence of this trade-off, in
particular, to test how cover truncation affects the accuracy and the complexity of the decision rules
in different practical settings. Section 7 presents rather surprising results of such experiments.
Various trade-offs in creating descriptions are studied in variable precision logic (Michalski &
Winston, 1986).

6. Matching concepts with examples

We now turn to the problem of matching concepts descriptions with examples, and the resolution
of conflict when several descriptions are matched by a single example. When strictly matching a
new example against a set of (disjunctive) rules, three outcomes are possible: there may be only
one match, more than one, or no match. These three types of outcomes are called single-match,
multiple-match and no-match, respectively (figure 5). Each type of match requires a different
evaluation procedure, and a different method of determining the accuracy of concept
recognition.For single match, the evaluation is easy: the decision is counted as correct, if it is
equal to the expert-given classification of the testing example, and as incorrect, otherwise.

If there is a multiple match or no-match, the system activates a flexible evaluation scheme that
determines the most plausible decision. This decision is compared with an expert decision, and
evaluated as correct or incorrect. There many ways one could define a flexible evaluation scheme.
Below is an example of a scheme, which defines two simple heuristic classification criteria, one for
the multiple-match case, and the other for the no-match case.

The multiple-match case

When an event matches more than one rule, the system selects the one that represents the most
plausible decision. Let C,,...,C_ denote decision classes and, e denote an event to be classified.
For each decision class di we Have a rule (a cover) that consists of a disjunction of complexes
(Cpx). Each complex is, in turn a conjunction of selectors (Sel).
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We first define the strenght of support, SS(Cpxj, e), provided by a complex Cpxj that is satisfied
by the event e , as follows:

The SS(Cpx., ) is the ratio of the t-weight(Cpx.), i.e., the total number of training examples
covered by the complex Cpx., by the total numbek of possible examples covered by the complex
(#examples), if the complex id satisfied by the event ¢, and is 0 otherwise:

t-weight(Cpx.)/#examples, if e satisfies Cpxj
SS(Cpx., e) = J
J 0, otherwise.

A justification for this measure is that if a "heavy" complex (i.e., representing more typical events)
is satisfied, then it is more likely that the event belongs to the class described by this complex.

The strength of support , SS(Ci), for the class C., is the probabilistic sum of SSs of the complexes
in the rule for this class. Thus, if the rule for Ci consists of a disjunction of two complexes, Cpx1
and Cpx,, we have:

SS(Ci,e) = SS(Cpxl,e) + SS(Cpxz,e) - SS(Cpxl,e) X SS(Cpxz,e)

The probabilistic sum is used, because individual complexes may intersect, and thus are
interdependent. The most plausible class is defined as the one with the largest SS, i.e., the one
whose satisfied complexes cover the largest number of learning examples. Obviously, if the
description is not satisfied by the given event, its SS equals 0.

The no-match case

If an event does not satisfy any rule in the rule set under consideration, then the system performs a
flexible matching, i.e., evaluates a degree of closeness between the event and each rule, and selects
the class, whose rule is "closest” to the event. One way to perform such a matching is to define a
measure the fit between attribute values in the event and the class description, taking into
consideration the prior probability of the class. For illustration, let us present here a very simple
measure of fit , MF, which was described in (Michalski, Mozetic & Hong, 1986):

First, we define the measure of fit, MF(Sel, , ), of the selector Sel, to the event e. This measure
takes value 1, if the selector is satisfied. Otherwise, it is proportiondl to the amount of the domain
space covered by the selector:

1 if selector Sclk is satisfied by e
MF(Selk, e)=
#values/DomainSize, otherwise

where #values is the number of alternative attribute values in the selector, and DomainSize is the
total number of the attribute’s possible values.

An intuitive justification of this measure is that if an event does not satisfy a selector with just one
or few alternative values, then this is a stronger negative evidence then if it does not satisfy a
selector with many alternative values.

