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Abstract 
The paper presents initial results toward developing a unifying conceptual framework for 
characterizing diverse learning strategies and paradigms. It outlines the inferential learning theory 
(lLn that aims at understanding the competence aspects of learning processes. Thus, the theory 
has different goals than computational learning theory that is concerned with computational 
complexity of learning processes. The IL T views learning as a goal-oriented process of modifying 
learner's knowledge by exploring the learner's experience. Such a process is accomplished by 
various know/edge transmutations, such as selection, replication, reformulation, abstraction, 
similization, generalization, and/or their opposites, such as generation, deletion, randomization, 
concretion, dissimilization and specialization, respectively. These transmutations are characterized 
as specific forms of underlying types of inference, deduction, induction or analogy. Several 
fundamental concepts, like analytic vs. synthetic learning, induction, abduction, abstraction and 
generalization, are analyzed in a novel way. It is shown, for example, that inductive generalization, 
inductive specialization and abductive derivation can be viewed as different fonns of induction, and 
deductive generalization and abstraction are related forms of deduction. The above concepts are 
used to develop a general classification of learning processes . 

. Key words: learning theory, machine learning,.inferentiallearning theory, inference types, 
deduction, induction, abduction, classification of learning. 

1. Introduction 
The last several years have witnessed a great proliferation of methods and approaches to machine 
learning. Research in this field has spanned such subareas as empirical concept learning from 
examples, explanation-based learning, discovery systems, computational learning theory, neural 
net learning, genetic algorithm based learning, constructive induction, conceptual clustering, 
cognitive models of learning, reinforcement learning, multistrategy learning, and applications of 
machine learning to varius practical domains. Among many sources that have reported the 
progress in various subareas of this field, the reader may consult Laird (1988), Haussler and Pitt 
(1988), Touretzky, Hinton and Sejnowski (1988), Goldberg (1989), Schafer (1989), Segre 
(1989), Fulk and Case (1990), Porter and Mooney (1990), Kodratoff and Michalski (1990), and 
Birnbaum and Collins (1991). In view of such an expansion and diversification of research in 
machine learning, there is an intense need for developing a conceptual framework that would 
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clarify the interrelationships among different subareas and approaches, and detennine the 
conditions for their most effective applicability. 

The purpose of this paper is to report an effort toward the development of such a general 
framework. It outlines the inferential learning theory, which analyzes and characterizes learning 
processes in tenns of operators that transfonn the initial learner's knowledge to the knowledge 
desired. These operators are called knowledge transmutations, and are characterized in tenns of the 
types of transfonnation they perfonn, and of the underlying type of inference involved in this 
transformation. The main aims of the theory are to investigate the properties of different 
knowledge transmutations, their relation to different types of inference, and their role in various 
learning methods and paradigms. The theory strives to provide a basis for developing effective 
techniques and tools for analyzing diverse learning processes from the viewpoint of their logical 
capability. 

Learning has been traditionally characterized as a behavior change due to experience. While such a 
view is generally appealing, it does not give many clues into how to· actually build learning 
systems. To build a learning system, one needs to understand, in computational tenns, what types 
of knowledge changes occur in learning, and how they are accomplished in response to different 
kinds of experience'. 

To provide answers to such questions, the inferential learning theory assumes that learning is a 
process of creating or improving knowledge representations by exploring the learner's experience. 
Such a process can be characterized by the types of knowledge transmutations that transfonn the 
initial knowledge (the learner's prior knowledge plus learner's experience) into the knowledge 
needed for accomplishing the learning goal. These knowledge transmutations include such 
processes as selection, replication, refonnulation, abstraction, similization, generalization, and 
their opposites. 

These operations can be done by a learner explicitly, by well-defined rules of inference. or 
implicitly, as results of specific mechanisms involved in infonnation processing. Since these 
operations can be applied in a great variety of ways, learning processes have to be guided by the 
learning goal(s). The goals can also be expressed explicitly or implicitly. The learner's experience 
(an input information to the learning process) can be in the fonn of sensory observations, facts or 
knowledge communicated by a source of infonnation, e.g., a teacher. 

The underlying goal of the Inferential Theory is to understand the competence aspects of learning 
processes, in contrast to the computational learning theory (e.g., Fulk and Case, 1990) that is 
concerned with the computational complexity of the processes. These competence aspects address 
such questions as what types of knowledge the learner is able to learn from what kinds of inputs, 
given certain prior knowledge; what is the logical relationship between the learned knowledge, the 
input infonnation and the learner's prior knowledge; what types of inference and knowledge 
transformations underlie such processes, etc. The presented work draws upon or is an extension of 
previous ideas described by Michalski (1983 & 1990a) and Michalski and Kodratoff (1990). The 
next section presents basic tenets of the inferential learning theory. To explain simply the 
underlying ideas and research aims, the presentation relies primarily on conceptual explanations 
and examples, rather than on precise defmitions and formal elaborations, which at this stage of the 
theory could obscure the presentation. 

2. Basic tenets of the theory 
Any learning process aims at improving the learner's knowledge or skill by interacting with some 
information source. A key idea of the inferential learning theory is that this improvement is done by 
perfonning various knowledge transmutations of the learner's prior knowledge and/or external 
inputs to the learning process. Consequently, the inferential learning theory analyzes learning 
processes in terms of knowledge transmutations involved in them. 
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The underlying tenet of the theory is that learning can be usefully viewed as a process of creating 
or mooifying certain knowledge structures to achieve a given leamer's goal. Such a process 
involves an interaction between the learner's prior knowledge, the inputs from an infonnation 
source, and the goal. These three components, the input, the learner's prior knowledge and the 
learner's goal, define what we call the learning task. 

According to the theory, the interactions among the components of a learning task can be 
characterized, at a conceptual level, in tenns of knowledge transmutations. These transmutations 
affect the relationship between the knowledge and the world the knowledge describes. For 
example, one of the most important knowledge transmutations is a generalization operation, which 
transfonns knowledge that characterizes a set of entities in the world into knowledge that 
characterizes a superset of these entities. Knowledge transmutations are bidirectional processes, 
and are characterized by pairs of opposite operations. Current theory distinguishes among the 
following knowledge transmutations: selection vs. generation, replication vs. deletion, 
refonnulation vs. randomization, abstraction vs. concretion, similization vs. dissimilization, and 
generalization vs. specialization. (See Section 4 for more details on knowledge transmutations.) 
These knowledge transmutations represent different specific fonns of underlying types inference, 
such as deduction, induction or analogy. (See section 3.) 

In symbolic learning systems, knowledge transmutations are perfonned in a more or less explicit 
way, and in conceptually comprehensible steps. For example, a generalization operation may be 
done according to some defined rules of generalization (Michalski, 1983). In subsymbolic 
systems (e.g., neural networks), the transmutations are performed implicitly. in steps solely 
dictated by the underlying computational mechanism. For example, a neural network may 
generalize an input example by perfonning a sequence of small modifications of the weights of 
intemooe connections. Although these weight modifications do not directly correspond to any 
explicit inference steps, they, nevertheless, can be characterized as certain knowledge 
transfonnations. For example, Wnek et al. (1990) described a simple method for visualizing 
generalization operations performed by a neural network, genetic algorithm, and symbolic learning 
systems (see also Figure 2). 

Any learning process needs to be always guided by some underlying goal, otherwise the 
proliferation of choices of what to learn would quickly overwhelm any realistic system. Such a 
learning goal can be explicitly defined, or only implicitly defined, by the way the learner processes 
the input information, by what it pays attention to, etc. The input information (input) can be 
observations, stated facts, concept instances, previously fonned generalizations, conceptual 
hierarchies, information about the validity of some pieces of knowledge, or some combinations of 
such types of knowledge. At the beginning of a learning process, the input activates segments of 
the learner's prior knowledge that are relevant to the learning goal. Such a goal-relevant part of 
learner's prior knowledge is called background knowledge (BK). 

The BK can be in different forms, e.g., in a declarative form which is most useful for explicit 
reasoning (conceptual knowledge), or in procedural from, as sequences of instructions for 
executing specific tasks (control knowledge, skills). 

Figure 1 illustrates major components and the information flow in a general learning process, 
according to the theory. In each learning cycle, the learner analyzes the input information in terms 
of its BK and its goals, and generates new knowledge and/or a better form of knowledge 
(depending on the learning goal) through various knowledge transmutations. The results are fed 
back to the learner's "knowledge base," and may be used in subsequent learning processes. 

The central aspect of any knowledge transmutation is the basic type of underlying inference, which 
may be deduction or induction. As mentioned ealier, transmutations change the relationship 
between knowledge and the world they describe. The underlying type of inference involved in a 
transmutation characterizes such a change along the truth-falsity dimension. A deductive 
transmutation is truth-preserving, and an inductive transmutation is falsity-preserving (see Sec. 3). 
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Figure 1. An illustration of a generalleaming process. 

A learning strategy is defined by the overall type of knowledge transmutation that turns the input 
into the stored knowledge. The lowest strategy is rote learning (direct knowledge implantation) in 
which the infonnation from a source is essentially copied from a source into the learner's 
knowledge base. This strategy thus involves a replication transmutation. Such a process requires a 
proper arrangement of the new knowledge within the learner's current knowledge structure. 

The next level of strategy, learning from instruction, involves selecting relevant parts from the 
knowledge supplied by a source (a selection transmutation), and perfonning various desirable 
transfonnations to fit the leamer's conceptual structure (refonnulation transmutations). 

The above two strategies, rote learning and learning from instruction, are not supposed to change 
the meaning of the knowledge obtained from the source, therefore they involve only truth· 
preserving transmutations. In these strategies, the learning process engages primarily the leamer's 
memory, rather than its reasoning capabilities. 

Although these two learning strategies are relatively simple in comparison to other strategies, they 
should not be viewed as uninteresting or unimportant. Their implementation poses a number of 
significant problems, such as those concerning the choice of knowledge representation, knowledge 
organization, and access to the stored knowledge. In the case of learning from instruction, there are 
also problems of determining what parts of the source knowledge are relevant to the learner's 
goals, and what transmutations are required to assimilate knowledge into the learner's knowledge 
structures. 

These two strategies are also quite important because they are very widely used in human learning, 
as well as in computer systems. For example, buidling a database can be characterized, from the 
viewpoint of a computer, basically as a fonn of direct knowledge implantation. (Modern databases 
exhibit also' elements of learning from instruction, as they are capable of perfonning some 
deductive lqtowledge transfonnations by themselves.) Most of the current methods of knowledge 
acquisition for knowledge· based systems can be viewed as combinations of the above two learning 
strategies plus various knowledge elicitation techniques. 

Higher learning strategies require a learner to perfonn correspondingly more advanced fonns of 
knowledge transmutations. For example, in the explanation based-learning strategy, the overall 
transmutation can be characterized as deductive generalization. In learning by analogy or case· 



5 

based ~earnin.g, t!Ie overall transmutation is similization. In learning causal explanations, it is 
abducttve denvatton. In learning from examples and learning from observation strategies (the later 
is also called learning by discovery) it is inductive generalization. 

As mentioned earlier, the learning strategy to be applied depends on the learning task (defmed by 
the available input information,learner's prior knowledge, and the learning goal). The input 
information comes from an information source, which may be the learner's environment, a 
t~acher, or a learners own internal process. 

The learning goal can be implicit or explicit, but is necessary for determining what parts of prior 
knowledge are relevant, what knowledge is to be acquired, and· how to evaluate the learned 
knowledge. There can be many different types of learning goals, e.g., to solve a problem, to 
perform an action, to "understand" observed facts, to concisely describe given data. to discover a 
regularity in a collection of observations, to explain or express a regularity in terms of high level 
concepts, to confJl'l11 a given piece of knOWledge. etc. A learner may have more than one goal, and 
the goals may be conflicting. In such a situation, their relative importance affects the decision about 
the amount of effon the learner extends in pursuing any of them. A weakness of some machine 
learning research is that it considers a learning process separately from the learning goal(s). and as 
a result many developed systems are method-oriented rather than problem-oriented. Studying the 
role of goals in learning is an important research topic for machine learning. 

In summation, the inferential learning theory states that in order to learn. an agent has to be able to 
perform inference, and has to posses memory that supplies the BK needed for performing the 
inference. and records the results of the inference for future use. Without either of the two 
components--the ability to reason and the ability to store and retrieve information from memory­
no learning can be accomplished. Thus, one can write an "equation": 

Learning = Inference + Memory 

It should be noted that the tenn "inference" is used here in a very general sense, meaning any type 
of inference or knowledge transmutation or manipulation, including syntactic or semantic 
transformations. as well as random searching for a specified entity. 

The double role of memory, as a supplier of background knowledge. and as a storer of the results, 
is often reflected in the organization of a learning system. For example, in a neural net, background 
knowledge resides in the SJI'Ucture of the network (in the type of units used and in the way they are 
interconnected), and in the initial weights of the connections. The learned knowledge usually 
resides only in the new values of the weights. In a decision tree learning system. the BK includes 
an attribute evaluation procedure and knowledge about the domains of the attributes. The 
knowledge created is in the form of a decision tree. In a "self-contained" rule learning system, all 
background knowledge and the learned knowledge would be in the form of rules. A learning 
process would involve modifying prior rules and/or creating new ones. The ultimate learning 
capabilities of a learning system are determined by what it can or cannot change in its knowledge 
base during a learning process. 
Because inferential theory views learning as an inference process, it may appear that it only applies 
to symbolic methods, and does not apply to subsymbolic or hybrid forms of learning, such as 
neural net learning, reinforcement learning or genetic algorithm-based learning. It is argued that it 
also applies to them because these methods can also be analyzed from the viewpoint of the types 
of knowledge transmutations performed by them. They can generalize, specialize, similize, 
reformulate, select, etc. information, as any other systems. 

To illustrate this point, Figure 2 presents "images" of concepts learned by a neural network, a 
classifier system using a genetic algorithm, a decision tree learning program (C4.5), and a rule 
learning program (AQ15). Each cell of a diagram represents a single combination of attribute 
values, i.e., an instance in the description space. 
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Figure 2. Images of the target concept and the learned concept 
(the concept was learned from 6% positive and 3% negative examples). 

[from Wnek et aI., 1990]. 
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T~ det~nnine the combination of attribute values corresponding to a given cell (e.g., see Example 
A In FIg. 2), one projects the cell on the ranges of attributes values associated with the scales aside 
of the diagram. The area "target concept" includes all possible instances of the concept to be 
l~arned. The area (set of cells) marked "target concept" represents all instances that belong to the 
given concept. The area "leamed concept" denotes all instances that a given learning system would 
classify as belonging to the concept, after the learning process has been completed. 