The measure of fit, MF(Cpx., e), of a complex Cpx; to the event e, is defined as the product of
MFs of selectors in the comp\ex, weighted by the ratio of t-weight(Cpxj) (the number of learning
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examples covered by the complex) and #examples (the total number of possible examples covered
by the complex):

MF(Cpxj, e= Il (MF(Sel,, e) x (t—weight(Cpxj)/#examples)
i

Individual selectors in a complex can be viewed as independent conditions, and therefore
multiplying MFs of the selectors in the complex seems to be reasonable.

The measure of fit, MF(C., €), of the class C. to event e, is defined as the probabilistic sum of the
MFs of complexes in the rule for the class:

MF(Ci, e)= MF(Cpxi, e)+ MF(Cpxz, e) - MF(Cpxl, e) MF(Cpxz, e)}

As before, the probabilistic sum is justifiable because individual complexes may be intersecting,
and thus interdependent.

The above measure of fit between a class and event is thus a combination of "closeness" of the
event to the class and an estimate of the prior probability of the complexes in the class. This
measure could be further extended by introducing a measure of degree to which a selector is
satisfied by an event [Michalski& Chilausky, 80].

EXPERIMENTS AND ANALYSIS OF RESULTS

To illustrate the ideas described in this chapter, we will briefly describe some preliminary
experiments performed using data from three medical domains: lymphography, prognosis of breast
cancer recurrence and location of primary tumor (Michalski, Mozetic &Hong; 1986). All data were
obtained from the Institute of Oncology of the University Medical Center in Ljubljana, Yugoslavia
(Kononenko, Bratko& Roskar, 1984).

Lymphography

There were 4 decision classes (possible diagnoses). Each patient was characterized by 18
multivalued attributes. The data about 148 patients diagnosed by experts were used in the
experiment. The diagnoses were not verified independently, and physicians were not tested in any
way. A specialist's estimation is that internists diagnose this kind of diseases correctly in about
60% of cases, and specialists in about 85% of cases.

Prognosis of Breast Cancer Recurrence

There were 2 decision classes. Each patient was characterized by 9 multivalued attributes. The set
of attributes was incomplete, in the sense that these attributes were insufficient to completely
discriminate between cases of different disease. Thus, diagnosing on the basis of these attributes
has to produce a certain amount of error. Data about 286 patients with known diagnosistic status 5
years after the operation were used in the experiment. Five specialists of the Institue of Oncolog
in Ljubljana were tested, and they gave a correct prognosis in 64% of cases.

Location of Primary Tumor

Physicians distinguish between 22 possible locations of primary tumor. Each patient was
characterized by 17 attributes (as in the prognosis of breast cancer recurrence, this set was also
incomplete). Data of 339 patients with known locations of primary tumor were used in the
experiment. Four internists that were tested determined a correct location of the primary tumor in
32% of cases, and four oncologists (specialists) in 42% of test cases.

Table 1 summarizes the data used in the experiments. Individual columns represent: the problem
domain (a disease type); the number of available examples for this disease type; the number of
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different diseases of the given type; the number of attributes used to characterize a case, and the
average number of values per attribute for each of the domains, respectivley.

Domain Examples Classes Attrs Vals/Attr
Lymphography 148 4 18 3.3
Breast cancer 286 2 9 5.8
Primary tumor 339 22 17 2.2

Table 1. A characterization of three poblem domains

In all three domains, 70% of examples were selected for learning diagnostic rules by the program,
and the remaining 30% for testing the obtained rules. Each testing experiment was repeated 4 times
with randomly chosen examples.

The statistics in Table 2 include average number of complexes per rule, average number of
~ attributes per complex, average number of values per attribute and finally, average number of
learning examples covered by one complex in covers generated by AQ15. We can see that in the
domain of primary tumor decision rules consist of complexes that in average cover slightly more
than 2 examples. In the domain of lymphography complexes in average cover 8 examples, which
indicates a presence of relatively strong patterns. '

Domain Cpx/Rule Attrs/Cpx Values/Atr  Examples/Cpx
Lymphography 3 3.1 1.8 8

Breast cancer 20 39 1.7 5

Primary tumor 5.2 5.3 1.0 23

Table 2. Average complexity of AQ15's decision rules in the three medical domains, when
no cover truncation was applied.