The four diagrams presented in Figure 2 display the "learned concepts" for each of the learning 
system compared: a classifier system (CFS), and rule learning system (AQI5), and neural net 
(BpNet) and a decision tree learning system (C4.5). 

The set-theoretic difference between the "target concept" and the "learned concept" thus represents 
errors--an "error image." Each instance in this area will be incorrectly classified by the learned 
concept. By analyzing the images of the concepts learned by different paradigms, one can 
determine the degree to which they generalized the original examples, can "see" the differences 
between these generalizations and can determine the classification of new or hypothetical examples 
according to the learned concept, etc. (For more details, see Wnek et al., 1990.) 

Thus, from the viewpoint of the inferential learning theory, the difference between symbolic and 
subsymbolic systems is that the latter perform knowledge transformations implicitly, e.g., by 
modifying weights of connections rather than explicitly, as in the former. The prior knowledge in 
subsymbolic systems is also represented in an implicit way, e.g., by the structure of the neural net 
and the initial settings of the weights of the connections. This prior knowledge could also be re­
represented, at least conceptually, in the form of logical expressions or rules, and then dealt with as 
with any other knowledge. 

The subsymoolic approaches, obviously, also have the ability to memorize results of their learning. 
For example, in a neural net, the acquired knowledge is manifested in the new weights of the 
connections among the net's units. 

3. Types of inference 
As stated earlier, the inferential theory postulates that a learner learns by conducting inferences to 
derive the desirable knowledge representation from the input and current BK, and then stores the 
results for future use. Such a process may involve any type of inference. Therefore, from this 
viewpoint, a complete learning theory has to include a complete theory of inference. 

Such a theory of inference should account for and explain all possible types of knowledge 
transformations. Figure 3 presents an attempt to schematically illustrate all basic types of 
inference. 

The first major classification is to divide inference types into deductive and inductive. The 
difference can be explained by considering an entailment: 

Pu BK 1= C (1) 

where P denotes a set of statements. called premise, BK represents the reasoner's BK (including 
rules of inference), and C denotes a set of statements, called consequent. Deductive inference is 
deriving consequent C, given premise P and BK. Inductive inference is hypothesizing premise P, 
given consequent C and BK. If 1= is the formal logic entailment (i.e., (1) is a valid formula), then 
deductive inference can be viewed as "tracing forward" the relationship (1) and induction as 
"tracing backward" such relationship. 

In a general view of deduction and induction, which also captures their approximate or 
commonsense forms, 1= may denote a "weak" entailment, i.e., plausible, probabilistic or partial. 
The difference between the "strong" (valid) and "weak" entailment leads to another major 
classification of inference types. Specifically, inferences can be divided into those based on the 
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universal or domain-independent dependencies, and those based on contingent or domain­
dependent dependencies. A universal dependency between individual statements or sets of 
statements represents a necessarily true relationship, i.e., a relationship that must be true in all 
possible worlds. For example, valid rules of inference represent universal dependencies. 

To illustrate a universal dependency, consider the statement "All elements of the set X have the 
property q." If this statement is true, then the statement "x, an element of X. has the property q" 
must also be necessarily true. This relationship between the statements is true independently of the 
domain of discourse. i.e .• of the nature of elements in the set X. 

If a reasoning process involves only statements that are assumed to be true, such as axioms, "true" 
observations. "true" implications. etc .• and/or universal dependencies, then deriving C, given P, 
is the universal (or crisp) deduction. and hypothesizing p. given C. is universal (or crisp) 
induction. For example, suppose that BK is "All elements of the set X have the property q" and 
the input (premise P) is "x is an element of the set X." Deriving a statement "x has the property q" 
is universal deduction. On the other hand, suppose that BK is "x is an element of the set X" and 
the input (the observed consequent C) is "x has the property q. Hypothesizing the premise P that 
"All elements of the set X have the property q" is universal induction. 

UNIVERSAL 


CONTINGENT 
 Abduction 

DEDUCTIVE INDUCTIVE 

Truth­ Falsity­
preserving preserving 

Figure 3. A classification of different kinds of inference. 

Contingent dependencies are relationships that are domain-dependent in the sense that they 
represent some world knowledge that is not totally certain, or that there may be worlds in which 
they are not true. They can be in the form of probabilistic dependencies. plausible implications. 
partial dependencies, etc. The contingency of these 'relationships is usually due to the fact that they 
represent incomplete, or not totally precise or correct information about all the factors in the world 
that enter a dependency. These relationships may hold with different "degrees of strength." The 
conclusions from inferences based on contingent dependencies (even using valid rules of 
inference) are therefore uncertain, and may be characterized by different "degrees of belief" 
(probabilities, degrees of truth, likelihoods, etc.). They also usually hold in both directions, 
although not with the same strength in each direction (Collins and Michalski, 1989). 

For example, "If there is fire, then there is smoke" is a (bidirectional) contingent dependency, 
because there could be a situation or a world in which it is false. If one sees fife, then one may 
derive (deductively) a conclusion that there may be smoke. This conclusion, however, is not 
certain. In a reverse direction of reasoning ("tracing backward" the above dependency), observing 
smoke, one may hypothesize (abductively) that there is fife. This is also an uncertain inference. 
Therefore, it may appear that there is no principal difference between contingent deduction and 
abduction. 
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These two types of inferences are different if one assumes that 1= in (1) indicates a causal ordering 
(Le., P is viewed as a cause, and C as a consequence). Contingent deduction derives a plausible 
consequent, C, of the causes represented by P. Abduction derives plausible causes, P, of the 
consequent C. Contingent deduction can thus be viewed as "tracing forward," and abduction as 
"tracing backward" such contingent, causally ordered, dependencies. 

In sum, both contingent deduction and abduction are based on contingent domain~dependent 
relationships. Contingent deduction produces likely consequences of given causes, and alxluction 
produces likely causes of given consequences. If a dependency is truly symmetrical (e.g., A <=> 
B), then the difference between contignent deduction and abduction ceases to exist 

Universal deductive inference is strictly truth-preserving, and universal induction is strictly falsity­
preserving (if C is not true, then the hypothesis P cannot be true either). A universal deduction thus 
produces a provably correct (valid) consequent from a given premise. A universal induction 
produces a hypothesis that logically entails the given consequent (though the hypothesis itself may 
be false). Contingent deduction is truth-preserving, and abduction is falsity-preserving only to the 
extent to which the contingent dependencies involved in reasoning are true. 

The intersection of the deduction and induction (Le., an inference that is both truth-preserving and 
falsity-preserving for universal or true dependencies), represents an equivalence-based inference. 
Analogy can be viewed as an extension of such equivalence-based inference, namely, as a 
similarity-based inference. Every analogical inference can be characterized as a combination of 
deduction and induction. Induction is involved in detecting an analogical match (Le., in 
determination of the properties and/or relations that are similar between the analogs), whereas 
deduction uses the analogical match to derive unknown properties of the target analog. Therefore, 
in the diagram, analogy occupies the central area. 

As mentioned above, universal induction produces a premise that (together with BK) tautologically 
implies a given consequent. The tautological implication stems from the set-superset relationship. 
There are two types of universal induction: inductive generalization and iru/.uctive specialization. 
Inductive generalization is a widely known form of induction. 

For example, given that "bean 1, bean 2, and bean 3 from a bag B are white" one may 
hypothesize that "All beans in bag B are white." Clearly, if the hypothesized premise "All beans in 
bag B are white," is true, then the given consequent (i.e., bean 1, bean 2, and bean 3 from bag B 
are white) must necessarily be true. 

Inductive specialization is a less known form of induction. To illustrate this form, suppose, for 
e?Cample, that we are told that 

"There is a University in Virginia designed by Jefferson." (2) 

Suppose that knowing (2), and having BK that Charlottesville is a town in Virginia, an agent 
hypothesizes that 

''There is a University in Charlottesville designed by Jefferson." (3) 

This would be an example of inductive specialization. To see that this is a form of induction, notice 
that if (3) is true, then (2) must also be true (assuming the background knowledge is true). 

In sum, induction is a process opposite of deduction, that has as its aim to produce justifiable 
premises that entail consequents, or justifiable explanations for the given facts. These explanations 
can be in the form of generalizations (theories, rules, laws, etc.), causal explanations, or both. The 
term "justifiable" is important here because induction is an underconstrained problem, and just 
"reversing" deduction could lead to an unlimited number of alternatives. For this reason, the 
"symmetry" between deduction and induction is only partial. 
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Taking into consideration the above property, the previously given description of inductive 
inference based on (1) can be further elaborated. Namely, given a consequent C (observations, 
facts, rules, etc.), and BK BK, the reasoner searches for a hypothetical premise P, consistent with 
BK, such that 

PuBKI=C (4) 

and which satisfies the hypothesis selection criteria. 

In different contexts, the selection criteria are called a bias (e.g., Utgoff, 1986), a comparator 
(Poole, 1989), or preference criteria (Michalski, 1983). These criteria are necessary for any act of 
induction because for any given consequent and a non-trivial hypothesis description language there 
could be a very large set of distinct hypotheses that can be expressed in that language, and that 
satisfy the relation (4). The selection criteria specify how to choose among them. Ideally, these 
criteria should reflect the properties of a hypothesis that are desirable from the viewpoint of the 
reasoner's (or learner's) goals. Often, these criteria (or bias) are partially hidden in the description 
language used. Specifically, the description language may be limited to only conjunctive statements 
involving a given set of attributes, or determined by the mechanism performing induction (e.g., a 
method that generates decision trees is automatically limited to using only operations of conjunction 
and disjunction in the hypothesis representation). 

Generally, these criteria reflect three basic desirable characteristics of a hypothesis: accuracy, 
utility, and generality. The accuracy expresses a desire to find a "true" hypothesis. Because the 
problem is logically underconstrained, the "truth" of a hypothesis cannot be guaranteed in 
principle. To satisfy the entailment (4), a hypothesis has to be complete and consistent with regard 
to the input facts (Michalski, 1983). In some situations, however, an inconsistent and/or 
incomplete hypothesis may give a better overall predictive performance than a complete and 
consistent one (e.g., Quinlan, 1989; Bergadano et al., 1990). The utility requires a hypothesis to 
be simple, and easily implementable or applicable to performing an expected set of tasks. The 
generality criterion expresses the desire to have the hypothesis useful for predicting new cases. 

While the above described view of induction is by no means universally accepted, it is consist~nt 
with some long-standing scientific thoughts on this subject going back to Aristotle (e.g., Adler and 
Gorman, 1987; see also the reference under Aristotle). Aristotle, and many subsequent thinkers, 
e.g., Bacon (1620), Whewell (1857), Cohen (1970) and others, viewed induction as a 
fundamental inference type that underlies all processes of creating new knowledge. They did not 
assume that knowledge is created only from low-level observations, without use of prior 
knowledge, and based only on universal dependencies. 

Based on the role and amount of background knowledge, induction, as defined above, can be 
divided into empirical induction and constructive induction. In empirical induction there is little 
background knowledge, and the generated hypothesis is typically expressed using the same terms 
(attributes, relations, etc.) as the statements in the input (a consequent to be explained). For 
example, the hypothesis may use the attributes selected from among those that are used in 
describing the instances in the input to induction. For this reason, such induction is sometimes 
called selective (Michalski, 1983). . 

In contrast, a constructive induction would use background knowledge and/or experiments to 
generate additional, more problem-oriented tenns or concepts, and use them in the formulation of 
the hypothesis. To illustrate different kinds of induction, below are a few examples. To test if the 
inferences are inductive, one needs to see if, given BK and the hypothesis, the input is a logical 
consequence of them. 



11 

Empirical inductive generalization (Background knowledge limited) 

Input: The "A girl's face" is a beautiful painting. The "Lvow cathedral" is a beautiful 

BK: 
painting. 
"A girl's face" and "Lvow cathedral" are paintings by Dawski. 

Hypothesis: All paintings by Dawski are beautiful. 

Constructive inductive generalization (Backgound knowledge intensive) 

Input: 	 The "A girl's face" is a beautiful painting. The "Lvow cathedral" is a beautiful 
painting. 

BK: 	 "A girl's face" and "Lvow cathedral" are paintings by Dawski. Dawski is a known 
painter. Paintings are pieces of art. Beautiful pieces of art by a known painter are 
expensive. 

Hypothesis: All paintings by Dawski are expensive. 

Inductive SQecialization 

Input: John lives is Virginia. 

BK: Fairfax is a town in Virginia. 


Hypothesis: 	 John lives in Fairfax. 

Abductive derivation 

Input: There is smoke in the house. 

BK: Fire causes smoke. 


Hypothesis: 	 There is a fIre in the house. 

General (constructive) induction.' (e.g., generalization plus abduction) 

Input: Smoke is coming from John's apartment 

BK: Fire causes smoke. John's apartment is in the Golden Key building. 


Hypothesis: The Golden Key building is on frre. 

As mentioned earlier, in the most general formulation of induction, the union of BK and a 

hypothesis may only weakly entail the consequf:nt. In such cases, the hypothesis could be 

logically inconsistent and/or incomplete in relation to the given the input. 


4. Knowledge transmutations 
As mentioned before, the process of deriving desirable knowledge from a given input may be 
characterized in terms of various operations on the input information, and/or the learner's 
background knowledge. Such elementary operations may be replication and/or deleting some parts 
of the input, changing the measurement units, changing the quantization of the attributes, or 
generally reducing the amount of information conveyed by the input. 
More complex operations may involve a translation of the input information from one 
representation system to another, an abstraction, a generalization or specialization, etc. Some 
operations do not change the inherent meaning of the information, i.e., are truth-preserving, but 
some may generate hypothetical knowledge. All such operations are knowledge transmutations. 
The transmutations are typically bidirectional operations, and can be characterized by pairs of 
opposite processes. We distinguish the following basic knowledge transmutations: 
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1. Selection vs. generation 
The selection transmutation selects a subset of knowledge from a given source of knowledge that 
satisfies some goal. For example, choosing a subset of relevant attributes from a set of candidates, 
or detennining the most plausible hypothesis among a set of candidates is a selection of operation. 
The opposite operation is generation, that generates additional components of some knowledge 
structure. For example, generating a new attribute that is not present in the initial set of attributes, 
or creating a new decision rule is a generation operation. 
2. Replication vs. deletion 
The replication transmutation involves identifying a relevant knowledge segement in the given 
source (the input or prior knowledge), and directly reproducing it within the learner's knowledge 
(e.g., rote learning). There is no change in the basic form of knowledge. The learner or teacher 
must determine what parts of the source are relevant to the learning goal. The opposite operation to 
replication is deletion of some parts of knowledge (e.g., forgetting). 
3. Reformulation vs. randomization 
The reformulation operation transforms a segment of knowledge about some entity into another 
segment of knowledge according to well-defined truth-preserving rules of transformation. For 
example, mapping 'a subspace represented in a right-angled coordinate system into a radial 
coordinate system without any other change is a reformulation. A translation of a segment of 
knowledge from one formal language to another is also a form of reformulation. The opposite 
operation to reformulation is randomization, which 'transforms a knowledge segment to another 
one by making random changes. For example, mutation in a genetic algori thm represents a 
randomization operation. There is a whole range of intermediate transmutations between 
reformulation and randomization, called in this context derivations. For example, a derivation 
obtained by tracing backward a causal relationship is an abductive derivation (see Section 3). 
Another example of an intermediate derivation is crossover in a genetic algorithm. 
4. Abstraction vs. concretion 
Abstraction reduces the amount of detail in a description of an entity (an object, or a class of 
objects). To do so, it often transfers a description from one language to'another that is more 
suitable for expressing the propenies of the entity that are relevant to the reasoner's goal. The 
purpose of abstraction is to reduce the amount of information about an entity in such a way that 
information relevant to the learner's goal is preserved, and other information is discarded. An 
opposite operation to abstraction is concretion, which generates additional details about a given 
entity. 