In addition to results obtained from using complete (untruncated) rules, results of two other
experiments were obtained. In the first experiment we eliminated from rules all complexes that
cover uniquely only one learning example (unique), and in the second we eliminated all complexes
except the most representative one covering the largest number of learning examples (best cpx).
Complexity of rules is measured by the number of selectors and complexes. The results describing
the average of 4 experiments are presented in Table 3.

The column "Rule type" specifies which of the three types of rules was used for testing:
"complete” - the rules were complete and consistent with regard to all
training examples, i.e., they were exactly in the form produced by AQ1S,
"unique>1" - the rules did not include complexes with u-weight = 1 (i.e., complexes that covered
uniquely only one event),
bestcpx - the rule for each class consisted of just a single complex - the one with the highest
t-weight (i.e., covering the largest number of examples).

The column "Complexity" gives an estimate of the complexity of the rules in each case, as
measured by the total number of selectors (#Sel), and the total number of complexes (#Cpx) in the
rule(s) for each class.



Complexity Accuracy  Experts/ Random
Domain Rule type #Sel #Cpx Internists Choice
complete 37 12 81%
Lymphography unique >1 34 10 80% 85%/60% 25%
best cpx 10 4 82%
no 160 41 66%
Breast cancer unique >1 128 32 68% 64% 50%
best cpx 7 2 68%
no 551 104 39%
Primary tumor unique >1 257 42 41% 42% 5%
best cpx 112 20 29%

Table 3. Results of experiments in three medical domains

Results for human experts are the average of testing of five and four domain specialists in the
domains of breast cancer recurrence and primary tumor, respectively (Kononenko, Bratko &
Roskar, 1986). In the domain of lymphography, the internists' accuracy is only their own
estimate, and was not actually measured.

Some results shown in Table 3 seems to be quite surprising. The most striking case concerns the
diagnosis of lymphography. When the cover of each disease was truncated to only one complex
(best cpx), the complexity of the rule set for went down from the total of 12 complexes (rules) and
37 selectors (conditions) to only 4 complexes (one per class) and 10 selectors. At the same time
the performance of the rules went slightly up (from 81% to 82%).

A similar phenomenon occurred in the breast cancer domain, where the number of selectors and
complexes went down from 160 and 41 to 7 and 2, respectively; while the performance went again
slightly up, from 66% to 68%. This means that by using the TRUNC method one may
significantly reduce the knowledge base without decreasing its performance accuracy.

The domain of lymphography seems to have some strong patterns and the set of attributes is
known to be complete. There are four possible diagnoses, but only two of them are prevailing. The
domain of breast cancer has only two decision classes, but does not have many strong patterns.

The the domain of the location of primary tumor has many decision classes and mostly binary
attributes. There were only few examples per class available, and the domain seems to be without
any strong patterns. The set of available attributes was incomplete, i.e., was not sufficient to
discriminate between different classes. Such a low quality data explain the low performance of the
system in this domain.

In the first two domains, the strongly simplified, incomplete rule base gave a slightly better
performance on testing examples than the original complete rule base. How was this possible? To
explain this, let us first observe that removing complexes from a cover is equivalent to removing
disjunctively linked conditions from a concept description. Such a process overspecializes the
knowledge representation, i.e., produces a concept description that does not cover some positive
training examples (hence we have an incomplete concept description).

The fact that such a description produced good results may be attributed to flexible matching.
Events that were not strictly covered can still be correctly classified, if they are evaluated to be
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"closer" to the truncated descriptions of the correct class than to descriptions of other classes (recall
the 'no-match” case). Since the "best complex" may be interpreted as representing the most typical
cases, it is likely that examples that are not covered by it are still "closer” to it than to the "best
complexes" of other classes.

The above method of knowledge reduction by specialization may be contrasted with knowledge
reduction by generalization used in the ASSISTANT learning program, a descendant of ID3
(Quinlan, 1983). This program represents knowledge in the form of decision trees, and has been
applied to exactly the same medical problems as here (Kononenko, Bratko & Roskar, 1986). The
program applies a tree pruning technique based on the principle of maximizing classification
accuracy. The technique removes certain nodes from a tree, and this is equivalent to removing
conjunctively linked conditions from a concept description. Thus, such a knowledge reduction
technique overgeneralizes knowledge representation, producing an inconsistent concept
descriptions (i.e., the ones that cover some negative examples).