5. Generalization vs. specialization 

The generalization operation extends the set of entities to which certain propenies are assigned. 
Generalization is typically inductive, which means that the extended set is inductively 
hypothesized. Generalization can also be deductive, when a more general assertion is a logical 
consequence of the more specific one, or is deduced from other knowledge. For example, 
transforming a statement "Mary went to France" into "Mary went to Europe" is a deductive 
generalization. The deductive generalization can be viewed as a form of abstraction. The opposite 
operation to generalization is specialization, which narrows the set under consideration. A typical 
form of specialization is deductive, but, as shown in section 3, there can also be an inductive 
specialization. 

S.Abstraction & Generalization 
Since abstraction and generalization are very important operations, and sometimes confused with 
each other, we give them special attention here. To further elaborate the above description, 
abstraction is defmed as a process of creating a less detailed representation of a given entity from a 
more detailed representation of this entity, using truth-preserving operations. The latter means that 
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~he set of inferences that can be drawn from an abstract description of the entity is a subset of the 
mferences that can be drawn from the original description of that entity (given the same 
background knowledge). In other words, details that are preserved should not suggest any new 
meaning that is not implied by the original description. 

To illustrate an abstraction operation, consider a transformation of the statement "My workstation 
has a Motorola 25-MHz 68030 processor" to "My workstation is quite fast." To make such an 
operation, the system needs domain-dependent background knowledge that "a processor with the 
25-MHz clock speed can be viewed as quite fast," and a rule "If a processor is fast then the 
computer with that processor can be viewed as fast" Note that the more abstract description is a 
logical consequence of the original description, and carries less information. 

The abstraction process often involves a change in the representation language, from one that uses 
more specific terms to one that uses more general terms, with a proviso that the statements in the a 
second language are logically implied by the statements in the first language. A very simple form of 
abstraction is to replace in a description of an entity a specific attribute value (e.g., the length in a 
centimeter) by a less specific value (e.g., the length stated in linguistic terms, such as short, 
medium and long). A more complex abstraction would involve a significant change of the 
description language, e.g., taking a description of a computer in terms of electronic circuits and 
connections, and changing it into a description in terms of the functions of the individual modules. 

The term abstraction is sometimes confused with generalization. As mentioned before, 
generalization extends the set under consideration. To illustrate the difference between the two, 
consider a statement d(S,v), which says that attribute (descriptor) d takes value v for the set of 
entities S. Let us write such a statement in the form: " 

d(S) =v (5) 

Changing (5) to the statement d(S) = v', in which v' represents a more general concept (e.g., a 
parent node in a generalization hierarchy of values of the attribute d), is an abstraction operation. 
Changing (5) to a statement d(S') = v, in which S' is a superset of S, is a generalization operation. 
For example, "transferring the statement "color(my-pencil) = light-blue" into "color(my­
pencil)=blue" is an abstraction operation. Transforming the original statement into "color(all-my­
pencils) = light-blue" is a generalization operation. Finally, transferring the original statement into 
"color(all-my-pencils)=blue" is both generalization and abstraction. In other words, associating 
the same information with a larger set is a generalization operation; associating a smaller amount of 
information with the same set is an abstraction operation. 

An abstraction process is usually done to serve a certain purpose, namely, to express only the 
information about some entity that is relevant to a given goal. An abstraction then can be viewed as 
a process of transforming knowledge from one form to another form, so that information relevant 
to a given goal is preservecL and irrelevant information is removed. Thus, formally, an abstraction 
is a transformation: 

Dl(S) ---> D2(S) (6) 

such that 

INFo(Dt. BK) :2 INFo(D2. BK) (6') 

where Dl(S) and D2(S) are descriptions of the set S (in the same or different languages), and 
INFO(Dl) and INFo<D2) are sets of all deductive inferences, relevant to the goal G, that can be 
drawn about S from Dl and D2, respectively, using BK. If the goal G does not require to remove 
any parts from the descriptions Dl and D2, then (6') is equivalent to saying that Dl implies D2 
(meaning that if an entity has properties stated by Dl , then it has the properties stated by D2)' The 
goal defines what parts of the description are relevant and cannot be removed, and what parts of 
the description can be ignored. Often, the goal of an abstraction process is only implicit Since an 



14 

abstraction is a truth-preserving process (from the viewpoint of the goal), it can be considered a 
fonn of deduction. 

In contrast to the above, generalization is a transmutation that changes the reference set of a given 
description. Such an operation can be fonnally characterized as a transformation: 

D(S 1) ---> D(S2) 

where D is a description applied to sets of entities, SI and S2. and 

(7) 

S2 ::? SI (7') 

When generalizing a set of descriptions, generalization usually involves also a removal of 
infonnation that is not shared by individual descriptions, and this is a fonn of abstraction. Thus, a 
general fonnulation of generalization includes also an abstraction operation: 

(8) 

where Dl and D2 are descriptions of. SI and S2, respectively; description Dl implies D2' and 

(8') 

As mentioned earlier, a generalization traIlsmutaion can be deductive or inductive depending on the 
fonn of the description. 

To illustrate these ideas, let us take a source statement "John is 6 feet tall, weighs 190 pounds, 
has blue eyes, and lives in Fairfax." A transfonnation of this statement into a target statement:" 
John is a big man who lives in Virginia" is an abstraction of the source statement. To make this 
abstraction one needs to utilize BK that "Being 6 feet tall and weighing 190 pounds classifies one 
to be called big," and that "Fairfax is a town in Virginia." The implied goal here is that information 
about the height, weight and the place where a person lives is relevant to the reasoner's goal, 
while the eye color is not. The abstracted statement clearly tells us less about John, but whatever 
can be inferred from it about John, can also be inferred from the original statement (given the same 
BK). The target statement does not introduce or hypothesize any more infonnation about John. 
The goal is an important component in a general fonnulation of abstraction, because an abstraction 
process may introduce infonnation that is incidental, and should not be taken into consideration 
while making inferences about the entity under consideration. For example, from an abstract 
drawing of a person one should not infer that the person is made out of paper. 

In summary, generalization transforms descriptions along the set-superset dimension, and is 
typically falsity-preserving (Michalski and Zemankowa, 1991).10 contrast, abstraction transfonns 
descriptions along the level-of-detail dimension, and is typically truth-preserving. Generalization 
often uses the same description space (or language), abstraction often involves a change in the 
representation space (or language). The reason why generalization and abstraction are frequently 
confused may be attributed to the fact that many reasoning acts involve both processes. The 
opposite process to abstraction is called concretion (Webster's dictionary defines it as being a 
process of concretizing something). Given a description of an entity, concretion creates a 
description that has more details about this entity. Concretion is usually a fonn of inductive 
specialization. 

As a parallel concept to constructive induction, discussed before, one may introduce the concept of 
constructive deduction. Similarly. to constructive induction, constructive deduction is a process of 
deductively transfonning a source description into a target description, which uses new, more 
relevant tenns and concepts than the source description. As in constructive induction, the process 
uses background knowledge for that purpose. 

http:1991).10
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Looking at abstraction from such a viewpoint, one may classify it as a form of constructive 
deduction. The latter is a more general concept than abstraction, however, as it also includes any 
other possible deductive knowledge transformations resulting in descriptions that contain concepts 
that were not present in the original description. For example, changing the problem representation 
space may be a form of constructive deduction, but not an abstraction. 

In a general sense, constructive deduction may also involve various forms of probabilistic 
reasoning (e.g., Schum, 1986; Pearl, 1988), or plausible reasoning (e.g., Collins and Michalski, 
1989). In such cases, the distinction between constructive induction and constructive deduction 
becomes just a matter of the degree to which different fonns of reasoning are stressed. 

6. A classification of learning processes 
Learning processes can be classified according to many criteria, such as the type of learning 
strategy used, the type of knowledge representation employed, the way information is supplied to a 
learning system, the application area, etc. Classifications based on such criteria have been 
discussed, for example, in Carbonell, Michalski and Mitchell (1983) and Michalski (1986). 

The inferential learning theory offers a new way of looking at learning processes, and suggests 
some additional classification criteria. The theory considers learning as a knowledge 
transformation process whose primary goal is typically either to increase the amount of learner's 
knowledge or its effectiveness. Therefore, the primary learning goal (or purpose) can be used as a 
major criterion for classifying learning processes. 

Based on this criterion, learning processes are divided into two categories-synthetic and analytic. 
The main goal of synthetic learning is to acquire new knowledge that goes beyond the knowledge 
already possessed, or beyond its deductive closure. The primary inference types involved in 
synthetic processes are induction and/or analogy. The word "primary" is imponant, because every 
inductive or analogical inference also involves deductive inference. The latter form is used, for 
example, to test whether a generated hypothesis entails the observations, to perform an analogical 
knowledge transfer based the hypothesized analogical match and to generate new terms using 
background knowledge, etc. 

The main goal of analytic learning processes is to transform knowledge that the learner already 
possesses into the form that is most desirable accotding to the given lea.rning goal. For example, 
one may know how to type on the typewriter, and through practice learns how to do it more 
rapidly. Likewise, one may have a complete knowledge of how an automobile works, and 
therefore can in principle diagnose the problems with it. By analytic learning, one can leam simple 
tests for more efficient diagnosis. From the viewpoint of the inferential theory, the primary 
inference type used in analytic learning is deduction. 

Other imponant criteria include the type of input information, the type .of primary inference 
employed and finally, the role of the learners background knowledge in the learning process. 

Figure 4 presents a classification of learning processes according to the above criteria. This 
classification shows the basic characteristics of all major machine learning approaches and 
paradigms. The categories presented are not to be viewed as having precisely delineated 
borderlines, but rather as labels of central tendencies that can transform from one to another by 
differently emphasizing various principal components. 

If the input to a synthetic learning method are examples classified by an independent source of 
knowledge, e.g., a teacher, then we have learning from examples. When the input includes facts 
that need to be described or organized into a knowledge structure by the learner itself, then we have 
learning from observation. The latter is exemplified by learning by discovery, conceptual 
clustering and theory formation. 
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Figure 4. A general classification of learning processes. 

The primary type of inference used in synthetic learning is induction. As described earlier, 
inductive learning can be empirical (background knowledge-limited) or constructive (background 
knowledge-intensive). Most work in empirical induction has been concerned with empirical 
generalization of concept examples using attributes selected from among those present in the 
descriptions of the examples. Another fonn of empirical learning includes quantitative discovery, 
in which learner constructs a set of equations characterizing given data. 

http:1lI1I'Illl.1I
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Learning methods employed in neural nets or genetic algorithms can also be viewed as forms of 
empirical inductive learning. They typically rely on relatively small amounts of background 
knowledge, and their primary inference type is inductive. lbis inference, however, is not executed 
in an explicit way, like in typical symbolic methods, but in an implicit way. 

In contrast to empirical inductive learning, constructive inductive learning is knowledge-intensive, 
as it uses background knowledge to create new and/or high-level characterizations of the input 
information. Such characterizations may use terms (attributes, relations, etc.) not present in the 
input. As described before, abduction can be viewed as a form of constructive induction, which 
"traces backward" domain-dependent rules. 

To be more complete, we will discuss some other classifications of inductive methods, not shown 
in this classification. 

One classification is based on the way facts or examples are presented to the learner. If examples 
are presented all at once, then we have one-step or batch (non-incremental) inductive learning. If 
they are presented one by one, or in portions, and the system may have to modify the hypothesis 
after each input, we have an incremental inductive learning. Incremental learning may be without 
memory, with partial memory, or with complete memory of past facts. 

Another classification is based on whether the input can be assumed to be totally correct, or that it 
can have errors and/or noise. 

The third classification characterizes methods based on the types of matching instances with 
concept descriptions. Such matching can be done in a direct or an indirect way. The latter employs 
a substantial amount of background knowledge. For example, case-based learning methods 
employ matching procedures that allow the system to recognize new examples that do not directly 
match any past example (e.g., Bareiss, Porter and Wier, 1990). Learning methods based on the 
two-tiered concept representation (Bergadano et aI., 1990) also use sophisticated matching 
procedures. 

Analytic methods can be divided into those that are guided by an example in the process of 
knowledge reformulation (example-guided), and those that start with a specification (specification­
guided). The former category includes explanation-based learning (e.g., Dejong et al., 1986), 
explanation-based-generalization (Mitchell et al., 1986). and explanation-based specialization 
(Minton et al., 1987; Minton, 1988). If deduction employed in the method is based on axioms. 
then it is called axiomatic. A "pure" explanation-based generalization can be viewed as an example 
of an axiomatic method because it is based on a deductive process that utilizes complete and 
consistent domain knowledge. This domain knowledge plays the role analogous to the axioms in 
formal theories. Synthesizing a computer program from its formal specification is another form of 
this class of learning processes. Analytic methods that involve deductive transformations of 
description spaces are classified as methods of "constructive deduction." A major member of this 
class are methods that utilize abstraction as the primary knowledge transformation operation. Other 
members of this class include methods of transforming problem repregcntation spaces, or utilizing 
contingent (e.g., plausible) deduction. 