It should be noted, however, that this method does not use any flexible matching technique, and
therefore it, in principle, must produce errors on the training examples (unlike the TRUNC method
that may not produce such errors). Nevertheless, this technique may also lead to an improvement
of accuracy in classifying testing examples. The reason for this may be the known statistical
phenomenon of "overfitting." More general descriptions (due to pruning) may avoid
missclassifications produced by overly specific descriptions. Table 4 presents the complexity and
diagnostic accuracy of the trees generated by the ASSISTANT's program, with and without the
tree pruning mechanism, for the same data as used in the above described experiments.
(Kononenko, Bratko & Roskar, 1986).

Tree Complexity Accuracy
Domain pruning Nodes Leaves

no 38 22 76%
Lymphography  yes 25 14 77%

no 120 63 67%
Breast cancer yes 16 9 72%

no 188 90 41%
Primary tumor  yes 35 18 46%

Table 4: Results from the experiments using the ASSISTANT program.

Comparing these results with those in Table 3 one can notice that in the first two, more structured
domains, the "best complex” representation is substantially simpler than the pruned tree
representation (a complex corresponds to a leaf, and a selector in a complex roughly corresponds
to a node in the tree). For example, in lymphography, the best complex description involves 4
complexes and 25 selectors, as compared to 14 leaves and 25 nodes in the pruned tree. On the
other hand, in the domain of primary tumor, in which data were very low quality and noisy, the
pruned tree performed better than the best complex, though the results in both cases were rather
poor (46% and 29%, respectively).

The technique of tree pruning corresponds to the removal of selectors from complexes. As such, it
can also be applied to covers. Thus, in general, the reduction of the base concept representation
(BCR) in the form of covers may involve not only removal of complexes from the cover (a
specialization process), but also a removal of selectors from complexes (a generalization process).
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specialization process), but also a removal of selectors from complexes (a generalization process).
This means that the resulting BCR would be both, inconsistent and incomplete. Such a technique
has been implemented, and is described in (Bergadano at al, 1988a,b,c). In this technique,
complexes and selectors are removed from the original cover so that a certain criterion of

description of quality is maximized.

7. Summary

We have presented here ideas and a method for representing concepts whose meaning is flexible
and dependent on the context of discourse. The two-tiered representation splits the concept
description into a part that explicitly defines the general, typical and easy-to-define properites (the
base concept representation - BCR), and the part that describes allowable modifications, context-
dependency and special cases (inferential concept interpretation - ICD)..

The method presented employs the AQ15 learning program to generate complete and consistent
concept descriptions, which are then optimized to create the BCR of concepts. The so obtained
concept descriptions (concept recognition rules) are easy to interpret and comprehend. The
program has proven itself to be a powerful and versatile tool for experimenting with problems of
inductive knowledge acquisition. The knowledge representation in the program is, however,
limited to only attribute-based descriptions. For problems that require structural descriptions a
related program, INDUCE3 (Hoff, Michalski & Stepp, 1983), or its incremental learning version
INDUCE4 [Mehler, Bentrup & Riedsel,86] can be used.

Experiments with the implemented system have shown that it is able to produce relatively high
quality decision rules in domains with noisy and overlapping learning examples. The potentially
most significant outcome of the experiments is the demonstration that the two-tiered representation
obtained by truncating the covers and applying flexible matching may lead to a very substantial
reduction of the size of the rule base without decreasing its performance accuracy.

Further research is required to find out the generality and usefulness of the presented ideas across
different domains, and to develop and experiment with more advanced two-tiered representations.
Other interesting problems are to develop criteria for determining the best trade-off between the
base concept representation and inrefential concept interpretation in different domains, and the
organization of two-tiered representations of systems of interrelated flexible concepts.
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A Two-tiered Representation
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A Comparison Between Two
Concept Representations

CR1 CR2

BCR ICl BCR 1G]

3 conjunctions| & =MIN |1 conjunction| & = AVG
6 conditions V = MAX |3 conditions | V=MAX
DM =1 DM = 2/3

LeaTwoT:REPVSIN