Multistrategy learning systems integrate two or more learning strategies or paradigms. Among the 
most widely known systems that can be classified into this category are Unimem (Lebowitz. 
1986), Odysseus (Wilkins, Clancey, and Buchanan, 1986), Prodigy (Minton et aI., 1987), 
DISCIPLE-l (Kodratoff and Tecllci, 1987), GEMINI (Danyluk, 1987 and 1989), OCCAM 
(Pazzani, 1988), IOE (Dietterich and Flann, 1988) and ENIGMA (Bergadano et al., 1990). Other 
examples are in Segre (1989) and Porter and Mooney (1990). With few exceptions, existing 
multistrategy systems are concerned with integrating an empirical method with an explanation­
based method. Some, like DISCIPLE. also include an analogical learning. The integration of these 
methods is typically done in a predefined, problem-independent way. 
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An approach to building a multistrategy task-adaptive learning (MTL) is outlined in Michalski, 
1990a. An M1L system is supposed to determine by itself which strategy or a combination thereof 
is most suitable for a given learning task. 

The type of knowledge representation employed in a learning system can be used as another 
dimension for classifying learning systems (not shown in Figure 4). That is, learning systems can 
be classified on the basis of the knowledge representation employed, e.g., a logic-style 
representation, production rules. frames, semantic network, grammar, decision tree, neural 
network, classifier system, PROLOG program, etc., or a combination of different representations. 
The knowledge representation used in a learning system is often dictated by the application 
domain. It also depends on the type of learning strategy employed, as not every knowledge 
representation is suitable for every type of learning strategy. 
Thus, in parallel to multistrategy systems that combine several strategies, one can also distinguish 
multirepresentation learning systems that apply different knowledge representations in the process 
of learning. Such systems might employ various forms of constructive deduction or constructive 
induction to create and use representations at different levels of abstraction. The latter systems 
would thus be capable of changing the representation of the original problem statements. The 
importance of this area has been acknowledged by pattern recognition researchers (e.g., Bongard, 
1970), as well as by AI researchers (Amarel, 1986; Mozetic, 1989). 
Summarizing, reasoning/learning processes can be described in terms of three major dimensions 
characterizing the relationship between the input to the output: 
A. 	 the type of logical relationship: induction vs. deduction vs. analogy. 
B. the direction and the degree 	of the change in the reference set: generalization vs. 

specialization. 
C. the direction and the degree of change in the level-of-detail dimension: abstraction vs. 

concretion. 
Each dimension corresponds to a different mechanism of knowledge transformation that may occur 
in a learning process, and may involve two opposite operations. The operations involved in the 
first two mechanisms, induction vs. deduction, and generalization vs. specialization, have been 
relatively well-explored in machine learning. The operations involved in the third mechanism, 
abstraction vs. concretion, have been relatively less studied. Because these three mechanisms are 
interdependent, not all combinations of operations can occur in a single learning process (Michalski 
and Zemankova, 1991). TI:te problems of how to properly and effectively measure the amount of 
change in the reference set and in the level-of-detail of descriptions are important topics for future 
research. 
The "grand" classification above appears to be the flI'St attempt to characterize and relate to each 
other all major methods and subareas of machine learning. As such it can be criticized on various 
grounds. As any classification, this classification is useful only to the degree to which it illustrates 
important distinctions and relations among various categories. The ultimate goal of this 
classification effort is to show that diverse learning mechanisms and paradigms can be viewed as 
parts of one general structure, rather than as a collection of uncIearly related components and 
research efforts. 

7. 	 Summary 
The goals of this research are to develop a theoretical framework: and an effective methodology for 
characterizing and unifying diverse learning strategies and approaches. The proposed Inferential 
Theory looks at learning as a process of making knowledge transformations. Consequently, it 
proposes to analyze any learning method or strategy in terms of the types of knowledge 
transformations that occur in the learning process. Basic knolwedge transformations have been 
classified according to three interrelated dimensions, defined by the type of the logical relationship 
between an input and output (induction vs. deduction vs. analogy), by the change in the reference 
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set (generalization vs. specialization), and by the change in the level-of-detail dimension 
(abstraction vs. concretion). 

The classification of types of inferences proposed here relates to each other such basic types of 
inference as deduction, induction, abduction and analogy. It has been shown that in addition to 
widely known inductive generalization, one can also distinguish inductive specialization. Is has 
been also shown that abduction can be viewed as a form of general induction, and abstraction as a 
form of deduction. These concepts have been used to develop a general classification of learning 
processes. The proposed inferential learning theory can serve as a basis for the development of 
multistrategy learning systems that combine diferent learning strategies and paradigms. Early 
results in this direction have led to the formulation of the multislralegy task-adaptive learning 
methodology, that dynamically chooses the learning strategy, or a combination of them, according 
to the learning task (Michalski, 199Oa). 
Many of the ideas discussed are at a very early state of development, and many issues have not 
been resolved. For example, future research should develop more precise characterization of 
various concepts discussed, and effective methods for characterizing different knowledge 
transformations, and for measuring their "degrees." Another important research topic is to 
determine how basic operations in various learning algorithms and paradigms map into the 
described knowledge transformations. 
In conclusion, the inferential learning theory provides a new viewpoint for analyzing and 
characterizing learning processes. By addressing their logical capabilities and limitations, it strives 
to analyze and understand the competence aspects of diverse learning processes. Among its major 
goals are to develop effective methods for determining what kind of knowledge a learner can 
acquire from what kind of inputs, and for formally characterizing the knowledge transformations 
occuring in diverse learning systems. Related goals are to develop a clear understanding of the 
areas of the most effective applicability of different learning methods and paradigms, and to gain 
new insights into how to build more advanced learning systems. 

Acknowledgments 
The author expresses his gratitude to Hugo De Garis, Ken Dejong, Bob Giansiracusa, Mike Hieb, 
Heedong Ko, Yves Kodratoff, David Littman, Elizabeth Marchut, David A. Schum, Gheorge 
Tecuci, Brad Utz, Janusz Wnek and Jianping Zhang for insightful comments on various topics 
reported in this paper. Thanks also go to Janet Holmes and Susan Lyons for stylistic suggestions 
and proofreading. 

This research was supported in part by the Defense Advanced Research Projects Agency under the 
grants administered by the Office of Naval Research No. NOOOI4-K-85-0878 and NOOOI4-91-J­
1854, and in part by the Office of Naval Research under grants No. NOOOI4-88-K-0397, No. 
NOO0l4-88-K-0226 and No. NOOOI4-91-J-1351. 

References 
Adler, M. J., Gorman (Eds .. ) The Great Ideas: A Synoptic of Great Books of the Western World, 
Vol. 1, Ch. 39, Encyclopedia Britannica, 1987. 

Amarel, S., "Program Synthesis as a Theory Formation Task: Problem Representations and 
Solution Methods," in Machine Learning: An Artijiciallntelligence Approach Volll, Morgan 
Kaufmann, Los Altos, CA, R. S. Michalski, J. G. Carbonell and T. M. Mitchell (Eels.), 1986. 

Aristotle, Posterior Analytics, in The Works of Aristotle, Volume 1, R. M. Hutchins (Ed.), 
Encyclopedia Britannica, Inc., 1987. 

Bacon, F., Novum Organum, 1620. 

Bareiss, E. R., Porter, B. and Wier, C.C., PROTOS, An Exemplar-based Learning Apprentice. 
in Machine Learning: AN Artificial Intelligence Approach vol. Ill, Morgan Kaufmann, 1990. 



20 

Bergadano, F., Matwin, S., Michalski, R.S. and Zhang, 1., Learning Two-tiered Descriptions of 
Flexible Concepts: The POSEIDON System, Machine Learning and Inference Reports, No. 
MU-3, Center for Artificial Intelligence, George Mason University, 1990. 

Birnbaum, L. and Collins, G., Proceedings of the 8th International Conference on Machine 
Learning, Chicago, June 1991. 

Bongard, N., Pattern Recognition, Spartan Books, New York, 1970 (translation from Russian). 

Carbonell, 1. G., Michalski R.S. and Mitchell, T.M., An Overview of Machine Learning, in 
Machine Learning: AN Artificial Intelligence Approach, Michalski, R.S .• Carbonell, J.G., and 
Mitchell, T. M. (Eds.), Morgan Kaufmann Publishers, 1983. 

Cohen, LJ.• The Implications ofInduction, London, 1970. 

Danyluk. A.P., "The Use of Explanations for Similarity-Based Learning," Proceedings ofIlCAl­
87,pp.274-276,Milan,Italy, 1987. 

Danyluk. A. P., "Recent Results in the Use of Context for Learning New Rules," Technical 
Report No. TR-98-066, Philips Laboratories, 1989. 

Dejong, G. and Mooney, R., "Explanation-Based Learning: An Alternative View," Machine 
Learning lournal, Vol 1, No.2, 1986. 

Dietterich, T.G., and Flann, N.S., "An Inductive Approach to Solving the Imperfect Theory 
Problem," Proceedings of 1988 Symposium on Explanation-Based Learning, pp. 42-46, Stanford 
University, 1988. 

Fulk, M. and Case, J. Proceedings of the 3rd Annual Workshop on Computational Learning 
Theory, University of Rochester, N.Y., August 6-8, 1990. 

Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison­
Wesley, 1989. 

Haussler D. and Pitt, L. (Eds.), Prdceedings of the 1988 Workshop on the Computational 
Learning Theory (COLT 88), Morgan Kaufmann Publishers, San Mateo, CA, 1988. 

Kodratoff, Y., and Tecuci, G., "DISCIPLE-I: Interactive Apprentice System in Weak Theory 
Fields," Proceedings ofIlCAl-87, pp. 271-273, Milan, Italy, 1987. 

Kodratoff, Y. and Michalski, R.S., (eds.) Machine Learning: An Artificial Intelligence Approach 
Volume Ill, Morgan Kaufmann Publishers, Inc. 1990. 

Laird, J.E., (Ed.), Proceedings of the Fifth International Conference on Machine Learning, 
University of Michigan, Ann Arbor, June 12-14, 1988. 

Lebowitz, M., "Integrated Learning: Controlling Explanation," Cognitive Science, Vol. 10, No. 
2, pp. 219-240, 1986. 

Michalski, R. S., "Theory and Methodology of Inductive Learning," Machine Learning: An 
Artificiallntelligence Approach, R. S. Michalski, J. G. Carbonell, T. M. Mitchell (Eds.), 
Tioga Publishing Co., 1983. 

Michalski, R.S., Understanding the Nature of Learning: Issues and Research Directions, in 
Machine Learning: An Artijicial Intelligence Approach Vol. /I, Michalski, R.S., Carbonell, J.G., 
and Mitchell, T. M. (Eds.), Morgan Kaufmann Publishers, 1986. 

Michalski, R.S., Toward a Unified Theory of Learning: Multistrategy Task-adaptive Learning, 
Reports ofMachine Learning and Inference Laboratory MU-90-1, January 1990a. 

Michalski, R.S., LEARNING FLEXIBLE CONCEPTS: Fundamental Ideas and a Method Based 
on Two-tiered Representation, in Machine Learning: An Artificial Intelligence Approach vol. Ill, 
Kodratoff, Y. and Michalski, R.S. (eds.), Morgan Kaufmann Publishers, Inc., 1990b. 



21 

Michalski, R.S.and Kodratoff, Y. "Research in Machine Learning: Recent Progress, 
Classification of Methods and Future Directions," in Machine Learning: An Artificial Intelligence 
Approach vol. Ill, Kodratoff, Y. and Michalski, R.S. (eds.), Morgan Kaufmann Publishers, Inc., 
1990. 

Michalski, R. S. and Zemankova, M., "What is Generalization: An Inquiry into the Concept of 
Generalization and its Types," to appear in Reports ofMachine Learning and Inference Laboratory, 
Center for Artificial Intelligence, George Mason University, 1991. 

Minton, S., "Quantitative Results Concerning the Utility of Explanation-Based Learning," 
Proceedings ofAAAl-88, pp. 564-569, Saint Paul, MN, 1988. 

Minton, S., Carbonell, J.G., Etzioni, 0., et al., "Acquiring Effective Search Control Rules: 
Explanation-Based Learning in the PRODIGY System," Proceedings of the 4th International 
Machine Learning Workshop, pp. 122-133, University of California, Irvine, 1987. 

Mitchell, T.M., Keller,T., Kedar-Cabelli,S., "Explanation-Based Generalization: A Unifying 
View," Machine Learning Journal, Vol. 1, January 1986. 

Mozetic, I., Hierarchical Model-based Diagnosis, Reports of Machine Learning and Inference 
Laboratory, No. MLI89-1, 1989. 

Pazzani, M.J., "Integrating Explanation-Based and Empirical Learning Methods in OCCAM," 
Proceedings of EWSL-88, pp. 147-166, Glasgow, Scotland, 1988. 

Pearl J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 
Morgan Kaufmann, 1988. 

Poole, D., Explanation and Prediction: An Architecture for Default and Abductive Reasoning, 
ComputationallnteIIigence, No.5, pp. 97-110, 1989. 

Porter, B. W. and Mooney, R. J. (eds.), Proceedings of the 7th International Machine Learning 
Conference, Austin, TX, 1990. 

Quinlan, J. R., "Probabilistic Decision Trees," chapter in Machine Learning: An Artificial 
Intelligence Approach, Vol. Ill, Y. Kodratoff and R. S. Michalski (eds.), Morgan Kaufmann, Los 
Altos, CA, 1989. 

Schafer, D., (Ed.), Proceedings of the 3rd International Conference on Genetic Algorithms, 
George Mason University, June 4-7, 1989. 

Schum, D.,A.,"Probability and the Processes of Discovery, Proof, and Choice," Boston 
University Law Review, Vol. 66, No 3 and 4, May/July 1986. 

Segre, A. M. (Ed.), Proceedings of the Sixth International Workshop on Machine Learning, 
Cornell University, Ithaca, New York, June 26-27, 1989. 

Touretzky, D., Hinton, G., and Sejnowski, T. (Eds.), Proceedings of the 1988 Connectionist 
Models, Summer School, Carnegie Mellon University, June 17-26, 1988. 

Utgoff, P. Shift of Bias for Inductive Concept Learning, in Machine Learning: An Artificial 
Intelligence Approach Vol. II, Michalski, R.S., Carbonell, lG., and Mitchell, T. M. (Eds.). 
Morgan Kaufmann Publishers, 1986. 

Whewell, W., History of the Inductive Sciences, 3 vols., Third edition, London, 1857. 

Wilkins, D.C., Clancey, W.J., and Buchanan, B.G., An Overview of the Odysseus Learning 
Apprentice, Kluwer Academic Press, New York, NY, 1986. 

Wnek, J., Sarma, J., Wahab, A. A. and Michalski,R.S., COMPARING LEARNING 
PARADIGMS VIA DIAGRAMMATIC VISUALIZATION: A Case Study in Concept Learning 
Using Symbolic, Neural Net and Genetic Algorithm Methods, Proceedings ofthe 5th International 
Symposium on Methodologies for Intelligent Systems, University of Tennessee, Knoxville, TN, 
North-Holland. October 24-27, 1990. 




